
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

SELF DEVELOPING NETWORK 2 :

INTRINSIC UNIVERSAL MACHINES

GRUAU F

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

01/2012

Rapport de Recherche N° 1550

Self Developing Network 2 : Intrinsic Universal
Machines

Frederic Gruau

Laboratoire de Recherche en Informatique
Bât 650 Université Paris-Sud 11 91405 Orsay Cedex France

frederic.gruau@lri.fr http://blob.lri.fr

Résumé Le modèle de calcul séquentiel de Turing utilise une source
non bornée de mémoire avec un seul agent de calcul. Les � Self Develo-
ping Network � (SDN) proposent de considérer une source non bornée
d’ agents à mémoire bornée. Les agent sont connectés dans un graphe
dont les arrêtes sont étiquetées. Ils exécutent des règles de réécriture
qui créent d’autres agents et connections. Un agent ancêtre peut ainsi
développer un réseau d’agents arbitrairement grand. Ce travail montre
comment la programmation des agents est facilitée par l’utilisation d’un
automate d’états finis avec actions en sortie (machine de Mealy). Ces ac-
tions sont des règles de réécriture et définissent le jeu d’instructions d’une
� Self Developing Machine � (SDM). Nous présentons un exemple de
SDM appelé la graphe-machine qui utilise 10 instructions, et prouvons
que l’expressivité est conservée : Pour tout SDN il existe une graphe-
machine qui le simule. A partir de ce résultat, nous prouvons un résultat
d’universalité intrinsèque en temps linéaire, alors qu’une simulation via
une machine de Turing prends un temps exponentiel. Ce résultat met en
perspective le parallélisme présent dans l’auto-développement.

The Turing sequential model of computation uses an unbounded source of
memory, and a single Processing Agent. Self Developing Network (SDN)
propose to consider an unbounded source of agents having bounded me-
mory. This PEs are wired in a graph with labeled links. They execute
node rewriting rules which create other agents and links. An ancestor
agent can thus develop an arbitrary large network of agents. This work
shows how to program agents using a Finite State Automaton with out-
put actions (Mealy machine). The actions are rewriting rules, that define
the instructions of a Self Developing Machine (SDM). We present an
example of SDM called the graph-machine using ten instructions, and
prove that the model expressiveness is preserved : for any SDN, there
exists a graph machine that simulates it. Based on this result, we prove
an intrinsic universality result in linear time, while a simulation by a Tu-
ring Machine needs exponential time. This results put into perspective
the parallelism present in self-development.

Keywords: Turing, Self development, Self developing machine, model
of computation, massive parallelism, universality, intrinsic universality

2 Lecture Notes in Computer Science : Frederic Gruau

1 Motivation and review

In [3] Self Developing Networks of agents (SDN) are introduced as node re-
placement Graph Rewriting Systems (node-GRS) which rules can be executed
in a decentralized distributed way by the nodes, considered as agents. The goal
of this work is to introduce the use of Finite State Automata (FSA) to turn this
formal model into a programming model, and ground it with an intrinsic uni-
versal property with linear time complexity. We first contrast our approach with
other existing programming models also based on dynamic creation of agents.

Multi-threading : Generating a new agent looks very much like forking a
thread. The difference is in the grain size : SDN agents have finite state, the
memory size needed for each agent is known statically. When forking occurs,
only a fixed size structure needs to be allocated, instead of a data segment in-
tended to store a large stack. In a real implementation, generating a new agent
is a “normal” instruction which cost must be comparable to an arithmetic ma-
chine instruction. In contrast, a thread should be sufficiently coarse grain to
keep a processor busy for thousands of clock cycle, independently from the other
threads. This is because the CPU time cost of switching between thread contexts
is large compared to the cost of performing one operation, and it has to be amor-
tized. Because of its finite state, an agent cannot compute anything meaningful
by itself. It is only by unfolding a circuit and communicating data along its
edges that a non-trivial computation can take place. In short, multi-threading is
mainly a method to expose parallelism by outlining chunks of computation that
can be carried out independently, while SDNs provide circuits with a dynamic
architecture.

