
L R I 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CNRS – Université de Paris Sud 
Centre d’Orsay 

LABORATOIRE DE RECHERCHE EN INFORMATIQUE 
Bâtiment 490 

91405 ORSAY Cedex (France) 

R
A
P
P
O
R
T 
 
D
E 
 
R
E
C
H
E
R
C
H
E    

 
EXACT TIME COMPLEXITY OF ZebraNeT 

WITH COVER TIMES 
 

BEAUQUIER J / BLANCHARD P / BURMAN J / DELAET S 
 

Unité Mixte de Recherche 8623 
CNRS-Université Paris Sud – LRI 

 
08/2011 

 
Rapport de Recherche N° 1545 



Exact Time Complexity of ZebraNet with Cover

Times

Jo�roy Beauquier1,3, Peva Blanchard1 ?, Janna Burman2 ??, and Sylvie Delaët1

1 LRI, Univ. Paris-Sud 11, Orsay, France, {jb, blanchard, delaet}@lri.fr
2 MASCOTTE Project - INRIA, France, janna.burman@inria.fr

3 Grand Large project, INRIA Saclay, France

Abstract. Population protocols are a communication model for large
sensor networks with resource-limited mobile agents. The agents move
asynchronously and communicate via pair-wise interactions. The original
fairness assumption of this model involves a high level of asynchrony
and prevents an evaluation of the convergence time of a protocol (via
deterministic means). The introduction of some �partial synchrony� in
the model, under the form of cover times, is an extension that allows
evaluating the time complexities.
In this paper, we take advantage of this extension and study a data

collection protocol used in the ZebraNet project for the wild-life tracking
of zebras in a reserve in central Kenya. In ZebraNet, sensors are attached
to zebras and the sensed data is collected regularly by a mobile base

station crossing the area. The data collection protocol of ZebraNet has
been analyzed through simulations, but to our knowledge, this is the �rst
time, that a purely analytical study is presented. Our �rst result is that,
in the original protocol, some data may never be delivered to the base
station. We then propose two slightly modi�ed and correct protocols and
we compute their worst case time complexities. Still, in both cases, the
result is far from the optimal.

1 Introduction

Population Protocols (PP) have been introduced [1] as a model of sensor net-
works consisting of very simple mobile agents. In this model, anonymous mobile
agents move asynchronously and any two of them can exchange information and
change their states whenever they are chosen by a scheduler. When this hap-
pens, we say that an event, or a meeting between two moving agents, happens.
Initially, one of the goals of PP was to determine what can be computed in such
a model with a minimal hypothesis. That is why agents are anonymous, move
asynchronously and have a small memory. No speci�c assumption is made on
the scheduler, except for a fairness condition that states that an in�nitely often
reachable con�guration is reached in�nitely often. It was shown in [3] that the
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computational power of the model is rather limited. Hence, various extensions
were suggested (e.g., [12,6,11,2,4]).

In this paper, we assume a version of the PP model, where an indicator of
�speed�, the cover time, is associated to each agent [4]. The cover time is the
minimum number of global events happening in the system for being certain
that an agent has met every other agent. The scheduler schedules global events
according to the cover times. The assumption that an agent communicates with
all other agents periodically, within a �nite period, has been experimentally jus-
ti�ed for some types of mobility. Indeed, in the case of human or animal mobility
within a bounded area or with a �home coming� tendency (the tendency to re-
turn to some speci�c places periodically), the statistical analysis of experimental
data sets con�rms this assumption (e.g., [13,15,7]). These data sets concern stu-
dents on a campus [9], participants to a network conference [8] or visitors at
Disneyland. All exhibit the fact that the inter-contact time (ICT) between two
agents, considered as a random variable, follows a truncated Pareto distribution.
In particular, this involves that the ICTs, measured in terms of real time, are
�nite in practice. Thus, they are also �nite when measured in events. So is the
cover time of an agent, which is the maximum of its ICTs measured in events.

The notion of cover times may be viewed as an introduction of �partial syn-
chrony� assumptions [10] in the original PP model (partial - because the cover
times are not assumed to be known by the agents). This extension allows to
compute deterministic time complexities expressed in the number of events (also
called event complexities). This is impossible in the original PP model.

This paper presents, on an example, some techniques for computing the event
complexity of population protocols. The example is a slight modi�cation of an
existing data collection protocol, used by the ZebraNet project [14]. ZebraNet is
a project conducted by the Princeton University and deployed in central Kenya.
It aims at studying populations of zebras using sensors attached to the animals.
This project uses a history-based protocol to deliver the sensed values to a base
station. When an agent x has the possibility to relay its data to other agents,
it may select the one, y, that has recently met the base station more frequently.
The protocol assumes that y will continue meeting the base station frequently
in the near future and will deliver data sooner.

The �rst result in this paper formally shows that the original ZebraNet pro-
tocol does not ensure the delivery of all the values to the base station. There are
in�nite executions in which some values cycle between some mobile agents. The
fact that about 10% of the sensed values are lost, as exhibited by the simulations
in [14], is supported here by a formal explanation. To ensure the delivery without
modifying the main structure of the executions, we propose two slightly modi�ed
versions respectively called Modi�ed ZebraNet Protocols 1 and 2 (MZP1 and
MZP2). We then provide an analysis of their event complexities thanks to the
notion of cover times. In both cases, the worst case complexity is worse than
for the algorithm presented in [4] (this algorithm reaches the optimal worst case
complexity in general cases).



2 Model and Notations

The model is as in [4]. Let A be the set of all the agents in the system where
|A| = n and n is unknown to the agents. The Base Station (BS) is a distin-
guishable agent with extended resources and which may be also non-mobile.1 In
contrast with BS, all the other agents are �nite-state, anonymous and are re-
ferred in the paper as mobile. We denote by A∗ the set of mobile agents. Mobile
agents are enumerated from 1 to n− 1.

