
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

A FORMAL FRAMEWORK FOR SERVICE
ORCHESTRATION TESTING BASED ON

SYMBOLIC TRANSITION SYSTEMS

BENTAKOUK L / POIZAT P / ZAIDI F

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

04/2011

Rapport de Recherche N° 1542

A Formal Framework for Service Orchestration

Testing Based on Symbolic Transition Systems⋆

Lina Bentakouk1, Pascal Poizat1,2, and Fatiha Zäıdi1

1 LRI ; Univ. Paris-Sud, CNRS
2 Univ. Évry Val d’Essonne

{lina.bentakouk,pascal.poizat,fatiha.zaidi}@lri.fr

Abstract. The pre-eminent role played by software composition, and
more particularly service composition, in modern software development,
together with the complexity of workflow languages such as WS-BPEL
have made composite service testing a topical issue. In this article we
contribute to this issue with an automatic testing approach for WS-
BPEL orchestrations. Compared to related work, we support WS-BPEL
data computations and exchanges, while overcoming the consequential
state explosion problem. This is achieved through the use of symbolic
transition system models and their symbolic execution. Throughout the
article, we illustrate our approach on a realistic medium-size example.
keywords: service composition, orchestration, formal testing, test-case
generation, WS-BPEL, transition systems, symbolic execution.

1 Introduction

Service composition, and more specifically orchestration, has emerged as a cor-
nerstone to develop added-value distributed applications out of reusable and
loosely coupled software pieces. The WS-BPEL language [1], or BPEL for short,
has become the de-facto standard for Web service orchestration and is gaining
industry-wide acceptance and usage. This makes BPEL orchestration correct-
ness a topical issue, all the more because of BPEL complexity. This has been
partly addressed by automatic service composition or adaptation processes [2,
3]. Still, these usually assume that services convey semantic annotations, which
is, currently, seldom the case. Service orchestrations are therefore developed in
a more usual way, i.e., from specifications which are thereafter implemented
by service architects. Numerous model-based verification approaches have been
proposed for BPEL, e.g., translating BPEL to automata, Petri nets or process
algebras [4]. These approaches are especially valuable to check if an orchestra-
tion specification is correct. Still, as far as the correctness of an implementation

⋆ Version 1 – May, 15th, 2009. Part of this work (STS models, symbolic execution,
test case generation and realisation based on coverage criteria) has been published
in the proceedings of TESTCOM/FATES’09. This work is supported by the projects
“PERvasive Service cOmposition” (PERSO) and “WEB service MOdelling and Val-
idation” (WEBMOV) of the French National Agency for Research.

2 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

Fig. 1. Overview of the proposed framework

wrt. a specification is concerned, these approaches fall short as, e.g., one may
expect service providers to publicise (Abstract) BPEL descriptions of what their
services do, but not how they do it. Here, testing comes as a solution to ensure
(i) that some sub-service used in an orchestration really conforms to its publi-
cised behavioural interface, and (ii) that the service orchestration itself conforms
to the behavioural interface to be publicised after its deployment.

In this paper, we propose a formal framework for the testing of service orches-
trations (Fig. 1). The orchestration specification is first translated into a formal
model, namely a Symbolic Transition System (STS) [5]. In a second step, a Sym-
bolic Execution Tree (SET) is computed from this STS. It represents (a finite
subset of) the STS execution semantics, while avoiding the usual state-explosion
problem in presence of unbounded data types, as used in full-fledged BPEL.
Given a coverage criterion, we generate from the SET a set of execution paths
which are finally run by a test oracle against the orchestration implementation.

With reference to related work, our contributions are manifold. A first con-
tribution is the support for the rich XML-based data types available in BPEL.
This is achieved first by relying on a symbolic model rather than on labelled
transition systems (LTS) usually used –either directly or indirectly from pro-
cess algebraic or Petri net descriptions– as BPEL models. LTS are known to
cause over-approximation or unimplementable test cases (when data are simply
abstracted away), and state explosion problems (when message parameters or
variables are flattened wrt. their infinite domains). Both are avoided using STS.
Symbolic execution [6] also takes part in avoiding state explosion by representing
message parameters and variables using symbolic values instead of concrete data.
A second contribution is the possibility to take different orchestration specifica-
tion languages (UML, BPMN, (A)BPEL) into account. This is achieved thanks

Service Orchestration Testing Based on Symbolic Transition Systems 3

to the STS model which has already proven to be valuable, e.g., for UML [7],
and is here used for BPEL.

Finally, we propose a comprehensive language-to-language model-based test-
ing framework, while most model-based (verification or testing) approaches tar-
geted at orchestration languages either ignore the retrieval of the formal model
from the orchestration specification, ignore or over-simplify the rich XML-based
data types of services, or do not tackle the execution of test cases against a
running service implementation. As a consequence, we have applied our frame-
work to two realistic medium-size case studies, including the extended version,
presented herein, of the loan approval service [1].

The remaining of the paper is organised as follows. The following Section
introduces our case study. The orchestration and STS models, together with the
transformation from BPEL to STS, are presented in Section 3. The principles
of symbolic execution and the computation of a finite SET from an STS are
described in Section 4. Section 5 addresses the retrieval of symbolic test cases
from a SET, our online testing algorithm, and tool support. Finally Section 6
discusses related work and we end in Section 7 with conclusions and perspectives.

2 Running Example

In this Section we introduce our xLoan case study. It is an extension of the
well-known loan approval example presented in the BPEL standard [1], which
usually serves for demonstration purposes in articles on BPEL verification. Our
extensions are targeted at demonstrating our support for BPEL important fea-
tures: complex data types, complex service conversations including message cor-
relation, loops and alarms. Hence, more complex and realistic data types are
used, to model user information, loan requests and loan proposals. The specified
sub-services respectively deal with loan approval (BankService) and black list-
ing (BlackListingService), with users not being blacklisted asking for low loans
(≤ 10, 000) getting loan proposals without requiring further approval. As-is,
these services resemble the ones proposed in [1]. Yet, once a loan is accepted,
proposals may be sent to the requester. Further communication then takes place,
letting the requester select one proposal or cancel, which is then transmitted to
BankService. If the selected offer code is not correct the requester is issued an
error message and may try again (select or cancel). Timeouts are also modelled,
and the bank is informed about cancelling if the requester does not reply in a
given amount of time (2 hours).

There is no official graphical notation neither for orchestration architectures
(WSDL interfaces and partner links), nor for the imported data types (XML
Schema files) or the service conversation (BPEL <process> definition). For the
former ones (Fig. 2) we use the UML notation that we extend with specific
stereotypes in order to represent message types, correlations and properties (see
Sect. 3 for their semantics). Moreover, XML namespaces are represented with
packages. Additionally, there is currently an important research effort on relat-
ing the Business Process Modelling Notation (BPMN) with Abstract BPEL or

4 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

Fig. 2. xLoan Example – Data and Service Architecture

BPEL code [8]. Therefore, concerning the graphical presentation of service con-
versations, we take inspiration from BPMN, while adding our own annotations
supporting relation with BPEL. Communication activities are represented with
the concerned partnerlink (USER for the user of the orchestration, BK or BL for
the two sub-services), operation, input/output variables, and, when it applies,
information about message correlation.

Figure 3 presents the orchestration specification. The overall process is pre-
sented in Figure 3, upper part, while its lower part concerns the (potentially
looping) subprocess, GL&S (Get Loan and Select), for loan proposal selection.

3 From BPEL to STS

In this Section we first present our service model. Then, we present the rules
which are used to obtain a service model from a BPEL description.