Cooperative computing : Cooperative computing [6,5] does consider a collec-
tion of FSA that can exchange messages, and create new FSA. The framework is
synchronous : at each time step, automata receive messages, change their inner
state, and send new messages ; The network used for communication is not ex-
plicitly instantiated at run time. Instead, a global name space is used to address
FSA : any FSA can communicate with any other, using its name or id, this
implicitly requires a shared memory, which is not conducive to scalable parallel
computing. In self development, an agent can communicate with another, only
if the links is explicitly present. The network along which communication will
happen is exposed and can be dynamically mapped on hardware.

Structurally Dynamic Cellular Automata (CA) [1,4] : They allow to mo-
dify the connections between the CA cells, according to a rule similar to the
state transition rule associated with the conventional CA. To create or delete
a connection, the rule use the preexisting, initial lattice connectivity of CAs.
Unlike SDNs, agents are not added dynamically, they are all

Chemical inspired systems : In chemically inspired model, agents are mole-
cules that interact pairwise with each other and generate new molecules. Such
model have been used in [2] to maximize the parallelism in the description. The
real distributed execution of such models is not obvious though, since it needs
an implicit heavy centralized process that can detect the end of a reaction by
checking that no more interactions are possible for every pair of molecules.

Lecture Notes in Computer Science : Self Developing Machines 3

Static instruction. Dynamic instruction

SELECT x Selects input links labeled x MV Redirect selected links
LABEL x Sets the label of selection to x towards the leader
EMPTY Tests if selection is empty RM Removes selected links
FLIP Flips orientation of selection CP Duplicates selected links
WAIT Waits removal of input links NEW Creates a new agent
ELECT Elects a leader within selection

Table 1. The ten instructions of the Graph Machine.

2 Self Developing Machines (SDM)

In [3] we present the formal foundation of Self Developing Networks (SDN)
as a sub class of Graph Rewriting Systems (node-GRS), where single nodes are
replaced, and the node rewriting rule can be executed in a decentralized distribu-
ted way by the network nodes themselves which are considered as active agents.
A rule’s left member matches an agent’s state q ∈ Q, and also its connections
by using a multiset C : L 7→ N of labels l ∈ L : let Ċ(l) be the number of occur-
rences of l in C, the agent should have at least Ċ(l) connection labeled l, whose
corresponding neighbors are individually bound. The rule replaces an agent by
n new agents and new connections. The right member lists the states of the new
agents, and specifies new connections using triplets : (new label, source, target).
The source and target can be either 1- one of the new agent 2- an individually
bound neighbor 3- all l-neighbor not individually bound for a given label l. This
is called collective binding, and can be done only on one extremity.

Programming directly with rules is not very practical and can be eased as
follows : Development really includes two kinds of processing : a static calcula-
tion part, involving solely the agent’s state, and a dynamic part, which is pure
graph rewriting, and can be encapsulated into a fixed, small set of well designed
elementary rules. The development can then be programmed by combining these
primitives using the classic framework of Finite State Automaton (FSA).

Definition 1 (Self Developing Machine (SDM)). It is an SDN parametri-
zed by a FSA. The node rewriting rules are the FSA’s output actions.

The output actions are the machine’s instructions, the FSA is the machine’s
program. Agents update by first computing the FSA new state, and then rewri-
ting according to the FSA action. For each created agent, an instruction must
specify an input for the agent’s FSA. Created agents inherits the same FSA and
copy the same new state, it is that distinct input which differentiates them by
letting their next transition lead to a distinct state. A machine is defined by
its instruction set, its program, and its initial configuration which includes an
ancestor agent starting from the FSA’s initial state, and external agents called
hosts with connections to the ancestor called ports. We found a nice example
of Self Developing Machine (SDM) in [7]. It uses 8 instructions devised so that
each agent conserve always exactly three neighbors. Its goal was to simulate the
Von-Neuman self reproduction.