Population protocols can be modeled as transition systems. We adopt the
following common de�nitions (for formal de�nitions, refer, e.g., to [17]) : state
of an agent (vector of the values of its variables), con�guration (a vector of
states of all the agents), transition (atomic step of two communicating agents
and their associated state changes), execution (a possibly in�nite sequence of
con�gurations related by transitions).

An event (x y) is a pairwise communication (meeting) of two agents x and
y. An event corresponds to a transition. Without loss of generality, we assume
that no two events happen simultaneously. A schedule is an in�nite sequence of
events. A schedule, together with an initial con�guration, uniquely determines
an execution2. By abusing the notation, we often write a sequence of events
to represent both a schedule and the corresponding execution. Intuitively, it is
convenient to see executions as if a scheduler (adversary) �chooses� which two
agents participate in the next event. Formally, a scheduler D is a predicate on
schedules. A schedule of D is a schedule that satis�es the predicate D. For the
sake of simplicity, we assume that all agents start an execution simultaneously
(e.g., on sunrise, according to a clock, or on receipt of a global signal from BS).
The non-simultaneous start is treated, e.g., in [4,5].

Cover Time Property. In the model, each agent x is associated with a positive
integer cvx, called the cover time of x. Agents are not assumed to know the cover
times. We denote by cv the vector of agents' cover times and by cvmin (resp.
cvmax) the minimum (resp. maximum) cover time in cv.

De�nition (Cover Time Property). Given a population A of n agents and
a vector cv of positive integers, a scheduler D (and any of its schedules) is said
to satisfy the cover time property, if and only if, for every x ∈ A, in any cvx
consecutive events of any schedule of D, agent x meets every other agent at least
once.

In the paper, we consider only the schedulers that satisfy the cover time
property. We say that the cover time vector cv is uniform if all its entries are
equal, i.e., cvmin = cvmax. In this case, we denote by cv the common value of
the agents' cover times.

Data Collection and Convergence. In the context of data collection, an
initial con�guration is a con�guration in which each mobile agent owns an input

1 BS is required here only by the nature of the data collection problem.
2 We only consider deterministic systems.



value. Each input value has to be delivered to BS exactly once. When this
happens, we say that a legal con�guration is reached. An execution is said to
converge if it reaches a legal con�guration. The length of an execution that
converges is the minimum number of events until convergence. The worst case
event complexity of an algorithm is the maximum length of its executions. A
protocol (or an algorithm) is said to converge, if all its executions converge.

When describing an execution, we may annotate each event as follows. The
notation (x y) indicates that there is a transfer from x to y. To specify one of the

values being transferred, v for example, we note (x y)(v). Note that after (x y),
agent x does not keep any copy of the transferred values. Also, the notation (x y)
does not imply that there is no transfer.

For some �nite sequences S1, S2, . . . , Sk, their concatenation in the given
order is denoted by S1 · S2 · · ·Sk (or just S1S2 . . . Sk). For any �nite sequence S
and any positive integer l, the sequence Sl is the sequence obtained by repeating
l times the sequence S. In addition, the in�nite sequence Sω denotes the in�nite
repetition of S.

3 Non Convergence of the Original Protocol

In the original ZebraNet data collection protocol [14] that we consider, an
agent chooses, among the agents in its range, the one which is the most likely
to meet BS in a near future, and transfers its values to it. In this paper, we
choose to use the model with pairwise communications, in contrast to the multi-
wise communications possible in ZebraNet. Hence, the ZebraNet Protocol (ZP),
Algorithm 1 presented below, is a restricted version of the original ZebraNet
protocol. However, as any execution of ZP is also an execution of the original
protocol, the non convergence of ZP involves the non convergence of the latter.

In ZP, the state of an agent x is de�ned by integer variables accumulationx
and distancex, an array of data values valuesx

1 and an integer constant decay
that is the same for every agent. The integer variables are initially set to 0. The
array valuesx holds initially the value provided by the sensor (e.g., tempera-
ture or heart-rate). For the sake of simplicity, we assume �rst that the memory
available for each agent is large enough, so that it can store the values of all the
others. This assumption prevents memory over�ows during transfers2.

In Algorithm 1, when an agent x meets BS, its variable accumulationx is
incremented and distancex is reset to 0. When an agent x meets another mobile
agent, its variable distancex is incremented. If distancex becomes larger than
decay, accumulationx is decremented and distancex is reset to 0.3 When an
agent x holds some values in valuesx and meets another mobile agent y, if

1 We do not de�ne the type of these arrays explicitly.
2 In other words, we assume that agents have an unbounded O (n) memory. The case
of bounded memory is discussed in Sec. 6

3 For avoiding over�ow problems, we assume that the accumulation variables are
periodically reset to 0.



accumulationy is strictly greater than accumulationx, then agent x transfers all
its values to agent y. An agent always transfers all its values when it meets BS.

Algorithm 1 ZebraNet Protocol

when x meets BS do

<x transfers valuesx to BS>
accumulationx := accumulationx + 1
distancex := 0

end when

when x meets y 6= BS do

if accumulationx < accumulationy ∧ <valuesx is not empty> then

<x transfers valuesx to y>
end if

distancex := distancex + 1
if distancex > decay then

if accumulationx 6= 0 then

accumulationx := accumulationx − 1
end if

distancex := 0
end if

end when

It appears that not all executions of ZP converge. Indeed, a value can circu-
late between mobile agents without ever being delivered to BS.

Theorem 1 (Non Convergence of ZP). For any population A of n ≥ 4
agents, for any decay ≥ 1, there exist a uniform cover time vector cv and an
execution of ZP that does not converge.