3.1 Service Model

Services may expose information at different interface description levels. The
basic level is the signature level where a service describes the set of operations
it provides. Complex services, including state-full ones, additionally provide a
behavioural description (conversation) of the way its operations should be called.
In this work we focus on these two levels, which are the ones widely accepted
and used, with respectively the WSDL and (A)BPEL languages.
Signatures. The signature of a service is described using a combination of XML
schema (exchanged data structures) and WSDL (operations and messages). We
model it as a tuple Σ = (D,O,P, in, out, err, π, ↓).

Service Orchestration Testing Based on Symbolic Transition Systems 5

Fig. 3. xLoan Example – Orchestration Specification

D is a set of domains. dom(x) denotes the domain of x. O is a set of (pro-
vided) operations. Operations may be either one-way or two-way. in, out, err :
O → D ∪ {⊥} denote respectively the input, output, or fault message of an
operation (⊥ when undefined, e.g., out(o) = err(o) =⊥ for any one-way opera-
tion o). P is a set of property names. Properties, together with property aliases
and correlation sets, are important BPEL features that support the definition of
sessions (see [1] and below, Message Correlation). ↓ is used to define property
aliases for messages: for a message type m, m ↓p denotes the part in m messages
that corresponds to property p. Finally, π is used to specify what two-way op-

6 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

erations in sub-services are supposed to do: π(o), o ∈ O, is a boolean formula
relating o inputs and outputs.

Partnership. An orchestration is built around a partnership, i.e., a set of part-
ner signatures, corresponding to required operations, and a set of signatures for
the orchestration itself, corresponding to provided operations. In the sequel we
suppose, without loss of generality, that an orchestration has only one of these,
named USER. A partnership ρ is an ID-indexed set of signatures {Σi}i∈ID,
where ID is a set of names (USER ∈ ID). Two domains with the same name,
including the namespace part, in two signatures correspond to the same thing.
More specifically, we suppose they have the same formal semantics.

Events. The semantics of a service conversation depends on message-based com-
munication, which is modelled using events. An input event, pl.o?x, with o ∈ Σpl

and message variable x such that dom(x) = in(o), corresponds to the reception
of the input message of operation o from partner link pl. Accordingly, we define
output events pl.o!x (dom(x) = out(o)). Service calls may also yield errors (mes-
sage faults). This is modelled with fault output events, pl.o!!x, and fault input
events, pl.o??x (dom(x) = err(o)). We omit BPEL port types here for simplicity
reasons (full event prefixes would be, e.g., pl.pt.o?x for the first example above
with input on port type pt). Ev? (resp. Ev!, Ev??, and Ev!!) is the set of input
events (resp. output events, fault input events, and fault output events). Ex is
the set of internal fault events, that correspond to faults possibly raised inter-
nally (not in messages) by the orchestration process. We also introduce specific
events: τ denotes non-observable internal computations or conditions, χ denotes
time passing (time constraints in services are generally soft, hence discrete time
is a valid abstraction), and

√
denotes the termination of a conversation (end of

a session). We define Ev = Ev? ∪ Ev! ∪ Ev?? ∪ Ev!! ∪ Ex ∪ {τ, χ,
√}. We also

define hd as ∀∗ ∈ {?, ??, !, !!}, hd(pl.o ∗ x) = pl.o, and hd(e) = e for any other e
in Ev.

Orchestration. Different models have been proposed to support behavioural
service discovery, verification, testing, composition or adaptation [4, 9–11]. They
mainly differ in their formal grounding (Petri nets, transition systems, or pro-
cess algebra), and the subset of service languages being supported. Here, we base
on [12] due to its good coverage of the main BPEL language constructs. More-
over, its process algebraic style for transformation rules enables a concise yet
precise and operational model, which is, through extension, amenable to sym-
bolic execution. In this objective, we extend the [12] formalising to support a
wider subset of BPEL (see below discussion On BPEL coverage), including data
in computation and messages. As a consequence, our behavioural model grounds
on (discrete timed) Symbolic Transition Systems (STS) in place of the discrete
timed Labelled Transition Systems (dtLTS) presented in [12].

A Symbolic Transition System (STS), is a tuple (D,V, S, s0, T) where D is a
set of domains (as in signatures), V is a set of variables with domain in D, S is a
non empty set of states, s0 ∈ S is the initial state, and T is a (potentially nonde-
terministic) transition relation, T ⊆ S ×TDBool,V ×Ev × 2Act ×S, with TDBool,V

denoting boolean terms, Ev a set of events and Act a set of actions (of the form

Service Orchestration Testing Based on Symbolic Transition Systems 7

v := t where v ∈ V is a variable and t ∈ TD,V a term). The transition system
is called symbolic as the guards, events, and actions may contain variables. An

element (s, g, e, A, s′) of T is denoted s
[g] e / A−−−−−−−−−→ s′. When there is no guard

(i.e., it is true) it is omitted. The same yields for the actions. We impose that
variables used in the STS transitions are defined in V. STS have been introduced
under different forms (and names) in the literature [5], to associate a behaviour
with a specification of data types that is used to evaluate guards, actions and
sent values. This role is played here by D which is a superset of all partners’
domains. Consistency of the union is ensured by the above-mentioned restriction
on domains sharing names.

An orchestration Orch is a couple (ρ,B) where ρ is a partnership and B is
an STS. We impose that B is correct wrt. ρ, i.e., its set of events correspond to
partner links and operations defined in ρ, which can be syntactically checked.

3.2 Transformation Rules

We support the main BPEL activities [1], abstracted from their concrete syntax
as follows:

P,Q,R ::= basic | struct
basic ::= receive(pl,op,var) | reply(pl,op,var) | invoke(pl,op,inputvar[,outputvar])

| time | throw e | x[/path]:=Expr | empty | 0

struct ::= P;Q | if c then P[else Q] | while c {P} | repeat {P} until c

flow({Pi}) | scope(P,EHd) | pick(EHd)

EHd ::= [{((pli,opi,vari),Pi)},(d,Q),{(ej ,Rj)}]
Communication activities (receive, reply, and invoke) specify the communi-

cations between service partners. Time activities (timeouts or watchdogs) can
be reduced to a time passing activity, time, and the use of scopes. Faults are
raised using throw. Assignment activities (:=), support data and computation,
and operate between an XPath [13] expression (a variable and an optional path
over it) and any expression (including XPath). empty and 0 denote respectively
an empty and a terminated process. On top of these basic activities, BPEL de-
fines workflow-based structuring activities: sequence (;), conditional (if), loops
(while and until), parallelism (flow), scopes (scope) and multiple event processing
(pick).

scope(P,EHd) encapsulates an activity P with an event handler EHd. An event
handler is made up of sets of events, one for each type of event –received mes-
sages, timeouts related to a duration (d), or faults (ej)

3 – and associated activi-
ties. scope behaves as P if none of the events happens and as a given sub-activity
(some Pi, Q, or Rj) if the corresponding event happens. pick is treated as a scope4

The transformation rules (BPEL to STS) are presented in Table 1. Anony-
mous variables (vai) are introduced to follow BPEL communication semantics.

