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Résumé.

Les théories sous-jacentes au test basé sur des modèles ou des spécifications définissent
généralement un ou plusieurs jeux de test exhaustifs : il s’agit d’ensembles infinis de tests dont
l’exécution avec succés établirait la relation de conformité considérée. Les méthodes de test
réalistes se formalisent alors comme des stratégies de sélection de sous-ensembles de ces jeux de
test.Souvent ces stratégies découlent d’exigences de couverture de certains éléments du modèle
ou de la spécification.

Dans des travaux précédents nous avons présenté des théories de test pour le raffinement des
algèbres de processus CSP et Circus. Dans ce rapport nous nous intéressons à la sélection de tests
dans le cas où la relation de conformité est le raffinement des traces. Du fait que cette relation
de conformité n’exige pas que toutes les traces du modèle soient implémentées par le système à
tester, des difficultés apparaissent pour assurer la satisfaction de critères de couverture quand
on sélectionne des tests dans le jeu de test exhaustif.

Nous présentons ici un cadre formel pour résoudre cette difficulté pour une large classe de
stratégies de sélection. Nous donnons un exemple pour un critère de sélection basé sur la couver-
ture des communications entre processus dans le cas du test d’intégration. Dans la ligne de nos
travaux précédents nous considérons des spécifications écrites en Circus. La nature symbolique
de la théorie de test qui leur est associée présente l’avantage de faciliter l’établissement des hy-
pothèses d’uniformité et de régularité, au prix d’un mécanisme supplémentaire de sélection pour
le passage à des tests concrets.

Cependant nos résultats sont applicables à tout formalisme où la relation de conformité
autorise à restreindre les traces.

Mots-clés. Algèbre de processus, CSP, Circus, couverture des synchronisations
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Abstract

Theories for model-based testing identify exhaustive test sets: typically infinite sets of tests whose execution
is enough to establish the conformance relation of interest. Practical techniques rely on selection strategies
to identify subsets of these tests, and popular approaches to selection are based on requirements to cover the
model. In previous work, we have defined testing theories for refinement-based process algebra, namely, CSP
and Circus, a state-rich process algebra. In this paper, we consider selection of tests designed to establish
traces refinement. In this case, conformance does not require that all traces of the model are available in
the system under test, and this raises challenges regarding coverage criteria for selection. To address these
difficulties, we present a framework for formalising a variety of selection strategies. We exemplify its use
in the formalisation of a selection criterion based on coverage of process communications for integration
testing. We consider models written in Circus, whose symbolic testing theory facilitates the definition of
uniformity and regularity hypotheses based on data operations, but also imposes extra challenges for selection
of concrete tests. Our results, however, are relevant for any formalism with a traces-refinement relation.

Keywords: process algebra, CSP, Circus, synchronisation coverage, integration testing

1. Introduction

We address in this paper the issue of selecting tests when using an abstract specification for testing that
a system behaves like one of its refinements. In particular, we are interested in models written using process
algebra like CSP [37] or Circus [14], and in traces refinement in that context.

CSP is a well established notation that has been in use for more than twenty years. The availability of a
powerful model checker has led to acceptance both in academia and industry. In the public domain, we have
reports on applications in hardware and e-commerce [2, 19], for example. CSP has been combined with a
number of data-modelling languages to define notations that cope with state-rich reactive systems [17, 28,
38, 35]; Circus is one of these combinations with Z [43]. Circus has been used for modelling and verification
of control systems specified in Simulink [9, 29]. It is currently being used to verify aerospace applications,
including virtualisation software by the US Naval Research Laboratory [18].

The traditional area of application for CSP and Circus is refinement-based development and verification,
not testing, but whenever a CSP or a Circus model is available, the possibility of using it for testing is
attractive, especially in industry. Moreover, when the correctness criterion for development is refinement, it
is natural to adopt that same criterion for testing. We have previously developed testing theories for CSP [10]
and Circus [13]. We base our discussions here on the theory for Circus, which extends and generalises that
for CSP. In addition, it enables richer selection strategies based on data types (as well as traces).

The various notions of refinement adopted in the context of CSP and Circus require that the set of traces
of an implementation is included in that of the specification; in particular, this is exactly the definition of
traces refinement. Selection of tests for traces refinement is challenging because it is acceptable that some
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traces of the specification are not implemented by the system under test (SUT). It may, therefore, be the
case that some selected tests are not executable. As a consequence, given a selection criterion, the selection
cannot be performed statically only. At runtime, the test driver must ensure that alternative tests are
submitted until the criterion is fulfilled, or until it is certain that it cannot, due to lack of traces necessary
to its fulfillment. In other words, any testing strategy requires a combination of some selection criterion
with a driver designed to ensure that the selection criterion will be reached at run time, if it is possible.

Our main contributions are as follows. First, we propose a formal framework for selection based on the
definition of an exhaustive set of tests that can contribute to the fulfillment of the selection criterion and of a
test driver. Additionally, we consider symbolic tests, which pose an additional challenge in obtaining concrete
tests that can be used by the driver, since it is acceptable that some instantiations are not implemented.
Finally, as an application of our new framework, we consider coverage of communications between parallel
processes of a Circus model; we present a complete formalisation of this selection criterion.

Our work bears some similarity with the dynamic test generation techniques [6], where symbolic exe-
cution is used at runtime to ensure coverage of all feasible paths of a program text. Here, however, the
issue is not infeasibility, but arbitrary partial implementation of traces. Moreover, we are concerned with
selection criteria that are based on requirements to exercise elements of the model, not the SUT. Our frame-
work also has some similarities with adaptive testing [25], which is aimed at tackling nondeterminism in
implementations rather than partial implementation of traces. In contrast, for coverage of behaviours of a
nondeterministic SUT, we rely on the complete testing assumption, which may, in special cases, be enforced
by techniques similar to those used in reachability testing [26, 30].

In the next section, we give an overview of Circus and its testing theory. Section 3 presents our novel
framework for selection. In Section 4, we formalise a synchronisation coverage criterion for use with our
framework, and we define finite test sets and suitable drivers. We consider related works in Section 5, and
conclude in Section 6 with a discussion of our results and future work.

2. Circus and its testing theory

In this section, we cover the background material for our work: we describe Circus using an example of
a simple protocol, and introduce the main concepts of its testing theory.

2.1. An overview of Circus

In Figure 1, we present a Circus model for a simple protocol for communication between a Sender
and a Receiver via a Medium that can corrupt at most one out of three messages. Systems and their
components are modelled in Circus using processes. These encapsulate some state and interact with each
other and their environment via channel communications, which are synchronous, atomic, and instantaneous
events. In Figure 1, we have a model that uses four channels, in, out , left , and right , and introduces five
processes: Medium, Sender , Receiver , Components, and Protocol .

A Circus model is formed by a sequence of paragraphs. In Figure 1, the first paragraph defines a set Bit
including 0 and 1. The messages exchanged using the specified protocol are bits. In the second paragraph,
we declare the channels, whose type Bit defines that they are used to communicate bits.

The next three paragraphs in Figure 1 introduce (basic) processes by (explicitly) defining their states
and behaviour. Process states are defined using Z schemas. The state of the process Medium has a single
component noE recording the number of messages that must be sent correctly before another error is
possible. We use this information to model the assumption that at most one out of every three messages is
corrupted. The declaration of noE indicates that it can only take the values 0, 1, and 2.

After the •, we have a Circus action that specifies the behaviour of Medium. It is written using a
combination of CSP operators and guarded commands. First of all, an assignment initialises noE to 0, so
that a corrupt message can be sent immediately. Afterwards, a recursive action iteratively accepts messages
through the channel left and sends them through right . Recursion is defined using the operator µX • A(X ),
which introduces the local name X for the action A, in which references to X are recursive calls.

In the body of the recursion in Medium, we have an input communication left?x that accepts an input
through the channel left and records it in the local variable x . The prefixing operator c −→ A describes a
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Bit == {0, 1}

channel in, out , left , right : Bit

process Medium =̂ begin
state MS == [ noE : 0 . . 2 ]

• noE := 0 ;

µX •

 left?x −→


if noE = 0−→

(right !x −→ Skip u right !(1− x )−→ noE := 2)
8 noE > 0−→ right !x −→ noE := noE − 1
fi


 ; X


end

process Sender =̂ begin
• (µX • in?m −→ left !m −→ left !m −→ left !m −→X )

end

process Receiver =̂ begin
state MS == [ ms : bag Bit ]

•
(
µX •

(
ms := [[ ]] ; right?m1−→ right?m2−→ right?m3−→
ms := [[ m1,m2,m3 ]] ; out !(maj ms)−→X

))
end

process Components =̂ Sender 9 Receiver

process Protocol =̂ (Components J {| left , right |} K Medium) \ {| left , right |}

Figure 1: Circus example: a simple protocol

behaviour in which, after the communication c, we have the execution of the action A. In Medium, after
the communication left?x , we have a conditional that checks the value of noE . If it is 0, then it is possible
that a corrupt message is sent. In this case, we have a nondeterministic choice between outputting through
the channel right the input x (communication right !x ) or the corrupt value 1− x , in which case the value 2
is assigned to noE . The nondeterministic choice operator A1uA2 chooses arbitrarily between the execution
of A1 or A2. In our example, the nondeterminism reflects the fact that we are abstracting from the possible
causes of a medium error, so that the occurrence of an error becomes completely arbitrary.

If the action chosen is right !x −→ Skip, then after the output over right , it behaves like Skip, which
terminates immediately without changing the state. If the other action is chosen, after the output, the value
of noE is updated to indicate that the next two communications must not be corrupt. In the conditional,
if the value of noE is not 0, then right !x takes place, and the value of noE is decremented.

The process Sender has no state. Its action defines that it accepts an input m through the channel in
and sends it three times to the Medium through the channel left , before recursing and starting again.

The Receiver process, on the other hand, keeps a bag of bits ms in the state. At each iteration of the
recursion in its action, the bag is emptied (ms := [[ ]] ), three messages m1, m2, and m3 are accepted (from
the Medium) through right . These messages are stored in ms, and then the bit (maj ms) with the majority
of occurrences in ms is output through out . (The definition of maj ms is omitted in Figure 1.)

A Circus process can also be combined using CSP operators. In our example, the components connected
by the protocol are modelled by the process Components, defined by the interleaving of the processes Sender
and Receiver . This reflects the fact that these processes are executed in parallel and independently. The
Protocol process itself is defined in terms of the parallel composition of Components and Medium. In this
case, we have a parallelism, rather than an interleaving, because these processes need to synchronise on
communications over the channels left and right . In a parallelism P1 J cs K P2, the processes P1 and P2

proceed independently, except only for communications on channels in the given set cs, on which they are
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required to synchronise. In particular, the state of P1 is not visible to P2, and vice-versa.
In the definition of Protocol , we also use hiding. In a process P\cs the communications over the channels

in the set cs are hidden: they are internal and carried out as soon as possible. In our example, left and right
are channels used by the Medium to connect the Components, and so they are internal. Communication
with the external environment is realised via the channels in (used in Sender) and out (used in Receiver).

We use this and other examples to illustrate our results. Any extra use of Circus notation is explained.

2.2. Testing against traces refinement using Circus (and CSP)

In a theory for model-based testing for a particular modelling notation and conformance relation, we
identify testability hypotheses, notions of test, test execution, and verdict, and an exhaustive test set. This
is a set of tests whose execution and associated verdicts can determine unequivocally whether the SUT
behaves in conformance to a given model, as long as the testing hypotheses hold. Typically, this is an
infinite set of tests. Here, we consider selection as the definition of a subset of the exhaustive test set. Thus,
we briefly recall the definition of the exhaustive test set for Circus and traces refinement [13].

The two testability hypotheses of the Circus theory are standard. First, we assume that the SUT
can be described by an (unknown) Circus model. This means, for example, that identified events are
atomic and instantaneous. Secondly, we have the complete test assumption. It is concerned with possible
nondeterminism in the SUT; it requires the existence of a number n such that, if a test is executed n times,
then all possible (nondeterministic) behaviours of the SUT are observed. For a deterministic SUT, n is 1.

The tests of the Circus theory embed the verdict. We use special verdict events inc, pass, and fail used to
indicate that a test is inconclusive, because the SUT did not execute the particular trace of events attempted
by the test, or that the SUT passed or failed the test. A test is constructed based on a particular trace t
of the model, and a forbidden continuation e of t . A forbidden continuation is an event that is not allowed

after the trace t ; in other words, the trace t a 〈e〉 is not a trace of the model. (We use 〈e〉 to denote the

singleton sequence containing just the event e, and a is the concatenation operator.)

