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Abstract UML/OCL is perceived as the de-facto standard for specifying
object-oriented models in general and data models in particular. Since
recently, all data types of UML/OCL comprise two different exception
elements: invalid (“bottom” in semantics terminology) and null (for
“non-existing element”). This has far-reaching consequences on both the
logical and algebraic properties of OCL expressions as well as the path
expressions over object-oriented data structures, i. e., class models.
In this paper, we present a formal semantics for object-oriented data
models in which all data types and, thus, all class attributes and path
expressions, support invalid and null. Based on this formal semantics,
we present a set of OCL test cases that can be used for evaluating the
support of null and invalid in OCL tools.
Keywords: Object-oriented Data Structures, Path Expressions, Feath-
erweight OCL, Null, Invalid, Formal Semantics

1 Introduction

UML/OCL is perceived as the de-facto standard for modeling object-oriented sys-
tems in general and object-oriented data structures in particular. Since 2006 [10],
all data types of UML/OCL comprise two different exception elements: invalid
(“bottom” in semantics terminology) and null (for “non-existing element”). This
has far-reaching consequences on both the logical and algebraic properties of
OCL expressions as well as the path expressions of class models.

In [5], we presented a formal semantics for a subset of OCL 2.3.1 [11], called
Featherweight OCL, and we discussed the consequences of invalid and null on
the logic layer and the algebraic layer. In this paper, we discuss the consequences
on the data modeling layer: we present a formal semantics for object-oriented
data structures as well as for path expressions that are necessary to express class
invariants and contracts consisting of preconditions and postconditions.

Consider, for example, a simple design model capturing a management hier-
archy in a company (see Fig. 1). While, theoretically, both the attribute salary
and the association end boss can be invalid, valid but not represent a “regular
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context Person
inv min_salary: salary > 0
inv boss_earns_more:

boss <> null implies boss.salary >= salary

Person
salary:Integer

boss
0..1

Fig. 1. A simple design model capturing a management hierarchy in a company

value” (i. e., null), or valid and represent a regular value (i. e., an integer value
representing a salary, respectively, a valid object of type Person), this is not true
in reality: from the multiplicity requirement 0..1 we can directly infer that the
association end boss is valid. Still, it is not immediately clear if the null is a
valid representation of an association end with multiplicity 0..1. In fact, this is
one of the questions we answer in this paper. From the invariant min_salary,
we would expect that the attribute salary is always valid as well as never null.

The main contribution of this paper is a formal, machine-checked semantics
for object-oriented data models that can be enriched with class invariants as
well as preconditions and postconditions expressed in Featherweight OCL [5].
The underlying formalization of object-oriented datatypes4 extends the work
of [3] with support for null: all data types and, thus, all class attributes and
path expressions, support both exception elements (see Sec. 3). Moreover, based
on this formal semantics, we present a set of OCL test cases that can be used
for evaluating the support of null and invalid in OCL tools (see Sec. 4).

2 Background

2.1 Higher-order Logic and Isabelle

Higher-order Logic (HOL) [1, 8] is a classical logic with equality enriched by
total polymorphic higher-order functions. It is more expressive than first-order
logic, e. g., induction schemes can be expressed inside the logic. HOL is based
on the typed λ-calculus, i. e., the terms of HOL are λ-expressions. Types of
terms may be built from type variables (like α, β, . . . , optionally annotated by
Haskell-like type classes as in α :: order or α :: bot) or type constructors. Type
constructors may have arguments (as in α list or α set). The type constructor
for the function space ⇒ is written infix: α⇒ β; multiple applications like τ1 ⇒
(. . .⇒ (τn ⇒ τn+1) . . .) have the alternative syntax [τ1, . . . , τn]⇒ τn+1. HOL is
centered around the extensional logical equality _ = _ with type [α, α]⇒ bool,
where bool is the fundamental logical type. We use infix notation: instead of
(_ = _) E1 E2 we write E1 = E2. The logical connectives _∧_, _∨_, _⇒ _
of HOL have type [bool,bool]⇒ bool, ¬_ has type bool⇒ bool. The quantifiers
∀_._ and ∃_._ have type [α⇒ bool]⇒ bool. The quantifiers may range over
types of higher order, i. e., functions or sets. The definition of the element-hood
_ ∈ _, the set comprehension {_._}, as well as _∪_ and _∩_ are standard.

