DATA-FLOW COVERAGE FOR TESTING IN CIRCUS

CAVALCANTI A / GAUDEL M C

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

12/2013

Rapport de Recherche N° 1567

CNRS – Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)
Data-flow coverage for testing in Circus

Ana Cavalcanti and Marie-Claude Gaudel

1 University of York, Department of Computer Science
York YO10 5DD, UK
2 LRI, Université de Paris-Sud and CNRS
Orsay 91405, France
revised version 12/2013

Abstract. Circus is a state-rich process algebra for refinement based on Z and CSP. In previous work, we have defined a testing theory for Circus, and some selection criteria based on its exhaustive test set. Here, we consider a different class of criteria, based on the text of the models, rather than directly on their operational semantics. In particular, we consider data-flow based coverage. In adapting the classical results on coverage of programs to abstract Circus models, we define a notion of specification traces, consider models with data anomalies, and cater for the internal nature of state and state changes. Our main results are a framework for data-flow based coverage, a novel criterion suited to state-rich process models, and a notion of instantiation of traces.

Abstract. Circus est une algèbre de processus avec une notion d’état interne, qui combine le pouvoir de Z pour modéliser des types abstraits de données et les constructions de CSP pour spécifier des comportements réactifs et concurrents. Circus permet aussi de décrire des raffinements vers des modèles concrets ou même des programmes. Les modèles abstraits impliquent couramment du nondéterminisme, qui peut venir des opérations sur les données ou des choix internes de comportement, du fait qu’on ignore les détails de l’implémentation.

Précédemment, nous avons établi une théorie du test pour Circus. Cette théorie est de nature symbolique : pour capturer la logique des types de données et les comportements conditionnels (gardes), nous utilisons une notion de “trace symbolique contrainte”, directement dérivée de la sémantique opérationnelle du langage. Cette notion sert de base à la définition de tests symboliques associés à un modèle. Une notion d’instantiation définit comment obtenir des tests concrets.

Du fait que cette approche est conduite par la sémantique opérationnelle du langage, elle a permis de définir des jeux de tests exhaustifs et de prouver cette exhaustivité. Dans ce cadre, nous avons défini plusieurs critères de sélection de sous-ensembles des jeux de tests exhaustifs comme la couverture des traces symboliques contraintes bornées, ou la couverture des synchronisations.

Dans ce rapport, nous considérons une classe de critères de sélection de tests basés sur le texte du modèle Circus plutôt que sur sa sémantique opérationnelle, plus spécifiquement la couverture des flots de données.
Nous nous donnons une notion de “trace de spécification” qui collecte, en plus des événements de communication, des opérations internes sur les données et des conditions (gardes). Sur la base de ces traces, nous formalisons les notions de définitions, usages, et sous-chemins sans définition pour Circus. Pour illustrer l’application de ce cadre, nous donnons les définitions des critères classiques de couverture basés sur le flot de données (all-defs, all-uses, et all-du-paths) transposés à la sélection de traces de spécification. De plus, nous formalisons un nouveau critère, mieux adapté à Circus, qui prend en compte les flots de données internes. Enfin, nous montrons comment construire des traces symboliques contraintes à partir des traces de spécification, et donc les tests symboliques correspondants.

Les traces de spécification définies dans ce rapport peuvent être utilisées pour d’autres critères de sélection, qu’ils soient basés ou non sur les flots de données, car elles prennent en compte l’essentiel de la structure des modèles.

1 Introduction

This report presents a framework for data-flow based test selection [18] from Circus models; we revisit some classical criteria for coverage, and present a novel criteria especially suited for Circus models.

Circus [4] is a state-rich process algebra that combines freely the power of Z [23] to model abstract data types and their operations, and the CSP [20] constructs to specify reactive behaviour. As such, Circus is a process algebra for refinement. Nondeterminism is common in abstract models and arises both from data operations and from internal choices in patterns of interaction.

Data-flow coverage in the context of Circus requires adjustments. Firstly, due to the rich predicative data language of Circus, a concrete flow graph is likely much too big to be explicitly considered. Thus, the tests are not based on paths of a flow graph, but on specification traces. Second, data-flow anomalies must be accepted, because repeated definitions and definitions without use are routinely used in Circus abstract models. Finally, the state of a Circus process is hidden, and so not all definitions and uses, and, therefore, not all data flows, are visible.

A notable feature of the Circus testing theory [3] is its symbolic nature. To capture the predicative data models and guards, we have the notion of constrained symbolic traces and corresponding symbolic tests. An additional notion of instantiation defines how we can obtain concrete tests. It is in this symbolic setting that we consider here coverage based on data flows.

We state the notion of specification traces, which include, besides communication events, internal data operations and guards. Based on these traces, we formalise notions of definitions, uses, and definition-clear paths for Circus. To illustrate the use of this framework, we define the conventional data-flow coverage criteria all-defs, all-uses, and all-du-paths to select specification traces. In addition, we formalise a novel criteria inspired by [21] to cater for internal data flows. Finally, we consider how to construct constrained symbolic traces, and thus, corresponding symbolic tests from the specification traces. This is relevant
for all selection criteria based on specification traces (and not only data-flow criteria). Given the formal setting of our work, based on the operational semantics of Circus and additional transition systems in [2], we can prove unbiased of the selected tests. This means that they cannot reject correct systems.

In the next section, we give an overview of the notations and definitions used in our work. Section 3 presents our framework and Section 4 our new criterion. Section 5 addresses the general issue of constructing tests from selected specification traces. Finally, we consider related works in Section 6 and conclude in Section 7, where we also indicate lines for further work.

2 Background material

This section describes Circus, its operational semantics, and data-flow coverage.

2.1 Circus notation

A Circus model defines channels and processes like in CSP. Figure 1 presents an extract from the model of a cash machine. It uses a given set CARD of valid cards, a set Note of the kinds of notes available (10, 20, and 50), and a set Cash == bag Note to represent cash. The definitions of these sets are omitted.

The first paragraph in Figure 1 declares four channels: inc is used to request the withdrawal using a card of some cash, outc to return a card, cash to provide cash, and refill to refill the note bank in the machine. The second paragraph is an explicit definition for a process called CashMachine.

The first paragraph of the CashMachine definition is a Z schema CMState marked as the state definition. Circus processes have a private state, and interact with each other and their environment using channels. The state of CashMachine includes just one component: nBank, which is a function that records the available number of notes of each type: at most cap.

State operations can be defined by Z schemas. For instance, DispenseNotes specifies an operation that takes an amount a? of money as input, and outputs a bag notes! of Notes, if there are enough available to make up the required amount. DispenseNotes includes the schema ∆CMState to bring into scope the names of the state components defined in CMState and their dashed counterparts to represent the state after the execution of DispenseNotes. To specify notes!, we require that the sum of its elements (Σ notes!) is a?, and that, for each kind n of Note, the number of notes in notes! is available in the bank. DispenseNotes also updates nBank, by decreasing its number of notes accordingly.

Another schema DispenseError defines the behaviour of the operation when there are not enough notes in the bank to provide the requested amount a?: the result is the empty bag [[]] . The Z schema calculus is used to define the total operation Dispense as the disjunction of DispenseNotes and DispenseError.

State operations are called actions in Circus, and can also be defined using Morgan’s specification statements [14] or guarded commands from Dijkstra’s language [7]. CSP constructs can also be used to specify actions.
channel \(\text{inc} : \text{CARD} \times \mathbb{N}_1; \text{outc} : \text{CARD}; \text{cash} : \text{Cash}; \text{refill} \)

\(\text{Note} == \{10,20,50\} \)

\(\text{Cash} == \text{bag Note} \)

process \(\text{CashMachine} \triangleq \text{begin} \)

state \(\text{CMState} == [\text{nBank} : \text{Note} \rightarrow 0..\text{cap}] \)

\[
\begin{aligned}
\text{DispenseNotes} \\
\Delta \text{CMState} \\
a? : \mathbb{N}_1 \\
notes! : \text{Cash} \\
\Sigma \text{notes}! = a? \\
\forall n : \text{Note} \bullet (\text{notes}! \# n) \leq \text{nBank} n \land \text{nBank} n = (\text{nBank} n) - (\text{notes}! \# n)
\end{aligned}
\]

\[
\begin{aligned}
\text{DispenseError} \\
\Xi \text{CMState} \\
a? : \mathbb{N}_1; \text{notes}! : \text{Cash} \\
- \exists ns : \text{Cash} \bullet \Sigma ns = a? \land \forall n : \text{Note} \bullet (ns \# n) \leq \text{nBank} n \\
\text{notes}! = [[]]
\end{aligned}
\]

\(\text{Dispense} == \text{DispenseNotes} \lor \text{DispenseError} \)

\[
\begin{aligned}
\mu X \bullet \\
\left\{
\begin{array}{c}
\text{inc}!c?\text{a} \rightarrow X \\
\square \\
\text{outc}!c \rightarrow X \\
\square
\end{array}
\right.
\text{\text{Dispense}};
\left\{
\begin{array}{c}
\text{var notes} : \text{Cash} \bullet \\
\text{Dispense};
\left\{
\begin{array}{c}
\left(\text{notes} \neq [[]]\right) \land \text{cash}\text{notes} \rightarrow \text{Skip}
\end{array}
\right.
\end{array}
\right.
\text{\text{outc}!c} \rightarrow X
\end{aligned}
\]

\text{refill} \rightarrow (\text{nBank} := \{10 \mapsto \text{cap}, 20 \mapsto \text{cap}, 50 \mapsto \text{cap}\}; X)

Fig. 1. Cash machine model
For instance, the behaviour of the process \textit{CashMachine} is defined by a recursive action at the end after the ‘\•’. A recursion $\mu X \cdot F(X)$ has a body given by $F(X)$, where occurrences of X are recursive calls. In our example, the recursion first offers a choice between an input $\text{inc}\text{?}\text{c}\text{?}\text{a}$, which accepts a card c and a request to withdraw the amount a, and a synchronisation on refill, which is a request to fill the $n\text{Bank}$. The actions that offer these communications are combined in an external choice (\@) to be exercised by the environment.

If refill is chosen, an assignment changes the value of $n\text{Bank}$ to record a number cap of notes of all kinds. If $\text{inc}\text{?}\text{c}\text{?}\text{a}$ is chosen, then we have an internal (nondeterministic) choice of possible follow-on actions: recursing immediately (without returning the card or producing the money), returning the card via an output $\text{outc}\text{!}\text{c}$ before recursing, or considering the dispensation of cash before returning the card and recursing. In the dispensation, a local variable notes is declared, the operation Dispense is called, and then an external choice of two guarded actions is offered. If there is some cash available ($\text{notes} \neq []$), then it can dispensed via $\text{cash}\text{!}\text{notes}$. Otherwise the action terminates (Skip).

Here, nondeterminism comes from the fact that the specification does not go into details of bank management (stolen cards, bank accounts, and so on).

This example shows how Z and CSP constructs can be intermixed freely. A full account of \textit{Circus} and its semantics is given in [17]. The \textit{Circus} operational semantics is briefly discussed and illustrated in the next section.

\section*{2.2 Circus operational semantics and tests}

The \textit{Circus} operational semantics [3] is distinctive in its symbolic account of state updates. As usual, it is based on a transition relation that associates configurations and a label. For processes, the configurations are processes themselves; for actions A, they are triples of the form $(c | s | = A)$.

The first component c of those triples is a constraint over symbolic variables used to define labels and the state. These are texts that denote \textit{Circus} predicates (over symbolic variables). We use typewriter font for pieces of text. The second component s is a total assignment $x := w$ of symbolic variables w to all state components x in scope. State assignments can also include declarations and undeclarations of variables using the constructs $\text{var} x := e$ and $\text{end} x$. The state assignments define a specific value (represented by a symbolic variable) for all variables in scope. The last component of a configuration is an action A.

The labels are either empty, represented by ϵ, or symbolic communications of the form $c?w$ or $c!w$, where c is a channel name and w is a symbolic variable that represents an input (?) or an output (!) value.

We define the notion of traces in the expected way. Due to the symbolic nature of configurations and labels, we obtain constrained symbolic traces, or cstraces, for short. These are pairs formed by a sequence of labels, that is, a symbolic trace, and a constraint over the symbolic variables used in the labels.

For a process $\text{begin state} [x : T] \cdot A \text{ end}$, the cstraces over an alphabet a are those of its main action A, starting from a state in which x takes any value
w_0 constrained by $w_0 \in T$. This is the set $cstraces^a(w_0 \in T, x := w_0, A)$ defined below using the operational semantics (transition relation \rightarrow) [3].