Example 1. In our example, 〈in.0, out .0, in.1〉 is a trace of Protocol . The event in.0, for instance, corre-
sponds to a value 0 input through the channel in, and, similarly, out .0, the value 0 output through the
channel out . After the trace 〈in.0, out .0, in.1〉, all events out .x , where x 6= 1 are forbidden continuations of
Protocol , because after an input of a value 1, just 1 itself can be output. 2

A test for a trace t and a forbidden continuation e attempts to drive the SUT to execute t . If it does
not succeed, the test is inconclusive. (As usual, we give an inconclusive verdict when the intended test is
not completed.) If the test does succeed in driving the SUT to execute t , then the forbidden event e is
attempted, and if it is accepted, the SUT fails the test. Otherwise, it succeeds.

Example 2. For the trace in Example 1, and forbidden continuation out .2, we have the test below.

inc −→ in.0−→ inc −→ out .0−→ inc −→ in.1−→ pass −→ out .2−→ fail −→ Stop

The action Stop deadlocks immediately. 2

The verdict events are interspersed with the events of the trace and the forbidden continuation. The last
verdict event before a deadlock determines the verdict of the test. Formally, tests are defined as follows.

Definition 1.

TT (〈 〉, e) = pass → e → fail → Stop TT (〈 e1 〉_ t , e2) = inc → e1 → TT (s, e2)

In TT (t , e), extending the trace t with e is supposed to lead to an invalid trace, since e is supposed to be a
forbidden continuation: not an initial after t ; as already explained, the test aims at ruling it out.

Execution of one of these tests T is carried out by executing T and the SUT in parallel, synchronising
on all model events (that is, the non-verdict events used either on the model or in the SUT). Relying on our
first testability hypothesis, we use SUT to denote the unknown model of the SUT. We also use Σ to denote
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the set of all model events. We can then characterise the execution of T as follows.

Definition 2.

ExecutionSP
SUT (T ) = (SUT J Σ K T ) \ Σ

The model events are hidden. This ensures that they are not affected by the environment of the experiment,
and that they occur as soon as they become available (in the SUT and in the test).

For a given model SP , the exhaustive test set ExhaustT (SP) for traces refinement is built by considering
all traces of SP and all their forbidden continuations. We consider the set traces(SP) [11], which characterises
a trace semantics for SP . We also consider the set initials(SP , t) of continuations of the trace t of SP .

Definition 3 (Exhaustive test set of SP for traces refinement). Given a specification SP, we define
ExhaustT (SP) = {TT (t , e) | t ∈ traces(SP) ∧ e 6∈ initials(SP , t) }.

Exhaustiveness of ExhaustT (SP) is formally established by the following theorem, proved in [10].

Theorem 1 (Exhaustivity of ExhaustT ). Given two processes, SUT and SP, SP vT SUT if, and only
if ∀TT (s, a) : ExhaustT (SP); t : traces(ExecutionSP

SUT (TT (s, a))) • last(t) 6= fail

This extreme test strategy requires the execution of all the traces of SP with all their forbidden continuations.
It yields an inconclusive verdict when a tested trace is not implemented. If there are only pass and inc
verdicts, it guarantees that the SUT refines SP providing our testability hypotheses hold.

As said above, when selecting a strict subset of ExhaustT , and running the tests T of this set as described
by ExecutionSP

SUT (T ) an element to be covered can be statically covered in the subset, but not covered at
runtime. In Section 3, we introduce the notions of exhaustive coverage of an element of the specification, and
runtime coverage of this element by the implementation. Before discussing these novel concepts, however,
we discuss briefly a symbolic account of the Circus tests.

2.3. Symbolic tests in Circus

The testing theory described above was first cast in the context of CSP [10], rather than Circus. The
main difference between Circus and CSP, however, is the added possibility of specifying complex data types
using the predicative style of pre and postconditions. Since Circus processes encapsulate the data, it is not
surprising that tests can be constructed from a Circus process in the same way as from a CSP process. With
similar notions of traces and trace refinement, all results of the CSP theory are maintained.

On the other hand, it is possible and, of interest, to take into account the data operations of a model
when specifying a testing strategy. For that end, we have developed a symbolic characterisation of tests
and exhaustive test sets for Circus [13]. It is based on the Circus operational semantics, which maintains a
symbolic account of the state of a process. We give a brief description of the main definitions here.

The Circus operational semantics defines a transition relation p1
l−→ p2 between texts p1 and p2 of

processes. When p1
l−→ p2 is holds, we say that there is a transition from p1 to p2 with label l. We use

the typewriter font to distinguish texts (of processes, actions, predicates, and so on), from the entities that
they denote. If the label is ε, the execution of the process p1 can evolve silently (without any interaction
with the environment), so that we then have an execution of p2. On the other hand, there may be a label
d.w, representing a communication over the channel d of a value represented by the symbolic variable w . In
this case, the execution of p1 evolves to that of p2, after engaging in the communication d .w .

The definition of this transition relation for processes is based on a transition relation for configurations
involving actions. They are triples (c | s |= A) where c is a constraint over the symbolic variables in use, s
is an assignment to the Circus variables in scope of values represented by symbolic variables, and A is the
text of a Circus action. The symbolic variables constrained in c are those used in labels d.w to represent
communications and those used in the definition of the state s to represent values of Circus variables.

To construct symbolic tests, we use the notion of constrained symbolic traces of a process. A constrained
symbolic trace is a pair formed by a symbolic trace st and a constraint c. A symbolic trace is a finite
sequence of symbolic events d.α0, where d is a channel, and α0 is a symbolic variable that represents the
value communicated. The constraint c is the text of a predicate over the symbolic variables used in st.
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Example 3. For the Protocol process, we have the constrained symbolic trace (〈in.α, out .β, in.γ〉, α = β),
for example. It represents all traces where the first input and output values α and β are the same, and then
a new, unconstrained value γ is input. The trace in Example 1 is one of its instances. 2

We define below the function cstraces that characterises the set of constrained symbolic traces of a process.
It is parametrised by an alphabet a, which fixes the symbolic variables that can be used in the symbolic
trace, and the order in which they can be used. For a process begin state [ x : T ] • A end, the constrained
symbolic traces are those of its main action A, starting from a state in which the state x takes the value w0

constrained by w0 ∈ T . This is the set cstracesa(w0 ∈ T, x := w0, A) defined using the operational semantics.

Definition 4.

cstracesa(begin state[x : T] • A end) = cstracesa(w0 ∈ T, x := w0, A)

cstracesa(c1, s1, A1) =

{
st, c2, s2, A2 | αst ≤ a ∧ (c1 | s1 |= A1)

st
=⇒ (c2 | s2 |= A2)

• R(st, c2)

}
The transition relation (c1 | s1 |= A1)

st
=⇒ (c2 | s2 |= A2) annotated with a trace st is defined in terms of

the transition relation that defines the operational semantics in the usual way. Symbolic variables used to
represent internal values of the state are not included in the alphabet. Above, we use the function R defined
below to remove them. When applied to a trace (st, c), it quantifies away every variable in the set αc of
free variables of c that is not in the set αst of symbolic variables used in st.

Definition 5. For every (st, c), we define R(st, c) as follows.

R(st, c) = (st,∃(αc \ αst) • c)

The operational semantics guarantees that all configurations have satisfiable constraints. Therefore, every
constrained symbolic trace is feasible, in the sense that it has at least one valid instance.

As already explained, to construct tests, we also need forbidden continuations. In the symbolic approach,
we consider symbolic events: pairs formed by a symbolic event and a constraint. A symbolic event is itself
formed by a channel name and a symbolic variable. We define the set csinitials

a
(P, (st, c)) of constrained

symbolic events over the alphabet a that represent the events that are not initials of P for any of the instances
of its symbolic trace (st, c). A formal definition of this set is in [13].

Example 4. The set csinitials
a
(Protocol, (〈in.α, out.β, in.γ〉, α = β)) of constrained symbolic events for

Protocol after the trace in Example 3, where a is the alphabet 〈α, β, γ, δ, . . .〉, contains the symbolic event
(out .δ, α = β ∧ γ 6= δ). It determines that the value δ output after an input in.γ is different from γ. We
observe that the constraint is over the variable used in the symbolic event, as well as the variables used in
the symbolic trace that lead to it. In this example, the constraint refers to α, β, and γ, as well as δ. 2

From the symbolic traces and events, we can construct symbolic tests in the expected way. For a con-
strained symbolic trace (st, c1) and a symbolic event (d.β0, c2) that represents a forbidden continuation, the
corresponding symbolic test is given by STαT ((st, c1), (d.β0, c2)) defined below.

Definition 6.

STαT ((〈 〉, c1), (d.β0, c2)) = pass−→ d?β0 : c2 −→ fail−→ Stop

STαT ((〈 dst.α0 〉a st, c1), (d.β0, c2)) = inc−→ dst?α0 : (∃α, α0 • c1)−→ ST
(α,α0)
T ((st, c1), (d.β0, c2))

For the prefixing involving d.β0, we use the constraint c2 to restrict the accepted values of the symbolic
variable β0. For the prefixings corresponding to each of the symbolic events dst.α0 of the symbolic trace
st, we use the constraint c1 to extract the right constraint over α0. The α parameter of STT records the
symbolic variables already used, and the constraint on α0 is obtained by quantifying all variables not in α
and different from α0, namely, those in the list α, α0.

6



The instantiation of a symbolic test is defined below as a function that yields a set of concrete tests.

Definition 7.

instTest(Stop) = {Stop }
instTest(d−→ A) = {TA : instTest(A) • d −→ TA }
instTest(d?α0 : c−→ A) = { v0,TA | c[v0/α0] ∧ TA ∈ instTest(A[v0/α0]) • d .v0 −→ TA }

The instances of a symbolic test are built in the following way. The action Stop is not really symbolic; its
only instance is itself. For a prefixing d −→ A, whose communication is a simple synchronisation like inc,
pass, or fail, for example, the instances are prefixings formed out of d itself and the instances TA of the
prefixed action A. Finally, if we have a prefixing d?α0 : c−→ A, then the instances consider all possible ways
of choosing for communication a value v0 that satisfies the constraint c, and the corresponding instances of
the action A[v0/α0], where the choice of v0 for α0 is recorded.

Example 5. For the constrained symbolic trace and forbidden continuation in Example 4, we get the
following symbolic test.

inc−→ in.α : true−→ inc−→ out.β : α = β −→ inc−→ in.γ : α = β−→
pass−→ out.δ : α = β ∧ γ 6= δ −→ fail−→ Stop

The test in Example 2 is an instance of this test. 2

A symbolic exhaustive test set is just a set of symbolic tests. Selection strategies based on symbolic tests
are the object of Section 3.4, and further selection focused on synchronisations are studied in Section 4.5.

3. Selection and traces refinement

The criteria for selecting a subset of the generally infinite set of possible tests are the core of any testing
strategy. This can be achieved via coverage criteria, test purposes, uniformity or regularity hypotheses, or
more generally some property of tests [21]. In the testing theory for CSP and Circus, tests are built from
traces of the specification and a forbidden continuation; the exhaustive test set covers all these traces and
events. So, selection must ultimately define a subset of the set of traces and their forbidden continuations.

As already mentioned, when the considered conformance relation is traces refinement, it is acceptable
that a trace of the specification is not implemented in the SUT. As seen in Section 2.2, in this case execution
of the corresponding test yields an inconclusive verdict. Thus it may be the case that a selected test is not
executable, and if there is another test that may be able to fulfill the selection criterion, it must be executed,
and we should proceed in this way, until either a satisfactory test is executed or it is certain that none exists.
This has an impact on the way in which test selection for traces refinement can be defined and applied.

There are two main interrelated tasks involved in the definition of a selection strategy for traces refine-
ment: a (formal) definition of (a) the (possibly still infinite) subset of all those tests that can contribute to
the fulfillment of the selection criterion and (b) a test driver. We explain in the next section why defining
an exhaustive test set with respect to the selection criteria is useful when considering traces refinement.

Whether concrete or symbolic tests are considered is irrelevant for definition of the exhaustive test set.
We just observe that the notion of constrained symbolic traces, which is central in the Circus testing theory,
is well suited for the definition of uniformity subdomains in the selection of both traces and initials: the
constraints of the symbolic traces and events can be reused. On the other hand, we need to construct a
driver of concrete tests. When selection is based on symbolic tests, we have, in addition, to address the fact
that it may be the case that not all instantiations of a selected symbolic test are executable by the SUT.