4 The formalization is available at: https://projects.brucker.ch/hol-testgen/
svn/HOL-TestGen/trunk/hol-testgen/add-ons/Featherweight-OCL/.

https://projects.brucker.ch/hol-testgen/svn/HOL-TestGen/trunk/hol-testgen/add-ons/Featherweight-OCL/
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Isabelle is a generic interactive theorem proving system; Isabelle/HOL is an
instance of the former with HOL. The Isabelle/HOL library contains formal defi-
nitions and theorems for a wide range of mathematical concepts used in computer
science, including typed set theory, well-founded recursion theory, number theory
and theories for data-structures like Cartesian products α× β and disjoint type
sums α+β. The library also includes the type constructor τ⊥ := ⊥ | x_y : α that
assigns to each type τ a type τ⊥ disjointly extended by the exceptional element
⊥. The function p_q : α⊥ ⇒ α is the inverse of x_y (unspecified for ⊥). Partial
functions α ⇀ β are defined as functions α⇒ β⊥ supporting the usual concepts
of domain (dom _) and range (ran _). The library is built entirely by logically
safe, conservative definitions and derived rules. This is also true for HOL-OCL [4]
and Featherweight OCL [5].

2.2 Formalizing the Core of OCL in HOL: Featherweight OCL

OCL is composed of 1) operators on built-in data structures such as Boolean,
Integer or Set(_), 2) operators of the user-defined data model such as accessors,
type casts and tests, and 3) user-defined, side-effect-free methods. Conceptually,
an OCL expression in general and Boolean expressions in particular (i. e., for-
mulae) depends on a pair (σ, σ′) of pre- and post-states. The precise form of
states is irrelevant for this paper (compare [6]) and will be left abstract in this
presentation. We construct in Isabelle a type class null that contains two dis-
tinguishable elements bot and null. Any type of the form (α⊥)⊥ is an instance
of this type class with bot ≡ ⊥ and null ≡ x⊥y. Now, any OCL type can be
represented by an HOL type of the form: V(α) := state× state ⇒ α :: null. We
define V((bool⊥)⊥) as the HOL type for the OCL type Boolean:

IJinvalid :: V (α)Kτ = bot IJnull :: V (α)Kτ = null

IJtrue :: BooleanKτ = xxtrueyy IJfalseKτ = xxfalseyy

IJX.oclIsUndefined()Kτ= (if IJXKτ ∈
{

bot,
null

}
then IJtrueKτ else IJfalseKτ)

IJX.oclIsInvalid()Kτ = (if IJXKτ = bot then IJtrueKτ else IJfalseKτ)

where IJEK is the semantic interpretation function commonly used in mathemat-
ical textbooks and τ stands for pairs of pre- and post state (σ, σ′). Due to the
used style of semantic representation (a shallow embedding) I is in fact super-
fluous and defined semantically as the identity; in Isabelle theories, it is usually
left out in definitions to pave the way for Isabelle to check that the underly-
ing equations are axiomatic definitions and therefore logically safe. For reasons
of conciseness, we will write δ X for not X.oclIsUndefined() and υ X for
not X.oclIsInvalid() throughout this paper.

3 Semantics of States and Class Models

In the following, we will refine the notion of state used in the previous section
to much more detail. In contrast to wide-spread opinions, UML class diagrams



represent in a compact and visual manner quite complex, object-oriented data-
types with a surprisingly rich theory. It is part of our endeavor here to make this
theory explicit and to point out corner cases. A UML class diagram—underlying
a given OCL formula—produces a number of implicit operations which become
accessible via appropriate OCL syntax:
1. Classes and class names (written as C1, . . . , Cn), which become types of

data in OCL . Class names declare two projector functions to the set of all
objects in a state: Ci.allInstances() and Ci.allInstances@pre(),

2. an inheritance relation _ < _ on classes and a collection of attributes A
associated to classes,

3. two families of accessors; for each attribute a in a class definition (denoted
X. a :: Ci → A and X. a @pre :: Ci → A for A ∈ {V(. . .⊥), C1, . . . , Cn}),

4. type casts that can change the static type of an object of a class (denoted
X. oclAsType(Ci) of type Cj → Ci)

5. two dynamic type tests (denoted X. oclIsTypeOf(Ci) and
X. oclIsKindOf(Ci) ),

6. and last but not least, for each class name Ci there is an instance of the
overloaded referential equality (written _ .