3 These correspond respectively in BPEL to onEvent and onAlarm in event handlers,
and to fault handlers.

4 We abstract from concrete syntax differences, e.g., between onMessage in a pick and
onEvent in scopes.

8
L
in

a
B

en
ta

k
o
u
k
,
P
a
sc

a
l
P
o
iz

a
t,

a
n
d

F
a
ti

h
a

Z
ä
ıd

i

BPEL STS

empty empty
√

−−−→0

time p
χ−−→p with p∈ {time,rec(pl,o,vin),send(pl,o,vout)}

assign+ p1:=p2
τ / p1:=p2−−−−−−−−−→empty

throw ∀e ∈ Ex throw e
e−−→0

rec+ rec(pl,o,vin)
pl.o?vam / vin:=vam−−−−−−−−−−−−−−−−→empty with ∃o ∈ O(Σpl), in(o) = m

send+ send(pl,o,vout)
τ / vam:=vout−−−−−−−−−−−−→ pl.o!vam−−−−−−−→empty with ∃o ∈ O(Σpl), out(o) = m

receive∗ receive(pl,o,vin) = rec(pl,o,vin)

reply∗ reply(pl,o,vout) = send(pl,o,vout)

invoke+ invoke(pl,o,vin) = send(pl,o,vin) invoke(pl,o,vin,vout)= send(pl,o,vin);rec(pl,o,vout)

sequence∗ ∀a ∈ Ev\{
√
}, P

[g] a / A−−−−−−−−−→P ′

P ;Q
[g] a / A−−−−−−−−−→P ′;Q

∀a ∈ Ev, P

√
−−−→P ′∧Q

[g] a / A−−−−−−−−−→Q′

P ;Q
[g] a / A−−−−−−−−−→Q′

if∗ if c then P else Q
[c] τ−−−−−→P if c then P else Q

[¬c] τ−−−−−−→Q

while∗ while c {P} [c] τ−−−−−→P;while c {P} while c {P} [¬c] τ−−−−−−→empty

until+ repeat {P} until c = P;while c {P}
flow+

flow internals ∀a ∈ Ev\{χ,
√
}, ∃j∈I, Pj

[g] a / A−−−−−−−−−→P ′
j

flow({Pi,i∈I})
[g] a / A−−−−−−−−−→flow({Pi,i∈I\{j}}∪{P′

j
})

flow termination
/time passing

∀i∈I, Pi

√
−−−→P ′

i

flow({Pi,i∈I})
√

−−−→empty

∃J 6=∅, J⊆I, ∀i∈J, Pi

χ−−→P ′
i∧∀i∈I\J, Pi

√
−−−→P ′i

flow({Pi,i∈I})
χ−−→flow({Pi,i∈I\J}∪{P′

i,i∈J
})

scope∗ let EHd = [{((pli, oi, vi), Pi)i∈I}, (d, Q), {(ej, Rj)j∈J}],
OI = {(pli, oi, vi)i∈I}, OI = {pli.oi | (pli, oi, vi) ∈ OI}, EJ = {ej,j∈J} in:

event handler ∀(pli, oi, vi) ∈ OI ,
∀a∈Ex∪{χ,

√}, ¬(P
a−−→)

scope(P,EHd)
pli.oi?vam / vi:=vam−−−−−−−−−−−−−−−−−→Pi

with ∃oi ∈ O(Σpli), in(oi) = m

time passing
/alarm

∀d > 1,
P

χ−−→P ′∧∀a∈Ex∪{τ,
√}, ¬(P

a−−→)

scope(P,EHd)
χ−−→scope(P,EHd−1)

P
χ−−→P ′∧∀a∈Ex∪{τ,

√}, ¬(P
a−−→)

scope(P,EH1)
χ−−→Q

fault handler
/unsupported fault

∀ej ∈ EJ , P
ej−−−→

scope(P,EHd)
τ−−→Rj

∀e ∈ Ex\EJ , P
e−−→

scope(P,EHd)
e−−→0

scope termination
/scope internals

P

√
−−−→

scope(P,EHd)

√
−−−→0

∀a ∈ Ev,
hd(a) 6∈({χ,

√}∪Ex∪OI)∧P
[g] a / A−−−−−−−−−→P ′

scope(P,EHd)
[g] a / A−−−−−−−−−→scope(P′,EHd)

pick pick(E) = scope(time,E)

T
a
b
le

1
.
B

P
E

L
to

S
T

S
ru

le
s,

∗ /
+
:e

x
te

n
d
ed

/
a
d
d
ed

w
rt

.
[1

2
]
(B

P
E

L
to

d
tL

T
S
).

M
e
ss

a
g
e

c
o
rr

e
la

ti
o
n
.
C

or
re

la
ti

on
is

su
p
p
or

te
d

as
an

ex
te

n
si

on
of

T
ab

le
1

ru
le

s.
F
ir

st
w

e
m

o
d
if
y

th
e

or
ch

es
tr

at
io

n
m

o
d
el

to
b
e

(ρ
,B

,C
)

w
h
er

e
C

ar
e

co
rr

el
at

io
n

Service Orchestration Testing Based on Symbolic Transition Systems 9

sets, i.e., a name and a set of associated properties denoted with props. These are
used to correlate messages in-between service instances [1]. Sometimes a single
property is used (e.g., an identifier), but more generally this is a set (e.g., name
and surname). A correlation value is a value of a structured domain with items
corresponding to the properties. For each correlation set c in C, we have two
variables, vcsc and vcscinit, in V(B). The communication activities parameter
lists (pl,o,v) (in receive, reply, invoke, pick onMessage and scope onEvent) are
extended to (pl,o,v,i,c) where c is the correlation name and i corresponds to
correlation initiation (yes, no, or join). The STS semantics of communication
activities is then extended in the following way.

On the initial transition we add action vcscinit := false. We define ccc(c, vam) =
(
∧

p∈props(c) vam/[m↓p]= vcsc/p) (correlation consistency constraint of c satis-

fied), Gyes
c (vam) = (vcscinit= true), Gjoin

c (vam) = (vcscinit= true∧¬ccc(c, vam)),
Gno

c (vam) = (vcscinit = false ∨ ¬ccc(c, vam)), Ayes
c (vam) = Ajoin

c (vam) =
{vcsc/p := vam/[m ↓ p]}p∈props(c) ∪ {vcscinit := true}, and Ano

c (vam) = ∅.
We replace each transition s

pl.o∗vam / A−−−−−−−−−−−→ s′ (∗∈{?, ??}) by:

s
pl.o∗vam / A−−−−−−−−−−−→ s′′ (reception),

s′′
[¬Gi

c(vam)] τ / Ai
c(vam)−−−−−−−−−−−−−−−−−−−→ s′ (correlation ok), and

s′′
[Gi

c(vam)] τ−−−−−−−−−−→ throw bpel : correlationViolation (correlation error)

We also replace each transitions s
τ / A−−−−−−→ s′

pl.o∗vam / A−−−−−−−−−−−→ s′′ (∗∈{!, !!}) by:

s
τ / A−−−−−−→ s′ (assignments),

s′
[¬Gi

c(vam)] pl.o∗vam / A∪Ai
c(vam)−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′′ (correlation ok and emission), and

s′
[Gi

c(vam)] τ−−−−−−−−−−→ throw bpel : correlationViolation (correlation error).

Message faults. Message faults are supported as an extension of rules presented
in Table 1. Concerned activities are reply and invoke. For reply, we add the
reply(pl,o,fn[,verr]) form, where fn is the fault name and verr is an (optional)
error variable. This form is transformed as follows:
reply(pl,o,fn[,verr]) = send(pl,o,fn[,verr]), with

send(pl,o,fn[,verr])
τ / vm:=verr−−−−−−−−−−→ pl.o!!fnvm−−−−−−−−→empty with ∃o ∈ O(Σpl), err(o) = m.