Next, we provide an example to illustrate the problem of selection for traces refinement. In Section 3.2,
we consider a few approaches to the definition of an exhaustive test set with respect to given select criteria
and of a test driver. Section 3.4 discusses symbolic tests. Finally, Section 3.5 considers the issues related to
the finiteness of the exhaustive test sets with respect to the given criteria and its impact on the drivers.
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3.1. The problem

To explain the problem associated with test selection for traces refinement in detail, we consider the case
where the selection is based on a coverage criterion, that is, a set of elements of the specification are required
to be exercised by at least one test experiment. The elements may be, for example, synchronisation events,
pairs of such events, or more sophisticated requirements on execution traces.

If the test set is selected in a static way, it may turn out that the test selected to ensure coverage of
a given element reaches an inconclusive verdict before executing it because the trace is not implemented.
It may be the case, however, that other traces that provide coverage are implemented and that covering it
is achievable in the SUT. Thus it is necessary to select and design tests that try at runtime other ways of
covering this element, in order to ensure that if it is executable by the SUT, then it is exercised.

Example 6. For simplicity, we consider channels a, b, c, d and e that are used for synchronisation, but
do not communicate any value. In this case, the constrained symbolic traces degenerate to standard traces,
because there is no need to introduce symbolic variables to represent communicated values, and the only
valid constraint is just true. In addition, we consider a stateless Circus process P defined below.

P =̂ begin • a → e → c → Skip u b → e → d → Skip end

In the sequel, whenever we present a stateless process like this, for brevity, we omit the begin and end
keywords and identify the process with its action after the ‘•’.

Some of the processes that trace-refine P are P itself and processes whose main actions are either of the
actions in the internal choice. A test set that covers the event e, for instance, is the singleton including the
process whose action is inc−→ a−→ inc−→ e−→ pass−→ d−→ fail−→ Stop. To be sure, however, that
if a trace covering e exists in the SUT, then e is covered by some test experiment, we need to identify the
set of all tests that provide the required coverage and use a new way of driving these tests. Alternatively, a
new form of test may be used, which adapts at runtime to the SUT.

The first solution is to design a driver based on a set of all tests covering e that will trigger their
executions until e is exercised. The second solution is to have tree-shaped tests such as:

inc−→

 a−→ inc−→ e−→ pass−→ d−→ fail−→ Stop

@
b−→ inc−→ e−→ pass−→ c−→ fail−→ Stop


This test offers to the SUT the choice between two traces of the specification that pass through e. With
this test, if the SUT is deterministic, if there exists in the SUT a specified trace exercising e, it is executed.
When the SUT is not deterministic, by applying the test a sufficient number of times, under the complete
test assumption, we know that the trace is executed. If there is no such trace, the test is inconclusive. 2

In the next section we explore both solutions indicated in the above example.

3.2. A solution: monitoring runtime coverage

As said above, when combining test selection and traces refinement, use of a selection criterion requires
both the selection of traces and forbidden continuations and the design of a driver that ensures that the
criterion is fulfilled at runtime, if possible. We proceed by selecting all the tests that satisfy the criterion,
and define the corresponding driver that tries all these tests if necessary until a test is successfully completed.

Example 7. For illustration, we consider as selection criterion coverage of a particular event e. In this
case, given a specification SP , the exhaustive set of tests that satisfy the selection criterion is as follows.

ExhaustT (SP)�e = {TT (t , a) | t ∈ traces(SP) ∧ t�e 6= 〈 〉 ∧ a 6∈ initials(SP , t) }

where t�e eliminates from the trace t all the events different from e. This (possibly infinite) subset of
ExhaustT (SP) covers all the traces of the specification where e occurs at least once.
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For Example 6, the tests in this set are as follows.

a−→ inc−→ e−→ pass−→ a−→ fail−→ Stop

a−→ inc−→ e−→ pass−→ b−→ fail−→ Stop

a−→ inc−→ e−→ pass−→ d−→ fail−→ Stop

a−→ inc−→ e−→ inc−→ c−→ pass−→ a−→ fail−→ Stop

a−→ inc−→ e−→ inc−→ c−→ pass−→ b−→ fail−→ Stop

. . .
b−→ inc−→ e−→ pass−→ a−→ fail−→ Stop

b−→ inc−→ e−→ pass−→ b−→ fail−→ Stop

b−→ inc−→ e−→ pass−→ c−→ fail−→ Stop

b−→ inc−→ e−→ inc−→ d−→ pass−→ a−→ fail−→ Stop

. . .

We define below a test driver that runs all these tests until a pass verdict, possibly followed by a fail verdict
is observed. This is ensured by a test monitor process TMonitor executed alongside the tests.

Driver(SP ,SUT )�e = (9T : ExhaustT (SP) �e •ExecutionSP
SUT (T )) J {| inc, pass, fail |} K TMonitor

where

TMonitor = inc → TMonitor @ pass → fail → Stop

Running Driver(SP ,SUT )�e ensures that if e is executable by the SUT, it is covered at runtime. This
means that some test based on a trace where e occurs reaches a conclusive verdict: pass or fail . (If the SUT
is nondeterministic, the driver needs to be executed several times, and we need to rely on the complete test
assumption.) The tests are executed in interleaving (in parallel independently) until one of them reaches a
pass event. In this case, we either have an immediate deadlock, or just the associated forbidden continuation
as an internal event of the test execution, followed by an observable fail . We recall that all events of the
specification are internal to a test execution, and so not visible to the TMonitor process.

A shortcoming of the above driver is that it makes an implicit arbitrary selection of a forbidden contin-
uation. A more liberal TMonitor should allow all (or specific) forbidden continuations to be tested.

If e is not covered at runtime with the strategy above, all the tests return an inconclusive verdict. On
the other hand, the fact that all tests return an inconclusive verdict does not mean that e has not been
executed since some of the tests may return an inconclusive verdict after having exercised e. 2

Typically, when selecting tests based on a given property π (of which coverage of an event as considered above
is an example), it is usual to consider as selection criteria either: at least one test satisfying π is executed,
or all the tests satisfying π are executed. We call the former existential selection of tests with respect to π,
and the latter universal selection with respect to π. We can imagine, of course, some intermediate criteria
where several of these tests are selected, or some different criterion that corresponds to a global property
of the set of selected tests. As explained later on, however, these selection criteria can be addressed using
compositions and variations of the definitions we describe below.

Properties of traces, rather than tests, may also be considered for selection criteria. In the sequel, we
first discuss existential or universal selection of traces and, in this case, the fact that there are several tests
for one trace must be taken into account. Afterwards, we discuss selection based on properties of tests, and
consider existential and universal selection as informally discussed above.

To characterise the criteria based on properties of traces, we observe that tests are built from traces. For
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each trace t of a specification SP , we have the set

AllTestsT (t ,SP) = {TT (t , e) | e 6∈ initials(SP , t) }

of all tests built from t and one of its forbidden continuations e. For a property π of traces, we have:

existential selection of traces: there is at least one trace t satisfying π, such that AllTestsT (t ,SP) is
actually executed (that is, all tests in AllTestsT (t ,SP) are executed); or

universal selection of traces: for all implemented traces t satisfying π, AllTestsT (t ,SP) is executed.

Moreover, several properties π1, . . . , πn of traces may be considered; the coverage of a set of elements is an
example. In such cases, one may require either:

multiple existential selection of traces: for every πi , there is at least one trace t satisfying πi , such
that AllTestsT (t ,SP) is actually executed; or

multiple universal selection of traces: for every πi , for every implemented trace t satisfying πi , the set
AllTestsT (p,SP) is executed.

Coming back to test selection, for a given property π of tests, one may require either:

existential selection of tests: there is at least one test T satisfying π, that is actually executed, if there
is one that is implemented, or

universal selection of tests: all implemented tests T satisfying π are executed.

Direct test, rather than trace, selection makes it possible to focus on specific forbidden continuations, for
instance to consider only some specific forbidden event. The property π may also combine requirements on
the traces and the forbidden continuations, like in, for instance, “all the tests with a trace t where event e1
occurs and event e2 is the forbidden continuation”. Multiple existential and universal selection criteria for
tests can be tackled in the same way as those for traces. Below, we consider exhaustive test sets and drivers
for each of the above classes of traces and tests selection criteria.

3.2.1. Existential selection of traces

For existential selection, the selected test set ExistentialtraceT (SP)�π turns out to be a set of test sets.

ExistentialtraceT (SP)�π = {AllTestsT (t ,SP) | t ∈ traces(SP) ∧ t `π} (1)

We use the notation t `π to indicate that the trace t satisfies the property π.
The execution of all the tests associated with an implemented trace t is specified as a simple driver that

runs independently and to conclusion all tests in AllTestsT (t ,SP):

9T : AllTestsT (t ,SP) • ExecutionSP
SUT (T )

A driver that ensures existential coverage can be designed as follows: independently, for each trace t that
defines a set of tests AllTestsT (t ,SP) in ExistentialS (SP)�π, the driver above is run under the control of a
monitor that observes whether a pass event takes place. When it does, it means that t is implemented. The
monitor continues the execution of the other tests based on t , and sends to the other drivers for the other
traces a done event to make them to stop. Formally, we have the following definition for a generic driver,
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for a specification SP and some property π of a trace.

ExistDriver trace(SP ,SUT )�π =(
J {| done |} K TS : ExistentialtraceT (SP) �π •

(9T : TS • ExecutionSP
SUT (T ) ) J {| inc, pass, fail |} K TSMonitor

)
\ {| done |}

where TSMonitor is below. It stops when a done occurs, and raises a done event when a pass occurs.

TSMonitor = done → Stop @ inc → TSMonitor @ pass → done → Run

Run just continues running the other tests based on the same trace.

Run = inc → Run @ pass → Run @ fail → Run

In the definition above of ExistDriver trace(SP)�π, each of the sets TS in ExistentialtraceT (SP)�π is consid-
ered. The drivers for each of these sets are run in parallel, synchronising on the event done. Each driver
runs all tests T in TS independently, but under the control of TSMonitor , which observes done as well
as the verdict events. If a done event occurs, TSMonitor stops (and so the tests under its control stop).
Otherwise, the tests proceed until a pass is observed, when done is raised, but the controlled tests proceed
to conclusion, since Run just ignores all verdict events. The done event is local to the existential driver; it
is used only for synchronisation between the monitors of the tests associated with each trace t .

Example 8. Coming back to coverage of an event e considered in Example 7, we have:

ExistentialtraceT (SP)�(t�e 6=〈 〉) = {AllTestsT (t ,SP) | t ∈ traces(SP) ∧ t � e 6= 〈 〉}

The distributed union of the test sets in this set is exactly ExhaustT (SP)�e . Here, their grouping based on
the traces t as defined by AllTestsT (t ,SP) allows us to consider the alternative driver below.

ExistDriver trace(SP ,SUT )�e =(
J {| done |} K TS : ExistentialtraceT (SP) �e •

(9T : TS • ExecutionSP
SUT (T ) ) J {| inc, pass, fail |} K TSMonitor

)
\ {| done |}

This driver ensures that for at least one implemented trace covering e, if there is one, all the tests are
executed, that is, all the forbidden events are attempted. As already said, the driver Driver(SP ,SUT )
presented in Example 7 attempts only one of them chosen arbitrarily. 2

As usual, if the SUT is nondeterministic, coverage has to rely on the complete test assumption and on
running the driver several times. This is the case for all drivers that we present.

3.2.2. Universal selection of traces

The case of universal selection is easier to formalise; there is no need to consider a set of test sets as in
the previous section. The test set to be considered is as follows.

UniversaltraceT (SP)�π = {TT (t , a) | t ∈ traces(SP) ∧ t `π ∧ a 6∈ initials(SP , t) } (2)

All tests that are implemented must be run, so the driver attempts to execute all tests.

UnivDriver trace(SP ,SUT )�π = 9T : UniversaltraceT (SP) �π •ExecutionSP
SUT (T )

Example 9. Coming back again to coverage of an event e, we have

ExhaustT (SP)�e = UniversaltraceT (SP)�(t�e 6=〈 〉)

The corresponding driver UnivDriver trace(SP ,SUT )�(s�e 6=〈 〉) executes all tests arising from all traces that

include at least one occurrence of e. The driver Driver(SP ,SUT ) in Example 7 executes only one of these
tests for each trace with at least one occurrence of e. 2
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3.2.3. Multiple existential or universal selection of traces

Selection criteria based on a set of properties Π = {π1, . . . , πn} can be handled by considering the test
sets and the drivers corresponding to each property πi . For multiple existential coverage of traces, we have
a set of test sets for each πi , and the driver executes independently each of the existential drivers.

MExistDriver trace(SP ,SUT )�Π = 9πi : Π • ExistDriver trace(SP ,SUT )�πi

Example 10. A classical example of a multiple existential selection criteria is that every event must be
covered at least once. For a set E of events, we have the following driver:

MExistDriver trace(SP ,SUT ) � E = 9 e : E • ExistDriver trace(SP ,SUT )�e

2

For multiple universal selection criteria, we can consider a test set containing all tests obtained for each
property πi . There is no need to keep separate sets of tests, since they are all to be executed. We can,
therefore, use a driver similar to UnivDriver trace(SP ,SUT )�π previously presented.