= _).
We will assume a strong static type discipline in the sense of Hindley-Milner
types; Featherweight OCL has no “syntactic subtyping.” This does not mean that
subtyping can not be expressed semantically in Featherweight OCL; by giving a
formal semantics to type-casts, subtyping becomes an issue of the front-end that
can make implicit type-coersions explicit by introducing explicit type-casts.

3.1 Object Universes.

It is natural to construct system states by a set of partial functions f that map
object identifiers oid to some representations of objects:

typedef α state := {σ :: oid ⇀ α | invσ(σ)}

where invσ is a to be discussed invariant on states. The key point is that we need
a common type α for the set of all possible object representations. Object rep-
resentations model “a piece of typed memory,” i. e., a kind of record comprising
administration information and the information for all attributes of an object;
here, the primitive types as well as collections over them are stored directly in
the object representations, class types and collections over them are represented
by oid’s (respectively lifted collections over them). In a shallow embedding which
must represent UML types injectively by HOL types, there are two fundamen-
tally different ways to construct such a set of object representations, which we
call an object universe A:
1. an object universe can be constructed for a given class model, leading to

closed world semantics, and
2. an object universe can be constructed for a given class model and all its

extensions by new classes added into the leaves of the class hierarchy, leading
to an open world semantics.



For the sake of simplicity, we chose the first option for Featherweight OCL, while
HOL-OCL [3] used an involved construction allowing the latter.

A naïve attempt to construct A would look like this: the class type Ci induced
by a class will be the type of such an object representation: Ci := (oid×Ai1×· · ·×
Aik) where the types Ai1 , . . . , Aik are the attribute types (including inherited
attributes) with class types substituted by oid. The function OidOf projects
the first component, the oid, out of an object representation. Then the object
universe will be constructed by the type definition: A := C1 + · · ·+ Cn.

It is possible to define constructors, accessors, and the referential equality on
this object universe. However, the treatment of type casts and type tests cannot
be faithful with common object-oriented semantics, be it in UML or Java: casting
up along the class hierarchy can only be implemented by loosing information,
such that casting up and casting down will not give the required identity:

X.oclIsTypeOf(Ck) implies X.oclAsType(Ci).oclAsType(Ck)
.
= X

whenever Ck < Ci and X is valid.

To overcome this limitation, we introduce an auxiliary type Ciext for class
type extension; together, they were inductively defined for a given class diagram:

Let Ci be a class with a possibly empty set of subclasses {Cj1 , . . . , Cjm}.
– Then the class type extension Ciext associated to Ci is Ai1 × · · · × Ain ×

(Cj1ext + · · · + Cjmext)⊥ where Aik ranges over the local attribute types of
Ci and Cjlext ranges over all class type extensions of the subclass Cj of Ci.

– Then the class type for Ci is oid×Ai1 × · · · ×Ain × (Cj1ext + · · ·+Cjmext)⊥
where Aik ranges over the inherited and local attribute types of Ci and Cjlext
ranges over all class type extensions of the subclass Cj of Ci.
This construction can not be done in HOL itself since it involves quantifica-

tions and iterations over the “set of types”; rather it is a meta-level construction.
Technically, this means that we need a compiler to be done in SML on the syn-
tactic “meta-model”-level of a class model.

It remains to clarify the role of the state invariant invσ(σ) mentioned above
that states the condition that there is a “one-to-one” correspondence between
object representations and oid’s: ∀oid ∈ dom σ. oid = OidOf pσ(oid)q. This
condition is also mentioned in [11, Annex A] and goes back to Richters [12];
however, we state this condition as an invariant on states rather than a global
axiom. It can, therefore, not be taken for granted that an oid makes sense both
in pre- and post-states of OCL expressions.

Running Example. Although our class model (recall Fig. 1) appears to be
trivial, we have already two classes in the class model: OclAny and Person.
Person < OclAny, and thus a family of tests and casts. The construction of the
universe comprises the following datatype definitions:

datatype oclany = mkOclAny oid (int⊥ × oid⊥)⊥
datatype person = mkPerson oid (int⊥) (oid⊥)



datatype A = inPerson person | inOclAny oclany

Here, (int⊥ × oid⊥)⊥ is (the only) optional extension that represents Person
objects casted to OclAny. In UML terminology, these are objects with dynamic
type Person and static type OclAny.

