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Abstract In this paper, we present a hybrid resource allocation model for OFDMA-

TDMA wireless networks and an algorithmic framework using a Variable Neighbor-

hood Search metaheuristic approach for solving the problem. The model is aimed at

maximizing the total bandwidth channel capacity of an uplink OFDMA-TDMA net-

work subject to user power and subcarrier assignment constraints while simultaneously

scheduling users in time. As such, the model is best suited for non-real time applica-

tions where subchannel multiuser diversity can be further exploited simultaneously in

frequency and in time domains. The VNS approach is constructed upon a key aspect of

the proposed model, namely its decomposition structure. Our numerical results show

tight bounds for the proposed algorithm, e.g. less than 2% in most of the instances.

Finally, the bounds are obtained at a very low computational cost.

1 Introduction

Orthogonal frequency and time division multiple access (resp. OFDMA, TDMA) are

two wireless multi-carrier transmission schemes currently embedded into modern tech-

nologies such as Wifi andWimax [6]. In an OFDMA network, multiple access is achieved

by assigning different subsets of subcarriers (subchannels) to different users while main-

taining orthogonal frequencies among subcarriers. In theory, this means that interfer-

ence among subcarriers is completely minimized which allows simultaneous data rate

transmissions from/to several users to/from the base station (BS). The transmission

direction from the BS to users is known as a downlink process while the opposite is

known as an uplink process. The TDMA transmission scheme, on the other hand, has

the property of scheduling users in time by assigning all bandwidth channel capacity

to only one user within a given time slot in order to transmit signals. Although, these
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transmission schemes work differently, the underlying purpose in both of them is nearly

the same, i.e. to make an efficient use of resource allocation of power and bandwidth

channel capacity of the network.

In this paper, we propose a hybrid resource allocation model for OFDMA-TDMA

wireless networks and an algorithmic framework using a variable neighborhood search

metaheuristic approach (VNS for short) for solving the problem [3]. More precisely,

we aim at maximizing the total bandwidth channel capacity of an uplink OFDMA-

TDMA network subject to user power and subcarrier assignment constraints while

simultaneously scheduling users in time. As such, the model is best suited for non-

real time applications where signals can be transmitted at different time slots without

further restrictions [4]. The latter allows the fact that subchannel multiuser diversity

can be further exploited simultaneously in frequency and in time domains. As far as

we know, joint OFDMA-TDMA transmission schemes have not been investigated so

far. In [8], the authors compare the performance in support of real time multimedia

transmission schemes when using separately OFDMA-TDMA and OFDMA networks.

Their numerical results show that OFDMA outperforms OFDMA-TDMA in several

quality of service metrics for real-time applications. In a similar vein, the authors in [9]

consider resource allocation of an OFDM wireless network while mixing real-time and

non-realtime traffic patterns. They use a utility based framework to balance efficiency

and fairness among users. Thus, they propose a scheduler mechanism which gives in one

shot the subcarrier and power allocation plus the transmission scheduling for each time

slot. Their numerical results indicate that the proposed method achieves a significant

performance in terms of the overall throughput of the system. Another related work

is proposed in [10] where an hybrid transmission scheme for non-realtime applications

while using simultaneously code division and time division multiple access (CDMA-

TDMA) schemes is investigated. The authors use a utility based approach as well, and

formulate the optimal downlink resource allocation problem for a non-realtime CDMA-

TDMA network. Their numerical results show a significant improvement in the overall

throughput of the system due to multi-access-point diversity gain.

We propose a simple VNS based metaheuristic approach [3] to compute tight

bounds for our hybrid OFDMA-TDMA optimization problem. To this purpose, we

randomly partition the set of users into T disjoint subsets of users within each it-

eration of the VNS approach. By doing so, we must solve T smaller integer linear

programming (ILP) subproblems, one for each subset of users assigned to time slot

t ∈ T = {1, ..., T}. Note that, in principle, each subproblem could be solved sequen-

tially or in parallel using any algorithmic procedure. As in our case each subproblem

is formulated as an ILP problem, so far now, we solve its linear programming (LP)

relaxation to compute the bounds. In fact, this is a key aspect in our proposed VNS

approach since the LP relaxations of the subproblems are very tight. Since each user

must be attended by the BS in only one time slot t ∈ T , the final solution of the prob-

lem can be easily reconstructed for the original problem from the solutions of each time

slot t ∈ T . The decomposition of the problem allows us to apply the VNS procedure in

a straightforwardly manner and also to compute tight bounds easily. It turns out that

solving the problem to optimality becomes rapidly prohibitive from a computationally

point of view when the instances dimensions increase.

