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Résumé : Considérons un graphe orienté G = (V,A) ayant pour ensemble
de noeuds V et pour ensemble d’arcs A. Soit cuv la longueur d’un arc uv ∈ A.
Étant donnés deux noeuds distincts s et t de V , nous nous intéressons au
problème de déterminer un plus court chemin élémentaire (en longueur) de
s à t dans G qui doit visiter une seule fois tous les noeuds d’un ensem-
ble donné P ⊆ V − {s, t}, mais pas nécessairement que ces noeuds. Ce
problème est NP-difficile pour P = V − {s, t}. Une formulation classique
de programmation entière basée sur des flots, en tenant en compte des con-
traintes de visite des noeuds dans P , donne souvent des solutions relaxées
en raison de la possible existence de cycles. Ainsi, nous développons deux
formulations compactes pour ce problème. L’une est basée sur une version
adaptée des contraintes d’élimination de cycle du polytope des arbres cou-
vrant d’un graphe et l’autre est une nouvelle formulation MIP primal-duale.
Des expériences numériques sont très encourageants.
Mots-clés: Plus courts chemin avec contrainte de visite, formulations com-
pacte, formulation primal-duale.



Shortest-paths visiting a given set of nodes
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Abstract

Consider a directed graph G = (V,A) with set of nodes V and set of arcs
A and let cuv denote the length of an arc uv ∈ A. Given two distinguished
nodes s and t of V we are interested in the problem of determining a shortest-
path (in length) from s to t in G that must visit only once all nodes of a
given set P ⊆ V −{s, t}, but not necessarily only these nodes. This problem
is NP-hard for P = V − {s, t}. A classic integer programming flow based
formulation for this problem taking into account the visiting constraints for
nodes in P gives relaxed solutions due to the possible existence of cycles.
Thus, we develop two compact extended formulations for this problem. One
is based on an adapted version of the cycle elimination constraints of the
spanning tree polytope and the other is a new primal-dual based mixed
integer formulation. Numerical experiments are very encouraging.

Keywords: combinatorial optimization, shortest path visiting given nodes,
compact extended formulation, linked dual-primal formulation

1. Introduction

The (s−P − t)−shortest-path (for short) in a directed graph G = (V,A)
with set of nodes V and set of weighted arcs A consists in finding a path
of minimum length between an origin node s ∈ V and a destination node
t ∈ V that visits only once all nodes of a given set P ⊆ V −{s, t}. We know
that for P = V − {s, t} the problem is equivalent to find an Hamiltonian
path of minimum length in G, which is NP-hard. Surprisingly, in a brief
literature review, we find only few works on this problem (Dreyfus (1969);
Ibaraki (1973); Saksena and Kumar (1966)).
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It seems that the first (and erroneous) algorithm for this problem is due
to Saksena and Kumar (1966). Dreyfus (1969) proposes to solve the prob-
lem by reducing it to an instance of the traveling salesman problem. Ibaraki
(1973) introduces an exponential dynamic programming algorithm and a
branch and bound (B&B) method. Ibaraki’s model used in the B&B algo-
rithm is defined only with continuous variables. His model is equivalent to
the well known flow formulation of the shortest-path problem, thus relaxed
node solutions in the search B&B tree are integer and present at least one
cycle when the node solution is not an elementary path. The idea behind
the Ibaraki’s B&B algorithm is to fix at zero (one at a time) an arc of a given
cycle C of a B&B node solution as branching rule to create |C| new B&B
subproblems. This means possibly enumerating all cycles of G in a B&B
tree, because relaxed solutions of the flow based model in Ibaraki (1973) are
weak.

This motivates us to develop new formulations for this problem. We
adapt the cycle elimination constraints of the compact extended formu-
lation for the spanning tree polytope of an undirected graph in Conforti
et al. (2010) and Yannakakis (1991) to deal with the oriented arcs of the
(s − P − t)−shortest-path problem. Moreover, we explore a nice property
of elementary paths to obtain a primal-dual based mixed integer compact
extended formulation. The novelty is to characterize feasible solutions by
linking primal and dual variables in a same set of constraints exploring that
property. On the best of our knowledge, this is the first work exploring these
techniques for solving the (s− P − t)−shortest-path problem.

