
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

EXHAUSTIVE TESTING IN HOL-TestGen/CirTA

A CASE STUDY

FELIACHI A / GAUDEL M C / WOLF B

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

07/2013

Rapport de Recherche N° 1562

Exhaustive Testing in HOL-TestGen/CirTA
a case study

Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

LRI - Univ. Paris-Sud & CNRS, Orsay, F-91405, France
{feliachi, gaudel, wolff}@lri.fr

Résumé HOL-TestGen/CirTA est un environnement pour la génération
de tests à partir de spécifications écrites dans Circus. Circus est un lan-
gage de spécification formelle qui combine les notions d’état et de types de
données complexes dans le style de Z avec une algèbre de processus dans
la tradition de CSP. L’originalité de HOL-TestGen/CirTA est qu’il est
basé sur une implémentation vérifiée dans Isabelle/HOL de la sémantique
de ce langage. Cela constitue le fondement des règles de génération de
tests ainsi que pour leur exécution sous forme de calcul symbolique. Le
résultat est une châıne d’outils intégrée qui transforme, par des règles
issues de la définition sémantique, la spécification d’un système en un
ensemble de cas de tests symboliques, les instancie et les exécute.
Ce rapport présente une première étude de cas réalisée sur un composant
d’un monde réel d’un système de suivi médical écrit en Java. Dans cette
étude de cas, les cas de test générés sont compilés dans un ensemble de
testeurs JUnit et exécutes sur l’implémentation du système sous test.
Diverses expériences ont été réalisées afin d’analyser les performances
et l’efficacité du processus de génération de test. Nous montrons qu’une
tactique de génération de test spécifique est plus efficace que la procédure
générique. Une analyse de mutation basique a été expérimentée pour
donner une évaluation de nos cas de test générés.

Abstract HOL-TestGen/CirTA is a theorem-prover based environment
for test generation from specifications written in Circus. Circus is a formal
specification language which combines the notions of states and complex
data types in a Z-like style with a process-algebra in the tradition of
CSP. The originality of HOL-TestGen/CirTA is that it is based on a
machine-checked embedding in Isabelle/HOL of the semantics of this
language. This provides the foundation of the test-generation rules and
for their execution in form of symbolic computation. The result is an
integrated tool chain that transforms, via rules derived from the semantic
definition, the Circus specification of a system into a set of symbolic test
cases, instantiates, compiles and submits them.
This report presents a first case study performed on a component of a
real-world medical monitoring system written in Java. In this case study,
the generated test cases are compiled into a set of JUnit-testers and run
against the implementation of the system under test.
Various experiments were performed in order to analyze the perfor-
mances and the efficiency of the test generation process. We show that a
specific test generation tactic is more efficient than the generic procedure.
A basic mutation analysis was experimented to give some assessment of
our generated test cases.
Keywords: symbolic test-case generations, black box testing, theorem
proving, model-based testing, JUnit

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff
mailto:"Abderrahmane Feliachi" <Abderrahmane.FELIACHI@lri.fr>
mailto:"Marie-Claude Gaudel" <gaudel@lri.fr>
mailto:"Burkhart Wolff" <wolff@lri.fr>

2 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

1 Introduction

The use of formal specifications has been recognised for a while as providing
strong bases for specification-based testing [7]. More recently, it has been shown
in [1] how coupling the use of formal specifications and theorem-provers can lead
to some powerful environment for test generation and execution, exploiting in a
complementary way proving and testing techniques. This paper presents a case
study of the use of such an environment, HOL-TestGen/CirTA, for testing a
component of a real-world safety-critical medical monitoring system, which was
specified in Circus and written in Java.

Circus [10] is a formal specification language that combines notions of states
and complex data types in a Z-like style with a process-algebra in the tradition
of CSP and comes with a notion of refinement.

In HOL-TestGen/CirTA [5], the rules for test generation are derived from
an embedding of the semantics of Circus in Isabelle/HOL, and their execution is
controlled by proof tactics. By adding suitable front-end and back-ends, we have
developed an integrated tool chain that covers the statement of Circus specifica-
tions, symbolic test generation and test submission and execution, following the
test-theory of [2] for testing against refinement in Circus .

Technically, CirTA extends the HOL-TestGen framework [1] by adding to
HOL-TestGen’s data-type oriented test-case generation some support for tests
over the (abstract) type action embedding Circus processes. Since HOL-TestGen
is implemented in Isabelle/HOL, CirTA is just another plugin into the powerful
generic Isabelle framework, which provides libraries, proof-tools as well as docu-
mentation and code-generation facilities, and makes it possible to obtain concrete
JUnit-Testers from Circus specifications. All this environment is completely for-
mal and the test generation is derived from the semantics. It guarantees the
soundness of the generated tests and their exhaustivity.