4 Lecture Notes in Computer Science : Frederic Gruau

x y

 ŷ

SELECT ^

RM

x
CPx

 y

LABEL y

FLIP

x
NEW

ŷ y 0̂
1 0

x
MV ŷ

x

x y

 x y
SELECT y

x y x

ELECT

^ y ^ x

WAIT

X,|↓x|=0

 x

1

0EMPTY

EMPTY

x

ŷ

x
* *

*

*

*

Figure 1. The graph-machine instruction’s rule. The input appears below the agent.

3 The graph-machine

We design an instruction set defining an SDM called the graph-machine, its
first purpose is to show that the new formalism of SDM preserves intact the
expressiveness of SDN as stated by theorem 1. All what can be done with SDNs
can be done with the graph-machine. The instructions, listed in table 1 are ele-
mentary : they creates agents one by one and process links label by label, by
selecting them and then either duplicating, deleting or moving them, or chan-
ging their label and orientation. Any graph can be developed node by node, link
by link, which explain the appellation “graph-machine”. The rules associated to
the instructions shown in figure 1 use the intuitive graphical convention descri-
bed in [3] : The left member locates bound neighbors by placing them around a
light gray disc and shows the label of their connections (the symbol ’*’ indicates
collective bound neighbors), the right member reproduces the same disk, and
assumes the neighbors conserve the same location on that disc. We use directed
node-rewriting rule defined in [3] which rewrite nodes in graphs whose links are
oriented, and only output links are considered to be owned, and can be modified.
This convention allows two neighbors to update in parallel. Ownership is repre-
sented using a tiny black disk at the source of the link extremity. In the right
member, a distinguished agent called the persisting agent is designated using an
extra circle around it. It keeps all the not owned links, and more generally, all
the links omitted in the left member. In [3], it is proved that directed node-GRS
can be simulated in a distributed way, thus checking the definition of SDNs.

Static instructions can modify the state, link’s label and orientation, or de-
lay the update. Dynamic instructions modify the network itself by creating or
deleting links and agents. The links’s label includes an integer x ∈< 1 . . . n >.
Adressing links is done in two ways : instructions SELECT x select links labeled
x, and instruction ELECT randomly chooses a leader amongst the selected links.
The agents need to remember the current selection (resp. leader) : they use a
flag (respˆ) encoding selection (resp. leadership) which are encoded as comple-
mentary Boolean labels. Selection and leadership have a local scope : whenever a
link’s ownership is given back (either by move or flip), the link is deselected and
unelected. ELECT does an elementary individual binding, It is the only non de-
terministic instruction. The other instructions either do collective binding which
is deterministic, or bind the leader which is guaranteed to be unique. The lea-
der can be selected using instruction SELECT .̂ A link cannot be simultaneously

Lecture Notes in Computer Science : Self Developing Machines 5

elected and selected. Insruction LABEL x changes the label of previously selected
links.

In an SDN, a rule specifies a new state for each created agent, with SDM, it
now specifies their next input. Most instructions use a constant input which is
useless and thus omitted in the rule description. A Boolean input is provided by
instruction EMPTY to return the test result, and by instruction NEW to distinguish
the newly created agent from the persisting agent. The newly created agent is
initially connected with a link labeled 0̂ . Instruction CP duplicates selected links,
the duplicata are deselected.

Fig. 2 shows a graph-machine program for inserting edge-agents (squares) on
multiple links labeled x. The executing agent has another link labeled y. This
example is chosen because the development involves a loop, and it is used in
the proof of theorem 1. The transition diagram is drawn like a flowchart, with
diamond shaped box for instruction delivering a Boolean input. The development
creates one agent for each connection. After each agent creation, the persisting
agent (up) is moving, duplicating and deleting links to the new agent (down)
which is waiting to do the next loop iteration. The automaton can be compactly
programed as a procedure one2one(x, y).