3.2.4. Existential or universal selection of tests

For a given property π of tests, we consider, for both existential and universal selection, the following
exhaustive test set. We use T `π to denote the fact that the test T satisfies π.

ExhausttestT (SP)�π = {T : ExhaustT (SP) | T `π}

There is no need to use a set of test sets like we have done for existential selection of traces.
For existential selection of the tests satisfying π, the driver is:

ExistDriver test(SP ,SUT )�π =

(9T : ExhausttestT (SP) �π •ExecutionSP
SUT (T )) J {| inc, pass, fail |} K TMonitor

where TMonitor is as in Example 7.

TMonitor = inc → TMonitor @ pass → fail → Stop

For universal selection of tests satisfying π, the driver is:

UnivDriver test(SP ,SUT )�π = 9T : ExhausttestT (SP) �π •ExecutionSP
SUT (T )

This is exactly the same driver used for universal selection based on traces, except that it uses the tests in
ExhausttestT (SP)�π (rather than those in ExhausttraceT (SP)�π).

To give an example, we define below the process end(T ); it captures the final behaviour of a test T ,
where, after signalling a pass, it attempts to execute a forbidden continuation.

Definition 8.

end(pass −→ P) = pass −→ P end(inc −→ e −→ P) = end(P)

This definition is used in the next example and in the next section.

Example 11. One may consider the universal selection criterion “all the tests where a given event e is
a forbidden continuation”, possibly because it is especially critical not to execute this event e when it is
forbidden by the specification. In this case, the test set is as follows.

ExhausttestT (SP)�¬e = {T : ExhaustT (SP) | end(T ) = pass → e → fail → Stop}

2

More imaginative selection criteria can be dealt with by the definition of adequate test sets or sets of test
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sets, or by composition of drivers. We have considered the main kinds of selection strategies, and shown
how to construct the corresponding exhaustive test set for the required selection criteria and accompanying
driver. We cannot claim to have explored every conceivable criterion, but note that driver composition
with exchanges of messages, as done for existential selection, can cater for quite a wide range of selection
strategies. If needed, it is possible to specify in Circus drivers that use, for example, counters and guards.

3.3. Factorisation

As already mentioned, instead of using a monitor process to define special drivers, it is possible to
factorise the tests in the exhaustive test set to define a single tree-shaped test. This test offers the choice
between all the tests selected; the second test in Example 6 illustrates the idea. In this case, the SUT drives
the test by making the (external) choices offered in the test. Since just one path of the tree-shaped test is
executed in a test experiment, we have an existential selection (by the SUT) of a test combined into the tree.
Moreover, only the complete test assumption and enough executions of the tree-shaped test can guarantee
that all paths in the tree-shaped test (and, therefore, all tests combined in the tree) are executed.

We define below a function FactSP (TS ) that defines the factorised tree-shaped tests coming from a test
set TS . It is defined in terms of a function FactPSP (TS , t), which takes as an extra parameter the path (a
trace) t that defines the branch of the tree-shaped test that is being constructed.

Definition 9 (Factorisation).

FactSP (TS ) = FactPSP (TS , 〈 〉)

FactPSP (TS , t) = TFail(TS , t) @ TContSP (TS , t)

TFail(TS , t) = Stop [if t 6∈ trace L TS M]

TFail(TS , t) = @ T : {T : TS | trace(T ) = t } • end(T ) [if t ∈ trace L TS M]

TContSP (TS , t) = Stop [if initials(TS , t) = ∅]

TContSP (TS , t) = inc −→@ e : initials(TS , t) • e −→ FactPSP (TS , t a 〈e〉) [if initials(TS , t) 6= ∅]

For any set TS , FactSP (TS ) is given by FactPSP (TS , 〈 〉); initially, just the empty path has been con-
structed. For any path t , this is an external choice between tests defined by functions TFail(TS , t) and
TContSP (TS , t). With TFail(TS , t), we consider whether t is the trace of a test in TS or not. We define
the set trace L TS M of traces of a set of tests TS as the set of specification traces used in its tests, not
including the forbidden continuations. We use the relational image operator f L S M; it provides the set of
results obtained by applying f to each element in the set S . The trace of a single test T is defined as follows.

Definition 10.

trace(pass −→ P) = 〈 〉 trace(inc −→ e −→ P) = 〈e〉a trace(P)

It t is not a trace of a test in TS , then TFail(TS , t) is Stop, which is a unit for external choice: Stop@P = P .
For example, TS may not have any test for the empty trace 〈 〉, and in this case TFail(TS , 〈 〉) does not
add anything to the tree-shaped test. On the other hand, if there are tests T in TS whose trace is t , then,
for each of them, we add its treatment of the forbidden continuation, characterised by end(T ), to the tree.

With TContSP (TS , t), we consider whether t is the prefix of a trace of a test in TS or not. We use the
notion of initials of a test set TS after a trace t formally defined as follows.

Definition 11.

initials(TS , t) = {e | ∃T : TS ; s • trace(T ) = t a 〈e〉a s }

If t has no continuation, then TContSP (TS , t) is just Stop. Otherwise, we add an intermediary verdict inc
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followed by a branch (in an external choice) for each of the continuations e.

Example 12. The test in Example 6 can be built from the test set including

inc−→ a−→ inc−→ e−→ pass−→ d−→ fail−→ Stop

and

inc−→ b−→ inc−→ e−→ pass−→ c−→ fail−→ Stop

No special driver is required in this case. 2

The two approaches, namely, factorisation and the definition of exhaustive test sets and drivers, are not
exactly equivalent. In the execution of a factorised test, the control, exercised via choice of events, is left to
the SUT. The driver, on the other hand, controls the execution of the tests to which it is associated.

3.4. Partial implementation of symbolic tests

As explained in Section 2.3, the Circus testing theory offers a symbolic characterisation of the concrete
tests and of the exhaustive concrete test set. It is possible to specify a testing strategy for a Circus speci-
fication at the concrete level, just following what is presented in Section 3.2 or 3.3. Uniformity hypotheses
on instantiations of constrained symbolic tests, however, provide a natural selection criterion. Constrained
symbolic tests enable the definition of powerful selection strategies that take into account data types prop-
erties. We, therefore, consider now how to select from symbolic tests, and then instantiate the selected tests
and run them via concrete drivers to ensure runtime coverage.

We have a two-step selection method. Firstly, we need to provide a symbolic exhaustive test set with
respect to the selection criteria of interest. Just like in Section 3.2, this amounts to the definition of all
those symbolic tests that, when instantiated, may contribute at runtime to the satisfaction of the criterion.
In this case, we need to rely on properties of symbolic traces or symbolic tests, but that is all.

Secondly, we need to define drivers for the instantiations of the symbolic tests. The challenge is that, when
starting the testing experiments with a given symbolic test, it may be only partially implemented. Moreover,
if there is no implemented instantiation, it is necessary to try another symbolic test of the exhaustive test
set, and actually all of them until either one concrete test reaches a conclusion, or it is certain that it is
impossible to fulfill the criterion for the SUT. Mechanisms similar to those in Section 3.2 must be used for
existential or universal selection among those concrete tests corresponding to a symbolic test.

The execution of all the implemented instances of a given symbolic test ST is specified as follows.

UnivInstDriver(ST ,SP ,SUT ) = 9T : instTest(ST ) • ExecutionSP
SUT (T )

Symbolic tests, however, are generally used to select only one of their instantiations. The execution of at
least one implemented instance of a symbolic test ST , if there exists one, can be specified as follows.

ExistInstDriver(ST ,SP ,SUT ) =

(9T : instTest(ST ) • ExecutionSP
SUT (T )) J {| inc, pass, fail |} K TMonitor

This is similar to the existential selection driver addressed in Section 3.2, but we monitor tests coming from
a single test set, namely, the set of instantiations of the symbolic test ST , rather than a set of tests. As
soon as a test T in the set instTest(ST ) reaches a pass verdict, the monitor stops all other tests. The test
that reached a pass is allowed to conclude (by possibly giving a later fail verdict) before stopping.

The two specifications above can be realised by the use at runtime of some adequate solver for enumerating
instantiations in a way similar to [41] and [3]. In this case, the instances are generated one at a time, until
a pass event is observed; only the instances of the same symbolic test that generated the current concrete
test are then considered, and no other symbolic tests are tried.

In summary, in a selection strategy for symbolic tests, we can have existential or universal selection of
symbolic traces or tests, followed by an existential or universal selection of instances of symbolic tests. In
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combining the results in Section 3.2 with UnivInstDriver(ST ,SP ,SUT ) or ExistInstDriver(ST ,SP ,SUT )
presented above, what we need to do is to use these drivers as the characterisation of the execution of a
symbolic test. For example, if we have an existential selection of symbolic traces (based on a property π),
the set ExistentialtraceT (SP)�π as defined in Section 3.2 is a set of sets of symbolic tests. In this case, if
universal selection of instances is required, the existential driver to be used should be as follows.

ExistUnivDrivercstrace(SP ,SUT )�π =(
J {| done |} K TS : ExistentialtraceT (SP) �π •

(9T : TS •UnivInstDriver(T ,SP ,SUT ) ) J {| inc, pass, fail |} K TSMonitor
)
\ {| done |}

This is the existential driver from Section 3.2, but the process that captures execution of a test is not
ExecutionSP

SUT (T ), but the universal driver UnivInstDriver(T ,SP ,SUT ) for symbolic tests defined above.
Each TS is a set of symbolic tests for the same symbolic trace. Each T in TS is, therefore, a symbolic
test, which is executed by UnivInstDriver(T ,SP ,SUT ). As soon as an instance of a symbolic test reaches
a pass, just as for concrete tests, the TSMonitor stops the tests for (the instances of) symbolic tests in the
other sets of symbolic tests. On the other hand, all instances of all other symbolic tests in the same set,
which cover all symbolic forbidden continuations, are allowed to proceed to completion.

If, on the other hand, existential selection of instances is required, the driver to be used is as follows.

ExistExistDrivercstrace(SP ,SUT )�π =(
J {| done |} K TS : ExistentialtraceT (SP) �π •

(9T : TS • ExistInstDriver(T ,SP ,SUT ) ) J {| inc, pass, fail |} K TSMonitor
)
\ {| done |}

In this case, as soon as an instance of a symbolic test reaches a pass, the TSMonitor again stops the tests
for the other sets of symbolic tests. On the other hand, one instance of all other symbolic tests in the same
set is allowed to complete. So, for each forbidden continuation, at least one instance is executed.

Example 13. For illustration, we consider ExistentialtraceT (SP)�π to be a set containing just two sets of
symbolic tests. The first set contains tests for the symbolic trace (〈a.α, α ∈ {6, 7}); we assume that the
forbidden continuations for this trace are (a.β, α ∈ {6, 7} ∧ α = β) and (b, α ∈ {6, 7}). The second set of
tests is for the empty trace (〈 〉, true) with the single forbidden continuation (out.α, α ∈ {6, 7}). The first
set has two tests, one for each forbidden continuation, and the second has just one symbolic test.

ExistentialtraceT (SP)�π =
{ { inc−→ a.α : α ∈ {6, 7} −→ pass−→ a.β : α ∈ {6, 7} ∧ α = β −→ fail−→ Stop,

inc−→ a.α : α ∈ {6, 7} −→ pass−→ b : α ∈ {6, 7} −→ fail−→ Stop },
{ pass−→ out.α : α = 5−→ fail−→ Stop } }

Each test in the first set has two instantiations: one where α (and β) takes the value 6, and another where
it takes the value 7. There is only one instantiation of the test in the second set. The driver for universal
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instantiation is the following process as defined by ExistUnivDrivercstrace(SP ,SUT )�π.





ExecutionSP
SUT (inc −→ a.6−→ pass −→ a.6−→ fail −→ Stop)

9
ExecutionSP

SUT (inc −→ a.7−→ pass −→ a.7−→ fail −→ Stop)
9
ExecutionSP

SUT (inc −→ a.6−→ pass −→ b −→ fail −→ Stop)
9
ExecutionSP

SUT (inc −→ a.7−→ pass −→ b −→ fail −→ Stop)


J{| inc, pass, fail |}K

TSMonitor


J{| done |}K ExecutionSP

SUT (pass −→ out .5−→ fail −→ Stop)
J{| inc, pass, fail |}K

TSMonitor





\ {| done |}

In this case, when one TSMonitor detects a pass event, it stops the other monitor and its tests, but lets all
its other tests run to conclusion. The driver for existential instantiation, on the other hand, is as follows.