Definition 1.

\[
cstraces^a(\begin{state} x : T \end{state} \bullet A) = cstraces^a(w_0 \in T, x := w_0, A)
\]

\[
cstraces^a(c_1, s_1, A_1) = \\
\{ st, c_2, s_2, A_2 \mid \ast st \leq a \land (c_1 \mid s_1 \models A_1) \overset{st}{\rightarrow} (c_2 \mid s_2 \models A_2) \}
\]

The parameter a determines the alphabet of the cstraces. Symbolic variables used in the evaluation of the operational semantics to represent internal values of the state are not included in the alphabet. As said above, a contains variables that denote values that are visible in the observation of a process.

Example 1. Some of the cstraces of the process CashMachine are as follows.

\[(\langle \rangle, \text{True})\] and \[(\langle \text{refill}, \text{inc}.0.\alpha_1, \text{outc}.\alpha_2 \rangle, \alpha_0 \in \text{CARD} \land \alpha_1 \in \mathbb{N}_1 \land \alpha_2 = \alpha_0)\]

The first is the empty ctrace (empty symbolic trace with no constraint). The second records a sequence of interactions where a request for a refill is followed by a request for a withdrawal of an amount α_1 using card α_0, followed by the return of a card α_2. The constraint captures those arising from the declaration of inc, namely, α_0 is a CARD and α_1, a positive number. It also captures the fact that the returned card is exactly that input ($\alpha_2 = \alpha_0$).

In the Circus testing theory, we take the view that, in specifications, divergences are mistakes, and in programs, they are observed as deadlocks. We, therefore, consider a theory for divergence-free models and systems under test (SUT).

As usual for process-algebra, tests of the Circus theory are constructed from traces. The cstraces define a set of traces: those that can be obtained by instantiating the symbolic variables so as to satisfy the constraint.

Example 2. Corresponding to the empty ctrace, we have just the empty (concrete) trace $\langle \rangle$. On the other hand, there are infinite instantiations of the second ctrace in the previous example. For instance, we have the following traces.

\[
\langle \text{refill}, \text{inc}.0.10, \text{outc}.0 \rangle \quad \langle \text{refill}, \text{inc}.0.50, \text{outc}.0 \rangle \quad \langle \text{refill}, \text{inc}.1.30, \text{outc}.1 \rangle
\]

Here, we take 0 and 1 to be values in the set CARD.

Accordingly, we have symbolic tests constructed from cstraces, and a notion of instantiation to construct concrete tests involving specific data. This approach is driven by the operational semantics of the language and led to the definition of symbolic exhaustive test sets and to proofs of their exhaustivity.

We observe that cstraces capture the constraints raised by data operations and guards, but not their structure. In [2], we have defined different transition systems whose labels capture the structure of the Circus model, and thus makes it possible to consider coverage of this structure.
Example 3. The following is a cstrace of *CashMachine* that captures a withdraw request followed by cash dispensation.

\[(\langle inc.\alpha_0, cash.\alpha_1 \rangle,),\]
\[\alpha_0 \in \text{CARD} \land \alpha_1 \in \mathbb{N} \land \sum \alpha_2 = \alpha_1 \land \forall n: \text{Note} \bullet (\alpha_2 \# n) \leq \text{cap}\]

The constraint defines the essential properties of the cash \(\alpha_2\) dispensed, but not the fact that these properties are established by variable declaration followed by a schema action call, and a guarded action.

\[\square\]

So, while cstraces are useful for trace-selection based on constraints, they do not support selection based on the structure of the *Circus* model. To this end, in [2] we have presented a collection of transition systems whose labels are pieces of the model: guards (predicates), communications, or simple *Circus* actions. The syntactic category of *Labels* is defined in Figure 2; the sets *Pred*, *Exp*, *CName*, *VName*, and *Schema* are those of the *Circus* predicates, expressions, channel and variable names, and Z schemas [16, 1].

In this paper, we use the transition relation \(\Rightarrow_{RP}\), called just \(\Rightarrow\) here, to define a notion of specification traces, used to consider data-flow coverage criteria. This is in contrast to what is done for sequential imperative programs where data flow graphs are considered.

2.3 Data-flow coverage

Data-flow coverage criteria were originally developed for sequential imperative languages based on the notion of definition-use associations [18]. The motivation was to check, via some test, that a variable has been assigned a correct value by causing the execution of a path in a data-flow graph from the point of assignment to a point where the assigned value is used.

Definition-use associations are traditionally defined in terms of data-flow graph as triples \((d, u, v)\), where \(d\) is a node in which the variable \(v\) is defined, that is, some value is assigned to it, \(u\) is a node in which the value of \(v\) is used, and there is a definition-clear path with respect to \(v\) from \(d\) to \(u\). In this context, the strongest data-flow criterion, *all definition-use paths*, requires that, for each variable, every definition-clear path (with at most one iteration by loop) is executed. In order to reduce the number of tests required, weaker strategies such as *all-definitions* and *all-uses* have been defined.
When using these criteria, it is often assumed that the data-flow graph has unique start and end nodes and there is no data-flow anomaly [6]. This means that on every path from the start to the end node, there is no use of a variable \(v \) not preceded by some node with a definition of \(v \), and that after such a node, there is always some other node with a use of \(v \). These restrictions mainly aim at facilitating the comparison of the criteria. They are acceptable for sequential imperative programs and ensure that there is always some test set satisfying the criteria. With our definitions such anomalies just lead to empty test sets.

Abstract specifications involving concurrency and communications, however, require adjustments to the notions underlying data-flow analysis and coverage (see, for instance [21] and [11]). We discuss some of them in Section 6 and in our work, as already said, we do not assume absence of anomalies.

3 Data-flow coverage in Circus

Here, we define the specification traces resulting from the transition relation \(\implies \). We then state the notions of definition and use of Circus variables and discuss the issue of anomalies. Afterwards, we define classical coverage criteria.

3.1 Specification traces

It is straightforward to define traces (sequences) of specification labels based on \(\implies \). The transition relation \(\implies \) annotated with such traces is defined in Table 1.

Example 4. For CashMachine, for instance, the following traces of specification labels, as well as their prefixes, are reachable according to \(\implies \).

\[
\langle \text{inc?c?, outc!c, inc?c?, var notes} \rangle \quad \langle \text{inc?c?, var notes, Dispense, notes} \neq \text{[]}, \text{cash!notes, outc!c} \rangle
\]

We need, however, to consider enriched labels that include a tag to distinguish the various occurrences of communications and actions in the Circus specification. This is needed because data-flow coverage criteria are based on individual definitions or uses of a given variable occurring in the specification (or program).
Example 5. In the *CashMachine*, there are two occurrences of a use `outc!c` of the `c` variable: one at line 4 of the main action, and one at line 8. In the traces shown in Example 4, the two occurrences of `outc!c`; they are syntactically the same, but correspond to different occurrences of this piece of syntax in the model. Since we cannot consider repeated occurrences of labels to correspond to a single definition or use of a variable, we use tags to distinguish them.

The tag can, for instance, be related to the position of the guards, communications, or actions in the text or in the abstract syntax tree of the model.

To get tagged labels, we just need a straightforward generalisation of the definition of `⇒⇒`, where a label is tagged: a pair containing a label (in the sense of the description in Section 2.2) and a tag. The value of the tag can come from information in its abstract syntax tree, for example. This is akin to the type annotation in an input `d?x : T`, where `T` is the type of the channel `d`, an information produced by the type checking of the specification. The set of tagged specification labels is `TLabel == Label × Tag`. We take the type `Tag` of tags as a given set, and do not specify a particular representation of tags.

We observe in Figure 2 that we write specification statements in the form `f : [pre, post]`, where the frame `f` is the list of variables potentially changed by the action specified, whose pre and postconditions are given by `pre` and `post`. This is the form adopted in *Circus*, coming from the refinement calculus [14]. (In the operational semantics of *Circus*, we consider a specification `pre ⊢ post`, because in that context the frame plays no role. Here, we keep the frame, since it readily identifies the variables defined by this piece of the specification.)

For a process `P`, we define the set `sptraces(P)` of sptraces of `P`: specification traces whose last label is observable, that is, a non-silent communication. This excludes traces that do not lead to new tests with respect to their prefixes, because they just include extra guards or data operations whose effect does not affect a later communication (since there is no later communication).

Definition 2.

```
sptraces(begin state[x : T] • A end) = sptraces(w_0 ∈ T, x := w_0, A)
sptraces(c_1, s_1, A_1) = \{spt, c_2, s_2, A_2 | (c_1 | s_1 ⊨ A_1) ⇒⇒ (c_2 | s_2 ⊨ A_2) ∧ spt ≠ ⟨⟩ ∧ obs(last spt) • spt \}
```

where `obs(l, t) ⇔ l ∈ Comm ∧ l ≠ ε`

Without loss of generality, we consider a process `begin state[x : T] • A end`, with state components `x` of type `T` and a main action `A`. Its sptraces are those of `A`, when considered in the state in which `x` has some value identified by the symbolic variable `w_0`, which is constrained to satisfy `w_0 ∈ T`. For actions `A_1`, the set `sptraces(c_1, s_1, A_1)` of its sptraces from the state characterised by the assignment `s_1` and constraint `c_1` is defined as those that can be constructed using `⇒⇒` from the configuration `(c_1 | s_1 ⊨ A_1)` and whose last label is observable.
Example 6. Some sptraces of CashMachine are as follows. (In examples, we omit tags when they are not needed, and below we distinguish the two occurrences of outc!c by the tags \textit{tag1} and \textit{tag2}.)

\[
\langle \text{inc}?c?a,(\text{outc!c,tag1}) \rangle \langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle
\]
\[
\langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a \rangle
\]
\[
\langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a \rangle
\]
\[
\langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a \rangle
\]
\[
\langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a \rangle
\]
\[
\langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a,(\text{outc!c,tag1})\rangle \langle \text{inc}?c?a \rangle
\]

We note that the first specification trace in Example 4 is not an sptrace. \hfill \Box

The conversion of sptraces to constrained symbolic traces, which it the subject of Section 5, provides a way of obtaining symbolic tests from the specification traces. In what follows, we consider data-coverage criteria to select a subset of the sptraces of a given process P. Each of the criteria are based on the notions of definitions and uses of a given variable x, which we formalise next.

3.2 Definitions and uses

In an sptrace, a definition is a tagged label, where the label is a communication or an action that may assign a new value to a Circus variable, that is, an input communication, a specification statement, a Z schema where some variables are written, an assignment, or a var declaration, which, in Circus causes an initialisation. Formally, the set $\text{defs}(x,P)$ of definitions of a variable x in a process P can be identified from the set of sptraces of P as follows, where we use the function $\text{defs}(x,spt)$ that characterises the definitions of x in a particular sptrace spt.

Definition 3. $\text{defs}(x,P) = \bigcup \{ spt : \text{sptraces}(P) \bullet \text{defs}(x,spt) \}$

The set $\text{defs}(x,spt)$ can be specified inductively as follows.

Definition 4. $\text{defs}(x,\langle \rangle) = \emptyset$
\[
\text{defs}(x,tl \triangleright spt) = (\{tl\} \cap \text{defs}(x)) \cup \text{defs}(x,spt)
\]

The empty trace has no definitions. If the trace is a tagged label tl followed by the trace spt, we include tl if it is a definition of x as characterised by $\text{defs}(x)$. The definitions of spt are themselves given by $\text{defs}(x,spt)$.

The tagged labels in which x is written (defined) can be specified as follows.

Definition 5. $\text{defV}(x) = \{ tl : TLabel \mid x \in \text{defV}(tl) \}$

The set $\text{defV}(tl)$ of such variables for a label tl is specified inductively. We adopt here the convention that g stands for an element of Pred, that is, a guard label, d for a channel name, an element of CName, e an expression, an element of Expr, and A for a list of label actions, elements of LAct. We use subscripts when we need more of these meta-variables. The tags play no role here, and we ignore them in the definition of defV.

10
Definition 6.
\[
\begin{align*}
defV(g) = & \ defV(\epsilon) = \ defV(d) = \ defV(d!e) = \ defV(\text{endy}) = \emptyset \\
defV(d?x, t) = & \ defV(d?x: c, t) = \{x\} \\
defV(\text{Op}) = & \ \text{wrtV}(\text{Op})\defV(x := e) = \{x\}
\end{align*}
\]

A Morgan specification statement \(f : [\text{pre}, \text{post}] \) is a pre-post specification that can only modify the variables explicitly listed in the frame \(f \).