3.2 The Accessors

Our choice to use a shallow embedding of OCL in HOL and, thus having an
injective mapping from OCL types to HOL types, results in type-safety of Feath-
erweight OCL. Arguments and results of accessors are based on type-safe object
representations and not oid’s. This implies the following scheme for an accessor:
1. The evaluation and extraction phase. If the argument evaluation results in

an object representation, the oid is extracted, if not, exceptional cases like
invalid are reported.

2. The dereferentiation phase. The oid is interpreted in the pre- or post-state,
the resulting object is casted to the expected format. The exceptional case
of nonexistence in this state must be treated.

3. The selection phase. The corresponding attribute is extracted from the ob-
ject representation.

4. The re-construction phase. The resulting value has to be embedded in the
adequate HOL type. If an attribute has the type of an object (not value), it
is represented by an optional (set of) oid, which must be converted via deref-
erentiation in one of the states in order to produce an object representation
again. The exceptional case of nonexistence in this state must be treated.

The first phase directly translates into the following formalization:

definition

eval_extractX f = (λ τ. caseX τ of ⊥ ⇒ invalid τ exception
| x⊥y ⇒ invalid τ deref. null
| xxobjyy⇒ f (oid_of obj ) τ)

For each class C, we introduce the dereferentiation phase of this form:

definition deref_oidC fst_snd f oid = (λ τ. case (heap (fst_snd τ)) oid of

xinC objy⇒ f obj τ
|_ ⇒ invalid τ)

The operation yields undefined if the oid is uninterpretable in the state or ref-
erencing an object representation not conforming to the expected type.

We turn to the selection phase: for each class C in the class model with at
least one attribute, and each attribute a in this class, we introduce the selection
phase of this form:

definition selecta f = (λ mkC oid · · · ⊥ · · · CXext ⇒ null
| mkC oid · · · xay · · · CXext ⇒ f (λ x_. xxxyy) a)



This works for definitions of basic values as well as for object references in
which the a is of type oid. To increase readability, we introduce the functions:

definition in_pre_state = fst first component
definition in_post_state = snd second component
definition reconst_basetype = id identity function

Let _.getBase be an accessor of class C yielding a value of base-type Abase.
Then its definition is of the form:

definition _.getBase :: C ⇒ Abase
where X.getBase = eval_extract X (deref_oidC in_post_state

(selectgetBase reconst_basetype))

Let _.getObject be an accessor of class C yielding a value of object-type
Aobject. Then its definition is of the form:

definition _.getObject :: C ⇒ Aobject
where X.getObject = eval_extract X (deref_oidC in_post_state

(selectgetObject (deref_oidC in_post_state)))

The variant for an accessor yielding a collection is omitted here; its construction
follows by the application of the principles of the former two. The respective vari-
ants _. a @pre were produced when in_post_state is replaced by in_pre_state.

Running Example. The dereference-operation instantiated for the class
Person is clear and will not be repeated here. We focus on the select functions:

definition
selectsalary f = (λ mkPerson _ ⊥ _ ⇒ null

| mkPerson _ xsy _ ⇒ f (λx_. xxxyy) s)
selectboss f = (λ mkPerson _ _ ⊥ ⇒ null

| mkPerson _ _ xby⇒ f (λx_. xxxyy) b)

Which gives the top-level definitions:

definition _.salary :: Person⇒ Integer
where X.salary = eval_extractX (deref_oidPerson in_post_state

(selectsalary reconst_basetype))

definition _.boss :: Person⇒ Person
where X.boss = eval_extractX (deref_oidPerson in_post_state

(selectboss (deref_oidPerson in_post_state)))

3.3 Tests for Types and Casts

As a consequence of our decision to consider subtyping an issue to be solved
by a static type-checker, the semantic treatment of casts and dynamic types



lie in the heart of the concept of object-orientedness of Featherweight OCL.
We reduce subtyping to castability, and type-tests allow for specifying exactly
the semantics of operation calls. Although OCL has no constructors inside the
language, objects can be constructed in HOL and can be specified via OCL
operation contracts. The problem needs therefore to be solved that objects have
an implicit dynamic (“actual”) type, which is invariant under cast; casts change
only the static (statically inferable, “apparent”) type of an object.

