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Résumé : Le problème stochastique de la forêt de poids maximum (SMWF)
est une extension de sa version déterministe classique où certaines arêtes
présentent des poids incertains. Différemment du cas déterministe, la com-
plexité du problème SMWF est inconnue. Curieusement, sa formulation
en fonction des contraintes classiques d’élimination de sous-tour n’a pas
la propriété TDI et, en raison du nombre exponentiel de contraintes de
cette formulation, seules des instances de petites dimensions peuvent être
traitées. Ainsi, nous développons une nouvelle formulation compacte pour
le problème SMWF. Elle est basée sur les travaux de Martin (1991) pour
le polytope de l’arbre couvrant avec une adaptation pour traiter des forêts
dans des graphes non complets. Nous donnons une preuve de la validité de la
nouvelle formulation, tout en utilisant un nouveau théorème caractérisant
les forêts en graphes. Nous rapportons quelques expériences numériques
pour ce problème.
Mots-clés: formulation compacte, problème stochastique de la forêt de
poids maximum.
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650, 91405, Orsay Cedex France.

{marc.letournel,abdel.lisser}@lri.fr

Abstract. The stochastic maximum weight forest (SMWF) problem is
an extension of the classic deterministic version [6] where some edges
present uncertain weights. Different from the deterministic case, the com-
plexity of the SMWF problem is unknown. Surprisingly, its formulation
based on sub-tour elimination constraints [2] has not the TDI property [3]
and due to the exponential number of constraints of this formulation,
only instances with small dimensions can be handled. Thus, we develop
a new compact extended formulation for the SMWF problem. It is based
on the work of [4] for the spanning tree polytope with a straightforward
adaptation for dealing with forests in non complete graphs. We give a
proof of the correctness of the new formulation based on a new theo-
rem characterizing forests in graphs. Numerical results are reported and
show that the model with exponential number of constraints can treat
only instances with up to 15 nodes in complete graphs, while the new
polynomial model can treat instances with up to 40 nodes, considering
few scenarios of uncertain edge weights.

Keywords: combinatorial optimization, compact extended formulation,
stochastic maximum weight forest problem

1 Introduction

This work concerns the two stage stochastic maximum weight forest (SMWF)
problem [3]. It is a variant of the maximum weight forest (MWF) problem where
some edges present uncertain weights. While the MWF problem is polynomial [6],
there is no similar result concerning the complexity of the SMWF problem.

The problem can be described as follows. Consider G = (V,ED ∪ ES) a non
directed graph with set of nodes V and set of weighted edges E := ED∪ES , where
edges in ED and ES have deterministic and uncertain weights, respectively, with
ED ∩ ES = ∅. Consider a finite set S = {1, 2, · · · , P} of possible scenarios for
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the uncertain edges in ES and let πs be the probability associated with a given
scenario s ∈ S, with

∑P
s=1 πs = 1 and πs ≥ 0, for all s ∈ S. Let csuv ∈ R represent

the weight of an edge uv ∈ E in scenario s ∈ S, with c1uv = c2uv = · · · = cPuv
given for all uv ∈ ED and csuv, for all s ∈ S, randomly generated a priori for
all uv ∈ ES . The SMWF problem consists in determining a forest of G, one for
each s ∈ S, sharing the same deterministic edges in ED. As objective function,
we want to maximize the sum of the common deterministic edges weights plus
the expectation over all scenarios, of the weights associated with the uncertain
edges whose union with the deterministic ones keeps the forest structure in each
scenario.

As contributions of this work, we propose a new compact extended formu-
lation for the SMWF problem based on the spanning tree polytope of complete
undirected graphs [4, 5]. We extend the model proposed in [4] for the SMWF
and prove the correctness of the new formulation. For this, we introduce a new
characterization theorem for forests in graphs. With this compact extended for-
mulation we can now provide optimal integer solutions for instances with up to
40 nodes. The compact formulation describing trees [4] is intended to give in-
teger optimal solutions, thus allowing to develop a decomposition algorithm for
the SMWF problem. However, here we do not report the decomposition scheme.
But this will be done in a full version of this paper, as well as characterizing
theoretically which type of SMWF instances are easy or difficult to solve.