2. Problem formulation

Consider G = (V,A) a directed graph with set of nodes V and set of
weighted arcs A. Let cuv ∈ R+ represent the length of arc uv ∈ A. The
problem is to determine an elementary path inG of minimum length between
an origin node s ∈ V and a destination node t ∈ V that visits a given set
P ⊆ V −{s, t}. We represent a (s−P−t)-path in G by a vector x ∈ {0, 1}|A|,
where xuv = 1 if uv belongs to the (s−P − t)-path, and xuv = 0, otherwise.
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Thus, a mathematical model for this problem is

(Q) min
x∈{0,1}|A|

∑
uv∈A

cuvxuv (1)

s.t.
∑

i | iv ∈A
xiv −

∑
j | vj ∈A

xvj =


1, if v = s

−1, if v = t

0, otherwise

∀v ∈ V (2)

∑
u∈V | uv∈A

xuv = 1, ∀ v ∈ P (3)∑
uv∈A(S)

xuv ≤ |S| − 1, ∀ S ⊂ V (4)

where A(S) represents the set of arcs with both extremities in S. Con-
straints (2) define an unrestricted (s − t)-path in G. In (3) we impose
that each node v ∈ P must be visited by imposing that one arc enters v.
Constraints (4) avoid the existence of cycles in any solution. Note that the
number of these sub-tour elimination constraints is exponential. In this case,
one can try to solve problem (Q) iteratively by relaxing the constraints (4)
and cutting off cycles obtained at each iteration. This means solving a MIP
model each iteration until its corresponding solution presents no cycle. Elim-
inating cycles is also the idea of the branch-and-bound algorithm in Ibaraki
(1973), where the authors use a flow-based model that is equivalent to the
one defined by (1)-(3).

Alternatively, we can adapt compact extended formulations for the span-
ning tree polytope of a non oriented and complete graph in Conforti et al.
(2010) and Yannakakis (1991) to deal with non complete digraphs. The
sub-tour elimination constraints in these works are obtained based on rooted
spanning trees and they avoid cycles as well as the ones in (4).

To introduce our new formulation for the minimum length (s − P − t)-
path of G = (V,A), we define the set A+ := A ∪ {(u, v) ∈ V × V | (v, u) ∈
A}∪{(u, v) ∈ V ×V | u 6= v, (u, v) /∈ A}. Note that A+ contains all possible
arcs for G as if it were a complete digraph. This helps to adapt the ideas
in Conforti et al. (2010) and Yannakakis (1991) to our problem. Indeed, for
any node k ∈ V , let Tk represent the path-arborescence obtained by rooting
a given (s − P − t)-path of G at k. In this case, Tk is a k-rooted pending
path where the root node k in level zero is father of any node j in level one
if arc (k, j) or (j, k) belongs to Tk (we do not consider the orientation of the
arcs in Tk) and, in general, a node j in level l is son of a node i in level l− 1
if i is nearer k than j and if (i, j) or (j, i) belongs to Tk. We also define,
following the interpretation of Conforti et al. (2010) (for spanning trees), for
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every k ∈ V and for all (u, v) ∈ A+, binary variables λkij = 1 if j is father
of i in Tk, and λkij = 0, otherwise. A compact extended formulation for (Q)
is then

(Q2) min
x∈{0,1}|A+|

∑
uv∈A

cuvxuv (5)

s.t. (2)− (3)

λkij + λkji ≥ xij , ∀ i, j, k ∈ V, i 6= j (6)∑
j∈V−{i} λkij ≤ 1, ∀ i, k ∈ V, i 6= k (7)

λkkj = 0, ∀ j, k ∈ V, k 6= j (8)

xuv = 0, ∀ (u, v) ∈ A+ −A (9)

xuv + xvu ≤ 1, ∀ (u, v), (v, u) ∈ A (10)

λ ∈ {0, 1}|V×A+| (11)

In model (Q2), (2)-(3) establish that there is a path between s and t in
G and that the nodes in P are visited. Constraints (6) estate that if an
arc (i, j) is in the solution (i.e. xij = 1), then or j is father of i or i is
father of j in any k-rooted path Tk of G. Constraints (7) limit to at most
one father for any node i in Tk, with i 6= k. Constraints (8) estate that
none node j can be father of node k in a k-rooted path Tk. Constraints (9)
fix at zero all the corresponding variables related to the extra arcs we add
to make G a complete digraph. Constraints (10) avoid obtaining a cycle
C = {(i, j), (j, i)} between any pair of nodes i and j when both these arcs
belong to A. The reader should note that a straightforward adaptation for
digraphs of the sub-tour elimination constraints in Conforti et al. (2010)
(with equalities in (6) and (7)) does not work for this problem. Indeed, if
we consider that exactly one of the arcs (i, j) ∈ A or (j, i) ∈ A is present in a
given solution, then if (6) were written as equality, the resulting model would
be infeasible due to the presence of the inconsistent equations λkij +λkji = 1
and λkij + λkji = 0, for all k ∈ V . Moreover, (7) can be written as equality
only if P = V − {s, t}, meaning that λkij = 1, for some (k, i, j)-tuple and,
consequently, that xij = 1 or xji = 1 (i.e. imposing the connectivity of
every node i). This is the reason why our model follows basically the one in
Yannakakis (1991). As we can see in Proposition 1, the constraints (10) are
necessary for obtaining cycle-free solutions for the problem.