First, we focus on dynamic type tests, which are written in OCL by
X.oclIsTypeOf(C), where C is a class identifier and X an OCL expression. To
implement a similar syntax in Featherweight OCL, we declare for each class Ci of
the class model a constantX.oclIsTypeOf(Ci) of a too large type α⇒ Boolean.
These constants will now be defined by concrete instances for pairs of classes Ci,
Cj (where Cj is either a subtype or a super-type of Ci). Classes not in subtype
relation have no casts, so nothing is to define.

defs (overloaded) (X :: Ci).oclIsTypeOf(Cj) ≡ (λ τ. caseX τ of
⊥ ⇒ invalid τ
| x⊥y ⇒ true τ
| xxmkCi

oid · · · a · · · ⊥yy ⇒ true τ if Ci = Cj
| xxmkCi

oid · · · a · · · xXyyy ⇒ true τ if (*)
| xx_yy ⇒ false τ ) otherwise

where (*) stands for “Ci > Cj and the pattern X matches exactly the extension
Cjext of the subclass Cj of Ci”. Given the fact that we assume closed-world
semantics, a simple way to define the overloaded oclIsKindOf operation is by
the disjunction:

(X :: Ci).oclIsKindOf(Cj) ≡ X.oclIsTypeOf(Cj) or

X.oclIsKindOf(Cj1) or · · · orX.oclIsKindOf(Cjn)

where Cj1 , · · · , Cjn all the sub-classes of Cj occurring in the given class model.
We refrain from the attempt of a generic definition of the type cast function
family; here, we refer to an analogy of the pattern-matching equations shown
above and the concrete example below. Both definitions make tests and casts
strict and neutral or idempotent on null:

(invalid :: Ci).oclIsTypeOf(Cj) = invalid

(null :: Ci).oclAsType(Cj) = null

(invalid :: Ci).oclAsType(Cj) = invalid

(null :: Ci).oclIsTypeOf(Cj) = true

This is a slight deviation from the standard: null as argument should in gen-
eral yield invalid. However, null is usually considered as one unique constant
appearing in all types; we have technically one polymorphic constant null. To
mimic the desired effect, the last equation is required. Another issue is that casts
yield null for a null- argument (with the right static type). Since casts can ap-
pear everywhere, this is to avoid non intuitive effects. Consider the case that X



and Y have a distinct class type Ci and Cj . Then the OCL term

X
.
= null and Y .

= null andX .
= Y

is either false or undefined, since X
.
= Y is either translated to

X.oclAsType(Cj)
.
= Y or X .

= Y .oclAsType(Ci) and thus to invalid if
we apply the rule null.oclAsType(_) = invalid as assumes the standard.

Running Example. In the following, we instantiate the generic definitions for
our example. We discussed the overloaded constant declarations for dynamic
type tests in the previous section. A concrete instance of the definition is:

defs (overloaded) (X :: OclAny) .oclIsTypeOf(Person) ≡ (λ τ. caseX τ of
⊥ ⇒ invalid τ
| x⊥y ⇒ true τ
| xxmkOclAny _⊥yy ⇒ false τ
| xxmkOclAny _ x_yyy ⇒ true τ )

Analogously, the casts were declared as overloaded family of constants:

consts _.oclAsType(OclAny) :: α⇒ OclAny

consts _.oclAsType(Person) :: α⇒ Person

whose instances were provided, for example, by:

defs (overloaded) (X :: OclAny) .oclAsType(Person) ≡ (λ τ. caseX τ of
⊥ ⇒ invalid τ
| x⊥y ⇒ null τ
| xxmkOclAny _⊥yy ⇒ invalid τ
| xxmkOclAny oid x(a, b)yyy⇒ xxmkPerson oid a byy)

Besides the lemmas on strictness and null-preservation, we prove formally:

τ |=(X :: OclAny).oclIsTypeOf(OclAny) =⇒ τ |= δ X

=⇒ τ 6|= υ (X.oclAsType(Person))

((X :: Person).oclAsType(OclAny).oclAsType(Person) = X

These lemmas show the key-properties of the object-universe construction wrt.
to casting and type tests.