The paper is organized as follows. Section 2 briefly introduces the system descrip-

tion and presents the OFDMA-TDMA formulation of the problem. Section 3 presents

the VNS algorithmic procedure while section 4 provides preliminary numerical results.



Finally, section 5 gives the main conclusions of the paper and provides some insights

for future research.

2 Problem Formulation

We consider a BS surrounded by several mobile users within a single cell area. The

BS has to assign a set of N = {1, .., N} subcarriers (or subchannels) to a set of

K = {1, ..,K} users in different time slots T = {1, .., T} in order to allow users to send

signals to the BS. The allocation process is performed by the BS dynamically in time

depending on the quality of the channels which are intrinsically stochastic. The latter

affects the amount of bandwidth channel capacity needed by users to transmit their

signals. Without loss of generality, we assume that the BS can fully and accurately

predict the channel state information for each t ∈ T . This is possible in OFDMA-

TDMA networks when using adaptive overlapping pilots in uplink applications [11].

A scheduling formulation for an uplink wireless OFDMA-TDMA network can thus be

written as follows

P : max
x,φ

T∑
t=1

K∑
k=1

N∑
n=1

ctk,nx
t
k,n (1)

st:

N∑
n=1

ptk,nx
t
k,n ≤ Pkφk,t, ∀k, t (2)

T∑
t=1

φk,t = 1, ∀k (3)

K∑
k=1

xtk,n ≤ 1, ∀n, t (4)

xtk,n ∈ {0, 1};φk,t ∈ {0, 1}, ∀k, n, t (5)

where xtk,n, ∀k, n, t and φk,t, ∀k, t are the decision variables. These variables are defined

as follows: xtk,n = 1 if user k is assigned subcarrier n at time slot t and zero otherwise.

Similarly, φk,t = 1 if user k is scheduled to be attended in time slot t and zero otherwise.

Matrices (ctk,n), (p
t
k,n) and (Pk) are input data matrices defined as follows. The entries

in (ctk,n) denote the capacity achieved by user k using subcarrier n in time slot t

while entries in (ptk,n) denote the power utilized by user k using subcarrier n in time

slot t. Finally, (Pk) denotes the maximum power allowed for each user k to transmit

their signals to the BS. The objective function in P is aimed at maximizing the total

bandwidth channel capacity of the network. Constraint (2) is a maximum available

power constraint imposed for each user k and for each time slot t to transmit signals to

the BS. This is the main constraint which makes the difference between a downlink and

an uplink process. In the former, there should be only one power constraint imposed

for the BS whereas in the latter, each user is constrained by its own available maximum

power Pk, k ∈ K. Constraint (3) imposes the condition that each user must be attended

by the BS in a unique time slot t ∈ T . This constraint is specifically related to the

time domain which is basically the transmission scheme of TDMA wireless networks.

Whereas constraint (4) is related to the OFDMA scheme which imposes the condition



that each subcarrier should be assigned to at most one user at instant t ∈ T . Finally,
constraint (5) are domain constraints for the decision variables.

We note that P is an integer linear programming (ILP) formulation which is NP-

Hard and thus difficult to solve directly for medium and large scale instances. Instead,

we propose a VNS decomposition approach to compute tight bounds.