The synchronous invoke is transformed as follows:
invoke(pl,o,vin,vout)= send(pl,o,vin);rec+(pl,o,vout), with two rules for rec+:
one for the reception of a correct message, rec+(pl,o,vin) = rec(pl,o,vin), and one
for the reception of a fault message,

rec+(pl,o,vin)
pl.o??fnvm / vin:=vm−−−−−−−−−−−−−−−−→throw fn with ∃o ∈ O(Σpl), err(o) = m.

The catch construct of synchronous invoke is not directly supported but it
can be simulated using a fault handler in a scope around the invoke.

On BPEL coverage. We have presented the input/output variable communi-
cation scheme. The from/to part communication scheme may be treated in the
same way thanks to our explicit use of BPEL anonymous variables. The catch
construct of synchronous invoke is not directly supported but it can be simulated
using a fault handler in a scope around the invoke. With reference to [12], we

10 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

support data (in computation, conditions and message exchange), message cor-
relation, message faults, parallel processing (flows) and the until activity. Links,
the foreach activity, fault variables in fault handlers, compensations handlers,
and termination handlers are future work.
Application. The STS obtained from the example presented in Section 2 is

1 6

1 7

[End = false]
 t au

3 7

[not(End = false)]
 t au

1 8

 USER.cancel ?vans2:CaI
 / vns2:CaI:=vans2:CaI

2 3

 USER.select ?vans2:SI
 / vns2:SI:=vans2:SI

3 3

 tick

1 9

[Gno18]
 t au

2 0

[not Gno18]
 t au

3 8

 bpel:cV

2 1

 tau
 / vns0:CaI:=vns2:CaI;

E n d : = t r u e

2 2

 tau
 / vans0:CaI:=vns0:CaI

 BK.cancel
 !vans0:CaI

[Gno23]
 t au

2 4

[not Gno23]
 t au

2 5

[vns2:SI/offerCode
 in vns0:OO/loans/offerCode]

 t au

3 0

[not(vns2:SI/offerCode
 in vns0:OO/loans/offerCode)]

 t au

2 6

 tau
 / vns0:CoI/fileNumber:=vns2:SI/fileNumber;

vns0:CoI/offerCode:=vns2:SI/offerCode;
vns2:SO/message:=’ok’;

E n d : = t r u e

2 7

 tau
 / vans0:CoI:=vns0:CoI

2 8

 BK.confirm !vans0:CoI

2 9

 tau
 / vans2:SO:=vns2:SO

 USER.select
!vans2:SO

3 1

 tau
 / vns2:SO/message:=

 ’error offerCode’

3 2

 tau
 / vans2:SO:=vns2:SO

 USER.select
!vans2:SO

 USER.cancel ?vans2:CaI
 / vns2:CaI:=vans2:CaI

 USER.select ?vans2:SI
 / vns2:SI:=vans2:SI

3 4

 tick

3 5

 tau
 / vns0:CaI/fileNumber:=vns0:OO/fileNumber;

E n d : = t r u e

3 6

 tau
 / vans0:CaI:=vns0:CaI

 BK.cancel
 !vans0:CaI

 t e rm

0

1

 USER.request ?vans2:RI
 / vns2:RI:=vans2:RI;

vcsUSERinit:=false

2

[vns2 :RI / req /amount <= 10000]
 t au

3 9

[not (vns2:RI / req /amount <= 10000)]
 t au

3

 t au
 / vns1:ChI/uid:=vns2:RI/uinfo/id

4

 tau
 / vans1:ChI:=vns1:ChI

5

 BL.check !vans1:ChI

6

 BL.check ?vans1:ChO
 / vns1:ChO:=vans1:ChO

7

[vns1:ChO/rtr = false]
 t au

[not(vns1:ChO/rtr = false)]
 t au

8

 t au
 / vns2:RO/sta tus:=vns1:ChO/r t r

9

 t au
 / vns0:OI/amount:=vns2:RI/req/amount;

vns0:OI/maxMonth:=vns2:RI/req/maxMonth

1 0

 tau
 / vans0:OI:=vns0:OI

1 1

 BK.offer !vans0:OI

1 2

 BK.offer ?vans0:OO
 / vns0:OO:=vans0:OO

1 3

 tau
 / vns2:RO/fileNumber:=vns0:OO/fileNumber;

vns2:RO/proposals:=vns0:OO/loans

1 4

 tau
 / vans2:RO:=vns2:RO

1 5

[not Gyes14]
 USER.request !vans2:RO

 / vcsUSER/fileNumber:=vans2:RO/fileNumber;
vcsUSERinit:=true

1 9

[Gyes14]
 t au

1 6

 tau
 / End:=false

3 8

 bpel:cV

1 7

[End = false]
 t au

3 7

[not(End = false)]
 t au

1 8

 USER.cancel ?vans2:CaI
 / vns2:CaI:=vans2:CaI

2 3

 USER.select ?vans2:SI
 / vns2:SI:=vans2:SI

3 3

 tick

[Gno18]
 t au

2 0

[not Gno18]
 t au

2 1

 tau
 / vns0:CaI:=vns2:CaI;

E n d : = t r u e

2 2

 tau
 / vans0:CaI:=vns0:CaI

 BK.cancel !vans0:CaI

[Gno23]
 t au

2 4

[not Gno23]
 t au

2 5

[vns2:SI/offerCode in vns0:OO/loans/offerCode]
 t au

3 0

[not(vns2:SI/offerCode in vns0:OO/loans/offerCode)]
 t au

2 6

 tau
 / vns0:CoI/fileNumber:=vns2:SI/fileNumber;

vns0:CoI/offerCode:=vns2:SI/offerCode;
vns2:SO/message:=’ok’;

E n d : = t r u e

2 7

 tau
 / vans0:CoI:=vns0:CoI

2 8

 BK.confirm !vans0:CoI

2 9

 tau
 / vans2:SO:=vns2:SO

 USER.select !vans2:SO

3 1

 tau
 / vns2:SO/message:=’error offerCode’

3 2

 tau
 / vans2:SO:=vns2:SO

 USER.select !vans2:SO

 USER.cancel ?vans2:CaI
 / vns2:CaI:=vans2:CaI

 USER.select ?vans2:SI
 / vns2:SI:=vans2:SI

3 4

 tick

3 5

 tau
 / vns0:CaI/fileNumber:=vns0:OO/fileNumber;

E n d : = t r u e

3 6

 tau
 / vans0:CaI:=vns0:CaI

 BK.cancel !vans0:CaI

 t e rm

4 0

 tau
 / vns0:AI/uid:=vns2:RI/uinfo/id;

vns0:AI/uincome:=vns2:RI/uinfo/income;
vns0:AI/amount:=vns2:RI/req/amount;

vns0:AI/maxMonth:=vns2:RI/req/maxMonth

4 1

 tau
 / vans0:AI:=vns0:AI

4 2

 BK.approve !vans0:AI

4 3

 BK.approve ?vans0:AO
 / vns0:AO:=vans0:AO

4 4

 tau
 / vns2:RO/status:=vns0:AO/rtr

[vns2:RO/s ta tus = t rue]
 t au

4 5

[not(vns2:RO/s ta tus = t rue)]
 t au

4 6

 tau
 / vans2:RO:=vns2:RO

 USER.request !vans2:RO

Gno18: vcsUSERinit=false \/ not(vans2:CaI/fileNumber=vcsUSER/fileNumber)

Gno23: vcsUSERinit=false \/ not(vans2:SI/fileNumber=vcsUSER/fileNumber)

Fig. 4. xLoan Example – Symbolic Transition System

presented in Figure 4 where tau (resp. tick, term) denote τ (resp. χ,
√

). The
zoom corresponds to the while part. One may notice states 16 (while condition
test), 17/33 (pick), 34 (onAlarm timeout), and 18/23 (correlation testing).