The remaining of this paper is organized as follows. In Section 2 we present
standard formulations for the SMWF and the forest characterization theorem
used to prove the correctness of the compact extended formulation presented in
Section 3. In Section 4 we provide preliminary experiments for the proposed mod-
els. Finally, Section 5 concludes this paper and present some works in progress.

2 Problem formulation

Let represent a forest ofG in scenario s ∈ S by a vector (xs
D, xs

S) = xs ∈ {0, 1}|E|,
where xs

uv = 1 if uv belongs to the forest of that scenario, and xs
uv = 0, otherwise.

A mathematical model for the SMWF problem is

(P1) max
∑

uv∈ED

c1uvx
1
uv +

∑
uv∈ES , s∈S

πsc
s
uvx

s
uv (1)

s.t.
∑

uv∈E(H)

xs
uv ≤ |H| − 1, ∀ H ⊂ V, ∀ s ∈ S (2)

x1
D = x2

D = · · · = xP
D (3)

xs
uv ∈ {0, 1}, ∀ uv ∈ E, ∀ s ∈ S (4)

where E(H) stands for the set of edges with both extremities in H, such that
|H| ≥ 3. Constraints (2) impose the non existence of cycles in any solution and
(3) indicate that the deterministic edges in an optimal solution are the same for
all scenarios. Commonly, (3) are referred to as non anticipativity constraints.
As each block of cycle elimination constraints (2), one for each scenario, has an
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exponential number of constraints in (P1), we can expect to tackle only instances
with a small number of nodes and scenarios by using this formulation. Note that
we can reduce the number of variables in (P1) to obtain the following equivalent
formulation [3]

(P2) max
∑
j∈ED

c1jyj +
∑
s∈S

πs

 ∑
j∈ES

csjx
s
j

 (5)

s.t.
∑

j∈E(H)∩ED

yj +
∑

j∈E(H)∩ES

xs
j ≤ |H| − 1, ∀ H ⊂ V, ∀ s ∈ S (6)

xs
j ∈ {0, 1}, ∀ j ∈ ES , ∀ s ∈ S (7)

yj ∈ {0, 1}, ∀ j ∈ ED (8)

where y ∈ {0, 1}N replace the x1
D = x2

D = · · · = xP
D deterministic variables and

xs ∈ {0, 1}M , for all s ∈ S, are as defined above, with |ED| = N and |ES | = M .

Proposition 1. The maximum weight forest problem (i.e. the SMWF with |S| =
1) is polynomially solvable by a greedy algorithm [2].

Proposition 2. The SMWF formulation is not totally dual integral (TDI).

In [3] the authors present a small example for a six nodes graph and three
scenarios of edges weights where the linear relaxed solution is not integer. This
proves Proposition 2. The fact that the problem may present fractional linear
relaxed solution makes it difficult to deal with.

Now let, for a given node k ∈ V and a given scenario s ∈ S, F s
k represent

an abstract orientation of the edges of a general subgraph F of G such that the
node k in the scenario s is taken as a referential in F . In this case, if an edge
(v, u) ∈ E belongs to F , then the referential node k observes u preceding v 6= k
or v 6= k preceding u, but not both, in F s

k .

Theorem 1. Let F s be a subgraph of G for scenario s ∈ S. For all k ∈ V ,
if there exist independent abstract orientations F s

k of the edges of F s, for k =
1, · · · , |V |, verifying simultaneously the following conditions in each F s

k

1. There is no arc entering each referential node k;
2. There is at most one arc entering a node u 6= k;

then F s is an acyclic forest.

Consider Figure 1 to help following the proof of Theorem 1.