The following theorem shows that graph-machines capture all possible de-
velopments. Incidentally, it also proves that basic SDNs, which use undirected
networks and a neighbor exclusive rule system can be simulated by directed
node-GRS. Since the converse has been proved in [3], both classes are equiva-
lent.

y
... ...

x

y
y

x

x

y

...

x

y x

x

y

...

x

y
x

x

0̂
y

...

x
x

x

0̂
y

...

x

0̂

x

x
y

...

x

x
x̂

y

...

x
x

x

(a)
(b)

 SELECT ^;
RM

SELECT x;
ELECT;

EMPTY ?;
NEW ?;

MV; SELECT y;
CP ; MV ;

SELECT x

 EMPTY ?

 NEW ?

...
0

1

1 0
SELECT yWAIT

ELECT

MV CP

RM SELECT ^

MV

procedure one2one(x,y: INT)
 {while(SELECT x; ELECT;
 not(EMPTY))
 if (NEW) WAIT
 else { MV;SELECT y;
 CP; MV;SELECT^;
 RM; return}
 } ….

(c)

Figure 2. A graph-machine program (a) FSA (b) code (c) development.

Theorem 1. SDNs are simulated faithfully by graph-machines.

6 Lecture Notes in Computer Science : Frederic Gruau

v
1 v

2

edge(l
new

)

connect2(l
new

,v
1
,v

2
)

ααα βββ
v

1
=i,v

2
=j V

1
≠i,v

2
=j V

1
≠i,v

2
≠j

αα α x x α

edge(x)

 v
1

* v
1

v
1

if(v
2
 is a label)

 one2one(v
1
,l) ;

Connect2(l
new

,v
1
,v

2
)

connect(l
new

,v
1
,v

2
)

x
1

x
n

*

*

α

α

NOP(q)

node(q)
.

v
2

v
2

v
2

*
β

Figure 3. Development generated by procedures for the simulation of undirected SDN.

procedure node(q: integer, S: developing rule)
{ WAIT;

for all rule (q,C --> q1, ..,qn, T)
if (matched(C)) glue(q1,..,qn,T)
else clean(C)

NOP(q) }
procedure NOP(q: integer)
{ for all label l in L

SELECT l; LABEL alpha
SELECT alpha; FLIP; }

function matched(C: multiset)-->boolean
{ forall (x,n) in C

for i = 1 to n
SELECT x; if(EMPTY?) return FALSE
ELECT; SELECT LEADER; LABEL (x,i)

return TRUE }
procedure clean(C: label multiset)
{ forall (x,n) in C

for i = 1 to n
SELECT (x,i); LABEL x; }

procedureglue(q1,..,qn: integer,
T: list of connecting triplets)

{ for i = 1 to n

{ NEW{ node(qi)}
SELECT LEADER; LABEL i;
}

for all triplet (lnew,v1,v2) in T
connect(lnew,v1,v2)

for all v in L union C union <1..n>
SELECT v; RM; }

procedure connect(lnew: label,v1,v2: adress)
{NEW
{WAIT;
if (v2 is a label) one2one(v1,v2)
connect2(lnew,v1,v2)

}
for i =1,2 { SELECT vi;CP;MV; }
SELECT LEADER; RM; }

procedure connect2(lnew: label,v1,v2: adress)
{for i =1,2

if (vi is an integer) LABEL alpha
else LABEL beta

SELECT alpha; FLIP; edge(lnew) }
procedure edge(x: label)
{WAIT;SELECT beta;
if (EMPTY?) { SELECT alpha; label x; FLIP}
else { ELECT; SELECT beta; MV;

SELECT LEADER; RM} }

Proof : By the definition given in [3], SDNs are parallel node-GRS that
can be simulated by neighbor exclusive (two neighbors are never simultaneously
ready) undirected node GRS, that are defined as basic SDNs. By composition
of simulations, we only have to simulate those. Consider a basic SDN S and
a configuration c. A simulation is defined by a transformation mapping confi-
guration of S to a graphe machine’s configuration. We use a bipartite master
slave transformation of the kind introduced in [3]. Slave edge-agents (squares)
are inserted on each edge and execute the procedure call edge(x) where x is the
edge label. The two links of each edge-agents get the same label α. node-agents
are the masters, they execute node(q, S) where q is the agent’s state. Procedures
edge and node represent FSA since they need only bounded memory. Their code
is shown above, and the corresponding developments in fig. 3. edge-agents isolate
node-agents from each other to prevent interference between a node-agent trying
to match a rule, while a neighbor is giving him new connections. Edge-agents
and node-agents wait to own all their connections before starting. More gene-
rally, the execution is owner-all update for every generated agents, and therefore
neighbor exclusive.