The set \(\text{wrtV}(\text{Op}) \) of written variables of a schema \(\text{Op} \) is defined in [4, page 161] to include the variables that are potentially modified by the schema, and its identification is not a purely syntactic issue. This set includes the variables \(v \) in the state of \(\text{Op} \) that are not constrained by an equality \(v' = v \) in \(\text{Op} \). Following the usual over-approximation in data-flow analysis, we can take the pessimistic, but conservative, view that \(\text{Op} \) potentially writes to all variables in scope and avoid the requirement for theorem proving.

Example 7. Coming back to the \(\text{CashMachine} \) (and ignoring tags) we have:
\[
\begin{align*}
defs(c, \text{CashMachine}) = & \{\text{inc}?c?a\} \\
defs(a, \text{CashMachine}) = & \{\text{inc}?c?a\} \\
defs(\text{notes}, \text{CashMachine}) = \{\text{var notes} : \text{Cash, Dispense}\} \\
defs(\text{nBank}, \text{CashMachine}) = \{\text{Dispense, nBank :=} \{10 \mapsto \text{cap}, 20 \mapsto \text{cap}, 50 \mapsto \text{cap}\}\}
\end{align*}
\]

The notion of (externally visible) use is simpler: a tagged label with an output communication. Formally, the set \(\text{e-uses}(x, P) \) of uses of a variable \(x \) in a process \(P \) can be identified from its set of sptraces.

Definition 7. \(\text{e-uses}(x, P) = \bigcup \{ spt : \text{sptraces}(P) \bullet \text{e-uses}(x, spt) \} \)

The set \(\text{e-uses}(x, spt) \) of uses of \(x \) in a trace \(spt \) can be specified as follows.

Definition 8. \(\text{e-uses}(x, \langle\rangle) = \emptyset \)
\[
\text{e-uses}(x, tl \cap spt) = (\{tl\} \cap \text{e-uses}(x)) \cup \text{e-uses}(x, spt)
\]

Finally, the general notion of uses of a variable \(x \) is defined below.

Definition 9. \(\text{e-uses}(x) = \{d : \text{CName}; e : \text{Exp}; t : \text{Tag} \mid x \in \text{FV}(e) \bullet (d!e, t)\} \)

These are labels \((d!e, t) \) where \(x \) occurs free in the expression \(e \). We use \(\text{FV}(e) \) to denote the set of free variables of an expression \(e \).

At this point, we consider e-uses, but not the classical notion of p-uses, which relates to uses in predicates and, in the context of \(\text{Circus} \), are not observable. We introduce a notion of internal uses (i-uses) later on in Section 4.1. In a \(\text{Circus} \) model, internal uses of a variable are its occurrences in predicates (of guards and data operations, for example) and also in assigning expressions.
Example 8. We have e-uses(c, CashMachine) = \{(\text{outc}!c, \text{tag1}), (\text{outc}!c, \text{tag2})\} and e-uses(notes, CashMachine) = \{\text{cash!notes}\}. There are no other externally visible uses in CashMachine.

We observe that a label cannot be both a definition and a use of a variable, because a use is an output communication, which does not define any variable. Besides, a label can be neither a definition nor a use (this is the case for \text{refill}) and then not considered for data-flow coverage.

The property clear-path(spt, df, u, x) characterises the fact that the trace spt has a subsequence that starts with the label df, finishes with the label u, with no definition of the variable x. (We note that, although we consider subsequences of a trace rather than paths of a graph, for consistency with classical terminology, we use the term clear path, rather than clear subsequence, anyway.)

Definition 10.

clear-path(spt, df, u, x) \iff \exists i : 1 \ldots \# spt \bullet spt i = df \land \\
\exists j : (i + 1) \ldots \# spt \bullet spt j = u \land \\
\forall k : (i + 1) \ldots (j - 1) \bullet spt k \notin \text{defs}(x, P)

Example 9. We consider the sptraces below.

\{(\text{inc?c?a, var notes, Dispense, notes} = [] . (\text{outc}!c, \text{tag2}))\}
\{(\text{inc?c?a, var notes, Dispense, notes} \neq [] . \text{cash!notes, (outc}!c, \text{tag2})\}

They have a clear path from inc?c?a to (outc!c, tag2) with respect to c. A e-use u of a variable x is said to be reachable by a definition df of x if there is a trace spt such that clear-path(spt, df, u, x).

3.3 Data-flow anomalies and Circus

Three data-flow anomalies are usually identified: (1) a use of a variable without a previous definition; (2) two definitions without an intermediate use; and (3) a definition without use. While these all raise concerns in a program, it is not the case of (2) and (3) in a Circus model. Because a variable declaration is a variable definition that assigns an arbitrary value to a variable, it is common to follow it up with a second definition that restricts that value.

In addition, it is not rare to use a communication d?x to define just that the value x to be input via the channel d is not restricted (and also later not used). In an abstract specification, a process involving such a communication might, for example, be combined in parallel with another process that captures another requirement concerned with restricting these values x, while the requirement captured by the process that defines d?x is not concerned with such values.

As we can see in the following sections, the data-coverage criteria that we consider are based on the set of definitions of a variable x. When a definition involved in any of the above anomalies is considered, it imposes no restriction on the set of tests under consideration for coverage. In practical terms, no tests are required as a consequence of the presence of such definitions.
3.4 all-defs

The first data-coverage criterion that we consider, all-defs, requires that all definitions are covered, and followed by one (reachable) use, via any (clear) path. We formalise coverage criterion by identifying the sets of sptraces $SSPT$ that satisfy that criterion. For all-defs, the formal definition is as follows.

Definition 11. For every variable name x and process P, a set $SSPT$ of sptraces of P provides all-defs coverage if, and only if,

$$\forall df : \text{defs}(x, P) \bullet \\
(\exists spt : \text{sptraces}(P) \bullet \text{clear-path}(spt, df, u, x)) \Rightarrow \\
(\exists spt : SSPT \bullet \text{clear-path}(spt, df, u, x))$$

It requires that, if there is an sptrace spt that can contribute to coverage, then at least one is included in $SSPT$. Since, as already explained, data-flow anomalies are acceptable, this set may be empty.

Example 10. As explained in Examples 7 and 8, in CashMachine, inc?c?a is the only definition of c, and its two uses are (outc!c, tag1) and (outc!c, tag2). There is a trivial clear path between inc?c?a to (outc!c, tag1), where the use immediately follows the definition. Also, as indicated in Example 9, there are two clear paths from inc?c?a to (outc!c, tag2). Accordingly, examples of sets of sptraces that provide all-defs coverage are the three singletons below.

$$\{\langle \text{inc?c?a, (outc!c, tag1)} \rangle\}$$
$$\{\langle \text{inc?c?a, var notes, Dispense, notes = []}, (\text{outc!c, tag2}) \rangle\}$$
$$\{\langle \text{inc?c?a, var notes, Dispense, notes} \neq [], cash!notes, (\text{outc!c, tag2}) \rangle\}$$

Other sets that provide all-defs coverage are the supersets of the above sets, and the sets that include any of the extensions of the sptraces above.

3.5 all-uses

The all-uses criterion requires that all definition-use pairs are covered by at least one clear path, if possible.

Definition 12. For every variable name x and process P, a set $SSPT$ of sptraces of P provides all-uses coverage if, and only if,

$$\forall df : \text{defs}(x, P) \bullet \\
(\exists spt : \text{sptraces}(P) \bullet \text{clear-path}(spt, df, u, x)) \Rightarrow \\
(\exists spt : SSPT \bullet \text{clear-path}(spt, df, u, x))$$

Example 11. Sets of sptraces that provide all-uses coverage are obtained by taking the first one of Example 10 and one of the other ones.

$$\{\langle \text{inc?c?a, (outc!c, tag1)} \rangle, \\
\langle \text{inc?c?a, var notes, Dispense, notes = []}, (\text{outc!c, tag2}) \rangle\}$$
$$\{\langle \text{inc?c?a, (outc!c, tag1)} \rangle, \\
\langle \text{inc?c?a, var notes, Dispense, notes} \neq [], cash!notes, (\text{outc!c, tag2}) \rangle\}$$

These sets have two elements since there is one definition of c, and two uses.
3.6 all-du-paths

The all-du-paths criterion requires that all definition-use pairs are covered by all possible paths. Our notion of path, as already said, is based on sptraces.

Definition 13. For every variable name \(x \) and process \(P \), a set \(SSPT \) of sptraces of \(P \) provides all-du-paths coverage if, and only if,

\[
\forall \ df : \text{defs}(x, P); \ u : \text{e-uses}(x, P); \ p : \text{all-du-sub-path}(x, P, df, u) \bullet \\
\exists spt : SSPT; \ spt_1, spt_2 : \text{seq TLabel} \bullet spt = spt_1 \updownarrow p \updownarrow spt_2
\]

The traces \(spt_1 \) and \(spt_2 \) are an initialisation and a finalisation trace that determine an sptrace of \(P \) that covers \(p \). The set all-du-sub-path\((x, P, df, u)\) contains all the paths in \(P \), according to its set of sptraces, that start with \(df \), finish with \(u \), and is clear of definitions of \(x \) in between.

Definition 14.

\[
\text{all-du-sub-path}(x, P, df, u) = \\
\{ spt : \text{sptraces}(P); \ i : 1 .. \# spt; \ j : (i + 1) .. \# spt | \\
\quad spt \ i = df \land spt \ j = u \land \forall k : (i + 1) .. (j - 1) \bullet spt \ k \notin \text{defs}(x, P) | \\
\quad (i .. j) \downarrow spt \}
\]

Example 12. A set of sptraces that provides all-du-paths coverage is obtained by selecting the three sptraces of example 10

\[
\{(\text{inc}^?c^?a,(\text{outc}!c,\text{tag}1)),\\
(\text{inc}^?c^?a,\text{var notes,Dispense,notes} = [] , (\text{outc}!c,\text{tag}2))\\
(\text{inc}^?c^?a,\text{var notes,Dispense,notes} ≠ [] , \text{cash!notes, (outc}!c,\text{tag}2))\}
\]

Example 13. When considering data-flow coverage of the variable \(\text{notes} \), we observe that it is defined in the \(\text{Dispense} \) schema and it has one use only, \(\text{cash!notes} \) at line 8 of the main action. There is a unique df-clear path between them. Thus a single sptrace is sufficient to provide coverage according to any of the three criteria: it just needs to contain the two consecutive labels corresponding to this definition and this use as indicated below.

\[
\langle...,\text{inc}^?c^?a,\text{var notes,Dispense,notes} ≠ [] , \text{cash!notes,...} \rangle
\]

For instance, the singleton below provides all-defs, all-uses and all-du-paths coverage with respect to the variable \(\text{notes} \).

\[
\{(\text{inc}^?c^?a,\text{var notes,Dispense,notes} ≠ [] , \text{cash!notes, (outc}!c,\text{tag}2))\}
\]
This mostly concludes our discussion of the standard data-flow coverage criteria. We note, however, that the *CashMachine* variables are c, a, $notes$, and $nBank$, and that $nBank$ and a are used internally only. Thus, there is no def-clear path from their definition to an external use, and given the definitions of all-defs, all-uses and all-du-paths, every set of sptraces provides coverage with respect to these criteria and these variables. They contribute, however, to our next more elaborate criterion, which takes the nature of *Circus* models into account, emphasizing dependencies between different variables.

In addition, the structure of schemas is not taken into account. For instance, *Dispense* is a disjunction, and the criteria above do not force the coverage of the two cases, even if the last one achieves it due to the existence of two definition-clear paths that cover them. Coverage of the structure of Z schemas could be another selection criterion by itself, or combined with data-flow analysis.

4 sel-var-df-chain-trace

The definition of this criterion is based on the notion of a var-df-chain, which we introduce first (Section 4.1). Afterwards, we formalise this novel criterion (Section 4.2), and lastly we apply it to the *CashMachine* (Section 4.3). Roughly, the idea is to identify sptraces that include chains of definition and associated internal uses of variables, such that each variable affects the next one in the chain. For state-rich models, we expect an interesting number of such chains.

4.1 var-df-chain

A suffix of an strace spt starting at position i (that is, $(i \ldots \# spt) \uparrow spt$) is in the set var-df-chain(x, P) of var-df-chains of P for x if it starts with a label spt_i that defines x and subsequently has a clear path to a label spt_j. This label must either be a use of x, and in this case it must be the last label of spt, or affect the definition of another variable y, and in this case spt must continue with a var-df-chain for y. The continuation is determined by $(j \ldots \# spt) \uparrow spt$, the subsequence of spt from the position j.