Our test environment presented here is a newcomer to the world of specification-
based test generation tools. It presents an alternative to the existing tools for
symbolic test generation from specifications involving processes and data. For
instance, [3] and [6] present tools based on symbolic IOTS and extensions of the
ioco conformance relation. In this work we go one step further in the guaran-
tee that the test generation is consistent with the semantics of the specification
and the conformance relation, thanks to the embedding of the semantics in the
theorem prover and the use of proof tactics. The underlying prover powerful
symbolic computation machinery is very beneficial to our environment.

There is an infinite number of tests. In the current state of CirTA, there is
only a rather primitive selection strategy of a finite subset, namely bounded
exhaustive testing. Other selection strategies are currently under study, based
essentially on some structural constraints over the generated tests.

This paper is organised as follows: Section 2 briefly presents the Circus lan-
guage (2.1), then the Circus testing theory associated to the notion of Circus
refinement (2.2) and then the test generation engine (2.3); Section 3 describes
the system under test, which is a part of a remote monitoring system used in a
health-care network; Section 4 reports on the use of the CirTA system for this

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 3

case study, first presenting the test specification, which is based on the Circus
specification of the system and the test goal (here bounded exhaustive testing),
then the test generation experiments (4.2), and finally test executions (4.3). Sec-
tion 5 presents some outcomes of the case study, and Section 6 some conclusions.

2 The CirTA system architecture

The Isabelle framework offers a plug-in infrastructure: on top of the – in many
ways – generic system kernel, the HOL instance was integrated, which in itself
formed the theoretic and technical environment for HOL-TestGen, into which
CirTA has been integrated. This way, local plug-ins profit from the generic system
functionality providing document or code generation as well as libraries, proofs,
and proof-tools.

CirTA (Circus Testing Automation) is a test-generation environment for Cir-
cus. The CirTA system is composed of three main components, organized in
three different layers. The first layer defines the Circus language using its deno-
tational semantics and its UTP basis. This layer is encoded in the Isabelle/Circus
framework. On top of this framework, the second layer is defined using the op-
erational semantics and the testing theories of Circus. In the top-most layer, the
test-generation engine is defined by introducing different test-generation tactics.

2.1 The Circus language and its semantics

Circus is a formal specification language which combines the notions of states
and complex data types in a Z-like style with a process-algebra in the tradition
of CSP. The language comes with a formal notion of refinement allowing a formal
development ranging from abstract specifications and to executable models and
programs. Circus has a denotational semantics [9] sketched in terms of the UTP
[8], and a corresponding operational semantics [2]. UTP is essential for providing
a seamless semantic framework for states and processes.

We introduce in the following a Circus specification of the queue module
studied in this report.

channel get , put ,finish : N× N

process Abstract Queue =̂ begin

state QueueState == [new : seq(N× N); active : P(N× N)]

RemoveFirst : seq(N× N)× (N× N)→ seq(N× N)

RemoveFirst(〈 〉,n) = 〈 〉
∀S : seq1(N× N), e : (N× N) ,n : (N× N) •
RemoveFirst(〈e〉a S ,n) =

ifZ e = n then S else 〈e〉a RemoveFirst(S ,n)

4 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

InitQueue
QueueState ′

new ′ = 〈 〉 ∧ active ′ = ∅

AddNew
∆QueueState
x? : N× N

new ′ = new a 〈x?〉
Choose
QueueState
y ! : N× N

dom new \ dom active 6= ∅
y ! = head (new � {a, b : N | a /∈ dom active • (a, b)})

Activate
∆QueueState
y? : N× N

new ′ = RemoveFirst(new , y?)
active ′ = active ∪ {y?}

Remove
∆QueueState
x? : N× N

active ′ = active \ {x?}

Put =̂ put ?x → AddNew
Get =̂ (dom new \ dom active 6= ∅) & (Choose; get !y → Activate)
Finish =̂ finish?x ∈ active → Remove

• var x , y : N× N • InitQueue ; (µX • ((Put 2 Get) 2 Finish) ; X)
end

2.2 The Circus testing theory

In [2] the foundations of testing based on Circus specifications are stated for two
conformance relations: traces inclusion and deadlocks reduction (usually called
conf in the area of test derivation from transition systems). The conjunction of
these relations corresponds to the Circusnotion of refinement, in the case of non
divergent specifications.

The basis of this work is an operational semantics that expresses in a symbolic
way the evolution of systems specified in Circus. Using this operational seman-
tics, symbolic characterizations of traces, initials, and acceptance sets have been
stated and used to define relevant notions of tests. Two symbolic exhaustive test
sets have been defined respectively for traces refinement and deadlocks reduction:
proofs of exhaustivity guarantee that, under some basic testability hypotheses,
a system under test (SUT) that would pass all the concrete tests obtained by
instantiation of the symbolic tests of the symbolic exhaustive test set satisfies
the corresponding conformance relation.
The tests are defined using the following notions:

– cstraces : a constrained symbolic trace is a pair composed of a symbolic trace
st and a constraint c on the symbolic variables of st .