Proposition 1. Relaxing constraints (10) in the model (Q2) possibly leads
to the occurrence of cycles in the relaxed problem solution.
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Proof 1. We show an example where the optimal solution of (5)-(11), with-
out the constraints (10), contains a cycle. Consider the digraph in Figure 1.

Figure 1: A digraph G = ({1, 2, 3, 4}, {(1, 2), (1, 4), (2, 3), (3, 2), (3, 4)}). The arc lengths
are presented near each arc.

The optimal solution of value 7 for the resulting model presents x̄14, x̄23, x̄32
and λ̄123, λ̄132, λ̄141, λ̄214, λ̄232, λ̄241, λ̄314, λ̄323, λ̄341, λ̄414, λ̄423, λ̄434, all
equal to 1, with all the remaining variables being 0. Note, in this case, that
the values of the λ variables do not correspond to the interpretation we give
them. However, when considering (10), the optimal solution of value 24 is
x̄12, x̄23, x̄34 and λ̄121, λ̄132, λ̄143, λ̄212, λ̄232, λ̄243, λ̄312, λ̄323, λ̄343, λ̄412,
λ̄423, λ̄434, all equal to 1, with all the remaining variables being 0. �

Now consider the following trivial property before introducing our second
compact extended formulation for the problem.

Property 1. If {(s, s1), (s1, s2), · · · , (sp−1, sp), (sp, t)} is a minimum length
(s − P − t)-path of G = (V,A), with P ⊆ {s1, s2, · · · , sp} and π(v) denotes
the distance from node v to s in this path, for all v ∈ {s, s1, s2, · · · , sp, t} ,
then π(s) = 0, π(s1) = cs,s1, π(sj) = π(sj−1)+csj−1,sj , for j ∈ {2, 3, · · · , p},
and π(t) = π(sp) + csp,t.

We know that the unrestricted version of the minimum length (s−P−t)-
path problem (i.e. for P = ∅) can be solved by model (1)-(2). In this case, if
we associate dual variables π ∈ R|V | with the constraints (2), then by duality
theory we have that π(v) − π(u) ≤ cuv, for all (u, v) ∈ A, with π(s) = 0.
Note that this inequality is not valid for the (s − P − t)-path problem due
to the presence of the constraints (3). However, as Property 1 must apply,
we need to worry only with the dual multipliers related to the nodes in the
solution path.

Therefore, we propose the following approach where we put together in a
same model the primal and the dual variables x and π, respectively. Our idea
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is to characterize feasible solutions by linking primal and dual variables in a
same set of constraints in order to satisfy the Property 1 and, consequently,
to avoid cycles in any solution.

In the next model consider M a very large positive constant. The vari-
ables are the same as those defined in the above paragraphs.

(Q3) minx∈{0,1}|A|
∑

uv∈A
cuvxuv (12)

s.t. (2)− (3)

π(v)− π(u) ≤ cuv +M(1− xuv), ∀ (u, v) ∈ A (13)

π(v)− π(u) ≥ cuv −M(1− xuv), ∀ (u, v) ∈ A (14)

π(s) = 0, π ≥ 0 (15)

In model (Q3), constraints (13) and (14) impose that if an arc (u, v) is in the
solution, then the Property 1 is satisfied because they became an equality
constraint π(v)−π(u) = cuv for this arc; otherwise, both constraints became
redundant. Consequently, no cycle can be present in a feasible solution.

3. Computational experiments

We run our instances in a PC Core 2 Duo P8600 (2.4GHz - 4G RAM)
using IBM ILOG CPLEX 12.3. The path’s origin and destination of all
instances are the nodes 1 and |V |, respectively. These instances are random
generated digraphs with integer arc lengths randomly chosen from the in-
terval [1, 50]. The set of arcs A is obtained according to a predetermined
probability. The cardinality of the set P are given and its elements are
chosen randomly. These parameters appear in each instance identifier. We
adopt M = 10000 in the model (Q3) for all instances.