Proof. Suppose that F s contains a cycle C = (V (C), E(C)) for some scenario s.
We show that F s cannot satisfy both conditions above for all k ∈ V in scenario
s ∈ S. To see this, first consider the nodes not in V (C) as referential nodes and
assume without loss of generality that they do not induce a cycle in F s. For these
nodes, if the arcs of the cycle C were symbolically oriented in the clockwise sense,
both conditions 1 and 2 should be satisfied. But when we consider the nodes in
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Fig. 1. A graph G in (a) with two subgraphs G1 in (b) and G2 in (c) with some
orientations for them.

G

1 2

34

1 2

34

F1

5

1 2

34

1 2

34

5

G1 G2

(a) (b) (c)

1 2

34

5

F5

(e)

1 2

34

5

F4

(f)(d)

V (C) as referential in any abstract orientation of the edges of E(C), there are
at least two arcs connected to any node of V (C) (two leaving or two entering
or one leaving and the other entering each node). We distinguish two possible
situations. First, if all arcs connected to any referential node of C leave that node,
then at least one other node in this cycle presents two arcs entering it, which
violates the condition 2. Second, if the arcs of C were symbolically oriented in the
clockwise sense, then the condition 1 should be violated for all referential node
in C. Thus, if F s contain a cycle, there is no possibility of orienting the edges
of F s

k , k = 1, · · · , |V |, in order to satisfy the conditions 1 and 2 simultaneously.
Therefore F s must be a forest, thus concluding the proof. �

The reader may notice that when F s is a forest, then always exist abstract
orientations of the edges of F s

k , k = 1, · · · , |V |, satisfying the two conditions of
Theorem 1.

In the Figure 1(d), F1 is a possible orientation of the edges of G1 with the
node 1 as referential. The scenario indexing is omitted in this figure and referen-
tial nodes are pointed by a circle. In (e), F5 is a possible orientation of the edges
of G2 that respects the conditions 1 and 2 of the Theorem 1 with the node 5 as
referential. However, the one F4 for G2 in (f) violates the condition 2 (the node
2 has two arcs entering it).

Corollary 1. If subgraph F s in the Theorem 1 is such that |E(F s)| = |V (G)|−1,
then F s is a spanning tree of G in scenario s.

Below we present a new model for this problem by taking into account the
above theorem and some ideas originally introduced in [4].

3 Polynomial formulation

Consider the sets E := ES∪ED and E+ := E∪{(u, v) ∈ V ×V | u 6= v, (u, v) /∈
E}. Note that E+ contains all possible edges for G. Let, for all scenario s ∈ S,
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xs ∈ {0, 1}|E+| be the characteristic vector of a general solution (forest) F s in
scenario s for the SMWF problem with coordinates xs

uv for all uv ∈ E+. Define,
for every s ∈ S, k ∈ V and (i, j) ∈ E+, binary variables λs

kij and λs
kji, such

that λs
kij = 1 if edge (i, j) belongs to the solution of the scenario s and, for the

referential node k, node j precedes node i in an abstract orientation F s
k of the

edges of F s; and λs
kij = 0, otherwise. The SMWF problem can be modeled as

(P3) max
∑

uv∈ED

c1uvx
1
uv +

∑
uv∈ES , s∈S

πsc
s
uvx

s
uv (9)

s.t. λs
kij + λs

kji = xs
ij , ∀ s ∈ S, ∀ k ∈ V, ∀ ij ∈ E (10)∑

j∈V−{i}

λs
kij ≤ 1, ∀ s ∈ S, ∀ i, k ∈ V, i 6= k (11)

λs
kkj = 0, ∀ s ∈ S, ∀ j, k ∈ V, k 6= j (12)

xs
uv = 0, ∀ s ∈ S, ∀ uv ∈ E+ − E (13)

x1
ED

= x2
ED

= · · · = xP
ED

(14)

λ ∈ {0, 1}|V×E+×S| (15)

x ∈ {0, 1}|S×E+| (16)