– csinitials: the set csinitials associated with a cstrace (st , c) of a Circus
process P contains the constrained symbolic events that represent valid con-
tinuations of (st , c) in P , i.e. events that are initials of P after (st , c).

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 5

– csinitials : given a process P and one of its cstraces (st , c), the set csinitials
contains the constrained symbolic events that represent the events that are
not initials of P for any of the instances of (st , c).

– csacceptances: a csacceptances set associated with a cstrace (st , c) of a Circus
process P is a set of sets SX of symbolic acceptances. An acceptance is a set
of events in which at least one event must be accepted after (st , c).

An example, in the Queue process, of a constrained symbolic trace and a con-
strained symbolic event after this trace is given by:

([put .a, put .b, get .c], a = c) (finish.d , d = a)

Symbolic tests for traces inclusion. traces inclusion refers to inclusion of
trace sets: process P2 is a traces inclusion of process P1 if and only if the set
of traces of P2 is included in that of P1. Symbolic tests for traces inclusion are
based on some cstrace cst of the Circus process P used to build the tests, followed
by a forbidden symbolic continuation, namely a constrained symbolic event cse
belonging to the set csinitials associated with cst in P . Such a test passes if
its parallel execution with the SUT blocks before the last event, and fails if it is
completed. An example of a symbolic test for traces inclusion is given by:

([put .a, put .b, get .c], c 6= a)

Symbolic tests for deadlocks reduction. deadlocks reduction (also called
conf) requires that deadlocks of process P2 are deadlocks of process P1. The
definition of symbolic tests for deadlocks reduction is based on a cstrace cst
followed by a choice over a set SX , which is a symbolic acceptance of cst . Such
a test passes if its parallel execution with the SUT is completed and fails if
it blocks before the last choice of events. An example of a test for deadlocks
reduction in Fibonacci is given by:

([put .a, put .b, get .c], c = a) {put .d , get .b,finish.c}

In [5], we presented a formalization of all these notions in Isabelle/Circus. This
formalization forms the second layer of the CirTA system. This formalization is
the basis of the test generation tactics defined in the top-most layer.

2.3 The test-generation engine

Starting from a Circus specification, the role of the test-generation engine is to
derive traces and tests for each conformance relation. It defines some general
tactics for generating, cstraces and test-cases for the two conformance relations
introduced earlier.

6 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

Trace generation Test definitions are introduced as test specifications that
will be used for test-generation. For trace generation a proof goal is stated to
define the traces a given system may perform. This statement is given by the
following rule, for a given process P :

length(tr) ≤ k tr ∈ cstraces(P)

Prog(tr)
(1)

where k is a constant used to bound the length of the generated traces.
While in a conventional automated proof, a tactic is used to refine an inter-

mediate step (a “subgoal”) to more elementary ones until they eventually get
“true”, in prover-based testing this process is stopped when the subgoal reach
a certain normal form of clauses, in our case, when we reach logical formulas
of the form: C =⇒ Prog (tr), where C is a constraint on the generated trace.
Note that different simplification rules are applied on the premises until no fur-
ther simplification is possible. The final step of the generation produces a list of
propositions, describing the generated traces stored by the free variable Prog .
The test specification 1 is introduced as a proof goal in the proof configuration.
The premise of this proof goal is first simplified using the definition of cstraces.
The application of the trace generation tactic on this proof goal generates the
possible continuations in different subgoals. The elimination rules of the opera-
tional semantics are applied to these subgoals in order to instantiate the trace
elements. Infeasible traces correspond to subgoals whose premises are false. In
this case, the system is able to close these subgoals automatically.

Specifications may describe unbounded recursive behavior and thus yield an
unbounded number of symbolic traces. The generation is then limited by a given
trace length k , defined as a parameter for the whole generation process. The list
of subgoals corresponds to all possible traces with length smaller than this limit.

The trace generation process is implemented in Isabelle as a tactic. The
trace generation tactic can be seen as an inference engine that operates with
the derived rules of the operational semantics and the trace composition relation.

Test generation for traces inclusion. The generation of csinitials is done
using a similar tactic as for cstraces. In order to capture the set of all possible
csinitials, the test theorem is defined in this case as follows:

S = csinitials(P , tr)

Prog S
(2)

the free variable Prog records the set S of all csinitials of P after the trace tr .
The generation of tests for traces inclusion is done in two stages. First, the

trace generation tactic is invoked to generate the symbolic traces. For each gen-
erated trace, the set of the possible csinitials after this trace is generated using
the corresponding generation tactic. Using this set, the feasible csinitials are
generated and added as a subgoal in the final generation state.

Test generation for deadlocks reduction. test-generation in this case is
based on the generation of the csacceptancesmin set. For a given symbolic trace

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 7

generated from the specification, the generation of the sets of csacceptancesmin

is performed in three steps. First, all possible stable configurations that can be
reached by following the given trace are generated. In the second step, all pos-
sible IOcsinitials are generated for each configuration obtained in the first step.
Finally, the csacceptancesmin set is computed from all resulting IOcsinitials.
The different generation tactics are explained in detail in [5].