4 Symbolic Execution

Symbolic execution [6] (SE) is a program analysis technique that has been origi-
nally proposed to overcome the state explosion problem when verifying programs
with variables. SE represents values of the variables using symbolic values in-
stead of concrete data [14]. Consequently, SE is able to deal with constraints
over symbolic values, and output values are expressed as a function over the
symbolic input values. More recently these techniques have been applied to the
verification of interacting/reactive systems, including testing [14–16].

Service Orchestration Testing Based on Symbolic Transition Systems 11

SE-Trees. The SE of a program is represented by a symbolic execution tree

(SET), where nodes, NSET, are tuples ηi = (s, π, σ) made up of the program
counter, s, the symbolic values of program variables, σ, and a path condition,
π. Let Vsymb be a set of (symbolic) variables (representing symbolic values),
disjoint from the program variables, V (V ∩ Vsymb = ∅). σ is a map V → Vsymb.
The path condition (PC) is a boolean formula with variables in Vsymb. The PC
accumulates constraints that the symbolic variables must fulfil in order to follow
a given path in the program.

Since we apply SE to the STS obtained from orchestrations, the program
counter is an STS state, and V corresponds to the STS variables (either simple,
message type, anonymous, or correlation variables from BPEL). The edges of the
SET, ESET, are elements of NSET ×Evsymb ×NSET (may be non deterministic),
where Evsymb corresponds to the STS events (Ev) with symbolic variables in
place of variables.

SET edge computation. The SET is computed in a BFS fashion as follows.
The root is (s0, true, σ0) where s0 is the STS initial state and σ0 is the mapping

of a fresh variable for each variable of the STS. Each transition s
[g] e / A−−−−−−−−−→ s′

then corresponds to an edge (s, π, σ)
e′

−−−→ (s′, π′, σ′), computed as follows:

1. guard: πG = π ∧ g[σ(vi)/vi]vi∈vars(g) (πG = π if there is no guard)

2. event: e′, σE =







pl.o ∗ vs, σ[v → vs] if e = pl.o ∗ v, ∗ ∈ {?, ??}
pl.o ∗ σ(v), σ if e = pl.o ∗ v, ∗ ∈ {!, !!}
e, σ otherwise

with vs = new1(Vsymb, σ). If e is a sub-service invocation return (e = pl.o ∗
vout, ∗ ∈ {?, ??} ∧ pl 6= USER), we set πE = π(o)[σE(vin)/in, vs/out], where
e = pl.o!vin is the label of the (unique) transition before the one we are
dealing with, to take into account the operation specification. Else, πE = πG.

3. actions (A = {xi/pathi := ti}i,i∈{1,...,n}):
πA

i = πA
i−1 ∧ (vsxi

/pathi = ti[σ
E(vj)/vj]vj∈vars(ti))

with ∆ = {x ∈ V | (x/pathi := ti) ∈ A}, {vsx
}x∈∆ = new#∆(Vsymb, σE),

σ′ = σE{[vsx
/x]}x∈∆, πA

0 = πE , and π′ = πA
n .

where vars denotes the variables in a term, newn(Vsymb, σ) denotes the creation
of n new (fresh) symbolic variables wrt. σ, t[y/x] denotes the substitution of x by
y in t, and σ[x → xs] denotes σ where the mapping for x is overloaded by the one
from x to xs. ∆ is the set of variables that are modified by the assignments. For
each of these, we have a new symbolic variable. We denote may(η), η ∈ NSET,
the set {e | ∃(η, e, η′) ∈ ESET}.
Feasible paths. Edges with inconsistent path conditions may be cut off while
computing the SET. For this, we check when computing a new node η if π(η) is
satisfiable (there exists a valuation of variables in π such that π is true, if not,
we cut the edge off). This is known to be an undecidable problem in general.
Therefore, if the constraint solver does not yield a solution (or a contradiction)
in a given amount of time, we cut the edge off and we issue a warning specifying
that the test process is to be incomplete.