Proof. Consider a population A of n ≥ 4 agents and a constant decay ≥ 1. We
�rst de�ne speci�c sequences of events :

� U1 = (1 BS)(2 1)
� V = [(2 3) . . . (2 n− 1)] · [(3 4) . . . (3 n− 1)] · . . . · (n− 2 n− 1)
All mobile agents, except for agent 1, meet each other once.

� W1 = (1 2) . . . (1 n− 1)
Agent 1 meets every other mobile agent once.

� U2 = (2 BS)(1 2)
� W2 = (2 1)(2 3) . . . (2 n− 1)
Agent 2 meets every other mobile agent once.

� Z = (3 BS) . . . (n− 1 BS)
All mobile agents, except for agents 1 and 2, meet BS.

We choose an integer g such that g · (n − 3) ≥ decay + 1. Now we build a
schedule S as follows :

X = U1 V
g W g

1 U2 W
g
2 Z

S = Xω



By construction, in X, all the agents meet each other at least once. For any
mobile agent x, we choose cvx = cv = |X|. That implies that S satis�es the

cover time property. Precisely, cv = g · (n−3)(n−2)
2 + (2g + 1)(n− 2) + 3.

We claim that the initial value v of agent 2 is never delivered to BS. To
see that, consider what happens when the sequence X is applied to an initial
con�guration C0. During U1 = (1 BS)(1 2), agent 1 receives the initial value v
of agent 2. During the sequence V g, only agents 2 to n − 1 are involved, thus,
at the end, agent 1 still holds v. Then comes the sequence W g

1 : agent 1 meets
every other mobile agent g times. Since agents 2 to n− 1 have not met BS yet,
their variables accumulation equal 0 and agent 1 cannot transfer v to any of
them. In addition, since agent 1 is involved in g · (n−2) ≥ decay+1 (thanks to
the choice of g) meetings, the decay mechanism of ZP implies that at the end
of W g

1 , the variable accumulation1 of agent 1 equals 0.
Therefore, during U2 = (2 BS)(2 1), agent 1 transfers v to agent 2. In W g

2 ,
agent 2 is involved in g · (n−2) ≥ decay+1 meetings with other mobile agents.
But all their variables accumulation equal 0, hence agent 2 keeps v. Note that
the decay mechanism implies that at the end ofW g

2 , the variable accumulation2

of agent 2 equals 0. Finally, during Z, all mobile agents x 6∈ {1, 2} meet BS and
increment their variable accumulationx accordingly. Therefore, the application
of the sequence X to an initial con�guration C0 leads to a con�guration C1 that
satis�es the property P de�ned as follows :

� agent 2 holds its initial value v
� accumulation1 = accumulation2 = 0
� ∀x ∈ A∗ − {1, 2}, accumulationx = 1

Now, apply X to C1. At the end of U1, agent 1 has received v from agent
2 and satis�es accumulation1 = 1. During V g, each mobile agent x 6= 1 is
involved in g · (n − 3) ≥ decay + 1 meetings. Therefore, thanks to the decay
mechanism, at the end of V g, all the agents, except for agent 1, have their
variable accumulation equal to 0. Hence during W g

1 , agent 1 cannot transfer v
to any other mobile agents. In addition, the decay mechanism implies that at
the end of W g

1 , the variable accumulation1 of agent 1 equals 0. Hence, we see
that the same arguments as in the previous paragraph can be applied to the
sequence U2 W

g
2 Z that follows. Thus, the application of the sequence X to C1

leads to a con�guration C2 that also satis�es the property P.
Hence, no matter how many sequences X are applied, the initial value v of

agent 2 is never delivered to BS. ut

4 Modi�ed ZebraNet Protocol 1

To obtain the convergence, we modify the algorithm by ensuring that a mobile
agent that transfers data to another mobile agent can no longer accept data.
For this purpose, we add a boolean variable activex, initially set to true, that
indicates whether agent x is active or not, and we impose that only active agents
can receive values. Once an active agent has transferred its values to another



mobile agent, it becomes inactive. A formal description of MZP1 is given in
Algorithm 2.

Algorithm 2 Modi�ed ZebraNet Protocol 1

when x meets BS do

<x transfers valuesx to BS>
accumulationx := accumulationx + 1
distancex := 0

end when

when x meets y 6= BS do

if accumulationx < accumulationy ∧ activey ∧ <valuesx is not empty> then

<x transfers valuesx to y>
activex := false

end if

distancex := distancex + 1
if distancex > decay then

if accumulationx 6= 0 then

accumulationx := accumulationx − 1
end if

distancex := 0
end if

end when

4.1 Convergence of MZP1

We now show that any execution of MZP1 converges. The proof relies on the
fact that the set of active agents cannot increase, so that at some point of any
execution, it remains constant. From that point, there is no transfer between
two mobile agents, and since all mobile agents eventually meet BS (due to the
cover time property), all values are eventually delivered.

Theorem 2 (Convergence of MZP1). MZP1 converges.

Proof. Let E be an execution. We note ACT (k) the set of active agents in the
k-th con�guration in E . The sequence (ACT (1), ACT (2), . . . ) is non-increasing,
thus it is eventually constant : ∃k0 ∈ N,∀k ≥ k0, ACT (k) = ACT (k0). Starting
from the k0-th con�guration, there cannot be any further transfer between two
active agents. Otherwise, the set of active agents would decrease. Also, according
to Algorithm 2, there cannot be any transfer from an active agent to another
inactive agent, nor from an inactive agent to an inactive agent. In other words,
once the set of active agents remains constant, there cannot be any transfer
between two mobile agents. Since all mobile agents meet BS in the next cvmax

events, all the values are eventually delivered. ut



4.2 Upper Bound to the MZP1 Complexity

We compute an upper bound to the number of events needed to collect all the
values at the base station. First we de�ne the notion of path.

