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Abstract

The maximum weight forest problem (MWFP) in a graph is solved by the famous
greedy algorithm due to Edmonds (1971) where every edge has a known weight. In
particular, the system of constraints on the set of edges is TDI (totally dual integral),
since the set of independent edges, i.e., of acyclic subsets of edges, is a matroïd. We
extend this approach to the case of two-stage maximum weight forest problems. The
set of edges is composed of �rst stage edges with known weights and second stage
ones where the weights are known a priorily in terms of discrete random variables.
As the probability distribution is discrete, we transform the stochastic problem into a
deterministic equivalent problem. In this article, we prove TDIness for the two stage
maximum weight forest problem in the following cases: Two scenarios with reduced
number of �rst stage variables and we propose an e�cient greedy algorithm for solving
this problem. We provide a counter example to prove that the problem is not anymore
TDI for more than two scenarios.

1 Introduction, notation and generalities

1.1 Introduction

We consider a graph = (V,E) where E is a set of edges of cardinality N , and a cost function

c de�ned on edges. The edges are indexed by i ∈ [1, N ] and for any subset F of edges, we

call c(F ) the sum
∑
j∈F

cjxj where xj = 1 if j ∈ F and xj = 0 otherwise. A subset F is said

independant if there is no cycle in F . The maximization problem of c(F ) for F independant

is well known to be connected to matroïds and is e�ciently solved in the case of a �xed

cost value for every edge (Nemhauser and Wolsey, 1999). When every edge has a �xed

value, we say that the problem is deterministic and since independant sets are a matroïd,

the greedy algorithm is e�cient to provide the maximisation problem of c(F ) polynomialy.

The matroïd structure of independant sets involves the fact that the rank function r(F )
(the maximum cardinality of any independant subset included in F ) is submodular. In this

case, the polytope associated to independance constraint is Totally Dual Integral. This is

a very nice property which allows to apply algebraic methods to solve maximization. The

problem we introduce in this paper is to understand what happens when cost function is

not deterministic but follows a discrete stochastic distribution �. In our problem, the edges

are splitted into two subsets E = X ∪ Y . In stochastic programming, the �rst subset X
has a deterministic cost function, this set is called �rst stage, we set card(X) = n, whereas
in second subset called second stage, card(Y ) = q.
Cost function depends on K ≥ 2 scenarios and cost values are given by a probability

distribution � = (�1, . . . , �K). This problem is turned into a deterministic formulation by

splitting any second stage edge xj ∈ Y into K equivalent new edges xkj with k ∈ {1, . . . ,K},
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connecting the same vertices (multigraph) with a �xed cost �kcj(k). The whole set of edges
becomes V = X∪Y1∪. . .∪YK . We consider that a �rst stage edge belongs to every scenario

Si for i ∈ {1, . . . ,K} while a second stage belongs to only one scenario. The formulation

of this problem is :

zIP = max{
∑
j∈X

cjxj +

k=K∑
k=1

∑
j∈Y

�kcj(k)x
k
j : x ∈ �(r)} (1)

�(r) = {x ∈ {0, 1}n+Kq :
∑

j∈S∩Si

xj ≤ r(Si) for i ∈ {1, . . . ,K} ∀S ⊆ E} (2)

In our formulation, there exist n + Kq edges where constraints express choice of inde-

pendant edges. Since these new edges of second stage don't exist simultaneously, the set

of contraints involves only edges of same scenario, and the whole set of contraint can be

expressed as a block matrix system.

The most powerfull case is when the deterministic problem is associated with a matrix

constraint which is Totally Unimodular (TU). Introducing multi stages and dubbing sub

matrices of second stage edges is studied by (Kong et al., 2007). In our case, initial proper-

ties are weaker and are formulated in terms of TDI system. Operations that preserve TDI

properties are presented in (Cook, 1983) and we will outline connection with our formu-

lation and matroïds intersection, the reader will refer to Franck (1981) for further details.