3.4 Access to the global state

With a little syntactico/semantico trick it is possible to define the global accessor
on the state in a univeral, generic (class model independent) way:

definition
_.allInstances() :: (A⇒ α⊥)⇒ (A :: object, (α⊥)⊥) set
where
(H.allInstances()) τ = Abs_Set_0 xxSome

‘ ( (H ‘ ran(heap(snd τ))) − {⊥} )yy



In our running example, this boils down to the definition of the two type
characterization functions:

definition
Person = (λ inPerson (mkPerson oid a b) ⇒ xmkPerson oid a by

| inOclAny (mkOclAny oid x(a, b)y)⇒ xmkPerson oid a by
| inOclAny (mkOclAny _⊥) ⇒ ⊥ )

OclAny = (λ inPerson (mkPerson oid a b) ⇒ xmkOclAny oid x(a, b)yy
| inOclAny X ⇒ xXy )

It is easy to prove on the basis of these definitions, that our global accessors
have “isKindOf”-semantics:

∀τ. τ |= OclAny.allInstances()->forAll(X|X.oclIsKindOf(OclAny))

instead of “isTypeOf”-semantics since we can also prove:

∃τ1. τ1 6|=
∃τ2. τ2 |=

OclAny.allInstances()->forAll(X|X.oclIsTypeOf(OclAny))

We found out that the current Annex A actually defines the latter, while the
mandatory part apparently favors the former.

4 Corner Cases of Path Expression Semantics

4.1 Objects and Accessors

In this section, we illustrate the definitions of the previous section on a concrete
example. Figure 2 shows two states, i.e., two object diagrams, of the system
described in Figure 1. We consider the state on the left as a pre-state and call
it σ, while the state on the right is used as a post-state and is called σ′.

p1:Person
salary = 1000

p2:Person
salary = 1200

p6:Person
salary = 2300

p4:Person
salary = 2600

p5:Person
salary = 3500

p1:Person
salary = 1300

p2:Person
salary = 1800

p6:Person
salary = 2500

p7:Person
salary = 3200

p4:Person
salary = 2900

p3:Person
salary = null

(a) (b)

boss

boss boss

boss

boss

boss

boss

Fig. 2. Two system states for the model of Fig. 1: (a) pre-state σ; (b) post-state σ′.

An OCL formula ϕ on this system is interpreted with respect to the pair
(σ, σ′) according to the semantics given in the previous section; we write as
usual (σ, σ′) |= ϕ if ϕ holds in the context of (σ, σ′).



For instance, we have (σ, σ′) |= p1.salary .
= 1300, since the attribute

salary of object p1 has the value 1300 in the post-state. We also have (σ, σ′) |=
p1.salary@pre .

= 1000 since p1 also existed in the pre-state and its salary was
1000. In the same way, we have (σ, σ′) |= p6.boss .

= p7 since p7 is the boss of
p6 in the post-state, while (σ, σ′) |= p6.boss@pre .

= p4 since p6 existed in the
pre-state and its boss was p4 there.

We have a particular case with p3, which has no salary in the post-state.
Therefore we have (σ, σ′) |= p3.salary .

= null.5 It also has no boss so (σ, σ′) |=
p3.boss .

= null.Trying to de-referenciate a null association end yields an invalid
value, so (σ, σ′) 6|= υ p3.boss.salary. In a similar way, since p3 didn’t exist
in the pre-state, its de-referenciation in this state necessarily fails, yielding an
invalid value: (σ, σ′) 6|= υ p3.salary@pre, and (σ, σ′) 6|= υ p3.boss@pre.

More complex expressions lead to other cases that are well-defined although
not always intuitive. When an expression refers to only one state, the semantics
remains easily comprehensible. For instance, the following formulas are evaluated
in the post-state only:

∀σ. (σ, σ′) |= p1.boss.salary .
= 1800

∀σ. (σ, σ′) |= p1.boss.boss .
= p2

∀σ. (σ, σ′) |= p7.boss.salary .
= 3200

while those are evaluated in the pre-state only:

∀σ′. (σ, σ′) |= p1.boss@pre.salary@pre .
= 1200

∀σ′. (σ, σ′) |= p6.boss@pre.boss@pre .
= p5

∀σ′. (σ, σ′) |= p1.boss@pre.boss@pre .
= null

∀σ′. (σ, σ′) 6|= υ p2.boss@pre.salary@pre

A path expression involving both the pre and post-state is for instance
p6.boss@pre.salary. The boss of p6 in the pre-state is p4 and the salary of
p4 in the post-state is 2900, so we have (σ, σ′) |= p6.boss@pre.salary .