Constraints (10) state that if an edge (i, j) is in a solution of the scenario s (i.e.
xs
ij = 1), then for all referential node k ∈ V either j precedes i or i precedes j

in F s
k . Constraints (11) limit the number of predecessors of any node i in F s

k to
at most one, with i 6= k, in order to satisfy the condition 2 of the Theorem 1.
Constraints (12) state that no node j can precede the referential node k in
F s
k (the condition 1 of the Theorem 1). Constraints (13) fix at zero all the

corresponding variables related to the extra edges we add to make G a complete
graph. Note that the λ variables of each scenario (those associated with existing
edges of E) induce an abstract orientation (one for each referential k) of the edges
present in any feasible solution for problem (P3) and these orientations satisfy
the two conditions of the Theorem 1. Equalities in (14) are the non anticipativity
constraints and (15) and (16) express the domain of the problem variables.

Proposition 3. The projection on the space of the x variables of an optimal
solution (λ̄, x̄) for (P3), if it is non empty, is a set of forests, one for each
scenario, maximizing (9).

Proof. Suppose, by contradiction, that F s is feasible for (P3) and contains a
cycle Cs = (V (Cs), E(Cs)) in some scenario s ∈ S induced by the variables x̄s.
For all the edges uv in E(Cs) we have that x̄s

uv = 1. Thus, by (10), we must
have λs

kuv + λs
kvu = 1, for all k ∈ V (Cs) and for all uv ∈ E(Cs). In particular,

these λs must verify (11) and (12). But (see the proof of the Theorem 1) finding
one evaluation for these variables means orienting the edges in E(Cs) such that
every referential node k ∈ V (Cs) have no incoming arc and the remaining nodes
in V (Cs) − {k} have at most one incoming arc. Therefore, this is not possible
and thus the related constraints correspond to an infeasible system of linear
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inequalities, contradicting the assumption that F s is feasible for (P3). The reader
may notice that when a solution F s is a forest, then there exist variables λ̄s and
x̄s whose values correspond to such solution. From the edges in F s we obtain
the x̄s values and if we apply an algorithm to remove iteratively the leaves from
every sub-tree of the forest F s we can identify which node can be considered
as sub referential. If this deletion process reaches an edge, any extremity of
this edge can be considered as the sub-referential node k̂ to obtain the required
orientation with respect to the main referential node k. This orientation can be
obtained from the k̂-rooted pending sub-tree structure. The solution optimality
follows from the objective function in (9). �

4 Computational experiments

Numerical experiments have been carried out on a Pentium IV, 1 GHz with
2G-RAM under windows XP. The source codes are generated with Matlab and
the optimization models are solved by CPLEX 12. We report preliminary results
for randomly and arbitrarily generated instances. We generate the random in-
put data as follows. The edge weights for the first 21 instances in Table 1 are
distributed uniformly into the interval [1, 100] and uncertain edge weights are
made negative with probability 1/2 in each scenario. The scenarios probabilities
πs are chosen randomly from the interval (0, 1) and then normalized so that∑

s∈S πs = 1. We use arbitrarily up to 100 scenarios of uncertain edge weights.
For the remaining instances (numbered from 22 to 26) we create them arbitrarily
trying to make the problem difficult to solve (this explains the reduced number
of scenarios and dimensions of these instances). In the next tables, (RP2) and
(RP3) correspond to the linear relaxations of the models (P2) and (P3), respec-
tively.

The dimensions of the instances (i.e. the number of constraints and of vari-
ables) for these models are in the Table 1. The first column of this table iden-
tifies the instance number. Columns 2-5 provide the parameters |V |, N = |ED|,
M = |ES | and P = |S|. Columns 6-7 and 8-9 show an estimate of the order
of the number of constraints and variables for (RP2) and (RP3), respectively.
We exclude variable fixing and non negativity bounds, i.e. considering only the
constraints (6) for (RP2) (the variables upper bounds are induced by these con-
straints) and constraints (10), (11), (14) with the variables upper bounds (15)
and (16) for (RP3). For the model (RP2), the number of variables is of the order
of O(N + MP ) and the number of constraints, O(2|V |P ). For the model (P3),
the number of variables and constraints are of the order of O(P |V |3)P . In this
table we have an idea of how fast the number of constraints grows for (RP2).
This growth is highly affected by the increase in the number of scenarios and
nodes. Observe that for |V | ≥ 10, the number of constraints of the instances in
the model (RP2) became larger than the ones in the model (RP3).