Lecture Notes in Computer Science : Self Developing Machines 7

A simulation step starts with edge-agents which set the label of their two links
to x and flip orientation to give ownership to node-agents. Then, node-agents
try to match each rule, one by one. The order of trial should be in decreasing
priority, with a random re-ordering of rule having equal priority (to implement
a fair execution). The Boolean function matched(C) checks that the link count
for each label corresponds to the specified multiset of label C. At the same
time, it also does the individual bindings by relabeling the ith counted l−link
with label (l, i) instead of l. The only place where non determinism appears is
in this matching-binding phase, therefore the simulation is faithfull as defined
in [3] : any execution in the simulating system correspond to an execution in
the simulated system. If the matching fails, the procedure clean removes those
indexed label. If it succeeds, the procedure glue creates new node-agents, linking
them with their index i ∈< 1 . . . n > as label. It then process the connection
triplets (lnew, v1, v2) specifying new connections.

At this point, a node-agent has set the labels of its links to exactly represent
the possible source and target vi,i∈{1,2} between which to draw new connection :
vi,i∈{1,2} can be either the index i ∈< 1 . . . n > of a created agent, an indexed
label (l, i) ∈ L × N referring to an individually bound l-neighbor, or a label
l ∈ L for collective binding of all l-neighbours not individually bound. Consider
first individual binding : the processing of each triplet (lnew, v1, v2) creates a
new edge agent and its two links connected to each target v1 and v2. Those
two links are labeled α (resp. β) and are owned (resp. not owned) if vi was an
integer, (resp. an indexed label). The β links reach an edge-agent already present
before the simulation step, this agent will move those β links towards its unique
α connection (unique because of neighbor exclusion of the simulated system).
For collective binding, a call to the already defined procedure one2one(v1, l) (see
fig. 2) is inserted to generate as many new edge-agents as needed for each bound.

4 Efficient Intrinsic Universality

We now take into account the time and space complexityof development. If
the the number of links that an agent can ever get is upper bounded, it becomes
reasonable to assume that agents update in constant time, since everything is
bounded, (states, label, links). For such system called bounded degree SDN. the
size of a configuration is the number of agents, up to a constant factor which is
omitted if we study complexity.

Definition 2. The free time (resp. space) complexity of a derivation in a boun-
ded degree SDN is the minimum number of step (resp. the max size of generated
configurations).

Time is measured for the quickest equivalent derivation where ready agents
do not wait, but space considers the max size of all the networks that can be
generated with different schedule. The time and space complexity of a simu-
lation using a transformation φ between S and S′’s configuration is O(f(t))
(resp. O(g(s))) if there exists a constant K such that for any derivation x in

8 Lecture Notes in Computer Science : Frederic Gruau

S,Time(φ(x)) < K ∗ f(Time(x)) (resp. space(φ(x)) < K ∗ g(space(x))). If f
and g are the identity function, it means that a derivation step is simulated in
constant time, and the support of each agent is finite. The simulation is called
linear in space and time.

Consider a toy development where each agent duplicates at each time step.
An execution on a Turing Machine, is forced to iterate through all the agents to
simulate one parallel derivation step, therefore the simulation time for one step
increases exponentially as development unfolds. In contrast, it is possible to pro-
vide a universal SDM that needs only constant time. Note that since everything
is bounded, the only thing left that makes the free complexity unrealisable is the
finite number of dimensions of our physical space, which cannot accommodate
an exponential growth in linear time.

Theorem 2 (Efficient Intrinsic Universality). There exists a bounded graph-
machine that simulates faithfully all bounded SDNs in linear time and space.

(c)
x 1 0 0 0 1

_
...

(a)

...