3 The Application: A Message-Multiplexer in a medical
Home-Monitoring System

Our case study addresses a part of a remote monitoring system used in a world-
wide health-care network. The network connects a variety of devices that can
be for instance pacemaker controllers. The automatic monitoring system keeps
track of the status of all connected devices that regularly send diagnostic, ther-
apeutic, and technical data on the current clinical status of the patients.

The monitoring system collects a huge number of messages then routes them
to their corresponding processing services in order to be processed. The routing
policy is particular and depends on the nature of the message and the type of the
device. It is very critical and must be correctly implemented in the monitoring
system. A wrong message routing may lead to information misinterpretation
that can be risky for the patients health.

An overview of the remote monitoring system is given in Figure 1.

Figure 1. Remote monitoring system overview

The remote monitoring system is composed essentially of a queue module and
a set of processing services. The different message manipulations and routing
operations are carried out by the queue module. Each message is characterized
with a device identifier and its actual content. The queue receives, stores then
assigns messages to the corresponding processing services. The main operations
that can be performed by the queue are:

– PUT: The queue receives the messages using the PUT operation and stores
them with the new status.

– GET: The processing services can retrieve new messages from the queue and
mark them as active.

– FINISH: When a processing service successfully completes a message pro-
cessing, this active message is completely removed from the queue.

The device identifiers are associated to the message to indicate their sources.
Two messages sent from the same device should not be processed simultaneously,

8 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

the processing order follows the sending order. This order is important since the
processing of the later message may depend on the results of the processing of
the first one. Messages that comes from different sources are processed following
the arrival order following a FIFO discipline.

4 Testing in CirTA

The testing procedure is very similar to the standard HOL-TestGen procedure
described in [1]. First, an HOL-based test specification is introduced describing
the test goal. Inference rules are then used to derive test cases from this specifi-
cation following some predefined tactics. Finally, Testers are generated from the
resulting test cases and executed against the SUT.

4.1 Test-Specification

The test specifications are defined using a specification of the SUT. For this, we
provide an abstract Circus specification of the queue module. For the sake of sim-
plicity, we consider message identifiers and contents as natural numbers. Using
the syntax of Isabelle/Circus, we introduce in the CirTA system a formalization
of the Abstract_Queue process:

circusprocess Abstract_Queue =

alphabet = [x::nat×nat, y::nat×nat]
state = [new::(nat×nat) list, active::(nat×nat) set]

channel = [get nat×nat, put nat×nat, finish nat×nat]
schema InitQueue = new’ = [] ∧active’ = {}

schema AddNew = new := new@[x]

schema Choose = (∃ a∈set new. fst a /∈fst ‘ active) ∧
y := hd (filter (λb.∀ a∈active. fst a 6=fst b) new)

schema Activate = new’ = RemoveFirst new y ∧active’ = active ∪{y}
schema Remove = active := active - {x}

action Put = put?x →(Schema AddNew)

action Get = (λ A. (fst‘(set (new A))) - (fst‘(active A)) 6={}) &

((Schema Choose); get!y →(Schema Activate))

action Finish = finish?x∈active →(Schema Remove)

where (Schema InitQueue); µX ·(((Put 2 Get) 2 Finish); X)

For trace generation, a test specification is stated as a proof goal describ-
ing the traces to generate. This test specification, in our case, is given by the
following formula:

tr ∈cstraces Abstract_Queue =⇒ prog tr

where cstraces defines the set of traces and prog is a free variable used to store
the generated traces.

For each generated trace, different test cases are generated to test the trace
inclusion relation. A test specification is stated as a proof goal in order to start
the generation. The complete test specification is given as follows:

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 9

tr ∈cstraces Abstract_Queue ∧
e ∈ csinitialsb Abstract_Queue tr =⇒ prog tr@[e]

where csinitialsb defines the set of csinitials.
Similarly, each generated trace is used to generate the corresponding tests

w.r.t. the deadlock reduction conformance relation. The test specification corre-
sponding to all the possible traces is given as follows:

tr ∈cstraces Abstract_Queue ∧
e ∈ csacceptances Abstract_Queue tr =⇒ prog tr e

where csacceptances is the set of acceptances of Abstract_Queue after tr.

4.2 Test-Generation Experiments

The test generation for the Queue process is done in two steps. First, all possible
traces (up to a given length) are generated. Then, for each generated trace, two
test sets are generated, one for trace inclusion and one for deadlock reduction.
The symbolic generated tests are then transformed into instantiated tests via
some HOL-TestGen’s method called gen_test_data, and then into executable
tests that will be exercised against the system (see subsection 4.3).