In Table 2 we report numerical results for instances presenting all uncertain
edges weights with positive values. Thus, the scenarios solutions are spanning
trees in each instance. Column Inst. identifies the instance from the Table 1.
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Table 1. Instances dimensions

Inst.
Instance parameters (RP2) (RP3)

|V | N M P # Constr. # Var. # Constr. # Var.

1 5 5 5 5 130 30 675 550

2 5 5 5 50 1300 255 6750 5500

3 5 5 5 100 2600 505 13500 11000

4 8 14 14 5 1235 84 2730 2380

5 8 14 14 50 12350 714 27300 23800

6 8 14 14 100 24700 1414 54600 47600

7 10 22 23 5 5065 137 5285 4725

8 10 22 23 50 50650 1172 52850 47250

9 10 22 23 100 101300 2322 105700 94500

10 12 33 33 5 20415 198 9075 8250

11 12 33 33 50 204150 1683 90750 82500

12 12 33 33 100 408300 3333 181500 165000

13 15 52 53 5 163760 317 17585 16275

14 15 52 53 50 1637600 2702 175850 162750

15 15 52 53 100 3275200 5352 351700 325500

16 20 95 95 5 5242775 570 41325 38950

17 20 95 95 10 10485550 1045 82650 77900

18 20 95 95 25 26213875 2470 206625 194750

19 30 217 218 5 5368708965 1307 138110 132675

20 30 217 218 10 10737417930 2397 276220 265350

21 40 390 390 5 5497558138675 2340 325650 315900

22 6 3 6 3 171 21 684 585

23 6 3 6 3 171 21 684 585

24 8 4 10 4 988 44 2144 1904

25 8 4 11 5 1235 59 2680 2380

26 14 6 30 4 65476 126 11308 10556

Columns 2-3, 4-5 and 6-7 give the optimal solution value and cpu time in seconds
for (P2), (RP2) and (RP3), respectively.

In Table 3 we report numerical results for the same instances of the Table 1,
but where some uncertain edges are allowed to have negative weights. Thus, the
solutions are intended to be sets of forests in each instance, one for each scenario.
The legend is the same as for the Table 2. Almost a half of the edges of each
instance present negative weights.

In Table 4 we report numerical results for the arbitrarily generated instances
of the Table 1. These instances intend to show the problem difficulty since the
algorithm we use to create random instances is not capable to find instances
presenting non integer relaxed solutions. The technique we use for obtaining
them is omitted here, but it will be reported in a full version of this work. These
results suggest that the SMWF problem may be NP-hard.

Concerning the results from the Tables 2 and 3, we mainly have that the op-
timal relaxed solutions are all integer. This means that these random generated
instances proved easy to solve and it seems extremely complicated that random
instances do not present this behavior. It is not surprisingly that the model
(P2) is very limited in solving those instance with more than 13 nodes. How-
ever, generally solving their corresponding linear relaxation (RP2) takes less cpu
time than by using the linear relaxation (RP3). Note that CPLEX finds integer
solutions for (RP2) in smaller cpu time than for (P2) for these instances.
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Table 2. Numerical results for random generated instances where all uncertain edges
have positive weights in every scenario.

Inst. (P2) cpu(s) (RP2) cpu(s) (RP3) cpu(s)