...

......

LR
L

L

R R

L

R
(b)x=33

...

...
a q,a

...

leader

δ(q,0)
 δ(q,1)

γ(q)

leader

general

q

Figure 4. Bipartite transformation used for intrinsic universality. Labels are omitted
for clarity, except for (L)eft and (R)ight. (a) edge-agents (rectangle) use bit-agents
(squares) (b) branch-agents (triangle) (c) the general owned), right : (disc) with state
agents (pentagones)

Proof : We have to simulate only owner-all update graph machines, since only
those machines where used in theorem 1. Consider such a graph machine M and
a configuration c. We use the bipartite master-slave transformation shown in
fig. 4, which needs several stages of decomposition. Edge-agents uses a chain of
bit agents providing a binary encoding of their labels and a selection-flag storing
if the link is currently selected. The master node called “general” connects to
the leader edge-agent (down) plus two binary tree of branch-agents encoding a
multiset of edge-agents (left), and a multiset of state-agent (right). Information
encoded as trains of bits travels back and forth between the edge agents and the
state agents, through the general and orchestrated by the general. Bit-agents
and branch-agents are generic library elements. A chain of bit-agents can receive
a new value, duplicate, and test for equality. Branch-agents simulate arbitrary
large degree using a fixed degree of 3 : one link to the father and two links
for each of the two child tree labeled L and R. A tree of branch-agents can
duplicate, propagate a trains of bits downwards or upwards, extract a sub-tree,
move one distinguished leave upwards, and make a logical OR of value comming
from the leaves. A programmed orientation [3] allows to distinguish the two
children from the father. For example, it explains why x and y are distinguishable

Lecture Notes in Computer Science : Self Developing Machines 9

in fig. 5 (a). Any binary tree is a possible encoding, therefore the transformation
is non deterministic, it describes a set of acceptable representations. A branch-
agent can be in two modes : upward and downward. Downward branches own
their two child links, but not the father link, they listen to commands sends from
the root and propagate them downwards to the leaves. Upward branches own
their father link, but not all their child links. At the beginning of a simulation
step, if all the links are owned (output), all branches are downward which is the
simplest case represented in fig. 4 (c). However, is some links are not owned, they
connect via upward branches, and all the branches on the path leading to the
root are also upward. The upward branch’s program shown in fig. 5 (a) waits that
all the child links are owned, (resp. or removed) to switch to downward mode
(resp. or to simplify). This action triggers the father to also become downward,
and later the father of its father, until the root which is the general. At this
point, the whole edge-agent tree contains only downward branches. The general
knows that it owns all its links, and can update. The instruction WAIT needs not
be considered because the simulated machine is owner-all update.

x
R
L

R

L x

xy x

RM

x

SELECT x EMPTY
0x x

CP x

x

R

L

R

L

FLIP

x
EMPTY

1xx

LABEL y

y

(a) (b)(a) (c)

MV

NEW

Figure 5. Development for intrinsic universality. (a) Upward branch node (b) Edge-
agent listening to the right (c) General executing NEW and MV.

The state-agents tree represents the automaton. At the beginning of a simu-
lation step its branches are all downward. Each state-agents represent a state
q of the automaton, it links to four sequence of bit-agents, coding q the next
states δ(q, 0), δ(q, 1) for the two possible Boolean inputs and the action γ(q). A
simulation step starts by computing a transition in the automaton. The general
propagates the FSA input a downwards to the state-agents. The one state q that
is currently activated, responds by propagating upwards the next state δ(q, a),
which is then forwarded downward to all the states, for equality test. The state
q′ = δ(q, a) becomes activated, and responds by propagating its action γ(q′)
upward to the general. The codop of the instruction is received first, and trig-
gers a distinct processing. The action SELECT x (resp. LABEL x, CP , RM, EMPTY,
FLIP) is broadcasted through the edge-agent tree downward to the edge-agents
which then matches the bit sequence and sets the selection-flag accordingly,
(resp. writes a new label, generates a copy of itself, deletes itself, propagates
the ownership flag, change the side for listening to orders) as shown in fig 5 (b)
Instruction EMPTY and FLIP also have an effect on the traversed tree branches,
EMPTY let the branch do a logical OR, and FLIP leaves the branch in upward
mode.