 ExecutionSP

SUT (inc −→ a.6−→ pass −→ a.6−→ fail −→ Stop)
9
ExecutionSP

SUT (inc −→ a.7−→ pass −→ a.7−→ fail −→ Stop)


J{| inc, pass, fail |}K

TMonitor


9
 ExecutionSP

SUT (inc −→ a.6−→ pass −→ b −→ fail −→ Stop)
9
ExecutionSP

SUT (inc −→ a.7−→ pass −→ b −→ fail −→ Stop)


J{| inc, pass, fail |}K

TMonitor




J{| inc, pass, fail |}K

TSMonitor


J{| done |}K ExecutionSP

SUT (pass −→ out .5−→ fail −→ Stop)
J{| inc, pass, fail |}K

TSMonitor





\ {| done |}

In this case, once a TSMonitor detects a pass, it stops the other TSMonitor processes as before, and the
TMonitor processes under its control allow one test of each set of instantiations to conclude. 2

For universal selection of symbolic tests, again, where ExecutionSP
SUT (T ) is used in the driver in Section 3.2,

we can use either UnivInstDriver(T ,SP ,SUT ) or ExistInstDriver(T ,SP ,SUT ). Accordingly, we either
have all instances or one instance of all symbolic tests run.

If the execution of one instance of one symbolic test is required, what we need is existential selection of
symbolic tests, rather than symbolic traces. For the construction of the driver, we proceed as shown above.

3.5. Finiteness

Selection criteria must identify a finite number of tests for execution. The exhaustive test sets for a
selection criteria, however, are not necessarily finite.

We have suggested the use of classical uniformity and regularity hypotheses [4]. Uniformity hypotheses
are based on the definition of a finite collection of test subsets (uniformity domains), with the assumption
that in each subset the tests succeed or fail uniformly. Although there is a finite number of uniformity
domains, each may have an infinite number of (symbolic) tests that can contribute to coverage of that
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domain. In fact, uniformity hypotheses do not eliminate tests from the exhaustive test set; they just group
them to form the uniformity domains since they are multiple existential selection criterion (see Section 3.2.3).

Regularity hypotheses are based on a bound of some metrics on the tests: their length, number of
occurrences of some events, or number of couples of events, for instance. Typically, a regularity hypothesis
eliminates tests from the exhaustive test set. In the presence of an infinite number of events, like in typical
Circus specifications, regularity hypotheses may not be enough to ensure finiteness. For instance, with an
infinite number of events it is possible to construct an infinite number of traces of a given size.

The need for drivers that potentially try all tests in an exhaustive test set, as explained above, can lead
to drivers that do not necessarily terminate if the exhaustive test set is infinite. In the next section, we give
an example of a sophisticated selection criterion for symbolic tests. We use it in Section 4.5 in the context
of our framework, and show how we select finite test sets for that example.

4. Synchronisation coverage in Circus

So far, all our examples are based on generic properties of traces or tests for selection. In this section,
we consider a more specific selection criterion, based on the coverage of synchronisations between parallel
processes of a Circus model. To express this criterion formally, we need to identify traces of the model that
might lead to at least one such synchronisation. This is the non-trivial task that we address in this section.
We identify the relevant traces of the specification from traces of its parallel components. In addition, we
prove that the set that we characterise is indeed a set traces of the specification and, therefore, adequate
for use in the context of our framework to define exhaustive test sets. Our formalisation and proof is in
the context of the symbolic operational semantics of Circus, and defines how to deal with constraints and
alphabets of symbolic variables in constrained symbolic traces.

The need for specific notions of coverage for concurrent programs was recognised very early. The first
precise propositions were published at the end of the eighties, when the first general concurrent programming
languages appeared (see Section 5 and [40]). More specifically, synchronisation coverage was discussed in [24],
where a coverage criterion based on the execution of sequences of communications is proposed, and in [5]
where synchronisation coverage for Ada programs is defined and instrumented. More recent work [34, 33]
has focussed on integration testing based on coverage of communications between components of distributed
real-time systems specified using deterministic timed interface automata. We take inspiration from these
works and consider coverage of communications (synchronisations) between parallel processes in Circus.

In Section 4.1, we define the set ScstraceP
(a1,a2)
cs (P1, P2) of pairs of constrained symbolic traces of parallel

processes P1 and P2 that can lead to their synchronisation on channels in the set cs. We use this to define

the set Scstraces
a,(a1,a2)
cs (P1, P2) of synchronisation traces in Section 4.2. In Section 4.3, we generalise our

definitions for parallelisms involving more than two processes. Finally, in Section 4.4, we define the set
selectS a(P) of synchronisation traces of any Circus model P . Our main result in this section establishes that
this is a subset of the traces of P , as required for the selection strategies discussed in the previous section.

4.1. Synchronisation pairs

We consider parallel processes P1 and P2 and their sets of constrained symbolic traces cstracesa1(P1)
and cstracesa2(P2). We identify below the sets of pairs of traces from each process that can lead to their
synchronisation, at least once, when they are executed in parallel with a synchronisation set cs.

Definition 12 (Synchronising constrained symbolic trace pairs). For processes P1 and P2, synchro-

nisation channel set cs, and disjoint alphabets a1 and a2, we define ScstraceP
(a1,a2)
cs (P1, P2) as follows.

ScstraceP
(a1,a2)
cs (P1, P2) = { cst1 : cstracesa1(P1); cst2 : cstracesa2(P2) |

(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2)
}

A synchronising pair of traces cst1 and cst2 is characterised in terms of their projections to communications
over channels in cs and their joint satisfiability satisfiablecs((st1, c1), (st2, c2)). To avoid naming conflicts
in the traces of the pair, we consider disjoint alphabets a1 and a2: those with no common elements.
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Example 14. We list some of the constrained symbolic traces of the process Components in Section 2.1.

(〈in.α1, left.β1〉, α1 = β1) (3)

(〈in.α1, left.β1, right.γ1, left.δ1〉, α1 = β1 ∧ β1 = δ1) (4)

(〈in.α1, left.β1, right.γ1, left.δ1, right.ε1〉, α1 = β1 ∧ β1 = δ1) (5)

For the Medium process, some traces are as follows.

(〈left.α2〉, true) (6)

(〈left.α2, right.β2〉, α2 = β2) (7)

(〈left.α2, right.β2, left.γ2〉, α2 = β2) (8)

(〈left.α2, right.β2, left.γ2〉, 1− α2 = β2) (9)

(〈left.α2, right.β2, left.γ2, right.δ2〉, α2 = β2 ∧ 1− δ2 = γ2) (10)

(〈left.α2, right.β2, left.γ2, right.δ2〉, 1− α2 = β2 ∧ δ2 = γ2) (11)

The synchronising pairs for the parallelism between Components and Medium cannot include the empty
trace, or the traces that do not have at least one occurrence of an event representing a communication on
left or right . Additionally, for example, the traces (3) and (6) above form a synchronising pair, but (3) and
(7) do not, because it is not possible to match the event on right in (7): this pair of traces is not satisfiable.
The traces (5) and (10) also form a synchronising pair.

In addition, for illustration, we consider a different action for the Receiver process in Section 2.1
used in the definition of Components. Namely, we consider right?m1 −→ right .m1 −→ . . ., instead of
right?m1 −→ right?m2 −→ . . .. In this case, once the first message arrives only another copy of the same
message m1 is accepted. So, the constraint of the trace (5) above would be α1 = β1 ∧ β1 = δ1 ∧ ε1 = γ1.
Such a trace would not match the trace (10), because matching requires ε1 = δ2. This is not consistent with
the requirement that ε1 = γ1 because matching also requires γ1 = 1− δ2. 2

In Definition 12, we require that the projections of the traces are not empty, since otherwise the pair of
traces does not really lead to any synchronisation. (In fact, it is enough to require that one of them is
not empty, since satisfiability requires them to be of the same length.) The projection (cst �C cs) of a
constrained symbolic trace cst to the set cs is the sequence of channels (rather than events) obtained by
keeping from cst only the channels from events representing communications through a channel in cs.

Example 15. In our example, the projections of (3) and (6) to {| left , right |}, for example, are both 〈left〉.
2

Formal definitions for this operator and others used later are in Appendix A.
Satisfiability for pairs of (synchronising) constrained symbolic traces embeds the fact that the constraints

of the traces are jointly satisfiable, even when we match the communications on the synchronisations that
they require. This matching gives rise to equalities that strengthen the requirements imposed by the original
individual constraints, which must be satisfiable as well.

Definition 13 (Satisfiability). For every pair (st1, c1) and (st2, c2) of constrained symbolic traces and
synchronisation channel set cs, we define satisfiablecs((st1, c1), (st2, c2)) as follows.

satisfiablecs((st1, c1), (st2, c2))⇔ ∃ a1, a2 • (st1 �E cs) =S (st2 �E cs) ∧ c1 ∧ c2

where a1 and a2 are the alphabets of (st1, c1) and (st2, c2).

The equalities are defined by the operator st3 =S st4, which identifies the requirement for synchronisation
of the pair of symbolic traces st3 and st4 containing only communications that need to synchronise. In the
above definition, these traces are st1 �E cs and st2 �E cs. The projection st �E cs is similar to cst �C cs, but
it applies to symbolic traces st and results in symbolic traces: sequences of events, rather than of channels.
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Example 16. The projection of the symbolic trace (5) in Example 14 to the set {| left, right |}, for exam-
ple, is 〈left.β1, right.γ1, left.δ1〉. For (10) the result of the projection is this same trace. 2

As formalised below, the result of st1 =S st2 is a conjunction of equalities that require that the values of
the symbolic variables used to represent synchronising communications in st1 and st2 are the same.

Definition 14 (Conjunction of symbolic equalities). We define inductively st1 =S st2 as follows.

〈 〉 =S 〈 〉 = true

〈 〉 =S st2 = false

st1 =S 〈 〉 = false

(〈d.α〉a st1) =S (〈d.β〉a st2) = α = β ∧ (st1 =S st2)

(〈d1.α〉a st1) =S (〈d2.β〉a st2) = false, if d1 6= d2

If st1 and st2 have different lengths or require communications over different channels, synchronisation is
not possible and the requirement defined by st1 =S st2 is just false.

Example 17. For the symbolic traces of (3) and (6), we get the equality β1 = α2. For (3) and (7), we get
just false. For (5) and (10), we get the conjunction of equalities β1 = α2 ∧ γ1 = β2 ∧ δ1 = γ2 ∧ ε1 = δ2. 2

As seen in Definition 13, in satisfiablecs((st1, c1), (st2, c2)), the variables in the alphabets a1 and a2 are
used in (st1 �E cs) =S (st2 �E cs) and in the constraints c1 and c2.

4.2. Synchronisation traces

Using the notion of set of synchronisation pairs, we can define the notion of set of synchronisation traces.
These are sets of constrained symbolic traces.

Definition 15 (Synchronising traces). For every pair of processes P1 and P2, synchronisation channel

set cs, alphabets a1, a2, and a, we define the set Scstraces
a,(a1,a2)
cs (P1, P2) over the alphabet a as follows.

Scstraces
a,(a1,a2)
cs (P1, P2) =

⋃
{ p : ScstraceP

(a1,a2)
cs (P1, P2) • N a L p.1 J cs K p.2 M }

To each of the pairs p in ScstraceP
(a1,a2)
cs (P1, P2), we apply the synchronisation operator (st1, c1)JcsK(st2, c2)

defined below to the traces p.1 and p.2 in p. We use t .i to refer to the i -th element of a tuple t .

Example 18. Continuing with our example, from the synchronising pair of traces (3) and (6), we get the
synchronising trace (〈in.α, left.β〉, α = β) over the alphabet 〈α, β, γ, . . .〉. From (5) and (10), we get the
synchronising trace (〈in.α, left.β, right.γ, left.δ, right.ε〉, α = β ∧ β = γ ∧ β = δ ∧ δ = 1− ε). 2

Definition 16 (Synchronisation operator - constrained symbolic traces). We define the set of syn-
chronising constrained symbolic traces (st1, c1) J cs K (st2, c2) as follows.