Trace generation The generic trace generation tactic is defined using the oper-
ational semantics rules applied along with the system simplifier. The constraints
associated to the generated tests define the domain of the symbolic tests. These
constraints, in our case, can become very complex due to the non-determinism
at the level of the retrieved message. A constraint defined by a disjunction of
two constraints defines a union of two subdomains. Some DNF decomposition
[4] can be used to split this kind of domains into two distinct domains. This
significantly increases the number of the generated traces, however it reduces
drastically the complexity of the constraints.

The trace generation tactic is invoked using different trace lengths. A first
(expected) drawback of the generic trace generation tactic is the lack of efficiency:
the generation time grows exponentially w.r.t. the trace length. For a length of 4,
the generation takes more than 20 seconds against a maximum of 5 seconds for
shorter traces. For traces of length 5, the generation time is around 5 minutes.

This is due to the heavy machinery used for trace generation and also to
the multiple silent transitions of the operational semantics. A characteristic of
our specification is that, after the initialization, it behaves in a recursive way.
We can take advantage of this characteristic to improve the trace generation
efficiency by factorizing the generations steps. During one recursion, different
silent transitions are performed, in addition to one communication transition.
All these transitions can be factorized in a one-step transition that covers the
silent and the communication transitions. A specific rule for this transition called
OneStep was proved from the operational semantics.

Using the OneStep rule, the overall generation time is reduced. For a length
of 5 for example, the trace generation takes less than 2.5 seconds and for 6 less
than 8 seconds. A list of all the performed experiments is given in section 5.

10 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

We were led to limit the length of generated traces to 7 and thus the generated
tests will have a maximum length of 8. This limit is chosen only for practical
reasons, due to the current number of cases: the number of generated traces
using this limit is around 300. Thus the whole test generation tactics takes an
important execution time. This number is important due to the fact that we
generate exhaustively. In the near future, we plan to consider more restrictive
selection hypothesis in order to focus on interesting and longer selected tests.

Examples of generated traces are the following:∧
a b c d e f. prog [put (a, b), put (c, d), put (e, f), get (a, b)]∧
a b c d. prog [put (a, b), put (c, d), get (a, b), finish (a, b)]

As said above, for practical reasons the length limit considered for the mo-
ment is 7. A regularity hypothesis is stated on the length of traces. This regularity
hypothesis is given as follows:

THYP ((length tr ≤ 7 −→ prog tr) −→ (∀ tr. prog tr))

Test generation for trace inclusion The trace generation tactic instantiates
the variable tr of this test specification to all the possible traces. This results
into different test specifications each associated to a different trace. The initials
generation tactic is used to generate the corresponding initials for each test spec-
ification. This generation is done in parallel for all test specifications resulting
from the trace generation step.

The tests are then retrieved by unfolding the definition of csinitialsb in
the test specification, then simplifying the resulting proof goal. Like for traces,
the generation of initials is also slow when using the operational rules directly.
A factorized version of the initials generation rules was also derived and proved.

As an example, let us consider the trace [put (a, b), put (aa, ba)]. This
trace is used to illustrate the test generation tactic and its results. The test
specification corresponding to this trace is given in the following:∧
a b c d. e∈csinitialsb Abstract_Queue [put (a, b), put (c, d)]

=⇒ prog [put (a, b), put (c, d), e]

The result of the test generation tactic is the list of the possible tests, defined
by the trace and a non initial element. In this case, three different tests are
generated, each one associated to a constraint (af 6= a and bf 6= b).∧
a b c d e f. e 6=a =⇒ prog [put (a, b), put (c, d), get (e, f)]∧
a b c d e f. f 6=b =⇒ prog [put (a, b), put (c, d), get (e, f)]∧
a b c d e f. prog [put (a, b), put (c, d), finish (e, f)]

These tests are represented in a symbolic way, using symbolic HOL vari-
ables (e. g. a, b, ba ...). To obtain concrete finite test cases, some selection
hypotheses must be stated on the symbolic tests. We reused in this step the
gen_test_cases method of the HOL-TestGen system. This method makes more
simplifications on the current symbolic tests. It applies also a uniformity hypoth-
esis on the simplified symbolic tests and returns schematic test cases. Schematic

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 11

values are represented by schematic variables (e. g.?X32X18) which are also con-
strained. These schematic variables can be instantiated by any values satisfying
the constraints. The resulting schematic test cases are presented as follows:

?X32X18 6= ?X44X30 =⇒ prog [put (?X44X30, ?X43X29),

put (?X42X28, ?X41X27), get (?X32X18, ?X31X17)]

?X16X17 6= ?X28X29 =⇒ prog [put (?X29X30, ?X28X29),

put (?X27X28, ?X26X27), get (?X17X18, ?X16X17)]

prog [put (?X14X29, ?X13X28), put (?X12X27, ?X11X26),

finish (?X2X17, ?X1X16)]

In addition to the schematic test cases, a uniformity hypothesis, is stated
for each test case. The uniformity covers all the symbolic variables of the sym-
bolic test, so only one hypothesis is obtained by symbolic test. An example of a
uniformity hypothesis for the first case is:

THYP ((∃ x xa xb xc xd xe. xa 6=xe ∧
prog [put (xe, xd), put (xc, xb), get (xa, x)]) −→
(∀ x xa xb xc xd xe. xa 6=xe −→
prog [put (xe, xd), put (xc, xb), get (xa, x)]))

In order to be executed, the schematic test cases must be instantiated with
concrete values. For this, a HOL-TestGen’s method called gen_test_data is
directly used. This method uses smt solvers (e. g. Z3) to instantiate concrete
values for the schematic variables. The resulting test cases of our example are:

prog [put (3, 1), put (0, 0), get (0, 1)]

prog [put (0, 0), put (3, 1), get (3, 2)]

prog [put (1, 2), put (1, 6), finish (0, 1)]

Test generation for deadlock reduction The trace generation tactic is used
to generate all the possible traces of a given length. The acceptances generation
tactic is then applied automatically to all the generated traces. In order to in-
crease the efficiency of the test generation, we introduce some parallelization:
each test specification, associated to one possible trace, is treated separately.
The test-generation is then performed in parallel to all these test specifications.

If we consider for example the trace [put (a, b), put (aa, ba)], then
the corresponding test specification is given by the following:∧
a b aa ba.

e ∈ csacceptances Abstract_Queue [put (a, b), put (aa, ba)] =⇒
prog [put (a, b), put (aa, ba)] e

The acceptances generation tactic is used to retrieve the corresponding ac-
ceptance sets. The resulting proof goal contains in each subgoal the variable
prog associated to a trace and an acceptance set. As for the trace refinement,
some factorized rules were derived and used in the generation in order to reduce
its time. The previous example produces one test case presented as follows:

12 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff∧
a b aa ba af bf.

prog [put (a, b), put (aa, ba)] {get (a, b), put (af, bf)}

The generated symbolic acceptance set is finite in this case, due to the struc-
ture of the specification. This is the case for all the generated tests. As a conse-
quence, test selection, instantiation and translation are not very complicated.

Following the same strategy as for trace inclusion, HOL-TesGen is reused for
test selection and instantiation. First, the gen_test_cases method is applied
on the proof goal. This method applies some simplifications and then states a
uniformity hypothesis on the symbolic variables of the tests. This results, for the
previous example, on the following schematic test case:

prog [put (?X14X45, ?X13X44), put (?X12X43, ?X11X42)]

{get (?X14X45, ?X13X44), put (?X2X33, ?X1X32)}

The following uniformity hypothesis is associated to this test case:

THYP ((∃ x xa xb xc xd xe.

prog [put (xe, xd), put (xc, xb)] {get (xm, xl), put (xa, x)})−→
(∀ x xa xb xc xd xe.

prog [put (xe, xd), put (xc, xb)] {get (xm, xl), put (xa, x)}))

Finally, and in order to make the tests executable, the schematic test cases
are instantiated to concrete tests. This is done using the gen_test_data method
provided by HOL-TestGen. For our example, the resulting concrete test obtained
by this method is given by:

prog [put (1, 1), put (10, 5)] {get (1, 1), put (0, 2)}

4.3 Testers and Test-Code

The queue is implemented in Java and integrated to the whole remote monitoring
system. In order to test this implementation, JUnit testing facilities are used
for test execution. Starting from the queue specification, tests are generated
then translated into JUnit test cases. The resulting test cases are then directly
executed on the given implementation.

In order to execute the concrete tests against the provided Java implemen-
tation of the queue, these test cases must be expressed in terms of JUnit test
methods. Each event of the trace is translated to a call to the corresponding
method in the implementation. The execution is then done directly in the Eclipse
platform using JUnit testing facilities.

Trace inclusion For the first conformance relation, the concrete tests generated
previously are automatically translated into Java methods. This translation is
done using a new method called export_test_file that we developed for this
purpose. The translation (ML) method implements some translation rules for
each event of the concrete tests.

For the trace events, the translation is straightforward, put and finish

events are translated directly to the corresponding methods. The get event is

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 13

translated into a call to the corresponding method, followed by a check of the
resulting value. The call of these methods may fail. This is detected by an ex-
ception or by a wrong result returned by get. If the call fails at this stage, the
test is considered inconclusive.

The last event is treated differently, because it is supposed to fail. The put

and finish should throw an exception. The get event is translated as in the case
of trace events, but the check of the resulting value is inverted. A test succeeds
if one of the methods throws an exception or if the result of the get method
corresponds to the incorrect value described in the test.
The first test case presented previously, produce the following JUnit method:

1 pub l i c void testqueue1_1 () throws Exception {
2 AbstractQueueableObject o_3_1 = new NamedEntry (” top i c ” , 3 , 1) ;
3 AbstractQueueableObject o_0_0 = new NamedEntry (” top i c ” , 0 , 0) ;
4 AbstractQueueableObject o_0_1 = new NamedEntry (” top i c ” , 0 , 1) ;
5 AbstractQueueableObject o = nu l l ;
6 tm . begin () ;
7
8 try { queueManager . put (o_3_1) ; tm . commit () ; }
9 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; r e turn ;}