= 2900.
As another example, consider the path expression p2.boss.salary@pre: in the
post-state, p2 is its own boss, and its salary in the pre-state is 1200, so (σ, σ′) |=
p2.boss.salary@pre .

= 1200. Since p2 has no boss in the pre-state, we also have
that (σ, σ′) |= p2.boss.boss@pre .

= null and (σ, σ′) 6|= υ p2.boss@pre.boss.
We have a particular case with p5 that does not exist anymore in the post-

state, leading to invalid when trying to access to the actual value of its salary
attribute: (σ, σ′) 6|= υ p4.boss@pre.salary.

4.2 Types and Casts

As we already pointed out before, even if only the class Person appears in our
class model, there are in fact two classes, Person and OclAny, since OclAny is
the superclass of all classes. Figure 3(b) shows a state of this model. We consider
only one state here, a pre-state being irrelevant for evaluating types.
5 Note that we omit the min_salary, which ensures that salary is not null.
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Fig. 3. The whole class model for the management hierarchy and a state σ for it.

As demonstrated in Section 3.3, casting an instance of Person up to
OclAny, then down to Person again returns the original object: (σ, σ) |=
p1.oclAsType(OclAny).oclAsType(Person) .

= p1. However, casting an in-
stance of OclAny down to Person is not possible if this instance is not a cast up
of an instance of Person: (σ, σ) 6|= υ m1.oclAsType(Person).

We also saw in Section 3.3 that the oclIsTypeOf operator checks the static
type of an object while oclIsKindOf checks its dynamic type. This leads to the
following properties:

(σ, σ) |= m1.oclIsTypeOf(OclAny) .
= true

(σ, σ) |= m1.oclIsTypeOf(Person) .
= false

(σ, σ) |= p1.oclIsTypeOf(Person) .
= true

(σ, σ) |= p1.oclIsTypeOf(OclAny) .
= false

(σ, σ) |= m1.oclIsKindOf(OclAny) .
= true

(σ, σ) |= m1.oclIsKindOf(Person) .
= false

(σ, σ) |= p1.oclIsKindOf(OclAny) .
= true

(σ, σ) |= p1.oclIsKindOf(Person) .
= true

As expected, casting an instance of Person up to OclAny does not return an
object of static type OclAny:

(σ, σ) |= p1.oclAsType(OclAny).oclIsTypeOf(OclAny) .
= false

In Section 3.4, we showed that we defined the allInstances operator ac-
cording to dynamic types. This leads to the following expected property for class
Person: (σ, σ) |= Person.allInstances() .

= Set{p1,p2,p3}. For class OclAny,
allInstances returns all the instances of OclAny and of its child classes, while
casting the latter up to OclAny, so that the result is a set of instances of OclAny:

(σ, σ) |= OclAny.allInstances() .
= Set{ m1,

p1.oclAsType(OclAny),
p2.oclAsType(OclAny),
p3.oclAsType(OclAny)}.



5 Related Work and Conclusion

5.1 Related Work

Albeit, there are object-oriented specification languages that support null ele-
ments, namely JML [9] or Spec# [2]. Notably, both languages limit null elements
to class types and provide a type system supporting non-null types. In the case
of JML, the non-null types are even chosen as the default types [7]. Supporting
non-null types simplifies the analysis of specifications drastically, as many cases
resulting in potential invalid states (e. g., de-referencing a null) are already ruled
out by the type system.

5.2 Conclusion and Future Work

We presented a formal semantics for object-oriented data structures that pro-
vides the basis for a formalization of OCL and that supports both exception
elements: null and invalid.

The overall goal of Featherweight OCL is to study the details of the various
semantical variants of a object-oriented formal specification language: Feather-
weight OCL contributes to closing the formal gaps as well as the removing incon-
sistencies in the standard. Ultimately, we aim at providing a machine-checked
formal semantics that can be included in the OCL standard, i. e., replacing the
current Annex A.
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