12 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

0(0)-0

1(1)-1

USER.request ?vs29

2(2)-1

t a u

3(39)-1

t a u

4(3)-1

t a u

5(40)-1

t a u

6(4)-1

t a u

7(41)-1

t a u

8(5)-2

BL.check !vs33

9(42)-2

BK.approve !vs33

10(6)-3

BL.check ?vs34

11(43)-3

BK.approve ?vs34

12(7)-3

t a u

13(39)-3

t a u

14(44)-3

t a u

15(8)-3

t a u

16(40)-3

t a u

17(8)-3

t a u

18(45)-3

t a u

19(9)-3

t a u

20(41)-3

t a u

21(9)-3

t a u

22(46)-3

t a u

23(10)-3

t a u

24(42)-4

BK.approve !vs37

25(10)-3

t a u

26(37)-4

USER.request !vs37

27(11)-4

BK.offer !vs38

28(43)-5

BK.approve ?vs38

29(11)-4

BK.offer !vs38

30(38)-5

t e r m

31(12)-5

BK.offer ?vs39

32(44)-5

t a u

33(12)-5

BK.offer ?vs39

34(13)-5

t a u

35(8)-5

t a u

36(45)-5

t a u

37(13)-5

t a u

38(14)-5

t a u

39(9)-5

t a u

40(46)-5

t a u

41(14)-5

t a u

42(15)-6

USER.request !vs42

44(10)-5

t a u

45(37)-6

USER.request !vs41

46(15)-6

USER.request !vs42

48(16)-6

t a u

50(11)-6

BK.offer !vs42

51(38)-7

t e r m

52(16)-6

t a u

54(17)-6

t a u

56(12)-7

BK.offer ?vs43

57(17)-6

t a u

59(18)-7

USER.cancel ?vs46

60(23)-7

USER.select ?vs48

61(33)-7

tick

63(13)-7

t a u

64(18)-7

USER.cancel ?vs46

65(23)-7

USER.select ?vs48

66(33)-7

tick

68(19)-7

t a u

69(20)-7

t a u

70(19)-7

t a u

71(24)-7

t a u

72(18)-8

USER.cancel ?vs50

73(23)-8

USER.select ?vs52

74(34)-8

tick

75(14)-7

t a u

76(19)-7

t a u

77(20)-7

t a u

78(19)-7

t a u

79(24)-7

t a u

80(18)-8

USER.cancel ?vs50

81(23)-8

USER.select ?vs52

82(34)-8

tick

83(38)-8

bpel:cV

84(21)-7

t a u

85(38)-8

bpel:cV

86(25)-7

t a u

87(30)-7

t a u

88(19)-8

t a u

89(20)-8

t a u

90(19)-8

t a u

91(24)-8

t a u

92(35)-8

t a u

93(15)-8

USER.request !vs46

95(38)-8

bpel:cV

96(21)-7

t a u

97(38)-8

bpel:cV

98(25)-7

t a u

99(30)-7

t a u

100(19) -8

t a u

101(20) -8

t a u

102(19) -8

t a u

103(24) -8

t a u

104(35) -8

t a u

105(22) -7

t a u

106(26) -7

t a u

107(31) -7

t a u

108(38) -9

bpel:cV

109(21) -8

t a u

110(38) -9

bpel:cV

111(25) -8

t a u

112(30) -8

t a u

113(36) -8

t a u

114(16) -8

t a u

116(22) -7

t a u

117(26) -7

t a u

118(31) -7

t a u

119(38) -9

bpel:cV

120(21) -8

t a u

121(38) -9

bpel:cV

122(25) -8

t a u

123(30) -8

t a u

124(36) -8

t a u

125(16) -8

BK.cancel !vs50

126(27) -7

t a u

127(32) -7

t a u

128(22) -8

t a u

129(26) -8

t a u

130(31) -8

t a u

131(16) -9

BK.cancel !vs56

132(17) -8

t a u

134(16) -8

BK.cancel !vs50

135(27) -7

t a u

136(32) -7

t a u

137(22) -8

t a u

138(26) -8

t a u

139(31) -8

t a u

140(16) -9

BK.cancel !vs56

142(37) -8

t a u

143(28) -8

BK.confirm !vs53

144(16) -8

USER.select !vs51

145(16) -9

BK.cancel !vs54

146(27) -8

t a u

147(32) -8

t a u

149(37) -9

t a u

150(18) -9

USER.cancel ?vs50

151(23) -9

USER.select ?vs52

152(33) -9

tick

155(37) -8

t a u

156(28) -8

BK.confirm !vs53

157(16) -8

USER.select !vs51

158(16) -9

BK.cancel !vs54

159(27) -8

t a u

160(32) -8

t a u

162(37) -9

t a u

166(38) -9

t e r m

167(29) -8

t a u

168(17) -8

t a u

171(37) -9

t a u

172(28) -9

BK.confirm !vs57

173(16) -9

USER.select !vs55

177(38) -10

t e r m

178(19) -9

t a u

179(20) -9

t a u

180(19) -9

t a u

181(24) -9

t a u

182(18) -10

USER.cancel ?vs54

183(23) -10

USER.select ?vs56

184(34) -10

tick

188(38) -9

t e r m

189(29) -8

t a u

190(17) -8

t a u

193(37) -9

t a u

194(28) -9

BK.confirm !vs57

195(16) -9

USER.select !vs55

199(38) -10

t e r m

207(16) -9

USER.select !vs54

208(18) -9

USER.cancel ?vs52

209(23) -9

USER.select ?vs54

210(33) -9

tick

215(38) -10

t e r m

216(29) -9

t a u

217(17) -9

t a u

219(38) -10

bpel:cV

220(21) -9

t a u

221(38) -10

bpel:cV

222(25) -9

t a u

223(30) -9

t a u

231(16) -9

USER.select !vs54

232(18) -9

USER.cancel ?vs52

233(23) -9

USER.select ?vs54

234(33) -9

tick

239(38) -10

t e r m

240(29) -9

t a u

241(17) -9

t a u

249(37) -9

t a u

250(19) -9

t a u

251(20) -9

t a u

252(19) -9

t a u

253(24) -9

t a u

254(18) -10

USER.cancel ?vs56

255(23) -10

USER.select ?vs58

256(34) -10

tick

257(16) -10

USER.select !vs58

258(18) -10

USER.cancel ?vs56

259(23) -10

USER.select ?vs58

260(33) -10

tick

262(22) -9

t a u

263(26) -9

t a u

264(31) -9

t a u

271(37) -9

t a u

272(19) -9

t a u

273(20) -9

t a u

274(19) -9

t a u

275(24) -9

t a u

276(18) -10

USER.cancel ?vs56

277(23) -10

USER.select ?vs58

278(34) -10

tick

279(16) -10

USER.select !vs58

280(18) -10

USER.cancel ?vs56

281(23) -10

USER.select ?vs58

282(33) -10

tick

290(38) -10

t e r m

291(38) -10

bpel:cV

292(21) -9

t a u

293(38) -10

bpel:cV

294(25) -9

t a u

295(30) -9

t a u

296(16) -10

BK.cancel !vs54

297(27) -9

t a u

298(32) -9

t a u

305(38) -10

t e r m

306(38) -10

bpel:cV

307(21) -9

t a u

308(38) -10

bpel:cV

309(25) -9

t a u

310(30) -9

t a u

314(22) -9

t a u

315(26) -9

t a u

316(31) -9

t a u

317(28) -10

BK.confirm !vs57

318(16) -10

USER.select !vs55

322(22) -9

t a u

323(26) -9

t a u

324(31) -9

t a u

327(16) -10

BK.cancel !vs56

328(27) -9

t a u

329(32) -9

t a u

332(16) -10

BK.cancel !vs56

333(27) -9

t a u

334(32) -9

t a u

335(28) -10

BK.confirm !vs59

336(16) -10

USER.select !vs57

337(28) -10

BK.confirm !vs59

338(16) -10

USER.select !vs57

PATH

node 305

Fig. 5. xLoan Example – Symbolic Execution Tree (k=10, τs not counted)

Path length criterion. STS may contain loops that would cause SET unbound-
edness. To solve this issue out, we take into account a path length criterion while
computing the SET. Given a constant k, we stop the SET computation at some
node whenever this node is at k edges from the SET root. In order to take
into account the fact that interactions are the most important part of orchestra-
tions, only non-τ transitions can be counted. Different cutting criteria have been
proposed in the literature, e.g., the inclusion criterion in [16], where the SET
computation stops at one node when an equivalent node (in terms of program
variable valuations validating the path constraint) is on the path to the SET
root. Yet, this does not prevent the need to a path length criterion [16].

Application. The SET computed from the Figure 4 STS is presented in Fig-
ure 5. There are 10 leaves corresponding to termination (in gray). The zoom
presents the path (in black) we use for demonstration in the next Section. Its
final node is number 305, and its path condition, π305 is also given in the Figure.

5 Test Case Realisation and Testing Architecture

In this Section we present the way symbolic test cases are realised and executed
on an orchestration implementation. The distinctive features of our approach
can be summarised as follows:

Service Orchestration Testing Based on Symbolic Transition Systems 13

– Functional testing with a SET path coverage criterion. For the time
being, we support two criteria: all paths with length n ≤ k, and all complete
paths (a path ended with

√
) with length n ≤ k. Paths are constructed in a

DFS way.
– Symbolic input-output trace inclusion. The conformance relation we

use is trace inclusion extended to our symbolic context. It can be related
to the conformance relation defined in [15, 16] that inspired our work (see
Related Work). However, we do not require input-enabledness since, for Web
services, an exception is returned whenever an unexpected event is received
by the service.

– Online realisation of symbolic test cases. Test case realisation is per-
formed step by step, by interacting with the Service Under Test (SUT).
This is to avoid emitting erroneous verdicts. Take a path p?x.p!y, with
σ = {x → vs0

, y → vs1
} and π = vs0

> 2∧vs1
> vs0

. Realisation all-at-
once would yield a realised path p?vs0

, p!vs1
with, e.g., {vs0

→ 3, vs1
→ 4}.

Suppose now we send message p with value 3 to the SUT and that it replies
with value 5. We would emit a Fail verdict (5 6=4), while indeed 5 would be
a correct reply (5>3).

– Branching awareness. The SUT may send different outputs at some point
in its execution due to non-determinism (e.g., due to a flow activity in the
implementation). Outputs are non-controllable events from the point of view
of the tester. Therefore, a path is realised in the context of its SET (see
Alg. 1).

5.1 Online Testing Algorithm

Online testing is presented in Algorithm 1. Its input is the SET with a distin-
guished symbolic path we want to test. The algorithm then animates the path
by interacting, over messages for the USER partnerlink, with the SUT. Accord-
ingly, input (resp. output) events in the path correspond to messages sent (resp.
received) by the tester. Generation of data in sent messages and checking of data
in received messages is supported using constraint solving over a Path Condition
(PC). Initially PC corresponds to the path condition (π) in the last node of the
path we test. The treatment of the path edges is then as follows.