In section 2, we reproduce the basic results of the determinist case. The reader will refer

to (Nemhauser and Wolsey, 1999). In the greedy algorithm, we outline the importance of

the closure of a subset and the dynamical point of view of the building scheme of the dual

solution. In section 3, we deal with the case of two scenarios with a small number of �rst

stage edges. We sketch an approach to deal with any situation with only two scenarios. In

section 4, we show by an example to the contrary that the TDI properties are not preserved

in case of strictly more than two scenarios.

1.2 Preliminaries

We begin by reminding classical notations and properties:

1.2.1 Matroids

De�nition 1.1. Let E a �nite set of cardinality N , and F a set of subsets of E,we say

that F is an independence system if:

∀(F1, F2) ⊂ E2, F1 ∈ F and F2 ⊂ F1 ⇒ F2 ∈ F

In this article, E is the set of edges of a graph G, and F are the acyclic subset of edges in

G.
The elements of F are called independent sets.

De�nition 1.2. Given an independence system F in E, we say that F ∈ F is a maximal

independent set if

∀j /∈ F, F ∪ {j} /∈ F

For a subset T ⊂ E, we consider the independent sets F included in T , and especialy the

maximal independent sets in T . We de�ne the rank function r as

r(T ) = max{∣S∣ : S ∈ F for S ⊂ T}

2



It is not always the case that every maximal independent set F in T has exactly the same

cardinality. This is the situation of a matroïd :

De�nition 1.3. A matroïd is an independent set F for which every T ⊂ E, every maximal

independent set F in T has exactly the same cardinality - which is r(T ).

When F is de�ned as the acyclic set of edges of E, it is a matroïd. It is interesting to

notice that the rank function is given by the following property:

Proposition 1.4. r(T ) is the cardinal of the set of covered vertices by edges in T minus

the number of connected components of the subgraph.

Theorem 1.5. (Nemhauser and Wolsey, 1999)

Let consider a �nite set E and an independence system F , and the (rank) function r
de�ned above, F is a matroïd ⇔ r is submodular.

We outline that there exist some submodular functions di�erent from r, for instance there
exist modular functions which are not nondecreasing (while r is always nondecreasing).

1.3 Polytopes and problems associated

We introduce the notations:

�(r) = {x ∈ {0, 1}n :
∑
j∈S

xj ≤ r(S) ∀S ⊆ E} (3)

zIP = max{ctx : x ∈ �(r)} (4)

The polytope associated to the matroïd:

P (r) = {x ∈ (R+)n :
∑
j∈S

xj ≤ r(S) ∀S ⊆ E} (5)

and the linear program associated

zLP = max{ctx : x ∈ P (r)} (6)

The dual problem associated with zIP is :

zLD = min
∑
S⊆E

r(S)yS (7)

st

{ ∑
S:j∈S

yS ≥ cj ∀j ∈ E

yS ≥ 0 ∀S ⊂ E
(8)

2 Deterministic case

In this section we remind the results given in Nemhauser and Wolsey (1999). We outline a

dynamical point of view for the construction of the greedy solution by watching carefully

how the closure of a subset of chosen edges is increasing.

The Problem of �nding a maximum-weight independant set in F is formulated by (4);

We show that zIP = zLD, by exhibiting the optimal solution for zLD which is indeed the

greedy solution for zIP . The conclusion is that �(r) is TDI and the duality gap is equal

to 0.
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2.1 The greedy algorithm

This algorithm is due to Edmonds (Nemhauser and Wolsey (1999)).

Rank the elements of N so that c1 ≥ c2 ≥ . . . cn
Let begin by J0 = ∅ , t = 1
Iteration t : If ct ≤ 0 then stop and SG = Jt−1.
If ct > 0 and Jt−1 ∪ {t} ∈ F , then set Jt = Jt−1 ∪ {t}.
If ct > 0 and St−1 ∪ {t} /∈ F then set Jt = Jt−1.
if t = N stop and SG = Jt
set t to t+ 1
The greedy solution is {xi/i ∈ SG}
We now present the main result connecting the greedy solution to the Dual Problem, and

we emphasize on the growing closure mechanism.

De�nition 2.1. The closure or span of a set A is sp(A) = {i ∈ N : r(A ∪ {i}) = r(A)}.