(st1, c1) J cs K (st2, c2) = R L st1 J cs, (c1 ∧ c2) K st2 M

Synchronisation for constrained symbolic traces is defined in terms of the similar operator st1 J cs, c K st2
for symbolic traces st1 and st2 defined below. It is a symbolic version of the traditional traces operator
in [36, p70]. It defines a set of constrained symbolic traces that can arise from synchronisation on the events
involving channels in the synchronisation set cs while performing the traces st1 and st2. This operator takes
an extra parameter: a constraint c arising from the original constrained traces and from the synchronisation.
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Definition 17 (Synchronisation operator - symbolic traces).

st1 J cs, c K st2 = st2 J cs, c K st1

〈 〉 J cs, c K 〈 〉 = { (〈 〉, c) } [provided c]

〈 〉 J cs, c K 〈 〉 = ∅ [otherwise]

〈 〉 J cs, c K 〈d.β〉 = { (〈d.β〉, c) } [provided d 6∈ cs, c]

〈 〉 J cs, c K 〈d.β〉 = ∅ [otherwise]

(〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2) = { cst : (〈d1.α〉a st1) J cs, c K st2 • (〈d2.β〉a cst.1, cst.2) }
[provided d1 ∈ cs, d2 6∈ cs]

(〈d.α〉a st1) J cs, c K (〈d.β〉a st2) = { cst : st1 J cs, (c ∧ α = β) K st2 • (〈d.β〉a cst.1, cst.2) }
[provided d ∈ cs]

(〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2) = ∅ [provided d1 6= d2, d1 ∈ cs, d2 ∈ cs]

(〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2) = [provided d1 6∈ cs, d2 6∈ cs]

{ cst : (〈d1.α〉a st1) J cs, c K st2 • (〈d2.β〉a cst.1, cst.2) } ∪
{ cst : st1 J cs, c K (〈d2.β〉a st2) • (〈d1.α〉a cst.1, cst.2) }

We, first of all, establish that the synchronisation operator is commutative, and then provide an inductive
definition. If both traces are empty, then we get only the empty trace itself, with constraint c. A proviso
guarantees that c is satisfiable, otherwise no synchronisation traces arise. If there is a conflict in the
synchronisation requirements of the traces, then no synchronisation arises either. A conflict occurs when
one of the traces requires synchronisation on an event on which the other is not ready to agree (either
because it is empty, or its next event is a communication on a different channel also in the synchronisation
set.) When there is a synchronisation on events d.α and d.β, we make a(n arbitrary) choice to use the
symbolic variable β in the resulting synchronisation trace. This means that α is not used in that trace, but
is mentioned in the constraint c ∧ α = β. To remove any such symbolic variables that become redundant,
in Definition 16, we apply R to each of the traces in (st1, c1) J cs K (st2, c2).

Moreover, the traces in st1 J cs, c K st2 are (potentially) over different alphabets. In the definition of

Scstraces
a,(a1,a2)
cs (P1, P2) above, a normalisation function N is used to ensure that the constrained symbolic

traces resulting from the synchronisation are over the alphabet a. Alphabets keep the definition of trace
equivalence simple. When defining compositions of (local) traces, however, we have the added complication of
requiring normalisation. The normalisation function N , which is defined below, however, is just a renaming.

Definition 18 (Normalisation). For every (st, c) and alphabet a, we define N a(st, c) as follows.

N a(st, c) = (st[a/αst], c[a/αst])

This just changes the alphabet of (st, c), whatever that is, to a.
The choice of alphabets a1 and a2 to express the traces of the parallel processes P1 and P2 is irrelevant

when calculating Scstraces
a,(a1,a2)
cs (P1, P2) (see Lemma 1 in Appendix C). The alphabet of the traces in this

set is always a. In the sequel, therefore, we omit these alphabets.
Our main result in this section is given by the following theorem, which establishes that every synchro-

nising trace in Scstraces
a,(a1,a2)
cs (P1, P2) is a constrained symbolic trace of the parallelism P1 J cs K P2. In

addition, they identify all traces of the parallelism that include at least one synchronisation.

Theorem 2.

Scstraces
a,(a1,a2)
cs (P1, P2) = { cst : cstracesa(P1 J cs K P2) | cst �C cs 6= 〈 〉 }

This theorem establishes that if we build tests from Scstraces
a,(a1,a2)
cs (P1, P2), then we get a subset of the

exhaustive test set. Its proof, and those of other theorems introduced here, can be found in Appendix D.
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4.3. Compositionality of parallelism

So far, we have, for the sake of clarity and motivation, considered only a parallelism of two processes P1
and P2. It has been observed [27] that in practice the manifestation of a large majority of concurrency bugs
involves no more than two threads (which correspond to parallel processes in Circus). However, we want to
consider arbitrary process expressions; for instance, if we have a parallelism (P1 J csA K P2) J csB K P3, then
we may be interested in the synchronisations required by both csA and csB. In this case, one of the parallel
components is not a simple process, but a parallelism (P1 J csA K P2). A compositional approach, in which
we build tests based on the (local) traces of P1, P2, and P3, would be ideal.

To discuss this approach, we consider generalisations of the definitions of ScstraceP
(a1,a2)
cs (P1, P2) and

Scstraces
a,(a1,a2)
cs (P1, P2) where the sets of trace pairs or traces are built, not from processes, but from sets

of traces csts1 and csts2. The definitions of ScstracePcs(csts1, csts2) and Scstracesacs(csts1, csts2) are

very similar to those of ScstraceP
(a1,a2)
cs (P1, P2) and Scstraces

a,(a1,a2)
cs (P1, P2), and are in Appendix A.

The problem that we face is that selection of synchronisation traces is actually not compositional. Pre-
cisely, if we consider (P1 J csA K P2) J csB K P3 as suggested above, for instance,

ScstracesacsB(Scstracesa12csA(cstraces
a1(P1), cstraces

a2(P2)), cstraces
a3(P3))

6=
ScstracesacsB(cstraces

a12(P1 J csA K P2), cstracesa3(P3))

An example illustrates the issue here.

Example 19. The (stateless) processes that we consider are as follows.

P1 = a −→ Stop @ b −→ Stop
P2 = a −→ Stop
P3 = b −→ Stop

We then consider the specification P =̂ (P1 J {| a |} K P2) J {| b |} K P3. First of all, we consider the component
P1 J {| a |} K P2, which is itself a parallelism. The traces of this parallelism are 〈 〉, 〈a〉, and 〈b〉. Its only
synchronisation trace, on the other hand, is 〈a〉. If we use this synchronisation trace as a basis to construct
the synchronisation traces of P , we get the empty set of traces. It, however, has synchronisation trace 〈b〉,
and if we want to cover both synchronisations of the specification, we actually need 〈a〉 and 〈b〉. 2

This means that, in general, to construct a test set to cover all synchronisations in a model, we have to
construct a test set for each of the parallelisms, considering the whole set of constrained symbolic traces
of each of the components, and not only their synchronisation traces. If the synchronisation sets of the
parallelisms are the same, however, we do have compositionality, as established by the following theorem.

Theorem 3.

Scstracesacs(Scstracesa12cs (cstracesa1(P1), cstraces
a2(P2)), cstraces

a3(P3))
=
Scstracesacs(cstraces

a12(P1 J cs K P2), cstracesa3(P3))

To consider arbitrary process expressions, however, this is not enough.
In general, we need to understand how to construct tests to cover a synchronisation between parallel

components occurring in any part of a system model. This is addressed in the next section.

4.4. Compositionality of other operators

We define below the function selectS a(P), which includes the set of all constrained symbolic traces of P
over the alphat a that cover at least one synchronisation in P, if any. The the set of tests defined from all
traces in selectS a(P) covers all reachable synchronisations of P in all possible ways.
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Definition 19 (Selection).

selectS a(begin state [x : T] • A end) = ∅

selectS a(P1 J cs K P2) = Scstracesacs(P1, P2)

selectS a(P1 @ P2) = selectS a(P1) ∪ selectS a(P2)

selectS a(P1 u P2) = selectS a(P1) ∪ selectS a(P2)

selectS a(P1 ; P2) = selectS a(P1) ∪N a L tcstracesa1(P1) ccat selectS a2(P2) M [provided disjoint(a1, a2)]

selectS a(P \ cs) = N a L LselectS a(P) M �Ccs M

A basic process, defined by specifying its state and action, rather than in terms of other processes, has no
synchronisation traces. The synchronisation traces of a parallelism P1JcsKP2 are given by Scstracesacs(P1, P2).
As established by Theorem 3, in selecting traces for a parallelism, we can take advantage of nested paral-
lelisms over the same synchronisation set to optimise the procedure and proceed in a compositional way.
This is not considered in the specification of selectS a(P), but can be exploited in an algorithm.

The synchronisation traces of a sequence P1 ; P2 include those of P1 and the continuations of the termi-
nating traces of P1 that cover the synchronisations of P2. To define these, we use the set tcstracesa(P) of
terminating traces of a process P. Its definition below is similar to that of cstracesa(P); a terminating trace
is identified by its leading to a configuration (c2 | s2 |= Skip) for Skip.

Definition 20 (Terminating traces).

tcstracesa(begin state[x : T] • A end) = tcstracesa(w0 ∈ T, x := w0, A)

tcstracesa(c1, s1, A1) = {st, c2, s2, A2 | αst ≤ a ∧ (c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= Skip) • R(st, c2) }

To cover the synchronisations in P2, we need to prefix its synchronisation traces with terminating traces
of P1. We use the operator csts1 ccat csts2; the traces in csts1 ccat csts2 are those formed by con-
catenating all pairs of symbolic traces and conjoining their associated constraints. Since, in general, the
length of the traces in tcstracesa1(P1) vary, it is not possible to predict the alphabet of the traces in
tcstracesa1(P1) ccat selectS a2(P2). In general, different traces in this set may have different alphabets. We,
therefore, use in Definition 19 the normalisation function N to obtain a set of traces over the alphabet a.

For a hiding P \ cs, since we are interested in covering the hidden synchronisations, we consider the
synchronisation traces of P. We remove from them, however, the events that represent communications
through the channels in cs. For that, we use the projection function cst �C cs, whose resulting constrained
symbolic trace contains only the events of cst that are not communications over channels in cs. The
alphabet of a symbolic trace resulting from the application of this operator is not predictable, so we again
use the normalisation function to obtain in selectSa(P \ cs) a set of constrained symbolic traces over a.

Example 20. Both synchronising traces in Example 18 give rise to the synchronising trace (〈in.α〉, true)
of Protocol . 2

Our main result here is introduced below: our selection strategy identifies a subset of the traces of a process.

Theorem 4.

selectS a(P) ⊆ cstracesa(P)

This means that selection based on selectS a(P) identifies an unbiased test set (that is, a set of traces that can
be used to construct an unbiased test set). In terms of the framework defined in the previous section, the
property π(t ,P) that can be used to achieve selection based on synchronisation coverage is t ∈ selectS a(P).
We consider the use of selectS a(P) for selection of tests for traces refinement next.
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4.5. More selective synchronisation coverage

With the property π(t ,SP) = t ∈ selectS a(SP), we can define, using our framework from Section 3, two
exhaustive test sets: one for existential and one for universal selection based on traces. In this example,
the traces and tests are symbolic. We use the framework in Section 3, but with definitions adapted (in the
expected and straightforward way) to consider symbolic traces and tests. The symbolic exhaustive test sets
are shown below. In these definitions, we also rely on Theorem 4 to conclude that t ∈ selectS a(SP) implies
that t ∈ cstraces(SP) and simplify the definitions obtained directly using (1) and (2).

SyncExist traceT (SP) = {AllTestsT (cst ,SP) | cst ∈ selectS a(SP)}

SyncUniv trace
T (SP) = {STT (cst , cse) | cst ∈ selectS a(SP) ∧ cse ∈ csinitials(SP , cst) }

Existential selection, in this example, is not very interesting, since its goal is to run only one test covering
at least one synchronisation. Universal selection, on the other hand, is the basis for the property: “all tests
that involve at least one synchronisation in the trace are attempted”.

The problem that we face in this section is the fact that the above sets of symbolic tests are still infinite,
and, in addition, each symbolic test has an infinite number of instantiations as well. We consider next how
to obtain a finite set of symbolic tests for universal selection.

For selection of symbolic tests, what we suggest is the use of a regularity hypothesis. If the model does
not have unbounded nondeterminism, a regularity hypothesis that limits the size of the symbolic traces
defines a finite set of symbolic tests. It is well known, however, that the choice of the limiting size must be
careful, to avoid throwing away too many interesting tests [15]. In the case of synchronisation coverage, it
is sensible to limit the size on the traces in such a way that ensures that all channels are used at least once.

Example 21. For synchronisation tests for the parallelism between the processes Components and Medium,
the bound should be at least 8, to ensure that traces with events representing communications on out are
included. For this system, we define the symbolic exhaustive set of tests (with respect to synchronisation
coverage and our regularity hypothesis), as follows.