3 The VNS Approach

In order to compute tight bounds for P using a VNS metaheuristic approach, we first

note that for any feasible assignment of φk,t = (φ̄k,t), i.e., such that
∑T

t=1 φ̄k,t = 1,∀k.
Problem P reduces to solving T subproblems of the following form

P(t) : max
y

∑
k∈Kt

N∑
n=1

ĉtk,ny
t
k,n (6)

st:

N∑
n=1

p̂tk,ny
t
k,n ≤ P̂k, ∀k ∈ Kt (7)∑

k∈Kt

ytk,n ≤ 1, ∀n (8)

ytk,n ∈ {0, 1}, ∀k ∈ Kt, n ∈ N (9)

where
∪T

t=1Kt = K. Variables ytk,n for each k ∈ Kt, n ∈ N and t ∈ T are analogously

defined as for xtk,n, i.e., y
t
k,n = 1 if user k ∈ Kt ⊂ K is assigned subcarrier n in time slot

t and zero otherwise. Matrices (ĉtk,n), (p̂
t
k,n), and (P̂k) are respectively sub-matrices of

(ctk,n), (p
t
k,n), and (Pk) we obtain from model P for each t ∈ T according to users in Kt.

Note that any solution xt
′

k,n of P in a particular time slot t′ ∈ T can be reconstructed

by simply mapping the values of variables yt
′

k,n ∀k ∈ Kt′ , n ∈ N into each user position

in xt
′

k,n ∀k ∈ Kt′ . All remaining values in xt
′

k,n such that k ̸∈ Kt′ must be equal to

zero. Therefore, for any feasible assignment φ = φ̃ the optimal solutions x̃t in P and

optimal solutions ỹt in P(t), ∀t ∈ T , we have

T∑
t=1

K∑
k=1

N∑
n=1

ctk,nx̃
t
k,n =

T∑
t=1

∑
k∈Kt

N∑
n=1

ĉtk,nỹ
t
k,n (10)

Note that there are TK feasible assignments for φk,t = (φ̄k,t) and each subset Kt has

a cardinality of
∑

k∈K φ̄k,t users. In case any subset Kt′ = ∅, it means that no user is

scheduled to be attended in time slot t′ ∈ T . Also notice that solving each P(t),∀t ∈ T
such that Kt ̸= ∅ is an NP-Hard problem as it is equivalent to solve a multiple choice

multiple knapsack problem [2].

VNS is a recently proposed metaheuristic approach [3] that uses the idea of neigh-

borhood change during the descent toward local optima and to scape from the valleys

that contain them. We define only one neighbor structure as Ngh(φ) for P as the set

of neighbor solutions φ′ in P at a distance “h” from φ where the distance “h” cor-

responds to the number of users assigned in solutions φ′ and φ. The VNS procedure

we propose is depicted in algorithm 3.1. As input receives an instance of problem P



Algorithm 3.1: VNS approach

Data: A problem instance of P
Result: A tight solution (x̄, φ̄, f̄) for P
T ime← 0; H ← 1; count← 0; φk,n ← 0, xt

k,n ← 0,∀k, n, t ;
foreach k ∈ K do

choose randomly t′ ∈ T ;
φk,t′ ← 1;

foreach t ∈ T do
Solve the linear programming relaxation of P(t)

Let (x̃, φ̃, f̃) be the initial solution found for P with objective value function f̃ ;
while (Time ≤ maxTime) do

for i = 1 to H do
choose randomly k′ ∈ K and t′ ∈ T ;
φk′,t ← 0, ∀t ∈ T ;
φk′,t′ ← 1;

foreach t ∈ T do
Solve the linear programming relaxation of P(t)

Let (x∗, φ∗, g∗) be the new found solution for P with objective value function g∗;

if (g∗ > f̃) then
H← 1;

(x̃, φ̃, f̃)← (x∗, φ∗, g∗);
Time← 0; count← 0;

else
Keep previous solution;
count← count+ 1;
if H ≤ K and count > η then
H ← H+ 1; count← 0;

(x̄, φ̄, f̄)← (x̃, φ̃, f̃);

and provides a tight solution for it. We denote by (x̄, φ̄, f̄) the final solution obtained

with the algorithm where f̄ represents the objective value function. The algorithm

is simple and works as follows. First, it computes randomly a feasible assignment of

φ̃ = (φ̃k,t) and solve each subproblem P(t),∀t ∈ T according to φ̃. This allows ob-

taining an initial solution (x̃, φ̃, f̃) for P that we keep. Next, the algorithm performs

a variable neighborhood search by randomly scheduling H ≤ K users in different time

slots. Initially, H ← 1 while it is increased in one unit when there is no improvement

after new “η” solutions have been evaluated. On the other hand, if a new current so-

lution found is better than the best found so far, then H ← 1, the new solution is

recorded and the process continuous. The whole process is repeated until the cpu time

variable “Time” is less than or equal to the maximum available “maxTime”. Note we

reset “T ime = 0” when a new better solution is found. This gives the possibility to

search other “maxTime” units of time with the hope of finding better solutions.