De�nition (Path followed by a value). Let E be an execution and v be a
value in the system. The path followed by v in E is the sequence (possibly in�nite)
of mobile agents that successively carry v.

For example, let x1 be an agent whose initial value is v. It is possible that x1

transfers v to some agent x2, then agent x2 transfers v to some agent x3 which
�nally delivers v to BS. In this case, the path followed by v is x1x2x3. Note
that, without the active variable (e.g. in ZP), agent x1 and agent x3 could be
the same.

Theorem 3 (Upper Bound - MZP1). For any population A of n ≥ 3
agents, for any cover time vector cv, and for any decay ≥ 1, any execution
of MZP1 converges in no more than

∑
x∈A∗ cvx − 2 · (n− 2) events.

Proof. Let E be an execution of MZP1. By Theorem 2, E converges, i.e., all the
values are eventually delivered. Let v be an initial value of some agent x1 such
that v is the last delivered value in E . Consider the path π followed by v in E . It
is of the form x1x2 . . . xk for some k ≥ 1, xk being the agent that delivers v to
BS. Since a mobile agent becomes inactive as soon as it transfers some values,
all the agents appearing in π are di�erent. Hence, we have 1 ≤ k ≤ n− 1. Then
the execution E can be written as the following sequence of events1 :

E =
[
. . . (x1 x2)(v)

]
︸ ︷︷ ︸

e1

[
. . . (x2 x3)(v)

]
︸ ︷︷ ︸

e2

. . .
[
. . . (xk−1 xk)(v)

]
︸ ︷︷ ︸

ek−1

[
. . . (xk BS)(v)

]
︸ ︷︷ ︸

ek

. . .

The subsequence ei starts after the transfer of v from xi−1 to xi and ends with
the transfer of v from xi to xi+1. At the end of ek, v is delivered to the base
station.

Now, let us show that for every 2 ≤ i ≤ k − 1, the length of ei is upper
bounded by cvxi

− 2. Consider i in this range and the following sequence of

events in E , e′i :=
[
(xi−1 xi)(v) . . . (xi xi+1)(v)

]
. Note that xi does not meet

BS during e′i. Hence, e
′
i ≤ cvxi

− 1 and ei ≤ cvxi
− 2. For the same reason,

e1 ≤ cvx1 − 1. For i = k, as before (for e′i), starting with event (xk−1 xk)(v) and
till the last event in ek, xk does not meet BS. Only at this last event in ek, xk
necessarily meets BS and �nally delivers v. Hence, ek ≤ cvxk

− 1. Therefore,
the value v is delivered to BS in less than T =

∑
x∈π cvx − 2 · (|π| − 2).

Now, we denote by α1 > · · · > αr the distinct values taken by the cover
times of the mobile agents. Note that αr ≥ n− 1 ≥ 2. We note Γα the number
of mobile agents in the system with a cover time equal to α, and πα the number
of agents in π (there are only mobile agents in π by construction) with a cover

1 We remind the reader that this is an abusive notation, refer to Section 2.



time equal to α. Hence |π| = πα1 + · · · + παr
and n − 1 = Γα1 + · · · + Γαr

.
Then we have T = πα1 · α1 + · · ·+ παr

· αr − 2 · (|π| − 2). By replacing παr
with

|π| − πα1 − · · · − παr−1 , we get :

T = πα1 · (α1 − αr) + · · ·+ παr−1 · (αr−1 − αr) + |π| · (αr − 2) + 2
≤ Γα1 · (α1 − αr) + · · ·+ Γαr−1 · (αr−1 − αr) + (n− 1) · (αr − 2) + 2
≤ Γα1 · α1 + · · ·+ Γαr · αr − 2 · (n− 2)

≤

(∑
x∈A∗

cvx

)
− 2 · (n− 2)

Since all the other values are delivered before v, E converges in
∑
x∈A∗ cvx− 2 ·

(n− 2) events. ut

4.3 Lower Bound to MZP1 Complexity

Now we show that the upper bound stated in Theorem 3 is optimal. Building
a �long� execution is made di�cult by two contradictory constraints. On the
one hand, the mechanism of accumulation variables and of decay, in particular
when the value of the constant decay is small, forces us to add events in the
construction to ensure some data value to be transferred from one mobile agent
to another as many times as possible. However, on the other hand, the cover
time property forces some speci�c events (and not necessarily the ones needed
for the construction) to happen before �xed deadlines (given by the cover times).
For the sake of clarity, we assume a uniform cover time vector cv. Hence, the
upper bound stated in Theorem 3 becomes (n−1) ·cv−2 · (n−2). In the sequel,
we build an execution that converges in exactly (n− 1) · cv − 2 · (n− 2) events.

Theorem 4 (Lower Bound -MZP1). For any population A of n ≥ 4 agents,
for any decay ≥ 1, there exist a uniform cover time vector cv and an execution
of MZP1 that converges in exactly (n− 1) · cv − 2 · (n− 2) events.

Proof. We consider a population A of n ≥ 4 agents and a constant decay ≥ 1.
Let g be an integer such that g · (n − 3) ≥ decay + 1. We consider a uniform
cover time vector cv, the value of which is de�ned later.

We build an execution in which the initial value of agent 1 is successively
carried by every other agent. For each 1 ≤ k ≤ n − 2, we consider a sequence
Ek of length cv in which the value v is transferred from agent k to k + 1, and
another sequence ∆ in which agent n− 1 delivers v to BS. Since a schedule
is an in�nite sequence, we also consider a repeating pattern Ω and we de�ne
a schedule S = E1E2 · · ·En−2∆Ω

ω. The di�culty lies in the de�nition of the
sequences Ek, ∆ and Ω so that the schedule S satis�es the cover time property
and the value v is delivered at the end of ∆.