Definition 15.

\[
\text{var-df-chain}(x, P) = \\
\{ \text{spt : sptraces}(P); i : 1 \ldots \# spt; j : (i + 1) \ldots \# spt | \\
\quad \text{spt} i \in \text{defs}(x, P) \land (\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt} k \notin \text{defs}(x, P)) \land \\
\quad (\text{spt} j \in \text{e-uses}(x, P) \land j = \# spt) \lor \\
\quad (\exists y \bullet \text{affects}(x, y, \text{spt} j) \land (j \ldots \# spt) \land \text{spt} \in \text{var-df-chain}(y, P)) \} \\
\bullet (i \ldots \# spt) \uparrow spt
\]

A variable x affects the definition of another variable y in a tagged label tl if it is an internal use of x and a definition of y.

Definition 16. affects(x, y, tl) = $x \in \text{i-useV}(tl) \land y \in \text{defs}(tl)$
An internal use of a variable is an occurrence of it in a guard or action. (This notion of internal use subsumes the classical notion of p-uses.) The set $i\text{-useV}(t_l)$ of variables used in a tagged label t_l, internally, is defined as follows.

Definition 17.

\[
i\text{-useV}(g) = FV(g) \quad i\text{-useV}(\epsilon) = i\text{-useV}(d) = \emptyset
\]
\[
i\text{-useV}(\text{if}[pre, pos]) = FV(pre) \cup FV(pos)
\]
\[
i\text{-useV}(0p) = FV(0p)
\]
\[
i\text{-useV}(\text{var } x : T) = \emptyset
\]
\[
i\text{-useV}(\text{end } y) = \emptyset
\]
\[
i\text{-useV}(\text{var } x := e) = FV(e)
\]

We observe that not all free occurrences of a variable constitute an internal use of it. For example, an assignment to a variable is not an use of it.

4.2 The criterion

We observe that var-df-chains are not sptraces, but suffixes of sptraces. So, coverage is provided by sptraces that have such suffixes, rather than by the var-df-chains themselves. In particular, sel-var-df-chain-trace coverage requires that every chain in a model is covered by at least one sptrace.

Definition 18. For every variable name x and process P, a set $SSPT$ of sptraces of P provides sel-var-df-chain-trace coverage if, and only if,

\[
\forall spt_1 : \text{var-df-chain}(x, P) \bullet
\exists spt_2 : SSPT, spt_3 : \text{seq TLabel} \bullet spt_2 = spt_3 \triangledown spt_1
\]

The specification trace spt_3 is an initialisation trace that leads to the chain.

This is the most demanding of the criteria in this report as shown below.

Theorem 1 For every set $SSPT$ of sptraces, if it provides sel-var-df-chain-trace coverage, then it provides all-du-paths coverage. Additionally, if it provides all-du-paths coverage, then it provides all-uses coverage. Finally, if it provides all-uses coverage, then it provides all-defs coverage.

The proof of this theorem uses our detailed formalisation of all definitions. It establishes subset inclusion for each pair of the sets of sets of sptraces that provide coverage according to Definitions 11, 12, 13 and 18.

Proof.

Case sel-var-df-chain-trace ensures all-paths

\[
\left(\forall spt_1 : \text{var-df-chain}(x, P) \bullet
\exists spt_2 : SSPT, spt_3 : \text{seq TLabel} \bullet spt_2 = spt_3 \triangledown spt_1 \right)
\]

\Leftrightarrow
\[\forall \text{spt}_1 : \text{seq TLabel}; \text{spt}_4 : \text{sptraces}(P); \\
i : 1 \ldots \# \text{spt}_4; \ j : (i + 1) \ldots \# \text{spt}_4 \bullet \\
\text{spt}_4 \ i \in \text{defs}(x, P) \land \\
(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt}_4 \ k \not\in \text{defs}(x, P)) \land \\
(\text{spt}_4 \ j \in \text{c-uses}(x, P) \land j = \# \text{spt}_4) \lor \\
(\exists \ y \bullet \\
\text{affects}(x, y, \text{spt}_4 \ j) \land \\
(j \ldots \# \text{spt}_4) \ i - \# \text{spt}_4 \ y) \land \\
\text{spt}_1 = (i \ldots \# \text{spt}_4) \ i - \# \text{spt}_4 \\
\Rightarrow \\
\exists \text{spt}_2 : \text{SSPT}; \text{spt}_3 : \text{seq TLabel} \bullet \text{spt}_2 = \text{spt}_3 \ominus \text{spt}_1 \\
[\text{definition of var-df-chain}(x, P)] \]

\[\Rightarrow \\
\forall \text{spt}_4 : \text{sptraces}(P); \\
i : 1 \ldots \# \text{spt}_4; \ p : \text{seq TLabel} \bullet \\
(\exists \text{df} : \text{defs}(x, P); \ u : \text{e-uses}(x, P) \bullet \\
\text{spt}_4 \ i = \text{df} \land \text{spt}_4 \ (\# \text{spt}_4) = \text{u} \land \\
(\forall k : (i + 1) \ldots (\# \text{spt}_4 - 1) \bullet \text{spt}_4 \ k \not\in \text{defs}(x, P)) \land \\
p = (i \ldots \# \text{spt}_4) \ i - \# \text{spt}_4 \\
\Rightarrow \\
\exists \text{spt} : \text{SSPT}; \text{spt}_1 : \text{seq TLabel} \bullet \text{spt} = \text{spt}_1 \ominus p \\
[\text{property of sets}] \]

\[\forall \text{spt}_4 : \text{sptraces}(P); \\
i : 1 \ldots \# \text{spt}_4; \\
\text{df} : \text{defs}(x, P); \ u : \text{e-uses}(x, P); \ p : \text{seq TLabel} \bullet \\
\text{spt}_4 \ i = \text{df} \land \text{spt}_4 \ (\# \text{spt}_4) = \text{u} \land \\
(\forall k : (i + 1) \ldots (\# \text{spt}_4 - 1) \bullet \text{spt}_4 \ k \not\in \text{defs}(x, P)) \land \\
p = (i \ldots \# \text{spt}_4) \ i - \# \text{spt}_4 \\
\Rightarrow \\
\exists \text{spt} : \text{SSPT}; \text{spt}_1 : \text{seq TLabel} \bullet \text{spt} = \text{spt}_1 \ominus p \\
[\text{predicate calculus}] \]
\[\forall \text{spt}_4 : \text{sprtraces}(P); \ i : 1 \ldots \# \text{spt}_4; \ j : i \ldots \# \text{spt}_4; \]
\[\text{df} : \text{defs}(x, P); \ u : \text{e}-\text{uses}(x, P); \ p : \text{seq TLabel} \bullet \]
\[\begin{align*}
(\forall \text{spt}_4 i = \text{df} \land \text{spt}_4 j = u \land \\
(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt}_4 k \notin \text{defs}(x, P)) \land \\
p = (i \ldots j) \mid \text{spt}_4) \\
(\exists \text{spt} : \text{SSPT}; \ \text{spt}_4 : \text{seq TLabel} \bullet \text{spt} = \text{spt}_1 \setminus p))
\end{align*}\]

\[\forall \text{spt}_4 : \text{sprtraces}(P); \ i : 1 \ldots \# \text{spt}_4; \ j : (i + 1) \ldots \# \text{spt}_4; \]
\[\text{df} : \text{defs}(x, P); \ u : \text{e}-\text{uses}(x, P); \ p : \text{seq TLabel} \bullet \]
\[\begin{align*}
(\exists \text{spt} : \text{SSPT}; \ \text{spt}_4 : \text{seq TLabel} \bullet \text{spt} = \text{spt}_1 \setminus p))
\end{align*}\]

\[\forall \text{df} : \text{defs}(x, P); \ u : \text{e}-\text{uses}(x, P); \ p : \text{seq TLabel} \bullet \]
\[\begin{align*}
(\exists \text{spt} : \text{sprtraces}(P); \ i : 1 \ldots \# \text{spt}; \ j : (i + 1) \ldots \# \text{spt}) \\
\text{spt} i = \text{df} \land \text{spt} j = u \land \\
(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt} k \notin \text{defs}(x, P)) \land \\
p = (i \ldots j) \mid \text{spt} \\
(\exists \text{spt} : \text{SSPT}; \ \text{spt}_1, \text{spt}_2 : \text{seq TLabel} \bullet \\
\text{spt} = \text{spt}_1 \setminus p \setminus \text{spt}_2)
\end{align*}\]

[definition of all-du-path(x, P, df, u)]
\[\forall p : \text{seq TLabel} \bullet \]
\[\exists \text{spt} : \text{sptraces(P)}; i : 1 \ldots \# \text{spt}; j : (i + 1) \ldots \# \text{spt} \bullet\]
\[\text{spt} i = \text{df} \land \text{spt} j = u \land\]
\[(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt} k \not\in \text{defs(x,P)}) \land\]
\[p = (i \ldots j) \mid \text{spt}\]
\[\exists \text{spt} : \text{SSPT}; \text{spt}_1, \text{spt}_2 : \text{seq TLabel} \bullet\]
\[\text{spt} = \text{spt}_1 \cap p \land \text{spt}_2 \land \text{clear-path(p, df, u, x)}\]

[definition of all-du-sub-path(x, P, df, u)]

\[\forall p : \text{seq TLabel} \bullet \]
\[\exists \text{spt} : \text{sptraces(P)}; i : 1 \ldots \# \text{spt}; j : (i + 1) \ldots \# \text{spt} \bullet\]
\[\text{spt} i = \text{df} \land \text{spt} j = u \land\]
\[(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt} k \not\in \text{defs(x,P)}) \land\]
\[p = (i \ldots j) \mid \text{spt}\]
\[\exists \text{spt} : \text{SSPT}; \text{spt}_1, \text{spt}_2 : \text{seq TLabel} \bullet\]
\[\text{spt} = \text{spt}_1 \land p \cap \text{spt}_2 \land \text{clear-path(p, df, u, x)}\]

[clear-path(spt, df, u, x) and \(p = (i \ldots j) \mid \text{spt}\)]

[predicate calculus]

\[\forall \text{spt}_3 : \text{sptraces(P)}; i : 1 \ldots \# \text{spt}_3; j : (i + 1) \ldots \# \text{spt}_3 \bullet\]
\[\text{spt}_3 i = \text{df} \land \text{spt}_3 j = u \land\]
\[(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt}_3 k \not\in \text{defs(x,P)}) \land\]
\[p = (i \ldots j) \mid \text{spt}\]
\[\exists \text{spt} : \text{SSPT}; \text{spt}_1, \text{spt}_2 : \text{seq TLabel} \bullet\]
\[\text{spt} = \text{spt}_1 \cap (i \ldots j) \mid \text{spt} \land \text{spt}_2 \land \text{clear-path((i \ldots j) \mid \text{spt}_3, df, u, x)}\]

[predicate calculus]

\[\forall \text{spt}_3 : \text{sptraces(P)}; i : 1 \ldots \# \text{spt}_3; j : (i + 1) \ldots \# \text{spt}_3 \bullet\]
\[\text{spt}_3 i = \text{df} \land \text{spt}_3 j = u \land\]
\[(\forall k : (i + 1) \ldots (j - 1) \bullet \text{spt}_3 k \not\in \text{defs(x,P)}) \land\]
\[p = (i \ldots j) \mid \text{spt}\]
\[\exists \text{spt} : \text{SSPT}; \text{spt}_1, \text{spt}_2 : \text{seq TLabel} \bullet\]
\[\text{spt} = \text{spt}_1 \cap (i \ldots j) \mid \text{spt} \land \text{spt}_2 \land \text{clear-path(spt, df, u, x)}\]

[property of clear-path and (i \ldots j) \mid \text{spt}_3 is a subsequence of \text{spt}]

19
Case all-uses ensures all-defs

\[
\forall u : e\text{-uses}(x, P) \Rightarrow \\
(\exists spt : sptraces(P) \bullet \text{clear-path}(spt, df, u, x)) \\
\]

\[
\Rightarrow \\
(\exists spt : SSPT \bullet \text{clear-path}(spt, df, u, x))
\]

[Definition of clear-path(spt, df, u, x)]

\[
\Rightarrow \\
(\exists spt : sptraces(P) \bullet \text{clear-path}(spt, df, u, x))
\]

[Predicate calculus]

4.3 Examples

The very basic var-df-chains, where the same variable is considered as the starting definition and the final use, with a clear path with respect to this variable in between, are covered by the above criteria. More interesting are those var-df-chains where intermediate variables that are defined and then used introduce dependencies between definition and use of different variables.
A first example is the definition of a in \texttt{inc?c?a} and the use of \texttt{notes} in $\texttt{cash!notes}$. The dependency comes from the fact that \texttt{notes} belongs to the set of written variables of $\texttt{Dispense}$, a is an input of this schema, and within $\texttt{Dispense}$, there is the constraint: $\Sigma \texttt{notes}! = a?$. Thus $\texttt{affects(a,notes,Dispense)}$ holds, and since $\texttt{cash!notes} \in \texttt{e-uses(notes,CashMachine)}$, we have the var-df-chain:

$$\langle \texttt{inc?c?a, var notes, Dispense, notes} \neq [], \texttt{cash!notes} \rangle$$

We note that its coverage is required by all-du-paths by accident, because it is part of a clear path between a definition of c and a use of c. Here, the effect of the definition of a on the value of \texttt{notes} is explicitly required to be covered. The var-df-chains identified below, however, are not required to be covered by the previous criteria. They give rise to new tests.