As it can be observed, the VNS approach is constructed upon a key aspect of

problem P, namely its decomposition structure. On the other hand, the effectiveness

of the algorithm also relies on the fact that the linear programming relaxation of each

subproblem P(t),∀t ∈ T is very tight.



#
Instances Dimensions Linear programs VNS Approach Gaps
K N T Opt.P LP TimeP TimeLP Ini.Sol. V NS Time LP V NS

1 8 32 10 2092 3488.1608 6.62 0.56 1622.7385 2118.9987 5.79 66.73 1.29
2 10 32 10 2771 3741.1867 13.28 0.62 2050.6937 2819.2678 7.49 35.01 1.74
3 12 32 10 3049 3967.9855 6.90 0.65 1786.4225 2972.4251 1.85 30.14 2.51
4 14 32 10 3109 4061.5510 8.79 0.71 2250.4192 3051.9827 1.71 30.63 1.83
5 20 32 10 3408 4137.6329 11.23 0.89 2246.0866 3409.5674 12.98 21.40 0.04
6 25 32 10 3591 4242.6719 28.84 1.00 2391.5610 3605.4858 11.20 18.14 0.40
7 30 32 10 3587 4208.7842 4.48 1.21 3039.4362 3592.3845 3.06 17.33 0.15
8 8 32 20 2351 6588.8126 11.48 0.84 1591.9860 2372.0500 1.45 180.25 0.89
9 10 32 20 2875 6548.8915 27.96 1.03 1505.5937 2879.8230 2.96 127.78 0.16