For this purpose, we de�ne speci�c sequences as follows :

� For 1 ≤ k ≤ n−1, U(k) is a sequence of events in which all the mobile agents,
except for agent k, meet each other once. Hence, each mobile agent (except

for agent k) is involved in n− 3 meetings. We have |U(k)| = (n−3)(n−2)
2 .



� For 1 ≤ k ≤ n − 1, V (k) is a sequence in which agent k meets every other
mobile agent once. We have |V (k)| = n− 2.

� For 1 ≤ p ≤ q ≤ n − 1, Bpq = (q BS)(q − 1 BS) . . . (p BS) is a sequence in
which each agent x, from q to p, successively meets BS in this order. We
have |Bpq | = q − p+ 1.

� For 1 ≤ p ≤ q ≤ n − 1, Cpq = [(q q + 1)(q BS)] . . . [(p p+ 1)(p BS)] is a
sequence in which each agent x, from q to p, meets its successor x+ 1 then
BS. We have |Cpq | = 2 · (q − p+ 1).

First, we look at what happens when sequences such as U(k) or V (k) are
repeatedly applied. In U(k)g, each mobile agent x 6= k is involved in g · (n−3) ≥
decay+1 meetings. Thus, thanks to the decay mechanism, applying U(k)g to any
con�guration of the system makes each non-zero accumulationx, with x 6= k, de-
crease at least by one. The same argument shows that applying V (k)g to any con-
�guration makes accumulationk decrease at least by one, unless accumulationk
already equals 0. In other words, the sequences U(k)g and V (k)g help resetting
the variables accumulation.

Now, consider a con�guration in which for all x ∈ A∗, accumulationx = 0. In
addition, assume that some mobile agent k, such that 1 ≤ k ≤ n−2, holds a value
w and that agent k + 1 is active (i.e., it can receive values). Then it is easy to
see that during the sequence Bk+1

n−1 ·C1
k = Bk+2

n−1(k + 1 BS)(k k + 1)(k BS)C1
k−1,

agent k transfers w to k + 1. Moreover, at the end, every accumulationx (with x
a mobile agent) equals 1. In other words, applying Bk+1

n−1 ·C1
k to the appropriate

con�guration results in a transfer from agent k to agent k + 1.
We also de�ne, for each 1 ≤ k ≤ n − 2, a ��lling� sequence Fk of meetings

between mobile agents. We only require that |Fk| = n − 2 − k (which implies
that Fn−2 = ∅). The purpose of the sequence Fk is to ensure that the length of
Ek is constant (independent of k). Now we are ready to de�ne the sequences Ek
(1 ≤ k ≤ n− 2), ∆ and Ω :

E1 = U(2)gV (2)g︸ ︷︷ ︸
prologue

·U(1)g(1 2)F1︸ ︷︷ ︸
center

·B2
n−1C

1
1︸ ︷︷ ︸

epilogue

(2 ≤ k ≤ n− 2) Ek = U(k)gV (k)g︸ ︷︷ ︸
prologue

·U(k)g(k k + 1)Fk︸ ︷︷ ︸
center

·Bk+1
n−1C

1
k︸ ︷︷ ︸

epilogue

∆ = U(n− 1)gV (n− 1)gU(n− 1)g · (n− 1 BS)

Ω = Bn−1
n−1C

1
n−2 ·∆

Then we set cv = |Ek|. Precisely, we have cv = g·(n−3)(n−2)+(g+2)(n−2)+2.

S satis�es the cover time property Note that if a sequence X of cv con-
secutive events in S contains (or can be reordered to contain) a prologue and an
epilogue (not necessarily from the same sequence Ek) then it is not di�cult to
see that, in X, each agent meets every others at least once.



Before continuing, we need some de�nitions. If e is an event lying in some
Ek with 1 ≤ k ≤ n − 2 (resp. ∆), then its relative position within Ek (resp.
∆) is de�ned as the index of its occurrence in Ek (resp. ∆) starting from index
1. For instance the relative position of the �rst event in Ek (resp. ∆) is 1, the
second event is 2, and so on. Tables 1, 2 and 3 compare the relative positions of
di�erent sequences in S. Sequences in the same column start at the same relative
position.

Now, consider Z, a sequence of cv consecutive events in S. We have to check
that, in Z, each agent meets every others at least once. We note Z1 (resp. Zcv)
the �rst (resp. last) event in Z. Note that, since |Z| = cv, if r1 (resp. rcv)
denotes the relative position of Z1 (resp. Zcv), then we have rcv = r1− 1 In the
sequel, we distinguish several cases according to the position of Z1.

� Z1 ∈ E1

• Z1 ∈ U(2)gV (2)g. The sequences E1 and E2 have the same prologue
(cf. Table 1), thus we see that all the events at the left of Z1 in E1 are
exactly the ones from E2 that are already counted in Z. Hence, Z1 can
be reordered to contain the prologue and the epilogue of E1.

• Z1 ∈ the center of E1. Then Z contains the epilogue of E1 and the
prologue of E2.

• Z1 ∈ the epilogue of E1. If Z1 is the �rst event of the epilogue of
E1, then it obviously contains the epilogue of E1 and the prologue
of E2. If we shift Z1 to the right by one event, then the sequence
Z looses the event (n− 1 BS), but the same event in E2 is already
counted in Z (cf. Table 1). This is due to the fact that the sequence
(n− 1 BS)B3

n−2 of E1 starts one event later (relatively to E1) than
the same sequence in E2. Hence, we can repeat this argument until all
the sequence (n− 1 BS)B3

n−2 is �consumed�. In other words, if Z1 ∈
(n− 1 BS)B3

n−2, then we can reorder Z to contain the epilogue of E1

and the prologue of E2. Now, the last subcase is Z1 ∈ (2 BS)C1
1 . This

sequence has the same relative position in E1 and in E2, thus Z can also
be reordered to contain the epilogue of E1, and the prologue of E2.