Theorem 2.2. The dual problem zLD and the greedy solution of zIP have the same objective

value. When F is a matroïd, P (r) is a integral polytope. And the system de�ning P (r) is
TDI.

Proof. First, we still assume that indexation of edges is equal to their rank according to a

decreasing weight. We dynamicaly construct both greedy solution and dual solution equals

at every step. The �rst step is the choice of the most weighted edge and we set J1 = 1.
We call j1 = 1 the �rst chosen edge and we notice that K1 = sp(J1). We now choose the

second edge j2 with the highest rank among all remaining edges such that j2 /∈ K1. Up

to this point of construction, obviously j2 = 2 since there is no cycle with only two edges.

We build now Ji+1:

Let Ji = (j1, . . . , ji) be the set of chosen edges at step i ≥ 2, and Ki = sp(Ji).
Choose ji+1 with the highest rank among all remaining edges such as ji+1 /∈ Ki and

cji+1 ≥ 0. We call p the number of chosen edges and SG = Jp.

The optimal solution to zLD is :

yKt = cjt − cjt+1 for t = 1, . . . , p− 1
yKp = cjp
yS = 0 otℎerwise

First, we need to check that for every j ∈ N :
∑

S/j∈S
yS ≥ cj .

it is obviously the case for every ji ∈ SG since ji ∈ Jt for i ≤ t.
For any j which has not been choosen during the greedy algorithm, j belongs to some

sp(Jt)− sp(Jt−1)
So

∑
S/j∈S

yS = cjt ≥ cj .

Secondly, we need to compute the sum :
∑
S⊆E

r(S)yS =
p−1∑
t=1

t(cjt − cjt+1) + pcjp

this leads by splitting in two sums and reindexing to
∑
S⊆E

r(S)yS =
p∑

t=1
cjt .

This shows that zIP and zLD have the same objective value. More precisely, the greedy

solution to zIP and zLD have the same objective value. We conclude that the set of

inequalities de�ning P (r) is TDI, and P (r) is an integral polytope.
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In the next section we introduce two stage stochastic problem, where the cost of several

edges can have stochastic values. We consider the case of discrete probabilities, where

costs belong to a �nite set of values. The values of each edges are sampled simultaneously

so that there exists a �nite number of scenarios. We construct a greater graph where

there exist as many exemplary of edges as possible scenarios, and we aim to formulate

the same constraints as in the deterministic case : avoiding cycle in any scenario. From a

stochastic point of view, it is clearly not possible to formulate constraints including edges

of di�erent scenarios together. In the sense of our formulation, this turns into the fact that

some constraints that would limit the summits of the polyedra don't exist in the inequality

system. That means that there exist less constraints than in an equivalent deterministic

graph: some edges belong to di�erent scenarios and it is possible to create cycles built with

edges of di�erent scenarios without violating contraints.

3 Two stage Stochastic Problem: two scenarios case

We consider a two stage stochastic program and we try to see if we keep some properties

of TDI systems. The edges of E are classi�ed according to the scenarios S1 and S2:

The edges of �rst stage identi�ed are common to both scenarios S1 and S2;

The edges of second stage belong to speci�c scenario S1 xor S2.

Any subset S of edges is S = S1 ∪ S2 where Si are all the edges in S of the scenario i, we
use the notation Si = S ∩Si and we outline that S1 ∩ S2 ∕= ∅ but is the subset of edges of
S belonging to �rst stage.

The interpretation is that we consider a graph where some edges have a �xed value (�rst

stage) while edges from the second stage have two possible values according to a stochastic

distribution. We de�ne a weight function c on E of cardinality N = n+ 2q.

3.1 Notations

There is a possible confusion in the notation. Usualy, it would seem simplest to note the

edges with an increasing indexation begining with �rst stage from x1 to xn and indexation

for second stage from yn+1 up to yn+2q (with a di�erent name and a di�erent set of index-

ation to notify the scenario number). But most of time, we need to run a greedy algorithm

and proofs are easier to formulate with an indexation corresponding to a decreasing weight

c1 ≥ ... ≥ cn+2q regardless the scenario nor the stage they belong to. Moreover, the vari-

able y is used to formulate the dual problem, so this is what we did :

We note x0j for j ∈ [1 . . . n] with a null upper index for an edge of the �rst stage.