Other examples of var-df-chains are introduced by the definitions of \texttt{nBank}. The label $\texttt{nBank} := \{10 \mapsto \texttt{cap}, 20 \mapsto \texttt{cap}, 50 \mapsto \texttt{cap}\}$ is such a definition, and \texttt{nBank} is used in $\texttt{Dispense}$. Moreover, \texttt{notes} is externally used in the label $\texttt{cash!notes}$. This leads to the following var-df-chain.

$$\langle \texttt{nBank} := \{10 \mapsto \texttt{cap}, 20 \mapsto \texttt{cap}, 50 \mapsto \texttt{cap}\}, \texttt{inc?c?a, var notes, Dispense, notes} \neq [], \texttt{cash!notes} \rangle$$

Coverage of this chain leads to coverage of the effect of a refill event, after which the value of \texttt{nBank} is updated as indicated above. An initialisation trace that leads to the above var-df-chain is simply $\langle \texttt{refill} \rangle$. Another definition of the \texttt{nBank} variable is in the $\texttt{DispenseNotes}$ schema, namely: $\texttt{nBank' n} = (\texttt{nBank n}) - (\texttt{notes}! \# n)$. Moreover, $\texttt{DispenseNotes}$ also has an internal use of \texttt{nBank}. Finally, the path below is clear of \texttt{nBank} definitions between the two occurrences of $\texttt{Dispense}$.

$$\langle \texttt{Dispense, notes} \neq [], \texttt{cash!notes, (outc!c, tag2), inc?c?a, var notes, Dispense} \rangle$$

This leads to the var-df-chain below, where the second occurrence of $\texttt{Dispense}$ is also taken as a definition of \texttt{notes}, which is used externally in the final label.

$$\langle \texttt{Dispense, notes} \neq [], \texttt{cash!notes, (outc!c, tag2), inc?c?a, var notes, Dispense, notes} \neq [], \texttt{cash!notes} \rangle$$

A possible initialisation trace for this var-df-chain is $\langle \texttt{inc?c?a} \rangle$.

As already mentioned, our new criterion sel-var-df-chain is inspired by the work in [21], but there are fundamental differences that go beyond the specificities of the Circus framework. Because of the nature of Circus, it is important not to consider only traces that start with a definition characterised by an input communication like in [21]. The internal state is just as important as any input.

Moreover, throwing away traces that are prefixes of other selected traces like in [21] is not applicable to testing for traces refinement or deadlock reduction (known as the conf relation), which are the conformance relations considered
\[
\frac{c \land (s; g)}{(c \mid s \models (g) \wedge \text{spt}) \xrightarrow{ST} (c \land (s; g) \mid s \models \text{spt})}
\]

\[
\frac{c \land T \neq \emptyset}{(c \mid s \models (d?x: T) \wedge \text{spt}) \xrightarrow{d?w} (c \land w \in T \mid s; \text{var } x := w = s \models \text{spt})}
\]

\[
\frac{(c \mid s \models (d!e) \wedge \text{spt})}{(c \land (s; w = e) \mid s \models \text{spt})}
\]

\[
\frac{(c_1 \mid s_1 \models A_1)}{(c_2 \mid s_2 \models \text{Skip})}
\]

\[
\frac{(c_1 \mid s_1 \models (A_1) \wedge \text{spt})}{(c_2 \mid s_2 \models \text{spt})}
\]

Table 2. Operational semantics of sptraces; \(w_0\) stand for fresh symbolic variables

for the Circus testing theory [3]. A trace is used to construct tests that check forbidden continuations and required acceptances at a particular point of the SUT history, and that check is not subsumed by tests that arise from longer traces. It is the reason why we do not pursue maximality as in [21].

In the next section, we explain how to obtain cstraces from sptraces (to construct symbolic tests). This is essential for generating tests from the selected sptraces and states the link of these tests with the operational semantics and the Circus testing theory, whether data-flow coverage is used for selection or not.

5 Conversion of specification traces to symbolic traces

Converting an sptrace to a symbolic trace requires an operational semantics for sptraces, which we provide in Table 2. It defines a transition relation \(\xrightarrow{ST}\) using four rules: one for when the first label is a guard, two for when it is either an input or an output, and one for an action label \(A\). In this last case, the rules of the operational semantics transition rule \(\xrightarrow{\text{op}}\) define the new transition relation.

Like in the operational semantics, the configuration is a triple, but here, instead of a process or action, we have an sptrace associated with a constraint \(c\) and a state assignment \(s\). From a configuration \((c \mid s \models (1) \wedge \text{spt})\) with an sptrace \((1) \wedge \text{spt}\), we have a transition to a configuration with \(\text{spt}\). The new constraint and state depend on the label 1.

For a guard, a transition requires that \(c\) is satisfiable and \(g\) holds in the current state \((s; g)\). In this case, the transition is silent: it has label \(\epsilon\).

Input and output communications give rise to non-silent transitions with labels like those of the operational semantics: symbolic inputs and outputs. Inputs \(d?x: T\) are annotated with the type \(T\) of channel \(d\). The new constraint records that the input value represented by the fresh symbolic variable \(w_0\) has type \(T\) and the state is enriched with a declaration of \(x\) whose initial value is set to \(w_0\).
We observe that, by definition of the operational semantics [3], all transitions in the order in which they appear in process from its sptraces. The function cstrace captures the interactions corresponding to an sptrace. It is defined in Table 3.

Definition 19. As before, we consider a process to each of its sptraces. It is defined as follows.

The following cstraces correspond to the sptraces in Example 12.

Example 14. The following cstraces correspond to the sptraces in Example 12.

\[
\begin{align*}
(c_1 | s_1 = spt_1) & \rightarrow_{ST} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{SP} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{ST} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{SP} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{ST} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{SP} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{ST} (c_2 | s_2 = spt_2) \\
(c_1 | s_1 = spt_1) & \rightarrow_{SP} (c_2 | s_2 = spt_2)
\end{align*}
\]

Table 3. Annotated transition relation: symbolic traces for sptraces

Actions, that is, state operations, are handled like in the operational semantics. We observe that, by definition of the operational semantics [3], all transitions arising from an action in a label are silent and lead to the action Skip.

Finally, we have a transition relation \rightarrow_{ST} that defines a symbolic trace st that captures the interactions corresponding to an sptrace. It is defined in Table 3.

The transition relation \rightarrow_{ST} is used below to characterise the cestraces of a process from its sptraces. The function $\text{cstraces}_{ST}^a(P)$ defines the set of cestraces of P in terms of $\text{sptraces}(P)$. The extra parameter a is an alphabet: a sequence of fresh symbolic variables. The cestraces in $\text{cstraces}_{ST}^a(P)$ use these variables in the order in which they appear in a.

Definition 19.

\[
\text{cstraces}_{ST}^a(\text{begin state}[x : T] \bullet A \text{ end}) = \\
\text{convST}^a(w_0 \in T, x := w_0) (\{\text{sptraces}(\text{begin state}[x : T] \bullet A \text{ end})\})
\]

As before, we consider a process $\text{begin state}[x : T] \bullet A \text{ end}$ without loss of generality, and define its cestraces by applying a conversion function $\text{convST}^a(c, s)$ to each of its sptraces. It is defined as follows.

Definition 20. For every alphabet a, constraint c, state assignment s and sptrace spt, we have that $\text{convST}^a(c, s)\text{spt} = (st, \exists (\alpha c \setminus \text{ost}) \bullet c_1)$ where st and c_1 are characterised by $\text{ost} \leq a \land \exists s_1 \bullet (c | s \models \text{spt}) \rightarrow_{ST} (c_1 | s_1 \models \langle \rangle)$.

Each sptrace gives rise to exactly one cestrace, since any nondeterminism in the actions are captured by the constraint on the symbolic variables. The alphabet ost of the symbolic trace st is a prefix of a: $\text{ost} \leq a$.

Example 14. The following cestraces correspond to the sptraces in Example 12.

\[
\langle \text{inc?}\alpha_0?\alpha_1, \text{outc}\alpha_2 \rangle, \alpha_0 \in \text{CARD} \land \alpha_1 \in \mathbb{N}_1 \land \alpha_2 = \alpha_0 \rangle
\]

\[
\langle \text{inc?}\alpha_0?\alpha_1, \text{cash}\alpha_2, \text{outc}\alpha_3 \rangle, \alpha_0 \in \text{CARD} \land \alpha_1 \in \mathbb{N}_1 \land \alpha_2 = \alpha_1 \land (\exists w_0 : \text{Note} \rightarrow \mathbb{N} \bullet (\forall n : \text{Note} \bullet \alpha_2 \notin n) \leq w_0 n)) \land \alpha_3 = \alpha_0 \rangle
\]

We take the alphabet to be $\langle \alpha_0, \alpha_1, \alpha_2, \alpha_3, \ldots \rangle$. The first cestrace comes from both
the first and the second sptrace in Example 12. The second cstrace comes from
the last sptrace in Example 12. The quantified symbolic variable \(w_0 \) represents
the internal value of \(n_{Bank} \), which is not observable in the trace, but contributes
to the specification of the observable value \(\alpha_2 \).

Two sptraces give rise to the same cstrace because after a withdraw request,
the card may be returned immediately for one of two reasons: there is a problem
with the card account (like insufficient funds) or there is no money in the cash
machine. Since the model abstracts away the existence of accounts and their
balances, we cannot distinguish these behaviours by tests from this model.

This is reflected in the fact that the two sptraces have different tags associated
with the \textit{outcle} event. This indicates that they correspond to two different parts
of the model. This distinction is not testable and that may be a problem for
understanding or observing the SUT. A testing tool might, for example, warn
that a distinction may need to be introduced or instrumented in the SUT.

The cstraces defined by the operational semantics capture just observable labels.
On the other hand, sptraces were defined specifically to capture the structure of
the model, and in doing so, it captures guards and data operations that are not
visible in the interface of the SUT. So, it is not surprising that, as illustrated
in the above example, there are sptraces that lead to the same cstrace. They
correspond to paths in the model that are not distinguishable from the SUT.
Requiring their absence in programs is reasonable, but in abstract models that
involve nondeterminism, this is not realistic.

The next theorem establishes that tests identified by sptraces are unbiased
with respect to refinement, because they specify valid cstraces of the process.
Construction of unbiased tests from cstraces was addressed in [3].

\textbf{Theorem 2} \(\text{cstraces}_{SPT}^a(P) \subseteq \text{cstraces}^a(P) \)

We do not have equality: there is no empty sptrace, for instance. The main
lemma is proved by induction on the specification traces of \(P \).

\textit{Proof.}

\[
\text{cstraces}_{SPT}^a(\text{begin state}[x : T] \bullet A \text{ end})
\]

\[
= \text{convSPT}^a(w_0 \in T, x := w_0) \langle \text{sptraces}(\text{begin state}[x : T] \bullet A \text{ end}) \rangle
\]

\[
[\text{definition of cstraces}_{SPT}]
\]

\[
= \{ \text{spt} : \text{sptraces}(\text{begin state}[x : T] \bullet A \text{ end})
\bullet \text{convSPT}^a(w_0 \in T, x := w_0) \text{spt} \}
\]

\[
[\text{definition of relational image}]
\]

24
∀

Lemma 1.

pieces of text built out of the constraints and traces are equivalent.

The equality between the existential quantifications is semantic equality, not syntactic: the predicates identified by the pieces of text built out of the constraints and traces are equivalent.

Lemma 2.

Direct consequence of Proposition 1 and Lemma 2.

Proof. Direct consequence of Proposition 1 and Lemma 2.

Lemma 2.