U(2)g V (2)g U(1)g (1 2) F1 (n− 1 BS)B3
n−2 (2 BS) C1

1

U(2)g V (2)g U(2)g (2 3) F2(n− 1 BS) B3
n−2(2 3) (2 BS) C1

1

Table 1. Comparison of components relative positions in E1 and E2.

� Z1 ∈ Ek (2 ≤ k ≤ n− 3)
• Z1 ∈ the prologue U(k)gV (k)g of Ek. If Z1 ∈ U(k)g in the prologue,
then, since U(k)g also appears in the center of Ek, Z can be reordered
to contain the prologue and the epilogue of Ek. If Z1 ∈ V (k)g in the
prologue , then Z contains the epilogue of Ek. Thus every mobile agent
meet the base station. Z also contains U(k)g from the center of Ek,



hence every mobile agent, except for agent k, meet each other at least
once. We just have to check that agent k meet every other mobile agent.
Z contains the sequence U(k + 1)g from the prologue of Ek+1, so agent
k meets every other mobile agent except for agent k + 1. But Z also
contains the event (k k + 1) from the center of Ek. Hence, every agent
meets every other at least once.

• Z1 ∈ the center of Ek. Then Z contains the epilogue of Ek and the
prologue of Ek+1.

• Z1 ∈ the epilogue of Ek. If Z1 is the �rst event of the epilogue of Ek,
then it obviously contains the epilogue of Ek and the prologue of Ek+1.
If we shift Z1 to the right by one event, then the sequence Z looses the
event (n− 1 BS), but the same event in Ek+1 is already counted in Z
(cf. Table 2). This is due to the fact that the sequence (n− 1 BS)Bk+2

n−2

of Ek starts one event later (relatively to E1) than the same sequence
in Ek+1. Hence, we can repeat this argument until all the sequence
(n− 1 BS)Bk+2

n−2 is �consumed�. In other words, if Z1 ∈ (n− 1 BS)Bk+2
n−2,

then we can reorder Z to contain the epilogue of Ek and the prologue of
Ek+1. Now, the last subcase is Z1 ∈ (k + 1 BS)C1

k . This sequence has
the same relative position in E1 and in E2, thus Z can also be reordered
to contain the epilogue of Ek, and the prologue of Ek+1.

U(k)g V (k)g U(k)g (k k + 1) Fk (n− 1 BS)Bk+2
n−2 (k + 1 BS) C1

k

U(k + 1)g V (k + 1)g U(k + 1)g (k + 1 k + 2) Fk+1(n− 1 BS) Bk+2
n−2(k + 1 k + 2) (k + 1 BS) C1

k

Table 2. Comparison of components relative positions in Ek and Ek+1 (2 ≤ k ≤ n−3).

� Z1 ∈ En−2

• Z1 ∈ the prologue U(n− 2)gV (n− 2)g of En − 2. If Z1 ∈ U(n− 2)g in
the prologue, then, since U(n− 2)g also appears in the center of En−2,
Z can be reordered to contain the prologue and the epilogue of En−2.
If Z1 ∈ V (n − 2)g in the prologue , then Z contains the epilogue of
En−2. Thus every mobile agent meet the base station. Z also contains
U(n − 2)g from the center of En−2, hence every mobile agent, except
for agent n− 2, meet each other at least once. We just have to checn-2
that agent n− 2 meet every other mobile agent. Z contains the sequence
U(n−1)g from ∆, so agent n− 2 meets every other mobile agent except
for agent n− 1. But Z also contains the event (n− 2 n− 1) from the
center of En − 2. Hence, every agent meets every other at least once.

• Z1 ∈ the center of En−2. Then, Z contains the epilogue of En−2 and the
sequence U(n− 1)gV (n− 1)g from ∆. So every agent meets every other
at least once in Z.

• Z1 ∈ the epilogue of En−2. If Z1 is the �rst event of the epilogue, then it
is not di�cult to see that Z = Ω and that in Ω, every agent meet each
other at least once. By construction the sequel of the schedule S simply



consists in an in�nite repetition of Ω. Therefore, no matter how many
times Z1 is shifted to the right, Z can always be reordered to equal Ω.

U(n− 2)g V (n− 2)g U(n− 2)g (n− 2 n− 1) Fn−2 = ∅ (n− 1 BS) C1
n−2

U(n− 1)g V (n− 1)g U(n− 1)g (n− 1 BS)

Table 3. Comparison of components relative positions in En−2 and ∆.

This last argument also shows that the su�x Ωω of S satis�es the cover time
property. As a conclusion, in all cases, every agent meet each other at least once
in Z and the schedule S satis�es the cover time property.

Time to convergence Now, we focus on the circulation of the initial value v
of agent 1. Let C1 be an initial con�guration. The prologue and the center of
E1 only involves meetings between mobile agents, and, since each mobile agent
has its variable accumulation equal to 0, there is no transfer. At the end of
the epilogue of E1, the previous remarks show that agent 1 has transferred v to
agent 2 and each mobile agent x satis�es accumulationx = 1. Moreover, during
the epilogue of E1, every mobile agent x 6= 1 has transferred its initial value to
BS. We denote by C2 the con�guration at the end of E1.