And x1j or x2j for j ∈ [1 . . . q] for edges of the second stage.

In the same manner, we note ckj a weight associated to xkj where k ∈ {0, 1, 2}.
We write x ∈ {0, 1}n+2q the vector associated with the edges, with no speci�cation on

upper index for any componant in a sum.

The equivalent problem to the deterministic case is to consider in E the subsets F such

that there is no cycle in F when only considering edges separately in scenario S1 and

scenario S2. These subsets are said to be acyclic.

Such subsets belong to the family F we call the independent sets.

F = {F ⊂ E : F ∩S1 and F ∩S2 are acyclic}

We consider the problem of maximizing c(F ) for F ∈ F .

We now introduce the corresponding notation to section 2.
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3.2 Polytopes and problems associated with multistage case

�(r) = {x ∈ {0, 1}n+2q :
∑

j∈S∩Si

xj ≤ r(Si) for i ∈ {1, 2} ∀S ⊆ E} (9)

zIP = max{ctx : x ∈ �(r)} (10)

The polytope associated with relaxing variables:

R(r) = {x ∈ (R+)n+2q :
∑

j∈S∩Si

xj ≤ r(Si) for i ∈ {1, 2} ∀S ⊆ E} (11)

and the linear program associated

zLP = max{ctx : x ∈ R(r)} (12)

The dual problem associated with zIP is :

zLD = min
∑
S⊆V

r(S1)yS1 + r(S2)yS2 (13)

st

⎧⎨⎩
∑

S/j∈S
yS ≥ cj ∀j ∈ E

yS ≥ 0 ∀S
(14)

3.3 The case of only one edge in the �rst level

We consider the case where only one edge x01 belongs to �rst stage, we are going to see that
the dual problem has an optimal value equal to a particular solution of a double greedy

algorithm lead separately into scenarios S1 and S2.

First of all, we rank separately in both scenarios the elements of N so that ci1 ≥ ci2 ≥
. . . ciq for i ∈ {1, 2}. Concerning the �rst stage edge, we introduce a variable value � ∈
[−c0/2, c0/2] set initialy to 0 and we split the total weight of x0 into c01 = c0/2 + � and

c02 = c0/2 − � and we introduce the �rst edge x10 with these two values respectively into

scenario S1 and S2. Now we run separately the greedy algorithm on both scenarios.

Lemma 3.1. When running separately greedy algorithm on both scenarios - considering

x10 with a splitted cost - , we get the same status for x10 (i.e chosen in both scenarios or left

in both scenarios), the dual problem zLD has the same value than the merge of both greedy

solutions.

Proof. Suppose that in scenario S1, x
0 belongs to the closure K1

k of a chosen edge x1k and

in the same time in scenario 2, x0 belongs to the closure K2
m of a chosen edge x2m. That

means that it is no use collecting x0 in the greedy solution. We just gather greedy solutions

into scenarios S1 and S2 and in the corresponding dual formulation we set dual variables

ySi = yKi
t
exactly in the same manner as with deterministic case. We clearly check that:

- for any edge of second stage in S1 for example, we have
∑

S/j∈S1

yS1 ≥ c1j .

- for the �rst stage edge, since it belongs to K1
k we just get

∑
S/x0∈S1

yS1 ≥ c1k ≥ c01, but

there is another sum with scenario S2:
∑

S/x0∈S2

yS2 ≥ c2m ≥ c02 so that �naly
∑

S/x0∈S
yS ≥ c0.

Now we just check
∑
S⊆V

r(S1)yS1 + r(S2)yS2 =
p1∑
t=1

c1jt +
p2∑
t=1

c2jt .
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This equality proves that the dual problem zLP has the same value than the greedy solution.

Suppose that in both scenarios S1 and S2, the �rst stage edge x0 is chosen during the

greedy algorithms. The situation is exactly the same, except the fact that x01 belongs to

the greedy solution. We have in S1:
∑

S/x0∈S1

yS1 = c01, and in S2:
∑

S/x0∈S2

yS2 = c02 so

that �naly
∑

S/x0∈S
yS = c0.