The legend in Table 1 is as follows. The first column presents the instance
identifier Inst composed of three parts Prob+ |V |+ |P ′|: the first character
indicates the probability Prob used to consider or not the arcs in A (they
are represented by letters a, b, c and d indicating probabilities Prob = 0.2,
Prob = 0.4, Prob = 0.7 and Prob = 1.0, respectively); the second part
indicates the number of nodes |V | of G; and the third part indicates the
number of nodes in |P | ∪ {s, t} (they are also indicated by letters a, b, c
and d at the end of the instance identifier indicating cardinalities |P ′| =
0.25|V |, |P ′| = 0.50|V |, |P ′| = 0.75|V | and |P ′| = 1.00|V |, respectively).
The value of the continuous relaxed solution and of the optimal solution
for each model are denoted by w and z, respectively. The CPU time (in
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seconds) to obtain the continuous relaxed solution and the optimal solution
for these models are denoted by tr and t, respectively. The total number of
CPLEX MIP iterations and CPLEX branch-and-bound nodes to obtain the
optimal solution for each model are denoted by mip and bb, respectively.

The first element we compare in the Table 1 is the quality of the linear
relaxation of the models (Q2) and (Q3). We reach 16 optimal lower bounds
in column w with the model (Q2) (from a total of 48 instances and observ-
ing that the arc lengths are integer), while only 5 optimal lower bounds are
reached with the model (Q2). In general, linear relaxed solutions obtained
with the model (Q2) are larger than those obtained with the model (Q3).
The execution times to obtain the linear relaxed solution with the model
(Q2) are very large when compared to the ones related to the model (Q3).
Observe that the lower bound obtained with the model (Q2) can be consid-
ered very close to the optimal integer solution values reported in the column
z. This seems to explain why CPLEX spent a high effort in solving the re-
lated integer model by the MIP approach and calling the branch-and-bound
method only for few instances. The second element of our analysis concerns
the quality of the optimal integer solutions. Both models reach all optimal
solutions (except for the instance a20c that has no feasible integer solution).
The number of CPLEX MIP iterations in the column mip to obtain the
optimal integer solution with the model (Q2) is very large when compared
to the ones obtained with the model (Q3) (in only one case, for the instance
b80d, this parameter was larger for the model (Q3)). The CPLEX branch-
and-bound method is called in 20 and 22 instances, for the models (Q2)
and (Q3), respectively. In this occasion, the number of branch-and-bound
nodes (in the column bb) in the model (Q3) is larger the the related one in
the model (Q2) for 17 instances, being smaller only for 11 instances. The
execution times to obtain the integer optimal solution with the model (Q2)
are much larger than those obtained with the model (Q3) (except for the
instance c40b, where the execution time is larger for the model (Q3)).

In our experiments there are no conclusive elements to characterize the
problem difficulty in terms of the digraph density (given by the probability
we use to construct the set of arcs of each instance) and the cardinality of
|P |. If we observe the execution time t or the number of MIP iterations
mip of both models (Q2) and (Q3), there is no expressive concentration of
difficult instances in any combination of these parameters.

To conclude our analysis, we observe that the good quality of the lin-
ear relaxed solution of the model (Q2) is not sufficient for CPLEX saving
execution time in solving these instances.
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Table 1: Numerical results for the models (Q2) and (Q3) by using CPLEX 12.3.
Model (Q2) Model (Q3)