1 323.3891 0.36 323.3891 0.34 323.3891 0.39

2 333.2423 0.40 333.2423 0.37 333.2423 1.20

3 259.5762 0.51 259.5762 0.42 259.5762 3.18

4 572.0971 0.46 572.0971 0.39 572.0971 0.51

5 616.8961 3.01 616.8961 0.95 616.8961 14.39

6 570.0392 5.71 570.0392 2.62 570.0392 24.09

7 821.7794 1.21 821.7794 0.75 821.7794 0.70

8 806.2184 17.35 806.2184 6.92 806.2184 84.34

9 789.5104 33.01 789.5104 17.70 789.5104 220.50

10 940.7488 5.50 940.7488 2.64 940.7488 1.53

11 1005.6553 146.51 1005.6553 48.43 1005.6553 381.70

12 983.3620 268.81 983.3620 150.89 983.3620 2102.62

13 1302.1674 64.23 1302.1674 35.17 1302.1674 4.15

14 - - - - 1301.8292 2861.45

15 - - - - 1265.1313 21331.84

16 - - - - 1783.3778 73.07

17 - - - - 1792.8146 1399.15

18 - - - - 1763.0296 10344.45

19 - - - - 2765.6342 4123.75

20 - - - - 2760.3163 33121.92

21 - - - - 3787.2354 35400.62

“-”: No solution found due to CPLEX shortage memory.

Table 3. Numerical results for random generated instances where about a half of the
uncertain edges have negative weights in each scenario.

Inst. (P2) cpu(s) (RP2) cpu(s) (RP3) cpu(s)

1 163.0000 0.34 163.0000 0.32 163.0000 0.36

2 178.6012 0.36 178.6012 0.36 178.6012 1.50

3 176.4886 0.41 176.4886 0.41 176.4886 2.94

4 460.0961 0.42 460.0961 0.39 460.0961 0.53

5 395.5182 0.81 395.5182 0.75 395.5182 3.98

6 460.7503 3.38 460.7503 1.36 460.7503 12.91

7 585.3537 0.73 585.3537 0.69 585.3537 0.78

8 589.5790 5.22 589.5790 2.66 589.5790 6.81

9 612.3388 14.06 612.3388 5.50 612.3388 27.20

10 808.9535 2.97 808.9535 2.36 808.9535 0.92

11 809.6658 44.58 809.6658 19.00 809.6658 28.12

12 855.6202 107.17 855.6202 37.00 855.6202 57.48

13 1182.2429 44.23 1182.2429 27.05 1182.2429 2.83

14 - - - - 1142.6433 161.94

15 - - - - 1108.7019 1025.52

16 - - - - 1616.3587 15.67

17 - - - - 1586.4263 37.13

18 - - - - 1579.3486 759.53

19 - - - - 2537.2853 254.66

20 - - - - 2649.1216 3425.19

21 - - - - 3540.0685 4682.42

“-”: No solution found due to CPLEX shortage memory.
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Table 4. Numerical results for arbitrarily generated instances. All relaxed solutions
are fractional even for the model (P2) containing all possible sub-tour elimination
constraints.

Inst. (P2) cpu(s) (RP2) cpu(s) (P3) cpu(s) (RP3) cpu(s)

22 59 0.450 61.500 0.328 59 0.015 61.500 0.002

23 41 1.484 43.500 0.422 41 0.011 43.500 0.010

24 94 0.515 97.333 0.391 94 0.028 97.333 0.006

25 118 0.406 120.500 0.391 118 0.032 120.500 0.006

26 202 14.375 204.500 11.563 202 0.110 204.500 0.044

Results from Tables 4 are very important because they prove that the model
e.g. (P2) is not a TDI system. Moreover, they allow to obtain an idea of the
solution structure that makes the SMWF problem difficult and give some insights
about the complexity of this problem (this is an open question). Note that despite
the reduced dimensions of these instance, and the fact we do not have many
instances to perform exhaustive numerical experiments, the new compact model
obtains all their optimal solutions in considerable fewer cpu time than the model
(P2).

5 Conclusion

In this paper we propose a polynomial size formulation for the stochastic maxi-
mum weight forest problem. This formulation is based on the one for the span-
ning tree polytope of complete undirected graphs [4]. We extend the model in [4]
to deal with forests in non complete graphs. For this, we propose a new theo-
rem characterizing forests in undirected graphs that is important to prove the
correctness of the new model.

The numerical experiments evidence that this problem can be NP-hard. Thus,
further research will be dedicated to answer this open question concerning the
complexity of the SMWF problem.
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