Theorem 3.1. With only one edge in �rst stage, the primal problem zIP and dual problem

zLP have the same integer value. This entails that the system is TDI.

Proof. The last issue is that x01 is not chosen during greedy algorithm in scenario S1 but is

chosen in scenario S2 or opposite case. There exists k such that x0 belongs to the closure

K1
k of a chosen edge x1k. We remark that if we change value �, the greedy algorithm is

disturbed but only at a certain point, we have two situations:

c01 = c0/2+� ≤ c1k implies x0 ∈ K1
k and changes should occur only for edges with c1j ≤ c01;

c01 = c0/2+ � > c1k implies that x0 becomes a chosen edge in the greedy algorithm run on

�rst scenario S1.

Just observe that these changes don't a�ect the greedy algorithm on remaining edges in

the sense that there will be certainly changes among chosen edges in S1, for j ≥ k, K1
j

becomes K ′1j and the number of chosen edges should change to p′1, but even in this case

the dual problem has a value still equal to the new greedy solution:

∑
K1∈{K1

1 ,...,K
′1
k ,...,K′1

p′1
}

r(K1)yK1 =

p′1∑
t=1

c1jt

We summarize these considerations:

For c01 ∈ [0, c1k] and � ∈ [−c0/2, c0/2], x0 is not chosen during greedy algorithm on S1 and

belongs to the closure K1
k .

For c01 > c1k and � ∈ [−c0/2, c0/2], x0 is chosen during greedy algorithm on S1 and

becomes part of new closure K ′k
1.

Meanwhile, in the second scenario, x0 has been chosen during greedy algorithm and we

call m the rank of choice so that the closure set is K2
m. Modifying � implies similary

changes on ranking costs. But increasing c02 won't change the status of x0 on scenario

S2, it will be chosen during the greedy algorithm since it doesn't belong to any closure of

preceding chosen edges. On the opposite, decreasing c02 should provide change as soon as

it decreases under any value of a non covered edge x2j0 /∈ K2
m (it is still possible that x0

should be chosen at a further step). In this case x2j0 would become next chosen edge and

K2
m is modi�ed into K ′2m as a consequence.

The question is to �nd a value for � such as x0 has the same status in scenario S1 and

S2. The answer is to increase � untill one of these situations occurs:

∙ c01 reach and overstep value c1k and c02 is still greater than c2j0 . In this case x0 is

chosen in both scenarios.

∙ c01 increases and don't overstep value c1k and c02 has decreased enough for x0 to be

covered by a new closure K ′2j with j ≥ m. In this case x0 is not taken in greedy

solutions.
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∙ c01 increases up to the point that � = c0/2 without overstepping c1k and the whole

cost of x0 is covered by �rst scenario S1, c
02 = 0 and it is no use taking x0 in the

greedy solutions.

3.4 The case of two edges in the �rst stage

We consider the case where two edges x01 and x02 belong to �rst stage with costs c01 ≥ c02,
and we introduce two associated variables �i as above; �1 ∈ [−c01/2, c01/2] set initialy to 0
and we apply the the method described in 3.3. So we �rst set �1 in order to place x01 in

both scenarios with the same status (taken in both scenarios or not taken in any scenario).

Meanwhile, we choose an initial value for �2 such as x02 stays initialy beyond x01 in both

scenarios: c011 = c01/2 + �1 and c021 = c01/2 − �1 ; c012 = c02/2 + �2 and c022 = c02/2 − �2;
c011 ≥ c012 and c021 ≥ c022 . There are several cases and �rst lemma deals withs simplest cases:

Lemma 3.2. When there exist two values �1 and �2 such that respectively x01 and x02 get

the same status in both scenarios, then the dual problem zLD and the merge of both greedy

solutions have the same value

Proof. The point to be discussed is to check if it is possible to give the same status for

each �rst stage edge in both scenarios by adapting the fractinonal part of their weights.

The relative ranking between �rst stage edges is indeed not signi�cant.