10 12 32 20 3281 7383.7370 51.51 1.11 2191.0147 3281.7037 1.60 125.04 0.02
11 14 32 20 4025 7801.8038 312.28 1.20 3077.3167 4025.6315 9.92 93.83 0.01
12 20 32 20 5965 8202.6180 74.56 1.51 3537.3049 5714.2134 58.03 37.51 4.20
13 25 32 20 6164 8195.6053 72.51 2.01 4022.6847 6186.9960 99.39 32.95 0.37
14 30 32 20 6548 8246.2234 105.09 2.28 4414.5224 6466.0896 115.84 25.93 1.25
15 8 64 10 3954 6754.0846 21.76 0.78 2829.6211 3970.8774 13.23 70.81 0.42
16 10 64 10 5606 7952.9545 35.12 0.87 3099.0138 5609.6752 6.56 41.86 0.06
17 12 64 10 5637 7780.5791 33.48 1.09 3950.4271 5541.4436 1.87 38.02 1.69
18 14 64 10 6334 7877.6160 47.54 1.20 5561.6601 6348.4896 3.87 24.37 0.22
19 20 64 10 6538 8225.0918 55.17 1.51 5386.4010 6553.5962 4.03 25.80 0.23
20 25 64 10 6941 8482.0337 77.23 1.78 6052.6174 6947.6831 5.95 22.20 0.09
21 30 64 10 7326 8496.0615 81.28 2.20 6282.7184 7326.0244 12.95 15.97 3e-4
22 8 64 20 4586 12789.0347 67.64 1.50 3200.9471 4544.7142 15.92 178.87 0.90
23 10 64 20 5753 14772.2571 167.57 1.60 4341.6136 5797.1178 10.15 156.77 0.76
24 12 64 20 6751 13449.2497 257.04 2.23 3891.1626 6781.0690 25.71 99.21 0.44
25 14 64 20 7692 14758.2530 576.20 2.37 4934.2025 7725.3751 18.18 91.86 0.43
26 20 64 20 11520 16342.8073 949.50 2.95 7692.8888 10795.0753 39.93 41.86 6.29
27 25 64 20 12297 16036.8844 536.17 3.86 8692.1874 12314.8432 110.20 30.41 0.14
28 30 64 20 12981 16873.0624 624.00 4.36 9327.2974 13017.9855 46.52 29.98 0.28
29 8 128 10 9292 15469.9953 167.86 1.31 6093.5991 9008.2856 32.44 66.49 3.05
30 10 128 10 10416 14341.4803 409.72 1.69 5150.2308 10590.8256 7.83 37.69 1.68
31 12 128 10 12248 16081.9795 728.13 1.77 8734.9364 12332.6018 13.91 31.30 0.69
32 14 128 10 12454 16002.4214 273.94 2.11 9538.7185 12510.7866 35.45 28.49 0.46
33 20 128 10 13441 16831.7606 387.81 2.69 9426.4508 13525.7884 9.31 25.23 0.63
34 25 128 10 14211 17059.0616 89.80 3.36 11492.2275 14236.2739 24.95 20.04 0.18
35 30 128 10 14546 17237.8062 519.84 4.39 12087.5565 14628.2521 8.53 18.51 0.57
36 8 128 20 9485 26344.7369 288.05 2.73 6802.1687 9547.7500 45.30 177.75 0.66
37 10 128 20 10993 25420.2375 479.06 3.84 8000.8647 11244.5429 6.77 131.24 2.29
38 12 128 20 13252 29327.4069 1577.70 4.05 8246.3013 13440.7492 23.98 121.31 1.42
39 14 128 20 14344 29151.5630 2239.27 5.73 8248.1641 14349.1162 33.30 103.23 0.04
40 20 128 20 23355 33356.0498 8416.50 5.64 16501.7620 22609.7154 34.83 42.82 3.19
41 25 128 20 24769 32729.1363 4964.91 7.48 16515.5073 24252.8271 96.31 32.14 2.08
42 30 128 20 25475 33352.2393 6170.50 11.44 17457.1910 25512.9978 162.50 30.92 0.15

Minimum values 2092 3488.2 4.48 0.56 1505.6 2119 1.45 15.97 3e-4
Maximum values 25475 33356 8416.5 11.44 17457 25513 162.50 180.25 6.29
Average values 8690.8 13431 737.57 2.43 6077.8 8656.2 28.18 61.37 1.04

Table 1 Upper and Lower bounds for P

4 Numerical Results

In this section, we present preliminary numerical results for problem P using the pro-

posed VNS algorithm. We generate realistic power data using a wireless channel from

[7] while we set the capacities ctk,n =Mt
k,n,∀k, n, t whereM

t
k,n represents an integer

number of bits randomly and uniformly generated between {1, .., 10}. These number of

bits are required in higher orderM-PSK orM-QAM modulation transmission schemes

[1]. Specially for multimedia applications where the users bit rate demands are signifi-

cantly higher. So far, we assume that the bit rate demands are uniformly distributed.

In a larger version of this work, we will also consider other distribution types. Finally,

we set Pk = 0.4 ·
∑

n∈N p1k,n, ∀k ∈ K and η = 500. A Matlab program is implemented

using CPLEX 12 to solve problem P while we use MOSEK solver [5] to solve its lin-

ear programming relaxation we denote hereafter by LP and each linear programming

relaxation P(t),∀t ∈ T within each iteration of the VNS algorithm. The numerical

experiments have been carried out on a Pentium IV, 1 GHz with 2 GoBytes of RAM

under windows XP. In table 1, column 1 gives the instance number and columns 2-

4 give the instances dimensions. In columns 5-8, we provide the optimal solutions of

P, LP, and the cpu time in seconds CPLEX needs to solve P and LP, respectively.