– Input events. The tester has to generate a message to be sent to the SUT.
For this, PC is solved (always succeeds, or the edge would have been cut off
in the SET computation). We use the instantiation of the event variable, xs,
to send the message, and to update the PC. If the sent message yields an
exception, we return a Fail verdict, else we pass to the next edge.

– Output events. The treatment of output events corresponds to message
reception in the tester. Whenever an emission by the SUT is foreseen, a
timer, TAC, is set up. Then three cases may occur. (i). If the timer elapses,
we return a Fail result. (ii). If we receive the expected message before this,
we update the PC with this new information and try to solve it. If it succeeds
we continue to the next edge. If it fails we return a Fail verdict. If we do not

14 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

Algorithm 1: Online Testing Algorithm

Data: SET + a distinguished path p, path p = n1l1n2l2 . . . lk−1nk ;
begin

π = πk; i := 1; rtr := Pass ;
while i < k and rtr = Pass do

switch li do

case USER.e?xs

val := (SOLV E(π)[xs]);
try {send (e(val)); π := π ∧ xs = val;}
catch (e ∈ Ex) { rtr := Fail; }

case USER.e!xs

start TAC;
try {receive (e(val)); π = π ∧ (xs = val);

if ¬SOLV E(π) then rtr := Fail; }
catch (timeout TAC) {rtr := Fail;}
catch (receive e′) { if e′ ∈ may(ηi) then rtr := Inconclusive;

else rtr := Fail;}
case χ

wait(1 unit of time);

otherwise
skip;

i := i + 1;

return rtr;
end

get a result in a given amount of time we return an Inconclusive verdict (not
in the Algorithm for simplicity). (iii). If we receive an unexpected event, we
check in the SET if it is due to the specification non-determinism. If not, we
return a Fail verdict. If it is the case, we return an Inconclusive verdict and
the test path needs to be replayed in order to exhibit the behaviour that
this test path characterises (for this we assume SUT fairness). Fault output
events are supported in the same way

– Time passing (χ) corresponds to the passing of one unit of time. Accord-
ingly, the tester waits for this time before going to the next event in the path.
The unit of time is computed from the specification (one hour in our exam-
ple). Other events are skipped (see below, Discussion, about an alternative
for gray-box testing).

5.2 Tool Support and Application

In this part, we end the application to the xLoan example, focusing on the online
testing algorithm and on tool support. Our approach is automated by means of
prototypes written in the Python language that serve as a proof of concept. As
far as constraint solving is concerned, we chose the UML2CSP tool [17], which
supports OCL constraint solving over UML class diagrams, that correspond to

Service Orchestration Testing Based on Symbolic Transition Systems 15

the constraints we have on XML schema data. Additionally, UML2CSP is able
to generate witness object diagrams when the constraints are satisfiable. More
precisely, in order to reuse this tool, we proceed as follows:

– we translate XML schema definitions into an UML class diagram, see Fig-
ure 2. Additionally, domain limits are set up in UML2CSP according to
uniformity hypotheses, e.g., here we have set maxMonth:{12,24,36} and max-
Payment:[1000..100000]). This step is done only once.

– to check if some π is satisfiable before sending a message, an additional
root class (Root) is created wrt. the UML diagram, with as many attributes
as symbolic variables in π. The π constraint is translated in OCL. If π is
satisfiable, UML2CSP generates an object diagram. From it we get data for
the variable of interest to be sent (step val := (SOLV E(π)[xs]) in Alg. 1).

– to check if some π is satisfiable after receiving a message, we perform as
before, but adding an OCL constraint enforcing that the symbolic variable of
the reception is equal to the data effectively received (steps π = π∧(xs = val)
and ¬SOLV E(π) in Alg. 1).

– cutting infeasible paths in the SET computation is a sub-case of satisfaction
before message sending (the generated object diagram is discarded).

– strings are treated as integers which represent an index in an enumerated
type. This corresponds to a set of specific string constants for the test.

For the time being, interaction with UML2CSP is manual. The automation of
this step is under process as part of an Eclipse plug-in we are developing.

Experiments have been applied on an implementation of xLoan which is
not isomorphic to its specification as, e.g., the BPEL code relies on additional
boolean variables rather than on the workflow structure to decide if the sub-
process for loan proposal selection or cancelling is applicable. The implemen-
tation size is 246 lines long (186 XML tags). In order to demonstrate our on-
line algorithm, we take one of the 10 complete paths we have in the SET (see
Fig. 5). Due to lack of room we focus on the first interaction steps of the path
(loan request, loan reply). The first call to UML2CSP with the end path con-
dition, π305, enables one to retrieve values for the RequestIn message (id, name,
income, amount, maxMonth, maxPayment), e.g., the part of the path condi-
tion relative to the requested amount generates the Context Root inv PC :

not(self.vs30.req.amount<=10000) OCL constraint, and value 10001 for the
request amount. We then generate the message data in Figure 6, left, and send
it using SOAPUI5. The corresponding received message is in Figure 6, right. We
translate this data as an OCL constraint and solving it with UML2CSP we are
able to show that it is a correct output. We may then proceed generating data
for a correct offer selection (offerCode=1).

5.3 Discussion

We have experimented the application of our framework for functional testing
based on structural criteria. We think that it could be used in other contexts.
5 http://www.soapui.org/

16 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

<soapenv:Envelope xsi:...="http:... >
<soapenv:Body>
<ns2:RequestIn>

<ns3:uInfo>
<id>1</id>
<name>Simpson</name>
<income>10002</income>

</ns3:uInfo>
<ns3:req>

<amount>10001</amount>
<maxMonth>12</maxMonth>
<maxPayment>1000</maxPayment>

</ns3:req>
</ns2:RequestIn>
</soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope xsi:...="http:... >
<soapenv:Body>
<ns2:RequestOut>

<status>true</status>
<fileNumber>1</fileNumber>
<ns3:proposals>

<offerCode>1</offerCode>
<nbMonths>12</nbMonths>
<monthPayment>918</monthPayment>
<ns3:rate>

<type>fixed</type>
<value>10</value>

</ns3:rate>
</ns3:proposals>

</ns2:RequestOut>
</soapenv:Body>
</soapenv:Envelope>

Fig. 6. xLoan Example – a Sent and a Received Message (parts of)

First, one may need to test –at design-time, or at run-time for dynamic service
binding– if a SUT may serve as a sub-service, being given a specification of
the way one would like to communicate with it. This could be achieved by
generating a partner service description [18] for this specification, and then apply
our technique. Besides, supporting test objectives described as a directed acyclic
STS with leaves tagged using {Pass, Fail} could be performed using the STS
product [19] of this STS with the specification STS prior to SET generation.

Additionally, one could have a gray-box point of view over orchestrations us-
ing the information available in the SET. We are experimenting another version
of Algorithm 1 where communications with the partners are no longer skipped
by the tester which receives invocations of the SUT and replies as if it was
the sub-service (generating data respecting the π boolean formula in the sub-
service signature specification). For this, we use the same constraint satisfaction
approach as presented before.

6 Related Work

The state of practice in service testing has been limited for a long time to the
use of tools such as SOAPUI or BPELUnit [20] that release from the burden
of the translation into SOAP messages, operation calling and test management.
However, test-cases were mainly generated using empirical approaches, often
without automation.