Inst w tr z mip bb t w tr z mip bb t
a20a 116.00 0.04 201 8203 62 0.98 89.06 0.00 201 2185 271 0.32
a20b 219.00 0.05 219 266 0 0.15 197.10 0.00 219 43 0 0.02
a20c 410.00 0.14 * 1907 0 0.54 344.19 0.00 * 7 0 0.01
a20d 384.00 0.05 409 1767 0 0.45 359.03 0.00 409 68 0 0.02
b20a 104.00 0.06 114 1246 0 1.25 99.02 0.00 114 311 19 0.45
b20b 148.00 0.07 148 586 0 0.26 148.00 0.00 148 50 0 0.01
b20c 243.33 0.16 249 3880 3 8.07 242.01 0.01 249 62 0 0.02
b20d 157.67 0.27 171 4506 0 4.81 144.01 0.02 171 1948 217 0.27
c20a 53.00 0.06 57 386 0 0.50 49.00 0.01 57 62 0 0.07
c20b 77.00 0.12 77 530 0 0.37 77.00 0.00 77 41 0 0.03
c20c 101.00 0.20 101 1055 0 0.67 99.00 0.00 101 69 0 0.05
c20d 113.00 0.30 113 1280 0 0.41 106.00 0.01 113 119 0 0.08
d20a 25.50 0.08 26 334 0 0.56 25.00 0.02 26 35 0 0.06
d20b 52.42 0.22 56 2091 0 2.68 48.00 0.00 56 404 28 0.40
d20c 66.00 0.17 66 845 0 0.48 65.00 0.00 66 64 0 0.09
d20d 89.00 0.55 92 2992 0 7.96 86.00 0.01 92 263 13 0.37
a40a 130.00 0.91 138 75169 250 25.54 130.00 0.00 138 4633 465 3.56
a40b 225.00 0.82 225 2954 0 1.42 220.00 0.00 225 101 0 0.06
a40c 349.59 1.16 367 412653 437 198.89 347.00 0.01 367 22803 1689 4.35
a40d 463.00 2.98 472 38026 9 50.74 457.03 0.01 472 3135 160 0.77
b40a 95.00 0.81 98 1629 0 3.73 92.00 0.02 98 90 0 0.14
b40b 144.64 1.54 162 1131747 1482 545.56 138.01 0.01 162 13764 911 16.51
b40c 165.86 1.90 167 5738 0 7.64 158.00 0.02 167 224 0 3.04
b40d 266.00 3.40 266 5472 0 2.96 262.01 0.02 266 181 0 0.81
c40a 56.17 1.20 57 2694 0 11.41 56.00 0.02 57 241 14 0.56
c40b 68.00 2.06 70 5544 0 15.42 68.00 0.01 70 140 0 25.48
c40c 99.25 3.03 103 18832 16 86.85 96.00 0.02 103 319 7 0.96
c40d 128.00 5.90 128 6358 0 6.86 128.00 0.02 128 129 0 0.22
d40a 43.50 1.34 48 4165 0 17.50 43.00 0.02 48 218 12 0.76
d40b 67.00 5.07 69 5031 0 45.25 67.00 0.03 69 3012 118 1.38
d40c 82.25 6.14 87 82742 81 284.93 81.00 0.04 87 13227 711 9.48
d40d 94.75 16.75 99 41530 1 335.59 93.00 0.04 99 169 0 0.34
a80a 177.00 8.57 180 18885 12 152.89 176.00 0.02 180 434 9 0.82
a80b 271.50 10.58 284 8608104 3407 20548.80 271.00 0.03 284 22516 560 54.65
a80c 376.86 26.19 379 103701 17 508.14 376.00 0.05 379 572 0 43.22
a80d 432.00 23.25 433 42330 4 329.70 421.00 0.04 433 2600 31 0.96
b80a 95.00 24.93 96 35180 18 285.33 95.00 0.04 96 192 0 41.01
b80b 161.50 31.35 163 93857 52 526.681 161.00 0.06 163 224 0 29.39
b80c 196.50 99.11 200 177107 70 976.50 192.00 0.07 200 11010 242 66.98
b80d 226.60 133.10 229 1744409 32 19180.20 226.00 0.10 229 2030586 58793 1213.70
c80a 68.00 22.39 73 2480024 2330 3494.11 65.00 0.10 73 63015 3864 92.53
c80b 89.20 55.27 90 27903 0 292.86 88.00 0.14 90 252 0 0.34
c80c 118.48 66.66 120 66417 18 832.50 115.00 0.13 120 9985 0 43.44
c80d 157.00 136.60 157 18400 0 50.98 157.00 0.15 157 370 0 0.36
d80a 51.00 22.39 51 8616 0 70.09 51.00 0.12 51 193 0 1.14
d80b 81.50 155.99 82 29669 0 376.10 80.00 0.15 82 347 0 4.13
d80c 109.14 150.91 111 4347387 715 30826.50 109.00 0.17 111 29537 657 43.84
d80d 121.17 244.79 122 286899 0 5865.03 121.00 0.27 122 6109 53 20.68
(∗) No integer feasible solution exists for this instance.

8



4. Conclusion

This work introduces two formulations for the (s − P − t)−shortest-
path problem. The model (Q2) presents linear relaxed solutions that are
very close to optimal ones. Nevertheless, exploring this feature by the MIP
module of CPLEX showed to be very time consuming. In contrast, the
model (Q3), although obtaining in general weaker linear relaxed solutions
than the model (Q2), showed to be an efficient approach for solving this
problem. It seems that exploring the use of compact extended formulations
by linking dual and primal variables can constitute a new field of research
for solving efficiently combinatorial optimization problems.
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