Proof. By induction on st.
Case \(\langle \rangle \)

\((c_1 \models s_1 \models spt) \xrightarrow{\langle \rangle} (c_3 \models s_3 \models \langle \rangle)\)

In this case, by the definition of \(\rightarrow\) and \(\rightarrow_{ST}\), \(spt\) is a sequence of guards and actions (without communications). We establish the result by case analysis on \(spt\).

Subcase \(\langle g \rangle \cap spt\)

\((c_1 \models s_1 \models \langle g \rangle \cap spt) \xrightarrow{st} (c_3 \models s_3 \models \langle \rangle) \land (c_1 \models s_1 \models A_1) \xrightarrow{(g)spt} (c_2 \models s_2 \models A_2)\)

\[\Rightarrow \exists A_3 \bullet \left((c_1 \models s_1 \models \langle g \rangle \cap spt) \xrightarrow{\langle g \rangle \cap spt} (c_1 \models (s_1; g) \models s_1 \models spt) \land (c_1 \models (s_1; g) \models s_1 \models \langle \langle \rangle \rangle) \land (c_1 \models s_1 \models A_1) \xrightarrow{(g)\alpha} (c_1 \models (s_1; g) \models s_1 \models A_3) \land (c_1 \models (s_1; g) \models s_1 \models A_3) \xrightarrow{spt} (c_2 \models s_2 \models A_2) \right)\]

\[\Rightarrow (\exists \alpha c_3 \bullet c_3) = (\exists \alpha c_2 \bullet c_2)\] [by induction hypothesis]

Subcase \(\langle A \rangle \cap spt\), where \(A\) is an action of a label: similar.

Case \(\langle d?\alpha_0 \rangle\)

\((c_1 \models s_1 \models spt) \xrightarrow{(d?\alpha_0)} (c_3 \models s_3 \models \langle \rangle)\)

In this case, by the definition of \(\rightarrow\) and \(\rightarrow_{ST}\), \(spt\) is a sequence of guards and actions that ends with an input on the channel \(d\). We again establish the result by case analysis on \(spt\). If it starts with a guard or an action, the proof is similar to that presented above. For \(\langle d?x \rangle\), we have the following.

\((c_1 \models s_1 \models \langle d?x \rangle) \xrightarrow{(d?\alpha_0)} (c_3 \models s_3 \models \langle \rangle) \land (c_1 \models s_1 \models A_1) \xrightarrow{(d?x)} (c_2 \models s_2 \models A_2)\)

\[\Rightarrow c_3 = c_1 \land \alpha_0 \in T \land \exists A_3 \bullet (c_1 \models s_1 \models A_1) \xrightarrow{(d?x)} (c_1 \land \alpha_0 \in T \land s_1; \text{var x} := \alpha_0 \models A_3)\]

\[\Rightarrow (\exists (\alpha c_3 \setminus \{\alpha_0\}) \bullet c_3) = (\exists (\alpha c_2 \setminus \{\alpha_0\}) \bullet c_2)\] [predicate calculus]

Case \(\langle d!\alpha_0 \rangle\) Similar, but relies on Lemma 5.
Case $\langle \text{d.} \alpha_0 \rangle \triangleright \text{st}$ Here, we use $\text{d.} \alpha_0$ to represent an input, an output or even a synchronisation, in which case there is no communicated value α_0.

\[
(c_1 \mid s_1 \models A_1) \xrightarrow{\text{spt}} (c_2 \mid s_2 \models A_2) \land (c_1 \mid s_1 \models \text{spt}) \xrightarrow{\langle \text{d.} \alpha_0 \rangle \triangleright \text{st}} (c_3 \mid s_3 \models \langle \rangle)
\]

\Rightarrow

\[
\exists \text{spt}_1, \text{spt}_2, c_4, s_4 \bullet
\begin{align*}
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_1 \triangleright \text{spt}_2} (c_2 \mid s_2 \models A_2) \land \\
(c_1 \mid s_1 \models \text{spt}_1 \land \text{spt}_2) & \xrightarrow{\langle \text{d.} \alpha_0 \rangle \triangleright \text{st}} (c_4 \mid s_4 \models \text{spt}_2) \land \\
(c_1 \mid s_1 \models \text{spt}_2) & \xrightarrow{\text{st}} (c_3 \mid s_3 \models \langle \rangle)
\end{align*}
\]

[definition of $\xrightarrow{\text{st}}$]

\Rightarrow

\[
\exists \text{spt}_1, \text{spt}_2, c_4, s_4, A_4 \bullet
\begin{align*}
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_1 \triangleright \text{spt}_2} (c_2 \mid s_2 \models A_2) \land \\
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_2} (c_4 \mid s_4 \models A_4) \land \\
(c_1 \mid s_1 \models \text{spt}_1 \land \text{spt}_2) & \xrightarrow{\langle \text{d.} \alpha_0 \rangle \triangleright \text{st}} (c_4 \mid s_4 \models \text{spt}_2) \land \\
(c_1 \mid s_1 \models \text{spt}_2) & \xrightarrow{\text{st}} (c_3 \mid s_3 \models \langle \rangle)
\end{align*}
\]

[Proposition 3]

\Rightarrow

\[
\exists \text{spt}_1, \text{spt}_2, c_4, s_4, A_4, c_5, s_5, A_5 \bullet
\begin{align*}
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_1 \triangleright \text{spt}_2} (c_5 \mid s_5 \models A_5) \land \\
(c_5 \mid s_5 \models A_5) & \xrightarrow{\text{spt}_2} (c_2 \mid s_2 \models A_2) \land \\
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_2} (c_4 \mid s_4 \models A_4) \land \\
(c_1 \mid s_1 \models \text{spt}_1 \land \text{spt}_2) & \xrightarrow{\langle \text{d.} \alpha_0 \rangle \triangleright \text{st}} (c_4 \mid s_4 \models \text{spt}_2) \land \\
(c_1 \mid s_1 \models \text{spt}_2) & \xrightarrow{\text{st}} (c_3 \mid s_3 \models \langle \rangle)
\end{align*}
\]

[definition of $\xrightarrow{\Rightarrow}$]

\Rightarrow

\[
\exists \text{spt}_1, \text{spt}_2, c_4, s_4, A_4, s_5, A_5 \bullet
\begin{align*}
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_1 \triangleright \text{spt}_2} (c_4 \mid s_5 \models A_5) \land \\
(c_5 \mid s_5 \models A_5) & \xrightarrow{\text{spt}_2} (c_2 \mid s_2 \models A_2) \land \\
(c_1 \mid s_1 \models A_1) & \xrightarrow{\text{spt}_2} (c_4 \mid s_4 \models A_4) \land \\
(c_1 \mid s_1 \models \text{spt}_1 \land \text{spt}_2) & \xrightarrow{\langle \text{d.} \alpha_0 \rangle \triangleright \text{st}} (c_4 \mid s_4 \models \text{spt}_2) \land \\
(c_1 \mid s_1 \models \text{spt}_2) & \xrightarrow{\text{st}} (c_3 \mid s_3 \models \langle \rangle)
\end{align*}
\]

[Proposition 2]

$\Rightarrow (\exists(\alpha c_3 \setminus \alpha \text{st}) \bullet c_3) = (\exists(\alpha c_2 \setminus \alpha \text{st}) \bullet c_2)$

[induction hypothesis]

27
\[\Rightarrow (\exists (\alpha c_3 \setminus (\{a_0\} \cup \alpha st)) \bullet c_3) = (\exists (\alpha c_2 \setminus (\{a_0\} \cup \alpha st)) \bullet c_2) \]

[predicate calculus]

\[\square \]

The definitions of the various transition systems ensure the property below.

Proposition 1.

\[\forall \text{spt}; \text{st}; c_1; s_1; A_1; c_2; s_2; A_2; c_3; s_3 \bullet ((c_1 \mid s_1 \models A_1) \xrightarrow{spt} (c_2 \mid s_2 \models A_2) \land (c_1 \mid s_1 \models \text{spt}) \xrightarrow{\text{st}} (c_3 \mid s_3 \models ())) \Rightarrow (c_1 \mid s_1 \models A_1) \xrightarrow{\text{st}^*} (c_2 \mid s_2 \models A_2) \]

Lemma 3.

\[\forall c_1, s_1, A_1, g, \text{spt}, c_3, s_3, A_3 \mid (c_1 \mid s_1 \models A_1) \xrightarrow{(g)} (c_3 \mid s_3 \models A_3) \bullet (\exists A_2 \bullet (c_1 \mid s_1 \models A_1) \xrightarrow{(g)} (c_1 \land (s_1; g) \mid s_1 \models A_2)) \]

Proof. By induction on \(A_1 \), considering the cases where the label can be \((g)\).

Case g & A Direct from Rule (5) in Appendix B and Proposition 3. In Appendix B we present the transition system that defines the labels determined by an action, and is the basis for the definition of \(\Rightarrow \). The relation \(\Rightarrow \) defined in Appendix B is a partial relation for actions. It is used in conjunction with the operational semantics (included in Appendix A) to define \(\Rightarrow \).

Case let x • A Direct from Rule (10) in Appendix B and the induction hypothesis.

Case A1; B Direct from Rule (11) in Appendix B and the induction hypothesis.

Case (spar v | x | y | x_1 := z_1 • A_1) [cs] (spar v | y | x | x_2 := z_2 • A_2)

In Rule (13) of Appendix B, we conclude by the induction hypothesis that \(c_3 = c_1 \land (s_1; \text{end}_v, y; g) \), which can be simplified as follows.

\[c_3 = c_1 \land (s_1; \text{end}_v, y; g) \]

\[= c_3 = c_1 \land (s_1; g) \]

[since \(v, y \) are not free in \(g \), because names are not reused in actions]

For the state assignment, the induction hypothesis gives \(s_3 = s_1; \text{end}_v, y \). If \(s_1 \) is a statement assignment over \(v, y \) and \(x \), then \(s_1; \text{end}_v, y \land s_1; \text{end}_x = s_1 \).
Proposition 2.

\[(c_1 | s_1 \models A_1) \rightsquigarrow^{\text{spt}} (c_2 | s_2 \models A_2) \land (c_1 | s_1 \models A_1) \rightsquigarrow^{\text{spt}} (c_3 | s_3 \models A_3) \]
\[\Rightarrow c_2 = c_3 \]

This proposition follows from the fact that \(\Rightarrow \Rightarrow \) identifies a unique path in \(A_1 \) via \text{spt} and then follows however many silent moves of the operational semantics are possible. These silent moves are for \text{Skip}; \(A \) and \(\cap \), which do not change \(c_1 \).

Finally, for \((\text{spar } v | x | y | x_1 := z_1 \bullet A_1) \parallel \text{cs} \parallel (\text{spar } v | y | x | x_2 := z_2 \bullet A_2) \), a simple induction would justify that the constraint is maintained.

Lemma 4.

\[\forall c_1, s_1, A_1, d, x, c_3, s_3, A_3 \mid (c_1 | s_1 \models A_1) \overset{(d|x)}{\Rightarrow^{\text{spt}}} (c_3 | s_3 \models A_3) \bullet \\
(\exists A_2, \alpha_0 \bullet (c_1 | s_1 \models A_1) \overset{(d|x)}{\Rightarrow^{\text{spt}}} (c_1 \land \alpha_0 \in T | s_1; \text{var } x := \alpha_0 \models A_2)) \]

Proof. By case analysis on \(A_1 \) like in the proof of Lemma 3.

Case \(d|x : T \longrightarrow A \) Direct from Rule (7) in Appendix B and Proposition 3.

Cases \(\text{let } x \bullet A_1, A_1; B, \text{ and } A_1 \parallel \text{cs} \) are similar to those in the proof of Lemma 3.

We observe that, in the case of hiding, if \(d \) is in the set \(\text{cs} \) of hidden channels, then the communication \(d|x \) cannot be in the trace. So, we conclude that \(d \) is not in the channel.