In the last years, the software testing community has started to get involved
in the service field. As a consequence, several works have tried to bridge the gap
between current practice in service testing and state-of-the-art formal and auto-
mated software testing. One way to address this issue is to focus on the service
signatures, i.e., their WSDL description [21]. This enables to test operations in-
dependently. However, WSDL does not provides neither a semantic information
on services nor a behavioural description of them, which is important in presence
of composite (orchestration) services.

To the contrary, we chose to focus on this complementary part of orchestra-
tions. This point of view has been adopted by several works, through white-box

Service Orchestration Testing Based on Symbolic Transition Systems 17

testing. Approaches based on control-/data-flow coverage criteria are presented
in [22–24]. Classical testing data-flow criteria are revisited in [22] in order to be
suitable to services. A control-flow algorithm is combined in [23] with rewrit-
ing graphs to support XPath expressions. The use of BPEL model-checking for
white-box test case generation has been proposed in [25, 26]. In both cases, test
cases are considered as counter-examples and generated, according to several
coverage criteria, with the SPIN model-checker. While [25] uses an intermedi-
ary model, [26] transforms directly BPEL into Promela. All these white-box
approaches assume that the implementation source code is available.

In earlier work [10], we have addressed gray-box testing using translation of
BPEL into the IF language and the extension of the IF simulator to generate
tests according to a test objective. However, the use of data domain enumeration
yield state explosion. To circumvent this problem, we propose in this paper a
black-box testing approach using translation into STS and symbolic execution.
We took inspiration from previous work on symbolic testing [19, 16, 15, 27]. The
works in [19, 16], still, did not address components or services. Application to
this domain has first been proposed in [15], and later in [27], from a theoretical
and generic point a view, without a specification/implementation language in
mind. In our work, we propose a comprehensive language-to-language approach
with BPEL as target language. Accordingly, compared to the above-mentioned
works, we take into account BPEL specific features in test-case derivation.

7 Conclusion and Perspectives

With the development of service reuse through their aggregation in added-value
composite services, the testing of orchestrations has become a topical issue. In
this paper we have presented a framework for orchestration testing based on
symbolic transition systems which, compared to related work, supports the rich
XML-based data types used in (Web) services without suffering from state explo-
sion issues. This framework also proposes a comprehensive language-to-language
approach, as it deals with both the retrieval of formal models from real service
specification languages and with the execution of test cases using the SOAPUI
API. Although we have presented here the transformation rules from BPEL to
STS, we advocate that transformations can be defined from other languages with
workflow features (UML, BPMN) and accordingly provide the software architect
with a richer specification environment.

Ongoing work is relative to the re-engineering of our tool prototypes in Java
and their integration in a plug-in extension of the Eclipse BPEL Designer, fol-
lowing [28]. A first perspective of our work is to support conformance testing
based on test objectives. This would provide a valuable alternative to the path
length criterion when dealing with infinite SET. Another perspective is relative
to the supported basic XML types, currently only integers and strings. Using
String databases, as proposed in [21], in place of simple enumerated values would
enhance the tests relevance. Finally, supporting additional parts of BPEL, in-

18 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi

cluding compensation/termination handlers and string operators would enable
to target a wider range of BPEL specifications.

References

1. OASIS: Web Services Business Process Execution Language (WSBPEL) Version
2.0. Technical report, OASIS (April 2007)

2. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In:
Proc. of SWSWPC. (2004)

3. Dumas, M., Benatallah, B., Motahari Nezhad, H.R.: Web Service Protocols: Com-
patibility and Adaptation. IEEE Data Eng. Bull. 31(3) (2008) 40–44

4. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composi-
tion. Annals of Mathematics, Computing & Teleinformatics 1(5) (2007) 1–10

5. Poizat, P., Royer, J.C.: A Formal Architectural Description Language based on
Symbolic Transition Systems and Modal Logic. Journal of Universal Computer
Science 12(12) (2006) 1741–1782

6. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7) (1976) 385–394

7. Attiogbé, C., Poizat, P., Salaün, G.: A Formal and Tool-Equipped Approach for
the Integration of State Diagrams and Formal Datatypes. IEEE Transactions on
Software Engineering 33(3) (2007) 157–170

8. Ouyang, C., van der Aalst, W., Dumas, M., ter Hofstede, A.: Translating BPMN
to BPEL. Technical Report BPM-06-02, BPM Center Report (2006)

9. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing Service Composition. In:
Proc. of ASSE. (2007)

10. Lallali, M., Zäıdi, F., Cavalli, A., Hwang, I.: Automatic Timed Test Case Genera-
tion for Web Services Composition. In: Proc. of ECOWS. (2008)

11. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques. In: Proc. of ICSOC. Volume 5364
of LNCS. (2008)

12. Mateescu, R., Rampacek, S.: Formal Modeling and Discrete-Time Analysis of
BPEL Web Services. In: Advances in Enterprise Engineering I. Volume 10 of
Lecture Notes in Business Information Processing., Springer (2008) 179–193

13. W3C: XML Path Language (XPath) Version 1.0. Technical report, W3C (1999)
14. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized Symbolic Execution for

Model Checking and Testing. In: Proc. of TACAS. Volume 2619 of LNCS. (2003)
15. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-

Based Testing. In: Proc. of FATES/RV. Volume 4262 of LNCS. (2006)
16. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic Execution Techniques for

Test Purpose Definition. In: Proc. of TESTCOM. Volume 3964 of LNCS. (2006)
17. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a Tool for the Formal Verification

of UML/OCL Models using Constraint Programming. In: Proc. of ASE. (2007)
18. Kaschner, K., Lohmann, N.: Automatic Test Case Generation for Interacting Ser-

vices. In: Proc. of ICSOC 2008 Workshops. Volume 5472 of Lecture Notes in
Computer Science. (2009)

19. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic Test Selection based on
Approximate Analysis. In: Proc. of TACAS. Volume 3440 of LNCS. (2005)

20. Mayer, P.: Design and Implementation of a Framework for Testing BPEL Compo-
sitions. PhD thesis, Leibnitz University, Germany (2006)

Service Orchestration Testing Based on Symbolic Transition Systems 19

21. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: Towards Automated WSDL-
Based Testing of Web Services. In: Proc. of ICSOC. Volume 5364 of LNCS. (2008)

22. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data Flow-Based Valida-
tion of Web Services Compositions: Perspective and Examples. In: Architecting
Dependable Systems. Volume 5135 of LNCS. (2008)

23. Mei, L., Chan, W., Tse, T.: Data Flow Testing of Service-Oriented Workflow
Applications. In: Proc. of ICSE. (2008)

24. Li, Z., Sun, W., Jiang, B., Zhang, X.: BPEL4WS Unit Testing: Framework and
Implementation. In: Proc. of ICWS. (2005)

25. Zheng, Y., Zhou, J., Krause, P.: An Automatic Test Case Generation Framework
for Web Services. Journal of Software 2(3) (2007) 64–77

26. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating Test Cases Specifications for
BPEL Compositions of Web Services Using SPIN. In: Proc. of WS-MaTe. (2006)

27. Frantzen, L., Huerta, M., Kiss, Z., Wallet, T.: On-The-Fly Model-Based Testing of
Web Services with Jambition. In: Proc. of WS-FM. Volume 5387 of LNCS. (2009)

28. H.Foster, S.Uchitel, J.Magee, J.Kramer: WS-Engineer: A Tool for Model-Based
Verification of Web Service Compositions and Choreography. In: Proc. of ICSE.
(2006)

	RR1542entete
	RR1542rapp