10 Lecture Notes in Computer Science : Frederic Gruau

The other instructions needs more processing from the general illustrated in
fig.5 (c). Instruction NEW duplicates the entire tree of state-agents, and creates
a new general. Instruction ELECT does two downward-upward traversal : the
first traversal flag branch nodes which contains a selected link amongst their
leaves. The second traversal draws a random path to one of them by flipping a
coin when it needs to choose between Left and Right sub-tree, and then moves
back the elected edge-agent along that path, upward to the general. Instruction
MV involves first a downward-upward phase on the edge-agent tree to extract
a sub-tree of all selected links, and this sub-tree is moved through the leader
connection.

The universal automaton also needs to develop the first instantiation of state-
agent tree representing the particular automaton that will be executed. This
tree is loaded in parallel from the ports, by distributing the states into as many
groups as ports. In the end, we obtain a universal automaton U that combines
all the slave’s automaton (branch-agent, bit-agent, state-agent, and edge-agent),
plus the general automaton, and the loading-automaton. An arbitrary SDN is
simulated by U by first simulating it with a basic SDN (definition) encoding it
as a graph-machine automaton (theorem 1), and finally loading that automaton
from the host. The degree of U is bounded by 5, and it uses a fixed set of labels.
The simulation works for unbounded SND, but for bounded SDN, it is linear in
time and space, since the number of branch nodes, and bits per label will also
be bounded.

5 Conclusion

In this work, we ease the programming of Self Developing Networks (SDNs),
by using Finite State Automata (FSA), and expressing the development using
instructions defining a Self Developing Machine. We first present a 10-instruction
machine called the “graph-machine” and prove that for any SDN, there exists a
graph-machine that simulates it. We then construct a particular graph machine’s
FSA U that can simulate all the graph-machines used in the first result. Fur-
thermore, if the degree of the simulated SDN is bounded, this intrinsic universal
simulation needs only linear time and space ; In contrast, a sequential Turing
machine needs a time which can grow exponentially. This result thus highlights
the superior parallel processing power of SDNs brought by considering an un-
bounded source of Processing Elements.

The FSA U needs only 8 of the 10 graph-machine’s instructions, showing that
two of them are not of essential nature. Instruction WAIT is discarded by restric-
tion to owner-all update. Election amounts to choosing a leave in a tree, and is
simulated by establishing a random path through a binary tree to a leave, wi-
thout using instruction ELECT. The remaining 8-instruction are all deterministic,
non determinism of the simulated SDN is simulated purely by non deterministic
in the FSA U (flipping coins).

We acknowledge fruitful comments made by L. Maignan, and C. Eisenbeiss.

Lecture Notes in Computer Science : Self Developing Machines 11

Références

1. Andrew Adamatzky. Identification of cellular automata. Taylor and Francis, 1994.

2. J. P. Banatre and Daniel Le Metayer. A new computational model and its discipline
of programming. Technical Report RR-0566, Inria, 1986.

3. Frederic Gruau. Self developing networks, part 1 : the formal system. Technical
report, INRIA, 2011. submited to the Turing Centenary Conference, 2012.

4. Stephen Michael Majercik. Structurally Dynamic Cellular Automata. PhD thesis,
University of Southern Maine, 1994.

5. L. Mandel and M. Pouzet. ReactiveML : a reactive extension to ML. In PPDP ’05,
pages 82–93, New York, NY, USA, 2005. ACM.

6. M. Serrano, F. Boussinot, and B. Serpette. Scheme fair threads. In PPDP ’04,
pages 203–214, New York, NY, USA, 2004. ACM.

7. Tomita, Murata, Kamimura, and Kurokawa. Self-description for construction and
execution in graph rewriting automata. In European Conference on (Advances in)
Artificial Life, LNCS, volume 8, 2005.

	RR1550entete
	RR1550rapp