10
11 try { queueManager . put (o_0_0) ; tm . commit () ; }
12 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; r e turn ;}
13
14 o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ;
15 assertFalse (equals (o_0_1 , o)) ;
16 }

Deadlock reduction The generated tests for the second conformance relation
are also automatically translated into Java methods. This is done using a method
called export_test_file2, which is slightly different from the first one. The
translation rules are the same for the (sub)traces, by transforming each event
into the corresponding method. For the acceptances set, the translation is more
tricky. Since our acceptances sets are finite, the concrete acceptances can be
enumerated and translated to produce the following behavior: First, the queue
state is saved using a commit operation. Then for the first acceptance event,
the corresponding method is called. If the call fails, the queue state is retrieved
using the rollback operation and the execution continues with the remaining
acceptances. As soon as a call is successfully performed, the test passes. If all
the acceptances fail then the test fails as well.

In the special case of infinite acceptances sets, the translation will be slightly
different. The instantiation is not possible at the generation step, an on-line
testing scenario is more convenient. The symbolic test must be translated directly
to the corresponding method call. The obtained input is used to check if the
constraint associated to this test is satisfied.
The concrete test case generated previously produces the following test method:

1 pub l i c void testqueue1_1 () throws Exception {
2 AbstractQueueableObject o_1_1 = new NamedEntry (” top i c ” , 1 , 1) ;
3 AbstractQueueableObject o_10_5 = new NamedEntry (” top i c ” , 10 , 5) ;
4 AbstractQueueableObject o_0_2 = new NamedEntry (” top i c ” , 0 , 2) ;
5 AbstractQueueableObject o = nu l l ;

14 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

6 tm . begin () ;
7
8 try { queueManager . put (o_1_1) ; tm . commit () ; }
9 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; r e turn ;}

10
11 try { queueManager . put (o_10_5) ; tm . commit () ; }
12 catch (Exception e) { System . out . println (” i n c on c l u s i v e ”) ; r e turn ;}
13
14 try
15 { o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ; tm . commit () ; }
16 catch (Exception e)
17 { tm . rollback () ; queueManager . put (o_0_2) ; tm . commit () ; }
18
19 i f (o == nu l l | | ! equals (o_1_1 , o)) {
20 tm . rollback () ; queueManager . put (o_0_2) ; tm . commit () ;
21 }
22 }

5 Test evaluation

The experiments are done using Isabelle2013 running on a computer working on
Windows 7. The computer has an 8-core processor (Intel i7 2600) and 6 GB of
RAM. Different experiments are realized by varying the trace length of the tests
from 0 to 8. The number of tests and the generation time corresponding to each
length for the trace inclusion relation are summarized in table 1.

Trace length
Traces Symbolic Tests Schematic Tests Instantiation

time / number time / number time time

0 0 / 1 0.02 / 2 0.02 0.01

1 0.2 / 2 0.02 / 5 0.02 0.01

2 0.2 / 4 0.03 / 11 0.05 0.01

3 0.4 / 8 0.07 / 30 0.1 0.03

4 0.9 / 17 0.19 / 83 0.5 0.2

5 2.5 / 41 1 / 262 2.2 2.6

6 8 / 106 19 / 1039 15 65

7 42 / 297 134 / 4396 351 3000

8 600 / 904 104 / 22647 - -

Table 1. Statistics of test generation for trace inclusion

The generation time, as well as the number of generated test cases grow
exponentially w.r.t. the trace length. For traces of length 8, the system limits
are reached, due to the important number of symbolic test cases. In order to
generate longer test cases, one can introduce more specific selection hypotheses.
This will produce less but more focused test cases.

The exhaustive test generation for length at most 8 produced a total of 4396
test cases using the 297 traces of length smaller or equal to 7. All the gener-
ated test cases are concrete, where all communicated values are instantiated. As
explained before, all these test cases are compiled into Java test methods that

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 15

are executed using JUnit. The test execution time is negligible w.r.t. the test
generation time (less than 10 seconds).

The same experiments are done for the deadlock reduction conformance re-
lation. The statistics are summarized in table 2.

Trace length
Traces Symbolic Tests Schematic Tests Instantiation

time / number time / number time time

0 0 / 1 0.03 / 1 0.02 0.01

1 0.2 / 2 0.03 / 2 0.02 0.01

2 0.2 / 4 0.04 / 4 0.02 0.03

3 0.4 / 8 0.06 / 10 0.04 0.05

4 0.9 / 17 0.5 / 30 0.26 0.1

5 2.5 / 41 2/112 0.9 0.6

6 8 / 106 5 / 496 5.8 15

7 42 / 297 97 / 2473 194 670

8 600 / 904 2100 /13918 - -

Table 2. Statistics of test generation for deadlocks reduction

The exhaustive test generation produces not less than 2473 test methods from
all the traces of length smaller than 7. As for trace inclusion, all resulting test
methods are collected in a Java test file and executed against the implementation.
Comparing to the first conformance relation, the generation produces less test
cases in less time.