Case \((\text{spar } v | x | y | x_1 := z_1 \bullet A_1) \parallel \text{cs} \parallel (\text{spar } v | y | x | x_2 := z_2 \bullet A_2) \)

In Rule (13) of Appendix B, we conclude by the induction hypothesis that \(c_3 = c_1 \land \alpha_0 \in T \), as required, and that \(s_3 = s_1 \); \text{end } v, y; \text{var } a := \alpha_0. \) If \(s_1 \) is a statement assignment over variables are \(v \) and \(x \), then

\[s_1; \text{end } v, y; \text{var } a := \alpha_0 \land s_1; \text{end } z \]
\[= s_1; \text{var } a := \alpha_0; \text{end } v, y \land s_1; \text{end } z \]
\[= s_1; \text{var } a := \alpha_0 \]

\[\square \]

Lemma 5.

\[\forall c_1, s_1, A_1, d, e, c_3, s_3, A_3 \mid (c_1 | s_1 \models A_1) \overset{(d|e)}{\Rightarrow^{\text{spt}}} (c_3 | s_3 \models A_3) \bullet \\
(\exists A_2, \alpha_0 \bullet (c_1 | s_1 \models A_1) \overset{(d|e)}{\Rightarrow^{\text{spt}}} (c_1 \land (s_1; \alpha_0 \models e) | s_1 \models A_2)) \]

Proof. By case analysis on \(A_1 \). The interesting cases are as follows.
Case \(\text{dle} \rightarrow \text{A} \) Direct from Rule (6) in Appendix B and Proposition 3.

Case \((\text{spar} \ v \mid x \mid y \mid x_1 := z_1 \cdot A_1) \parallel cs \parallel (\text{spar} \ v \mid y \mid x \mid x_2 := z_2 \cdot A_2)\)

If Rule (13) of Appendix B is applicable, the argument is similar to that in the proof of Lemma 3. If Rule (14) is applicable, we conclude by Lemma 4

\[c_1 \land \alpha_0 \in T, \land c_1 \land (s_1; \text{end} v, x; \alpha_0 = e) \]

Their conjunction can be simplified as follows.

\[c_1 \land \alpha_0 \in T \land c_1 \land (s_1; \text{end} v, x; \alpha_0 = e) \]

\[= c_1 \land (s_1; \text{end} v, x; \alpha_0 = e) \quad \text{[since the action is well typed]} \]

\[= c_1 \land (s_1; \alpha_0 = e) \quad \text{[since } v, x \text{ are not free in } e, \text{ because names are not reused in actions]} \]

Moreover, by Lemma 4, \(s_3 = s_1; \text{end} v, y; \text{vara} := \alpha_0 \), and by the induction hypothesis, \(s_4 = s_1; \text{vara} := \alpha_0 \). If \(s_1 \) is a state assignment over variables \(v, y \) and \(x \), then

\[\exists \alpha_0 \cdot (s_1; \text{end} v, y; \text{vara} := \alpha_0; \alpha_0 = a) \iff (s_1; \text{vara} := \alpha_0; (\alpha_0 = e)) \]

\[= \exists \alpha_0 \cdot \text{true} \iff \text{true} \]

\[= \text{true} \]

This gives us the required result for the constraint. For the state assignment, the result is a direct consequence of the definition of Rule (14).

The definitions of the various transition systems ensure the property below.

Proposition 3. For every \(\text{spt}_1 \in \text{sptraces}(c_1, s_1, A_1) \)

\[(c_1 \mid s_1 \models \text{spt}_1) \rightarrow_{\text{st}} (c_2 \mid s_2 \models \text{spt}_2) \Rightarrow \\
(\exists A_2 \cdot (c_1 \mid s_1 \models A_1) \text{spt}_1 \rightarrow_{\text{st}} \text{spt}_2; (c_2 \mid s_2 \models A_2)) \]

We use \(\text{spt}_1 \rightarrow \text{spt}_2 \), where \(\text{spt}_2 \) is a suffix of \(\text{spt}_1 \) to denote a prefix of \(\text{spt}_1 \) containing all its elements before \(\text{spt}_2 \). This concludes our proof of unbiasedness for every selection strategy based on sptraces.

6 Related works

Data-flow analysis of communicating systems has raised interest for quite a while. In one of the first works in this area, Reif and Smolka [19] presented a technique based on the construction, from the considered set of communicating processes, of a special directed acyclic graph called the event spanning graph and provided an approximation of the data-flow analysis for the case where the only interferences between processes are message primitives.
Concerning programs, we can cite, among many others, [15], where Nau-movitch et al. presented a generalisation to concurrent Java programs of an approach where the accuracy of the data-flow analysis based on a data-flow graph can be improved by supplying additional information, expressed as a finite state automata, to represent the possible communications among threads and feasibility constraints. This technique had been extended in [8] and applied to Ada programs. Since then, numerous specialised techniques and tools have been developed for data flow analysis of multithreaded programs.

More recently, Chugh et al. in [5] have shown how to use race detection to determine when data-flow facts may be killed by the actions of other threads. The approach is not tied to any particular concurrency constructs since various race-detection engines can be used. It makes it possible to improve precision and scalability of the data-flow analysis of a large class of concurrent programs.

Concerning models, in [11], Labbé and Gallois address the issue of slicing communicating symbolic automata specifications, more precisely IOSTS, and thus extend data-flow analysis to this kind of models. The emphasis there is on model reduction. Testing is just mentioned as a perspective.

Data-flow based testing for state-based specification languages has been applied to Lotos by Van der Schoot and Ural in [21], to SDL and Estelle (that is, EFSM) by Ural and others in [22], and extended with control dependencies in [10]. As said in Section 4, our sel-var-df-chain-trace selection criterion is inspired from [21], but different, due to the notion of internal state in Circus and to the forms of symbolic tests considered in the Circus testing theory. These differences, however, should not prevent its extension to control dependencies, possibly by some slight enrichment of our tagged labels. However, our aim in this paper is more to exemplify via data-flow coverage how to relate coverage of the structure of a Circus model to the tests derived from its operational semantics than to multiply examples of possible criteria. Thus this extension is not developed here.

In another context, Tse et al. have adapted data-flow testing to service orchestrations specified in WS-BPEL in [12], and to service choreographies in [13]. From the specifications, they build an XPath Rewriting Graph, which captures the specificities of the underlying process algebras, which is very different from Circus, with loose coupling between processes, XML messages, and XPath queries. Data-flow entities (that is, defs, uses, and def-clear sub-paths) are then redefined as Q-DEF, Q-USE, and Q-DU, from where data-flow criteria similar to the conventional ones we present in Section 3 are established.

7 Conclusions

We have presented here a framework for selection of tests from Circus models based on data-flow coverage criteria for specification traces, which record sequences of guards, communications and actions defined by a model. To illustrate the use of the definitions, we have formalised some coverage criteria, including a new criterion that takes into account specification traces with internal definitions and uses. Proof of unbias of the selected tests is possible due to formal
nature of our setting. We have formalised also the procedure to construct Circus cstraces (used to construct tests) from our specification traces. Our formal definitions are, in particular, suited for use with the Circus testing tool in [9], which is based on a theorem prover, namely Isabelle/HOL.

Many variants of data-flow coverage criteria can be considered in our framework. For instance, we can consider only inputs as definitions, as in [21]; we can also restrict i-useV to uses within predicates in line with the classical p-uses criterion [18]. In these cases, fewer tests are required. As already said, control dependencies as in [10] could be taken into account.

In addition, the specification traces defined in this paper can be used for other selection criteria, data-flow based and other ones as well, since most features of the models are kept. It is our plan to consider a number of selection criteria for Circus tests. Besides data-flow coverage, we have already considered criteria based on cstraces, including synchronisation coverage, a specific criterion for coverage of parallelisms. We plan to explore criteria that consider a variety of Circus constructs in an integrated way, to include, for instance, notions of Z schema coverage, case splitting in the pre and postcondition of specification statements, control dependencies and test purposes expressed in Circus. We plan also to address in a formal framework the problem of monitoring such tests.

Acknowledgments

We warmly thank Frédéric Voisin for several pertinent comments. We are grateful to the Royal Society and the CNRS for funding our collaboration.

References

A Operational semantics

\[\begin{array}{c}
\begin{array}{c}
\text{begin} \\
\text{state } [x : T] \\
\begin{array}{c}
\bullet A \\
\text{end}
\end{array}
\end{array} \\
\xrightarrow{\epsilon} \\
\begin{array}{c}
\text{begin} \\
\text{state } [x : T] \\
\begin{array}{c}
\| \text{loc } (c_1 | s_1) \\
\bullet A_1 \\
\text{end}
\end{array}
\end{array} \\
(1)
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{begin} \\
\text{state } [x : T] \\
\begin{array}{c}
\| \text{loc } (c_1 | s_1) \\
\bullet A_1 \\
\text{end}
\end{array}
\end{array} \\
\xrightarrow{v' = \text{out } a} \\
\begin{array}{c}
\text{begin} \\
\text{state } [x : T] \\
\begin{array}{c}
\| \text{loc } (c_2 | s_2) \\
\bullet A_2 \\
\text{end}
\end{array}
\end{array}
\end{array} \]

\[(c_1 | s_1 \models A_1) \xrightarrow{1} (c_2 | s_2 \models A_2) \]

\[(c | s \models p \land (\exists v' \bullet s; Q)) \xrightarrow{v'} (c \land (s; Q[w_0/v']) | s; v := w_0 \models \text{Skip}) \]
\[c \land \neg (s; p) \quad \frac{(c \mid s \models p \models Q)}{\frac{\cdot}{c \mid s \models Chaos}} \quad (4) \]

\[c \quad \frac{(c \mid s \models Chaos)}{\frac{\cdot}{c \mid s \models Chaos}} \quad (5) \]

\[c \quad \frac{(c \mid s \models v := e)}{\frac{\cdot}{c \mid s \models Chaos}} \quad (6) \]

\[c \quad \frac{(c \mid s \models s; \text{pre Op})}{\frac{\cdot}{c \mid s \models Chaos}} \quad (7) \]

\[c \land \neg (s; \text{pre Op}) \quad \frac{(c \mid s \models 0p)}{\frac{\cdot}{c \mid s \models Chaos}} \quad (8) \]

\[c \quad \frac{(c \mid s \models d!e \rightarrow A)}{\frac{\cdot}{d!w_0 (c \land (s; w_0 = e) \mid s \models A)}} \quad (9) \]

\[c \quad \frac{T \neq \emptyset \quad \alpha \notin \text{as}}{\frac{(c \mid s \models d?x : T \rightarrow A)}{d?w_0 (c \land w_0 \in T \mid s \models \text{var} x := w_0 \models \text{let} x \cdot A)}} \quad (10) \]

\[c \quad \frac{T \neq \emptyset \quad \alpha \notin \text{as}}{\frac{(c \mid s \models \text{var} x : T \cdot A)}{\frac{\cdot}{x := w_0 (c \land w_0 \in T \mid s \models \text{var} x := w_0 \models \text{let} x \cdot A)}}} \quad (11) \]

\[(c_1 \mid s_1 \models A_1) \quad \frac{\cdot}{\frac{\cdot}{(c_2 \mid s_2 \models A_2) \quad (c_1 \mid s_1 \models \text{let} x \cdot A_1) \quad \frac{\cdot}{\frac{\cdot}{(c_2 \mid s_2 \models \text{let} x \cdot A_2)}}}} \quad (12) \]

\[c \quad \frac{(c \mid s \models \text{let} x \cdot \text{Skip})}{\frac{\cdot}{c \mid s \models \text{end} x \models \text{Skip}}} \quad (13) \]
\[
\begin{align*}
 &\frac{(c_1 \mid s_1 \models A_1)}{(c_2 \mid s_2 \models A_2)} & \frac{(c_1 \mid s_1 \models A_1; B)}{(c_2 \mid s_2 \models A_2; B)} \\
 &\frac{c}{(c \mid s \models \text{Skip}; A) \rightarrow (c \mid s \models A)} & \frac{c}{(c \mid s \models A_1 \sqcap A_2) \rightarrow (c \mid s \models A_1)}
\end{align*}
\]

\[
\begin{align*}
 &\frac{c \land (s; g)}{(c \mid s \models g \land A) \rightarrow (c \land (s; g) \mid s \models A)}
\end{align*}
\]

\[
\begin{align*}
 &\frac{(c \mid s \models A_1 \sqcap A_2)}{(c \mid s \models (\text{loc } c \mid s \cdot A_1) \sqcup (\text{loc } c \mid s \cdot A_2))}
\end{align*}
\]

\[
\begin{align*}
 &\frac{(c \mid s \models (\text{loc } c_1 \mid s_1 \cdot \text{Skip}) \sqcup (\text{loc } c_2 \mid s_2 \cdot A))}{(c_1 \mid s_1 \models \text{Skip})}
\end{align*}
\]

\[
\begin{align*}
 &\frac{(c_2 \mid s_2 \models \text{Skip}) \sqcup (\text{loc } c_2 \mid s_2 \cdot \text{Skip})}{(c_2 \mid s_2 \models \text{Skip})}
\end{align*}
\]

\[
\begin{align*}
 &\frac{(c_1 \mid s_1 \models A_1)}{(c_3 \mid s_3 \models A_3)}
 &\frac{(c \mid s \models (\text{loc } c_1 \mid s_1 \cdot A_1) \sqcup (\text{loc } c_2 \mid s_2 \cdot A_2))}{(c \mid s \models (\text{loc } c_3 \mid s_3 \cdot A_3) \sqcup (\text{loc } c_2 \mid s_2 \cdot A_2))}
 \quad (c_1 \mid s_1 \models A_1)
 \quad \frac{(c \mid s \models (\text{loc } c_1 \mid s_1 \cdot A_1) \sqcup (\text{loc } c_2 \mid s_2 \cdot A_2))}{(c \mid s \models (\text{loc } c_1 \mid s_1 \cdot A_1) \sqcup (\text{loc } c_2 \mid s_2 \cdot A_2))}
 \quad (c_2 \mid s_2 \models A_2)
 \quad \frac{(c \mid s \models (\text{loc } c_1 \mid s_1 \cdot A_1) \sqcup (\text{loc } c_2 \mid s_2 \cdot A_2))}{(c \mid s \models (\text{loc } c_1 \mid s_1 \cdot A_1) \sqcup (\text{loc } c_2 \mid s_2 \cdot A_2))}
\end{align*}
\]