∙ According to the method described in 3.3, it is possible to adapt �2 in a way that x02
get the same status in scenario S1 and S2 with respect to c011 ≥ c012 and c021 ≥ c022 .

Then any status for x01 is changed and both �rst stage edges are correctly inserted

into the greedy solutions. The same computation as for a single �rst stage edge holds.

∙ According to the method described in 3.3, it is possible to adapt �2 in a way that x02
get the same status in scenario S1 and S2 with respect to c011 ≤ c012 and c021 ≥ c022
or opposite con�guration. But these changes are made without modifying the status

of x01. Then both �rst stage edges are correctly inserted into the greedy solutions.

Theorem 3.2. With only two edges in �rst stage, the primal problem zIP and dual problem

zLP have the same integer value. This entails that the system is TDI.

Proof. We need to examine the case where �rst having introduced the �rst edge of �rst

stage, the relative balance of the second edge can't be realized without modifying the status

of the �rst edge:

Suppose that x01 is chosen in both greedy solutions and x
0
2 is chosen only in scenario S2, and

that there is no way to change these status except for c012 to overstep c011 . We summarize

this case by:

In S1, x
0
1 is chosen in greedy algorithm but x02 belongs to some closure K1

k .

In S2, x
0
1 is chosen in greedy algorithm and x02 is equaly chosen.

There is no way to change this situation without changing the status of the �rst edge x01
: as long as c011 ≥ c012 , x01 is chosen during greedy algorithm and x02 is not chosen during

greedy algorithm on S1; and x
0
1 and x02 are both chosen during greedy algorithm on S2.

As soon as c011 < c012 , x01 is not chosen any longer during greedy algorithm on S1. We see

that as long as c012 > c011 and in consequence that x01 is not chosen while x02 is chosen in S1,

then c022 < c021 with both x01 and x02 chosen in S2. So we decrease c021 down to change the
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status of x01 inS2 : not chosen or down to zero. But it is not possible to decrease to zero

unless that c022 = 0 so that c011 ≥ c012 . We can conclude that there are two possible issues:

c012 > c011 and x02 chosen while x01 not chosen in S1, while c
02
1 > c022 but x01 not chosen and

x02 chosen in S2, or c
01
1 > c012 and c022 = 0 and x01 chosen in both scenarios while x02 not

chosen in any scenario.

This dynamical balance shows that a �rst stage edge can disappear in greedy formulation.

The last case is when x01 is not chosen before introducing second edge x02 and is treated

exactly in the same way.

3.5 going towards more than two edges

Some considerations on duality will be developped further to show that with any number

of �rst stage edges, in the case of two scenarios, the system is TDI.

4 Multiple scenarios-The case of more than two scenarios

In this section, we study the case where there exist more than two scenarios in the second

stage. We will change our point of view by exhibiting an example to the contrary where

a fractional solution for x still compatible with all requirements leads to a higher value

than for all integer vectors x. We present a graph where there exist 3 �rst stage edges not

directly connected, and 6 second stage edges.

For all �rst stage edges, the cost values are c01 = c02 = c03 = 5.
In scenario S1, the cost function for second stage edges is c11 = c12 = 6 and c13 = c14 = c15 =
c16 = 0.
In scenario S2, the cost function for second stage edges is c23 = c24 = 6 and c21 = c22 = c25 =
c26 = 0.
In scenario S3, the cost function for second stage edges is c35 = c36 = 6 and c31 = c32 = c33 =
c34 = 0.
There is no integer solution x where it is possible to take all second stage edges with positive
strictly cost and strictly more than only one �rst stage edge, otherwise there would be a

cycle (see �gure 1). We can a�ord that best integer value is less or equal than 6∗6+5 = 41.

Now we propose to take x01 = x02 = x03 =
1

2
and in second stage only edges with strictly

positive cost: x11 = x12 = 1; x23 = x24 = 1; x35 = x36 = 1. This fractionnal solution gives a

positive value of 6 ∗ 6 + 3 ∗ 5 ∗ 1
2
= 43, 5. This clearly shows that system is not TDI.

Figure 1: Complete graph for one scenario
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Figure 2: three scenarios with cost function
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