FSyncUniv trace
T (Components J {| left , right |} K Medium) =

{ST | ST ∈ SyncUniv trace
T (Components J {| left , right |} K Medium) ∧ # ST ≤ 9 }

We use the operator # ST to denote the size of a symbolic test: the size of its symbolic trace plus one. 2

For selection of instances of symbolic tests, what we suggest is the use of uniformity hypotheses based
on the constraint of the symbolic traces and of the symbolic forbidden continuations. We can use the
constraints to take into account information about the updates of data specified in a symbolic trace; an
extreme decomposition uses a DNF characterisation of the constraints to define several domains. To be
more selective, we consider each constraint as defining a single domain. In this case, selection is based
on the interactions and paths of execution in the model defined by the operational semantics used to
generate the symbolic traces. This means that we take the existential selection of instances of the symbolic
tests (discussed in Section 3.4). This runs, if possible, one instance of every selected symbolic test.

Example 22. The driver for existential selection of instances of the tests in Example 21 is as follows.

SyncUnivExistDriver trace(Components J {| left , right |} K Medium,SUT ) =

9ST : FSyncUniv trace
T (Components J {| left , right |} K Medium)•

(9T : instTest(ST ) • ExecutionSP
SUT (T )) J {| inc, pass, fail |} K TMonitor

For each of the finitely many symbolic tests in FSyncUniv trace
T (Components J {| left , right |} K Medium, we

have the independent execution of its instances under the control of a TMonitor . As soon as an instance
reaches a conclusive verdict, other instances are discarded. 2
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We observe that, as illustrated in the above example, the search for a single instance may still not terminate,
if none is implemented. Static choice of an instance is not a good idea, as extensively discussed in Section 3.

The exhaustivity of our test sets rely on the complete test coverage assumption to guarantee, when the
SUT is nondeterministic, the execution of all its behaviours. In the case of parallel composition, it implies
the spontaneous coverage of all synchronisation-race variants: this assumption can be weakened by using
specific schedulers when driving the tests, such as in reachability testing [26], or CHESS [1].

5. Related works

One of the first well known coverage criteria for concurrent programs was developed by Taylor et al. [40]
for Ada. It is based on notions of concurrency states and concurrency graphs used to define classical-graph
coverage criteria (all-concurrency-paths, all-edges-between-cc-states, and all-cc-states), and a weaker crite-
rion called all-possible-rendezvous, which requires that for all concurrency states that involve a rendezvous,
there is at least one path through this state. This notion of coverage hides the sequential activities in the
concurrency states, thus focusing on synchronisation anomalies. The authors also sketch the idea of forc-
ing particular concurrency paths when driving test execution. As mentioned in Section 4, synchronisation
coverage for Ada programs has been more precisely defined and implemented by Bron et al. [5].

Carver, Lei, Tai and others has developed reachability testing [7, 26], which provides ways to execute
deterministically a concurrent program and reproduce a given test case. It is a purely dynamic method
for generating synchronisation sequences (SYN-sequences) on the fly. Reachability testing algorithms are
exhaustive; this ensures the execution of all the possible SYN-sequences for a given input, provided there is
no unbounded loop. In this case, a bound on the length of the SYN-sequences is introduced.

For synchronous message passing, like in Circus, SYN-sequences contain pairs of sending and receiving
events exercised in an execution. Deterministic execution is led according to a given SYN-sequence. Reacha-
bility testing does not address selection of test inputs or SYN-sequences, but specification-based reachability
testing is addressed in [8] with a limited specification language for expressing local constraints on the SYN-
sequences. When the only source of nondeterminism is race variants, reachability testing can be used to
ensure the complete test assumption used in our work, since it ensures execution of all SYN-sequences.

The use of a reachability graph for structural test-sequence generation for concurrent programs is reported
in [42]. A more recent approach by Souza et al. [39] reports some experiments with reachability testing and
a few coverage criteria based on a notion of sync-edge association, which seems similar to the coverage of
those edges corresponding to a synchronisation pair. This is close to the notion of synchronisation coverage
that we proposed for Circus, but it is based on static analysis of the program.

The next generation of reachability testing algorithms is embedded in CHESS [30, 1]. This tool repeatedly
runs concurrent tests ensuring that every run takes a different interleaving. If an interleaving results in an
error, CHESS can reproduce it for improved debugging. The only perturbation introduced is a thin wrapper
layer between the SUT and the concurrency API. The wrappers are similar to implementations of our drivers,
but just like in all reachability testing techniques, they are not concerned with selection.

Dynamic test generation [6] aims at avoiding infeasible paths when generating tests from the text of a
program and covering all feasible paths. This is achieved by performing symbolic and standard execution
in an integrated way. Test generation starts by running the program on an arbitrary concrete test input,
and recording the choices and the path followed. Afterwards, other tests are generated by switching choices
made during this execution to execute another path: a constraint solver is used to check that the changes
lead to feasible paths. The similarities with our work come from the use of models of the SUT, and the need
to attempt alternative paths when a test is not possible. The differences are: our models are potentially
more abstract than the source code; and the SUT is not required to implement all its traces. Our concern
is absence of specification traces rather than unsatisfiability, so we do not require constraint solving. In
general, for instance in the presence of loops, dynamic test generation does not terminate. Termination
is ensured by introducing some limit to the length of paths, which corresponds to an implicit regularity
hypothesis on the SUT. Similarly, our drivers for symbolic tests may not terminate.

Adaptive testing has been studied for the derivation of elaborate test experiments from nondeterministic
finite state machines [25] for possibly nondeterministic implementations [32, 20, 22]. The idea is to take
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into account the output of the SUT to determine how to proceed with the experiment. It means that there
is no preset input sequence, but a rooted tree that anticipates all possible sequences. It is very similar
to the factorised tree-shaped tests we present in Section 3.3, which lets the SUT to lead the test. The
role of our various test drivers is a generalisation of this approach, where, in addition to the possibility of
non-implemented traces, we introduce a variety of selection strategies.

For a deterministic SUT, further work [23] has considered also the optimisation of a testing experiment
by ordering the adaptive tests. In our setting, we can consider, for example, that, if the SUT is deterministic,
an inconclusive test verdict indicates that all tests for the same trace or any of its extensions is also going
to produce an inconclusive verdict. Therefore, they are useless and can be eliminated. Sophisticated drivers
are required to order the tests and perform such optimisations.

6. Conclusions

In this paper, we have identified and illustrated the problem of selection of tests for establishing traces
refinement. In short, it is not possible to have a static selection, because a correct SUT may not implement
the selected traces, in which case coverage ensured statically may not be achieved during experiments.

As a solution, we have proposed the use of strategies that combine the definition of an exhaustive test set
with respect to the selection criteria of interest and a driver. Although, we have considered the main kinds
of selection criteria, it is not ever possible to claim that we have catered for every imaginable criterion. We
believe, however, that the approaches that we have proposed and illustrated for comprehensive categories of
criteria can be usefully combined or extended to cater for sophisticated selection criteria. We have, in this
paper, considered selection of both concrete and symbolic tests.

We have considered criteria based on one or several (multiple) properties of traces or of tests, and that
require one (existential) or all (universal) implemented traces or tests that satisfy the property(ies) to be
run. For each such kind of criteria, we have formalised the construction of the exhaustive test set and
described a driver using Circus constructs. These driver specifications provide an accurate description of the
requirements of the test experiments, but practical techniques have to consider efficient use of the SUT and
of constraint solvers to avoid the use of too many copies of the SUT or instantiations of symbolic tests.

To illustrate the use of our framework, we have formalised a selection criterion for testing based on
parallel Circus models. It is appropriate for integration testing, and requires coverage of synchronisations
between parallel processes in a model. We have formally defined this trace selection criterion and, specified
an algorithm for selection. We have proved that this algorithm generates traces of the model, and, therefore,
unbiased tests. This is used to define a finite set of symbolic tests and accompanying driver.

The problem raised by the possibility of selecting non-implemented traces is also raised by testing for
a different conformance relation, namely, conf . What conf requires is that, for traces that are common to
the model and the SUT, the SUT deadlocks only when a deadlock is allowed in the model. If a trace of
the model is not implemented by the SUT , we again do not have a mistake. It is possible that the same
solutions proposed here are applicable in testing for conf . This will be the subject of a companion report.

This is an important piece of future work, because we have previously shown that failures refinement,
another important conformance relation for both CSP and Circus, can be characterised as the conjunction
of traces refinement and conf [10, 13]. An exhaustive test set for failures refinement is, therefore, the union
of the exhaustive test sets for traces refinement and for conf .

Another interesting piece of future work is the execution of more case studies, both in the form of
additional selection criteria and of actual testing experiments for specific models. In that respect, the
automation of the Circus testing theory presented in [16] is of great relevance.

Also of interest is the application of the ideas presented here to the notion of traces for Circus defined
in [12]. In that work, we consider traces that record information about the data operations (specification
statements, assignments, guards, and so on) in the model, and support selection techniques based on the
structure of the model, like data flow. Just like the symbolic traces of the original Circus testing theory,
these symbolic traces do not need to be implemented by an SUT. So, the same issues raised here apply.
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Appendix A. Formal definitions of operators

Definition 21. We define a pair of alphabets a1 and a2 to be disjoint if their sets of elements are dis-
joint: disjoint(a1, a2) = ran a1 ∩ ran a2 = ∅.

Definition 22. For every constrained symbolic trace (st, c) and synchronisation channel set cs, we define
the projection (st, c) �C cs of the trace (st, c) to channels in cs as (st, c) �C cs = st �C cs, where the similar
projection operator for symbolic traces is defined inductively as follows.

〈 〉 �C cs = 〈 〉
(〈d.α〉a st) �C cs = 〈d〉a (st �C cs), if d ∈ cs

(〈d.α〉a st) �C cs = st �C cs, if d 6∈ cs

Definition 23. For every symbolic trace st and synchronisation channel set cs, we define inductively the
projection st �E cs of st to events representing communications over channels in cs as follows.

〈 〉 �E cs = 〈 〉
(〈d.α〉a st) �E cs = 〈d.α〉a (st �E cs), if d ∈ cs

(〈d.α〉a st) �E cs = st �E cs, if d 6∈ cs

Definition 24. For sets of constrained symbolic traces csts1 and csts2 with disjoint alphabets, and channel
set cs, we define the set of synchronising pairs ScstracePcs(csts1, csts2) as follows.

ScstracePcs(csts1, csts2) =
{ cst1 : csts1; cst2 : csts2 | (cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2) }

Definition 25. For sets of constrained symbolic traces csts1 and csts2, channel set cs, and alphabet a we
define the set Scstracesacs(csts1, csts2) of synchronising constrained symbolic traces over a as follows.

Scstracesacs(csts1, csts2) =
⋃
{ p : ScstracePcs(csts1, csts2) • N a L p.1 J cs K p.2 M }
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Definition 26.

csts1 ccat csts2 = { st1, st2, c1, c2 | (st1, c1) ∈ csts1 ∧ (st2, c2) ∈ csts2 • (st1 a st2, c1 ∧ c2) }

Definition 27. For every constrained symbolic trace (st, c) and synchronisation channel set cs, we define
the projection (st, c) �C cs of the trace (st, c) to channels not in cs as (st, c) �C cs = R(st �C cs, c), where
the projection operator for symbolic traces is defined inductively as follows.

〈 〉 �C cs = 〈 〉
(〈d.α〉a st) �C cs = 〈d.α〉a (st �C cs), if d 6∈ cs
(〈d.α〉a st) �C cs = st �C cs, if d ∈ cs

Appendix B. Properties of the Circus operational semantics

The following propositions establish basic properties of the Circus operational semantics that we need. A
simple property is captured by the proposition below. It states that, if the action does not involve a variable
x , or more generally, any of the variables in a state s3, then its value in the state is not changed.

Proposition 1.

(c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= A2)

if, and only if,

(c1 | s1; s3 |= A1)
st

=⇒ (c2 | s2; s3 |= A2)

provided FV (s3) ∩ FV (A1) = ∅.

FV (A) is the set of free variables of the action A as defined in [31]. In addition, if a constraint c3 is over
symbolic variables that are not used in the state nor in the symbolic trace, then it can be ignored.

Proposition 2.

(c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= A2)

if, and only if,

(c1 ∧ c3 | s1 |= A1)
st

=⇒ (c2 ∧ c3 | s2 |= A2)

provided FV (c3) ∩ SV (s1, s2) = ∅ and FV (c3) ∩ αst = ∅.

We use SV (s) to denote the set of symbolic variables used in the definition of s (or, more generally, in a
list of of states s1, s2 as used in the proposition above). By construction, constraints of a configuration are
only ever strengthened.

Proposition 3.

(c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= A2)

if, and only if, for some c3

(c1 | s1 |= A1)
st

=⇒ (c1 ∧ c3 | s2 |= A2)

So, the constraint c1 used in an initial configuration is preserved in any configuration reached from it.
The operational semantics is consistent with the denotational semantics. So, for example, we have the
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property below for traces of an external choice.