Focus now on the prologue U(2)gV (2)g of E2. At the end of U(2)g, every
accumulationx with x 6= 2 is set to 0. Thus, during V (2)g, agent 2 does not
transfer v to anyone. In addition, at the end of the prologue of E2 each mobile
agent's accumulation variable is set to 0. Hence, during the center of E2, there
is no transfer. It is only during the epilogue of E2 that agent 2 transfers v to
agent 3 (which is still active since it has not transferred any value to any other
mobile agent). At the end of E2, agent 3 holds the value v and every mobile
agent x satis�es accumulationx = 1. Therefore, the process can be iterated.

At the end of En−2, agent n− 1 holds the value v. Every mobile agent
1, . . . ,n− 2 is inactive since it has transferred v to its successor, and cannot
receive v again. Therefore, the value v is delivered to BS exactly at the end of
∆ = U(n− 1)gV (n− 1)gU(n− 1)g · (n− 1 BS)

A simple calculation shows that |∆| = cv − 2 · (n − 2). Hence, with the
schedule S, the algorithm converges in (n−1) ·cv−2 · (n−2) events exactly. ut

5 Modi�ed ZebraNet Protocol 2

As already explained, the non convergence of ZP is due to the fact that a value
can circulate between two or more mobile agents, without ever being delivered to
the base station. To prevent that, inMZP1, we imposed that a mobile agent that
transfers some values cannot receive the values later. Another way to prevent
cycling of values is to impose that a mobile agent receiving some values cannot
transfer them to any other mobile agent later. For this purpose, an active bit is



also introduced, but with di�erent functionality than in MZP1. The resulting
protocol, called MZP2, is given in Algorithm 3.

Algorithm 3 Modi�ed ZebraNet Protocol 2

when x meets BS do

<x transfers its values to BS>
accumulationx := accumulationx + 1
distancex := 0

end when

when x meets y 6= BS do

if accumulationx < accumulationy ∧ activex ∧ <valuesx is not empty> then

<x transfers its values to y>
activey := false // agent y becomes inactive

end if

distancex := distancex + 1
if distancex > decay then

if accumulationx 6= 0 then

accumulationx := accumulationx − 1
end if

distancex := 0
end if

end when

5.1 Upper Bound to MZP2 Complexity

Theorem 5 (Upper Bound - MZP2). For any population A of n ≥ 1
agents, for any cover time vector cv and for any decay ≥ 1, any execution
of MZP2 converges in less than 2 · cvmax − 2 events.

Proof. Consider an execution of MZP2 and an agent x with initial value v.
During the �rst cvx events, there are two possibilities. Either agent x does not
transfer v to any other mobile agent, but straightly to BS. In this case, v is
delivered in at most cvx events. Otherwise, x meets some mobile agent y (before
it meets BS), in an event (x y)(v), and transfers v to y. This happens in at
most cvx-1 events. According to Algorithm 3, after such a transfer, y becomes
inactive. Now, agent y cannot transfer v to any other mobile agent. This implies
that agent y will transfer v to BS during the next cvy events (starting with
event (x y)(v)). Hence, v is delivered to BS in at most cvx + cvy − 2 events. In
all the cases, any value v is delivered to the base station in less than 2 ·cvmax−2
events. ut

5.2 Lower Bound to MZP2 Complexity

Theorem 6 (Lower Bound -MZP2). For any population A of n ≥ 4 agents
and any decay ≥ 1, there exist a uniform cover time vector cv and an execution
of MZP2 that does not converge in strictly less than 2 · cv − 2 events.



Proof. We consider an integer g such that g · (n−3) ≥ decay+1, and we de�ne
speci�c sequences as follows :

� U = (3 BS) . . . (n− 1 BS).
Agents 3 to n− 1 meet the base station once.

� V = [(2 3) . . . (2 n− 1)] · [(3 4) . . . (3 n− 1)] · . . . · (n− 2 n− 1)
In V , all mobile agents, except for agent 1, meet each other once.

� W = (1 3) . . . (1 n− 1).
Agent 1 meets every other mobile agent, except for agent 2, exactly once.

� X = U · V g ·W · (2 BS)(1 2)(1 BS)

We build a schedule S by repeating X in�nitely many times : S = Xω. We
choose the same cover time, cv = |X|, for all the agents. A simple calculation

shows that cv = 2n − 3 + g · (n−3)(n−2)
2 . It is easy to see that S satis�es the

cover time property.
Now we prove that the execution of MZP2 induced by S does not converge

before the �rst 2 · cv − 2 events. At the end of the �rst U in S, agents 3 to
n− 1 have successively met BS and transferred their values to it. Thus, all the
variables accumulationx for 3 ≤ x ≤ n−1 equal 1. Then comes the sequence V g

in which each agent x 6= 1 is involved in g · (n−3) ≥ decay+1 meetings. Hence,
thanks to the decay mechanism, at the end of the �rst V g, every agent x, from
2 to n− 1, has its variable accumulationx reset to 0. As a consequence, there
is no transfer from agent 1 to any other mobile agent during the sequence W
that follows V g. Then during the sequence (2 BS)(1 2)(1 BS), agent 2 receives
the initial value v of 1. From this point, agent 2 cannot transfer v to any other
agent but BS, which is done precisely cv events later (during the event (2 BS)
in the second X of S). Therefore, the value v is delivered to BS exactly after
the (2 · cv − 2)-th events of the schedule. ut

6 Bounded Memory

Up to now, we have assumed that mobile agents have an unbounded (O (n))
memory. In this section, we discuss the case of bounded memory, i.e., a memory
size independent of the number of agents. We assume now that the memory of
an agent can hold at most k values, with k ≥ 1. Both MZP1 and MZP2 can be
adapted to this case. Indeed, any transfer of values is limited by the available
memory and the transfer may be partial. During an event, as much as possible
values are transferred. Note that all values are equivalent for the data collection
problem, thus it is unnecessary to precise which values are actually transferred.
In an adapted MZP1, once an agent has transferred some values, even if the
transfer is only partial, it becomes inactive and cannot receive other values.
For every agent x, the values held by x are stored in a dynamic array valuesx,
whose size is denoted by size(valuesx). By de�nition, we have size(valuesx) ≤ k.
Algorithm 4 presents an adaptation of MZP1, but the same idea can be applied
toMZP2. For the sake of clarity, we do not present in the code the management