35
\[
\begin{align*}
(c_1 | s_1 \models A_1) \overset{1}{\rightarrow} (c_3 | s_3 \models A_3) & \quad \text{if } 1 \neq \epsilon \\
(c | s \models (\text{loc } c_1 | s_1 \cdot A_1) \boxplus (\text{loc } c_2 | s_2 \cdot A_2)) \overset{1}{\rightarrow} (c_3 | s_3 \models A_3)
\end{align*}
\]

(23)

\[
\begin{align*}
(c_2 | s_2 \models A_2) \overset{1}{\rightarrow} (c_3 | s_3 \models A_3) & \quad \text{if } 1 \neq \epsilon \\
(c | s \models (\text{loc } c_1 | s_1 \cdot A_1) \boxplus (\text{loc } c_2 | s_2 \cdot A_2)) \overset{1}{\rightarrow} (c_3 | s_3 \models A_3)
\end{align*}
\]

(24)

\[
\begin{align*}
(c | s \models A_1 [x_1 | cs | x_2] A_2) \overset{c}{\rightarrow} (c | s \models (\text{par } s | x_1 \cdot A_1) [cs] (\text{par } s | x_2 \cdot A_2))
\end{align*}
\]

(25)

\[
\begin{align*}
\vdash (\text{par } s_1 | x_1 \cdot \text{Skip}) [cs] (\text{par } s_2 | x_2 \cdot \text{Skip}) \overset{\epsilon}{\rightarrow} (c | (\exists x_1' \cdot s_1) \land (\exists x_2' \cdot s_2) \models \text{Skip})
\end{align*}
\]

(26)

\[
\begin{align*}
(c | s \models A_1) \overset{1}{\rightarrow} (c_3 | s_3 \models A_3) & \quad \text{if } 1 = \epsilon \lor \text{chan } l \not\in cs \\
(c \vdash (\text{par } s_1 | x_1 \cdot A_1) [cs] (\text{par } s_2 | x_2 \cdot A_2)) \overset{1}{\rightarrow} (c_3 \vdash (\text{par } s_3 | x_1 \cdot A_3) [cs] (\text{par } s_2 | x_2 \cdot A_2))
\end{align*}
\]

(27)

\[
\begin{align*}
(c | s \models A_2) \overset{1}{\rightarrow} (c_3 | s_3 \models A_3) & \quad \text{if } 1 = \epsilon \lor \text{chan } l \not\in cs \\
(c \vdash (\text{par } s_1 | x_1 \cdot A_1) [cs] (\text{par } s_2 | x_2 \cdot A_2)) \overset{1}{\rightarrow} (c_3 \vdash (\text{par } s_3 | x_1 \cdot A_3) [cs] (\text{par } s_2 | x_2 \cdot A_2))
\end{align*}
\]

(28)
\[
\begin{align*}
& \left(\begin{array}{c}
(c \mid s_1 \models A_1) \xrightarrow{d_1} (c_3 \mid s_3 \models A_3) \land (c \mid s_2 \models A_2) \xrightarrow{d_2} (c_4 \mid s_4 \models A_4) \\
(c \mid s_1 \models A_1) \xrightarrow{d_1} (c_3 \mid s_3 \models A_3) \land (c \mid s_2 \models A_2) \xrightarrow{d_2} (c_4 \mid s_4 \models A_4)
\end{array} \right) \\
\lor & \\
& \left(\begin{array}{c}
(c \mid s_1 \models A_1) \xrightarrow{d_1} (c_3 \mid s_3 \models A_3) \land (c \mid s_2 \models A_2) \xrightarrow{d_2} (c_4 \mid s_4 \models A_4) \\
(c \mid s_1 \models A_1) \xrightarrow{d_1} (c_3 \mid s_3 \models A_3) \land (c \mid s_2 \models A_2) \xrightarrow{d_2} (c_4 \mid s_4 \models A_4)
\end{array} \right)
\end{align*}
\]

\[d \in cs \quad c_3 \land c_4 \land w_1 = w_2 \]

\[\left(\begin{array}{c}
(c \mid s) \\
(c_3 \land c_4 \land w_1 = w_2 \mid s)
\end{array} \right) \quad \xrightarrow{d_2} \quad \left(\begin{array}{c}
(c_3 \land c_4 \land w_1 = w_2 \mid s) \\
(c_2 \land c_3 \land w_1 = w_2 \mid s)
\end{array} \right)
\]

\[d \in cs \quad c_3 \land c_4 \land w_1 = w_2 \]

\[\left(\begin{array}{c}
(c \mid s) \\
(c_3 \land c_4 \land w_1 = w_2 \mid s)
\end{array} \right) \quad \xrightarrow{d_2} \quad \left(\begin{array}{c}
(c_3 \land c_4 \land w_1 = w_2 \mid s) \\
(c_2 \land c_3 \land w_1 = w_2 \mid s)
\end{array} \right)
\]

\[\frac{(c_1 \mid s_1 \models A_1) \xrightarrow{1} (c_2 \mid s_2 \models A_2) \quad 1 \neq \epsilon \quad \text{chan } l \notin cs}{(c_1 \mid s_1 \models A_1 \setminus cs) \xrightarrow{1} (c_2 \mid s_2 \models A_2 \setminus cs)} \quad (31)
\]

\[\frac{(c_1 \mid s_1 \models A_1) \xrightarrow{1} (c_2 \mid s_2 \models A_2) \quad 1 = \epsilon \quad \text{chan } l \in cs}{(c_1 \mid s_1 \models A_1 \setminus cs) \xrightarrow{1} (c_2 \mid s_2 \models A_2 \setminus cs)} \quad (32)
\]

\[c \quad \xrightarrow{\epsilon} \quad (c \mid s \models \text{Skip} \setminus cs) \quad \xrightarrow{\epsilon} \quad (c \mid s \models \text{Skip}) \quad (33)
\]

\[c \quad \xrightarrow{\epsilon} \quad (c \mid s \models \mu X. A, \delta \setminus \{X \rightarrow A\}) \quad (34)
\]
\[\frac{c}{(c \mid s \models X, \delta) \xrightarrow{\delta} (c \mid s \models \delta X, \delta)} \quad (35) \]

B Specification-oriented transition system: labels

The rule for processes is not specifically for the transition system for the relation \(\Rightarrow_P \) that defines the labels arising from an action. The transition system of \(\Rightarrow_P \) is used in combination with the operational semantics to define maximal non-silent transitions with specification labels. These are characterised by the relation \(\Rightarrow \), for which we define a transition rule for processes.

\[
\frac{(\text{state}(P_1) \models \text{maction}(P_1)) \xrightarrow{\downarrow} (\text{state}(P_2) \models \text{maction}(P_2))}{P_1 \Rightarrow P_2} \quad (1)
\]

It is the transition system for \(\Rightarrow_P \) that is referenced in proofs presented in this report, and we reproduce it below.

\[
\frac{c \land (s \mid p) \land (\exists v' \cdot s \mid Q)}{(c \mid s \models p \mid Q) \xrightarrow{p \mid -q} (c \land (s \mid Q[w_0/v'])) \mid s; v := w_0 \models \text{Skip})}{v' = \text{outas}} \quad (2)
\]

\[
\frac{c \land (s \mid \text{pre} \ Op)}{(c \mid s \models \text{Op}) \xrightarrow{\text{Op}} (c \land (s \mid \text{Op}[w_0/v']) \mid s; v := w_0 \models \text{Skip})}{v' = \text{outas}} \quad (3)
\]

\[
\frac{c}{(c \mid s \models v := e) \xrightarrow{\text{let} x \cdot A} (c \land (s \mid w_0 = e) \mid s; v := w_0 \models \text{Skip})} \quad (4)
\]

\[
\frac{c \land (s \mid g)}{(c \mid s \models g \& A) \xrightarrow{\text{let} x \cdot A} (c \land (s \mid g) \mid s \models A)} \quad (5)
\]

\[
\frac{c}{(c \mid s \models \text{dile} \to A) \xrightarrow{\text{dile} \to A} (c \land (s \mid w_0 = e) \mid s \models A)} \quad (6)
\]

\[
\frac{c \land T \neq \emptyset \quad x \notin \alpha s}{(c \mid s \models \text{dill} x : \text{T} \to A) \xrightarrow{\text{dill} x : \text{T} \to A} (c \land w_0 \in s \mid s; \text{var} x := w_0 \models \text{let} x \cdot A)} \quad (7)
\]
\[c \land T \neq \emptyset \quad x \notin \alpha s \]

\[(c \mid s \models \text{var } x : T \bullet A) \overset{(x \in T)}{\Rightarrow^R} (c \land w_0 \in T \mid s; \text{var } x := w_0 \models \text{let } x \bullet A)\]

(8)

\[(c \mid s \models \text{let } x \bullet \text{Skip}) \overset{(\text{end } x)}{\Rightarrow^R} (c \mid s; \text{end } x \models \text{Skip}) \]

(9)

\[(c_1 \mid s_1 \models A_1) \overset{\beta}{\Rightarrow^R} (c_2 \mid s_2 \models A_2) \]

\[(c_1 \mid s_1 \models \text{let } x \bullet A_1) \overset{\beta}{\Rightarrow^R} (c_2 \mid s_2 \models \text{let } x \bullet A_2) \]

(10)

\[(c_1 \mid s_1 \models A_1) \overset{\beta}{\Rightarrow^R} (c_2 \mid s_2 \models A_2) \]

\[(c_1 \mid s_1 \models A_1; B) \overset{\beta}{\Rightarrow^R} (c_2 \mid s_2 \models A_2; B) \]

(11)

\[(c \mid s \models A_1 \left[\begin{array}{c} \text{cs} \end{array} \right] x \mid \begin{array}{c} x1 \mid x2 \end{array} A_2) \]

\[\overset{\text{var } v_1, v_2 := v, v}{\Rightarrow^P \varphi} \implies \left(\begin{array}{c} \text{c \mid s; var } v_1, v_2 := v, v \vspace{1em} \text{v' = out } cs \vspace{1em} \text{v = x1, x2} \vspace{1em} \text{fresh } v_1, v_2 \end{array} \right) \]

(12)

\[(c \mid s; \text{end } v, y \models A_1) \overset{\beta}{\Rightarrow^R} (c_3 \mid s_3 \models A_3) \quad \text{chan } l = e \lor \text{chan } l \notin cs \]

\[(c \mid s \models (\text{spar } v \mid x \mid y \mid x_1 := z_1 \bullet A_1) \left[\begin{array}{c} \text{cs} \end{array} \right] (\text{spar } v \mid y \mid x \mid x_2 := z_2 \bullet A_2)) \]

\[\overset{\beta}{\Rightarrow^R} \]

\[\left(\begin{array}{c} c_3 \mid s_3 \land s; \text{end } x \vspace{1em} \text{c} \vspace{1em} \text{x = x1, x2} \vspace{1em} \text{z1, z2} \vspace{1em} \text{A1, A2} \end{array} \right) \]

(13)

39
The above rule uses a new parallel construct that keeps track of the new input variable declared and the new state obtained as a consequence. It is used to ensure that, as required here, all transitions have a single label, and the label contains a guard, a communication, or an action. The next rule ensures that in the next step of the evaluation of the parallelism, the variable declaration and state change are recorded. This concern was not present in [2].

Rules similar to those above for parallelism are needed for external choice.