Test execution. For the trace-inclusion conformance relation, the execution of
the 4396 test methods ended without finding errors, but with 1024 inconclusive
tests. In the second case of deadlock reduction relation, no errors and 494 incon-
clusive tests resulted from executing the 2473 test cases. The component under
test was intensively tested during the development of the system; thus it is not
a surprise that no errors were detected by our generated tests.

A significant number of test cases ended with an inconclusive verdict (1518
from 6869), which reduces the efficiency of our test. In order to reduce the
number of inconclusive tests, one possible solution is to combine the tests of
the two conformance relations. The structure of the tests will be more complex
(tree-shaped) but the number of resulting tests would be smaller.

In order to make some preliminary evaluation of our generated test cases,
some basic mutation testing experiments were performed. One important mu-
tant of the queue is the one that inverts the order of insertion of the elements.
This mutant was detected only by 1 test case, but more than 1840 test cases
were inconclusive. Different mutations were also applied, mainly by inverting
some conditions. All these mutants were killed by some test cases of the trace
inclusion conformance relation. Due to the nature of our mutations, no errors
were detected by the test cases for deadlocks reduction. However, the number of
inconclusive tests increased significantly. All these mutation experiments were

16 Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

performed manually, due to the lack of fully integrated and maintained mutation
testing tools for Java and Junit.

6 Conclusion

This paper presents a case study of the HOL-TestGen-CirTA test generation
environment. This first case study covers a black-box testing experience on a
real safety-critical health-care system. The system under test is a queue module,
implemented in Java and provided with a JUnit infrastructure. Starting from an
abstract specification of the system in Circus, our environment is used to gener-
ates traces and then tests for two conformance relations. JUnit testers are then
extracted form the generated tests and executed against the real system. Differ-
ent experiments were performed to measure the efficiency of the test generation
procedures. Some basic mutation analysis was also performed to evaluate the
usefulness of the generated tests.

The test generation environment is a generic push button solution for any Cir-
cus specification. However, from our experiments, it turns that some customised
generation tactics should be used.Such specific, factorised, tactics are not al-
ways easy to figure out and essentially depend on the studied specification. A
fair compromise would be to define some factorized rules, that describe complex
but yet generic behaviors.

The test experiments revealed no errors, which is not a big surprise given
that the system under test is already in use. However, this case study presents
a proof of technology of how our environment can be used for a real system.
On the basis of this environment, it remains to introduce more realistic testing
strategies than exhaustivity. It will be done by introducing stronger test hy-
potheses, thus some guidance of the test-generation tactics. The formal basis of
our development should make it easy to define such hypotheses in forms of test
purposes or coverage criteria. This can be done either on the specification level
(by composing the process with a test purpose, similarly to [3]) or at the test
generation level (by introducing the test purposes as structural constraints on
the resulting tests).

An important drawback of the current approach is the number of resulting
inconclusive test cases. We are currently working on some alternative test defini-
tions, that will allow us to reduce the number of these cases. An other hot topic
is the implementation of some on-line testing facilities. This would improve dras-
tically the efficiency of the testing process and reduce by the way the number of
inconclusive tests.

References

[1] Achim D. Brucker and Burkhart Wolff. On Theorem Prover-based Testing. Formal
Aspects of Computing (FAOC), 2012.

[2] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in Circus. Acta
Inf., 48(2):97–147, April 2011. ISSN 0001-5903.

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wolff

Exhaustive Testing in HOL-TestGen/CirTA – a case study 17

[3] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A symbolic
test generation tool. In TACAS, pages 470–475, 2002.

[4] Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test
cases from model-based specifications. In FME, pages 268–284, 1993.

[5] Abderrahmane Feliachi. Semantics-Based Testing for Circus. PhD thesis, Univer-
sité Paris-Sud 11, 2012.

[6] L. Frantzen, J. Tretmans, and T. Willemse. A symbolic framework for model-based
testing. In Formal Approaches to Software Testing and Runtime Verification,
volume 4262 of LNCS, pages 40–54. 2006. ISBN 978-3-540-49699-1.

[7] Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors. Formal
Methods and Testing, An Outcome of the FORTEST Network, Revised Selected
Papers, volume 4949 of Lecture Notes in Computer Science, 2008. Springer.

[8] C.A.R. Hoare and J. He. Unifying theories of programming, volume 14. Prentice
Hall, 1998.

[9] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A denotational semantics
for Circus. Electron. Notes Theor. Comput. Sci., 187:107–123, 2007.

[10] Jim Woodcock and Ana Cavalcanti. The semantics of circus. In ZB ’02, pages
184–203, London, UK, 2002. Springer-Verlag.

	RR1562entete
	RR1562rapp
	Exhaustive Testing in HOL-TestGen/CirTA a case study -0.6cm