Algorithm 4 Modi�ed ZebraNet Protocol 1 - Bounded memory

when x meets BS do

<x transfers its values to BS>
accumulationx := accumulationx + 1
distancex := 0

end when

when x meets y 6= BS do

count := min(size(valuesx),k− size(valuesy))
if accumulationx < accumulationy ∧ activey ∧ count > 0 then

<x transfers count values to y>
activex := false

end if

distancex := distancex + 1
if distancex > decay then

if accumulationx 6= 0 then

accumulationx := accumulationx − 1
end if

distancex := 0
end if

end when

of the dynamic array valuesx. We denote by MZP1-BM (resp.MZP2-BM) the
bounded-memory version of MZP1 (resp. MZP2).

It appears that, for bothMZP1 andMZP2, the proofs given in the previous
sections (Sections 4.1, 4.2, 4.3, 5.1 and 5.2) are still applicable. Indeed, the
memory size tightens the constraints on transfers, but do not fundamentally
a�ect the structures of both MZP1 and MZP2. Still, we sketch the proofs for
MZP1-BM and MZP2-BM.

Theorem 7 (Bounds to MZP1-BM complexity). For any population A
of n ≥ 1 agents, for any cover time vector cv, for any decay ≥ 1, any execution
of MZP1-BM converges in less than

∑
x∈A∗ cvx − 2 · (n− 2) events.

For any population A of n ≥ 4 agents, for any decay ≥ 1, there exist a
uniform cover time vector cv and an execution of MZP1-BM that converges in
(n− 1) · cv − 2 · (n− 2) events.

Proof. The fact that MZP1-BM converges is due to the fact that the set of
active agents cannot increase. As inMZP1, once the set of active agents remains
constant, there cannot be any transfer between any two mobile agents. Since all
mobile agents meet BS in the next cvmax events, the protocol converges.

The upper bound to the complexity of MZP1-BM is computed by looking
at the path followed by the last delivered value v, i.e., the mobile agents that
successively carry v. The memory size does not a�ect the fact that a mobile
agent in this path cannot appear twice, thanks to the bit active, nor the fact
that a mobile agent x in this path holds v for at most cvx − 1 or cvx − 2
consecutive events. The same calculation as in the proof in Section 4.2 shows



that any execution of MZP1-BM converges in less than
∑
x∈A∗ cvx−2 · (n−2)

events.
The lower bound to MZP1-BM complexity is obtained thanks to the same

schedule described in Section 4.3. Indeed, applying this schedule to an initial
con�guration gives an execution in which each agent holds at most one value,
which is compatible with the assumption k ≥ 1. ut

Theorem 8 (Bounds to MZP2-BM complexity). For any population A
of n ≥ 1 agents, for any cover time vector cv, for any decay ≥ 1, any execution
of MZP2-BM converges in less than 2 · cvmax − 2 events.

For any population A of n ≥ 4 agents, for any decay ≥ 1, there exist a
uniform cover time vector cv and an execution of MZP2-BM that does not
converge in strictly less than resp. 2 · cv − 2 events.

Proof. During the �rst cvx events, the agent x either transfers its initial value
v to BS or to another mobile agent y. In the second case, the transfer occurs
in the �rst cvx − 1 events. At this point, agent y is then inactive and cannot
transfer v to any other agent, but BS, which is done in the next cvy − 1 events.
Thus MZP2-BM also converges in less than 2 · cvmax − 2 events.

The lower bound to MZP2-BM is obtained thanks to the same schedule de-
scribed in Section 5.2. Indeed, applying this schedule to an initial con�guration
gives an execution in which each agent holds at most one value, which is com-
patible with the assumption k ≥ 1. ut

7 Conclusion

In this paper, we study the ZebraNet data collection protocol in the context of
Population Protocols. We show that the original version does not converge in all
cases, the problem being the possibility for a value to cycle among the mobile
agents without reaching the base station.

To ensure convergence, we propose slightly modi�ed versions of the origi-
nal protocol, MZP1 and MZP2. Notice that MZP1 is a multi-hop protocol.
In contrast, MZP2 is a two-hop one. Hence, MZP1 approximates better the
original ZebraNet protocol than MZP2. For both modi�ed versions, the worst
case complexity is much worse than for the near optimal data collection protocol
presented in [4] (its complexity is less than 2 · cvmin). However, this protocol
assumes that, when two agents meet, both know which of them has a smaller
cover time. We do not make such an assumption here, but one could consider
that the ZebraNet Protocol is an approximation of the near optimal protocol
in the following sense. An agent that has met BS many times in the past, has
intuitively to be fast and thus, must have a small cover time. Comparing the
values of the accumulation variables, when two agents meet, can be viewed as
an approximation of comparing their cover times. This papers shows that this
approximation is bad when the worst case complexity is considered. A possi-
ble, but surely di�cult extension to this work would be to compute the average
complexity of the protocols. Perhaps the gap between the protocol in [4] and the



protocolsMZP1 andMZP2 is not so large when considering average complexity.
Such an analysis would also highlight the role of the memory size.

Another perspective would be to apply our purely analytical methodology
to more intricate data collection protocols, as for instance PROPHET [16], for
which only simulation results are available. For this protocol, as well as for others,
the analytical approach is not supposed to replace simulations, but allows to
obtain some information quickly and with less investment.
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