Similarly, in columns 9-11, we present the initial solutions found with the algorithm

3.1, its best solution found and the cpu time in seconds the algorithm needs to reach

that solution. Notice that this cpu time considers all the time spent when solving all

the subproblems involved in the algorithm sequentially and not in parallel as it could

be improved. In all our tests we set the maximum time available to maxTime = 50

seconds. We also mention that whenever the variable Time reached this amount, it

means the algorithm did not find any better solution within 50 seconds, therefore we

subtract this amount to the complete registered time. The latter provides the exact cpu

time the VNS approach needs to find the best solution found so far. Finally, in columns

12 and 13 we provide gaps we compute as LP−Opt.P
Opt.P ∗ 100 and

|V NS−Opt.P|
Opt.P ∗ 100,

respectively. Additionally, the last three rows in table 1 provide minimum, maximum

and average values for columns 5-13, respectively. From table 1, we mainly observe

that the bounds obtained with the VNS approach are very tight when compared to

those obtained with LP. For example, the gaps are less than 1 % in about 66.6 %

and less 2 % in about 83.3 % of the instances when using the VNS approach. This is

confirmed by the total average gap which is 1.04 %. Whereas the gaps obtained with

the LP are not tight when compared to the optimal solutions in all cases. Another
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Fig. 1 Average bounds for instances 1-24 in table 1.

observation is that the average best solution found by the VNS algorithm improves

in approximately 43% from the initial solution found by the algorithm which confirms

its effectiveness. Moreover, when computing the difference for the average cpu time

needed to solve problem P between the VNS approach and CPLEX, we obtain an

improvement of 97,16 %. Finally, we observe that the cpu time required by CPLEX to

compute an optimal solution of a particular instance grows rapidly while increasing its

dimensions. So far, the averages presented in table 1 are computed using only one sam-



ple for the input data of instances 1-42. In order to provide more insight about these

numerical results, in figures 1 and 2 we plot average results for instances 1-24 of table

1. We do not present averages for instances 25-42 since their cpu times become highly

prohibitive as shown in table 1. For this purpose, we generate 25 samples for the input

data of these instances. We use plots in this case to appreciate easily the trends of the

average numerical results. In figure 1, the instance number appears in the horizontal

axis while the vertical axis gives the averages we compute for the optimal solution of

P, for the linear programming relaxation of P (LP), for the initial solution (Ini.Sol.)

found with the VNS algorithm 3.1, and for the VNS approach respectively. Here, the

trends of the curves mainly confirm the numerical results of table 1. We observe that

VNS provides very tight near optimal solutions. By computing the average differences

between VNS and the optimal solutions of P we obtain a 1.06 % of tightness which

is similar to the average obtained in table 1. We also observe that the initial solutions

are substantially improved by the VNS approach. In this case, we compute an aver-

age difference of 42.35% between the initials and best solutions of the VNS approach.

Finally, we confirm that LP relaxation is not tight at all. In figure 2, the instance
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Fig. 2 Average CPU times in seconds for instances in table 1.

number appears in the horizontal axis while the vertical axis provides the average cpu

time needed by CPLEX to solve problem P, the average cpu time for LP, and for the

VNS approach as well. Here, we mainly observe that the cpu times required by VNS

approach are significantly lower than CPLEX. In particular, we notice that for larger

instances these cpu times remain below 10 seconds which is an interesting result.



5 Conclusions

In this paper, we proposed a hybrid resource allocation model for OFDMA-TDMA

wireless networks and a VNS metaheuristic approach for solving the problem. The

model is aimed at maximizing the total bandwidth channel capacity of an uplink

OFDMA-TDMA network subject to user power and subcarrier assignment constraints

while simultaneously scheduling users in time. As such, the model is best suited for non-

real time applications where subchannel multiuser diversity can be further exploited in

frequency and in time domains, simultaneously. The effectiveness of the proposed VNS

approach relies on the decomposition structure of the problem which allowed solving a

set of smaller integer linear programming subproblems within each iteration of the VNS

approach. It turned out that the linear programming relaxations of these subproblems

were very tight. Our numerical results showed tight bounds for the proposed algorithm,

e.g. less than 2% in most of the instances. Besides, the bounds were obtained at a very

low computational cost.

Future research will be focussed on developing other algorithmic approaches for

solving each subproblem while considering other variants of the proposed model such as

minimizing power subject to capacity constraints for uplink and downlink applications.
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