Proposition 4.

(c1 | s1 |= A1 @ A2)
st

=⇒ (c2 | s2 |= A3)

for some s2 and A3 if, and only if,

(c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= A3) or (c1 | s1 |= A2)
st

=⇒ (c2 | s2 |= A3)

This is consistent with the denotational semantics of A1 @A2, which defines that its set of traces is the union
of those of A1 and A2. For sequential composition, we have the following.

Proposition 5.

(c1 | s1 |= A1 ; A2)
st

=⇒ (c2 | s2 |= A3)

for some s2 and A3 if, and only if,

(c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= A3)

or, there are st1, c′1, s′1, and st2 such that st = st1
a st2,

(c1 | s1 |= A1)
st1=⇒ (c′1 | s′1 |= Skip) and (c′1 | s′1 |= A2)

st2=⇒ (c2 | s2 |= A3)

The next property is concerned with the semantics of parallel actions. It relates the traces of a parallelism
A1 J x1 | cs | x2 K A2 of actions, as calculated by the operational semantics, with the result of applying the
synchronisation operator to the traces st1 and st2 of the parallel actions A1 and A2. This is needed in
this work, where we consider parallel processes, because parallelism of processes is defined in terms of the
parallelism of their main actions, with name sets defined by the states of the processes.

Proposition 6.

(c1 | s1 |= A1 J x1 | cs | x2 K A2)
st

=⇒ (c2 | s2 |= A3)

for some s2 and A3 if, and only if, there are st1, c′1, s′1, A′1, st2, c′2, s′2, A′2, and a, such that αc1
′∩αc2′ = ∅,

αst1 ⊆ αc′1, αst2 ⊆ αc′2, αst ≤ a,

(c1 | s1 |= A1)
st1=⇒ (c1

′ | s′1 |= A′1), (c1 | s1 |= A2)
st2=⇒ (c2

′ | s′2 |= A′2)

and

R(st, c2) ∈ N a LR L st1 J cs, (c1′ ∧ c2
′) K st2 M M

We need to apply R to all constrained symbolic traces: that obtained from the operational semantics of
A1 J x1 | cs | x2 K A2 and those obtained by the synchronisation of st1 and st2. The renaming carried out by
N a ensures that all symbolic traces are over the same alphabet a, and so, can be compared.

Finally, we have a property of the operational semantics of hiding.

Proposition 7.

(c1 | s1 |= A \ cs)
st1=⇒ (c2 | s2 |= A2)

for some s2 and A3 if, and only if, there are st2, c3, s3, A3, and a, such that αst1 ≤ a,

(c1 | s1 |= A)
st2=⇒ (c3 | s3 |= A3) and R(st1, c2) = N a(R(st2, c3) �C cs)

We consider traces st2 defined by the evaluation of A, and their projections to remove the channels in cs.

29



Appendix C. Some lemmas and their proofs

Lemma 1.

Scstraces
a,(a1,a2)
cs (P1, P2) = Scstraces

a,(a3,a4)
cs (P1, P2)

Proof. There is a bijection between cstracesa1(P1) and cstracesa3(P1) reflecting the fact that their symbolic
traces characterise the same set of traces, namely those of P1, and the only difference between the symbolic
traces in these sets is in their use of names of symbolic variables. The same comment applies to cstracesa2(P2)

and cstracesa4(P2). We, therefore, can conclude that there is such a bijection between ScstraceP
(a1,a2)
cs (P1, P2)

and Scstraces
(a3,a4)
cs (P1, P2). So, this lemma is a direct consequence of the definition of N a. 2

Appendix C.1. Properties of synchronisation

The constraints of all traces are the same.

Lemma 2.

∀ cst : st1 J cs, c K st2 • cst.2 = (st1 �E cs =S st2 �E cs) ∧ c

Proof. By induction.

Case 1.

(st, c1) ∈ 〈 〉 J cs, c2 K 〈 〉
⇒ c1 = c2 [definition of (〈 〉 J cs, c2 K 〈 〉)]
⇔ c1 = ((〈 〉 �E cs) =S (〈 〉 �E cs)) ∧ c2 [definition of �E and =S]

Case 2.

(st, c1) ∈ 〈 〉 J cs, c2 K 〈d.β〉
⇒ c1 = c2 [definition of 〈 〉 J cs, c2 K 〈d.β〉]
⇔ c1 = ((〈 〉 �E cs) =S (〈d.β〉 �E cs)) ∧ c2 [(〈d.β〉 �E cs) = 〈 〉]

Case 3:. d1 ∈ cs, d2 6∈ cs

(st, c1) ∈ (〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2)

⇒ ∃ st3, c3 •
(st3, c3) ∈ ((〈d1.α〉a st1) J cs, c2 K st2) ∧ st1 = 〈d2.β〉a st3 ∧ c1 = c3

[definition of (〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2)]

⇔ ∃ st3 • (st3, c1) ∈ (〈d1.α〉a st1) J cs, c2 K st2 ∧ st1 = 〈d2.β〉a st3 [predicate calculus]

⇒ c1 = ((〈d1.α〉a st1) �E cs =S st2 �E cs) ∧ c2 [induction hypothesis]

⇔ c1 = ((〈d1.α〉a st1) �E cs =S (〈d2.β〉a st2) �E cs) ∧ c2 [(〈d2.β〉a st2) �E cs = st2 �E cs]
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Case 4:. d ∈ cs

(st, c1) ∈ (〈d.α〉a st1) J cs, c2 K (〈d.β〉a st2)

⇔ ∃ st3 • (st3, c1) ∈ st1 J cs, (c2 ∧ α = β) K st2 ∧ st1 = 〈d2.β〉a st3

[definition of (〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2)]

⇒ c1 = (st1 �E cs =S st2 �E cs) ∧ (c2 ∧ α = β) [induction hypothesis]

⇔ c1 = (〈d.α〉a (st1 �E cs) =S 〈d.β〉a (st2 �E cs)) ∧ c2 [definition of =S]

⇔ c1 = ((〈d.α〉a st1) �E cs =S (〈d.β〉a st2) �E cs) ∧ c2

[(〈d.α〉a st1) �E cs = 〈d.α〉a (st1 �E cs) and (〈d.β〉a st2) �E cs = 〈d.β〉a (st2 �E cs)]

Case 5:. d1 6∈ cs, d2 6∈ cs

(st, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2))

⇒ ∃ st3 • (st3, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K st2) ∨
(st3, c1) ∈ (st1 J cs, c2 K (〈d2.β〉a st2))

[definition of (〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2)]

⇒ c1 = ((〈d1.α〉a st1) �E cs =S st2 �E cs) ∧ c2 ∨
c1 = (st1 �E cs =S (〈d2.β〉a st2) �E cs)) ∧ c2

[induction hypothesis]

⇒ c1 = ((〈d1.α〉a st1) �E cs =S (〈d2.β〉a st2) �E cs)) ∧ c2

[(〈d1.α〉a st1) �E cs = (st1 �E cs) and (〈d2.β〉a st2) �E cs = (st2 �E cs)]

2

The projection of the synchronisation traces in st1 J cs, c K st2 to their symbolic traces does not change if
we quantify one of the variables (potentially) free in c.

Lemma 3.

Lst1 J cs, c K st2 M .1 = Lst1 J cs, (∃ x • c) K st2 M .1

Proof. By induction.

Case 1(a). : provided c

L〈 〉 J cs, c K 〈 〉 M .1
= L{ (〈 〉, c } M .1 [synchronisation operator]

= { 〈 〉 } [relational image]

= L{ (〈 〉, (∃ x • c)) } M .1 [relational image]

= L〈 〉 J cs, (∃ x • c) K 〈 〉 M .1 [synchronisation operator]

Case 1(b). : otherwise

L〈 〉 J cs, c K 〈 〉 M .1
= ∅ [synchronisation operator and relational image]

= L〈 〉 J cs, (∃ x • c) K 〈 〉 M .1 [(∃ x • c) does not hold]
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Case 2(a). : (〈 〉 J cs, c2 K 〈d.β〉), provided c

L〈 〉 J cs, c K 〈d.β〉 M .1
= L{ (〈d.β〉, c } M .1 [synchronisation operator]

= { 〈d.β〉 } [relational image]

= L{ (〈d.β〉, (∃ x • c)) } M .1 [relational image]

= L〈 〉 J cs, (∃ x • c) K 〈d.β〉 M .1 [synchronisation operator]

Case 2(a). : (〈 〉 J cs, c K 〈d.β〉), provided c does not hold
Similar to Case 1(b).

Case 3:. d1 ∈ cs, d2 6∈ cs

L(〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2) M .1

= L{ cst : (〈d1.α〉a st1) J cs, c K st2 • (〈d2.β〉a cst.1, cst.2) } M .1 [synchronisation operator]

= L{ cst1 : (〈d1.α〉a st1) J cs, (∃ x • c) K st2; cst2 : (〈d1.α〉a st1) J cs, c K st2 •
(〈d2.β〉a cst1.1, cst2.2) } M .1

[induction hypothesis]

= { cst : (〈d1.α〉a st1) J cs, (∃ x • c) K st2 • 〈d2.β〉a cst.1 } [relational image]

= L{ cst : (〈d1.α〉a st1) J cs, (∃ x • c) K st2 • (〈d2.β〉a cst.1, cst.2) } M .1 [relational image]

= L(〈d1.α〉a st1) J cs, (∃ x • c) K (〈d2.β〉a st2) M .1 [synchronisation operator]

Case 4:. d ∈ cs

L(〈d.α〉a st1) J cs, c K (〈d.β〉a st2) M .1

= L{ cst : st1 J cs, c K st2 • (〈d.β〉a cst.1, cst.2) } M .1 [synchronisation operator]

= L{ cst1 : st1 J cs, (∃ x • c) K st2; cst2 : st1 J cs, c K st2 •
(〈d.β〉a cst1.1, cst2.2) } M .1

[induction hypothesis]

= { cst : st1 J cs, (∃ x • c) K st2 • 〈d.β〉a cst.1 } [relational image]

= L{ cst : st1 J cs, (∃ x • c) K st2 • (〈d.β〉a cst.1, cst.2) } M .1 [relational image]

= L(〈d.α〉a st1) J cs, (∃ x • c) K (〈d.β〉a st2) M .1 [synchronisation operator]

Case 5:. (〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2), with d1 6= d2, d1 ∈ cs, d2 ∈ cs

Similar to Case 1(b).
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Case 6:. d1 6∈ cs, d2 6∈ cs

L(〈d1.α〉a st1) J cs, c K (〈d1.β〉a st2) M .1

= L { cst : (〈d1.α〉a st1) J cs, c K st2 • (〈d2.β〉a cst.1, cst.2) } ∪
{ cst : st1 J cs, c K (〈d2.β〉a st2) • (〈d1.α〉a cst.1, cst.2) } M .1

[synchronisation operator]

= L{ cst : (〈d1.α〉a st1) J cs, c K st2 • (〈d2.β〉a cst.1, cst.2) } M .1∪
L{ cst : st1 J cs, c K (〈d2.β〉a st2) • (〈d1.α〉a cst.1, cst.2) } M .1

[property of relational image]

= L{ cst : (〈d1.α〉a st1) J cs, (∃ x • c) K st2 • (〈d2.β〉a cst.1, cst.2) } M .1∪
L{ cst : st1 J cs, (∃ x • c) K (〈d2.β〉a st2) • (〈d1.α〉a cst.1, cst.2) } M .1

[induction hypothesis]

= L { cst : (〈d1.α〉a st1) J cs, (∃ x • c) K st2 • (〈d2.β〉a cst.1, cst.2) } ∪
{ cst : st1 J cs, (∃ x • c) K (〈d2.β〉a st2) • (〈d1.α〉a cst.1, cst.2) } M .1

[property of relational image]

= L(〈d1.α〉a st1) J cs, (∃ x • c) K (〈d2.β〉a st2) M .1 [synchronisation operator]

2

In the lemma below, we have a simple property of R when used in conjunction with the synchronisation
operator. Basically, we can, in advance, consider a weaker constraint that already quantifies away variables
that represent internal values: those that are not used in either of the traces st1 and st2 synchronised.

Lemma 4.

R L st1 J cs, c K st2 M = R L st1 J cs, (∃(αc \ α(st1, st2)) • c) K st2 M

Proof.

R L st1 J cs, c K st2 M

= { cst : st1 J cs, c K st2 • R(cst.1, cst.2) } [relational image]

= { cst : st1 J cs, c K st2 • R(cst.1, (st1 �E cs =S st2 �E cs) ∧ c) } [Lemma 2]

= { cst : st1 J cs, c K st2 • R(cst.1,∃ x1 • (st1 �E cs =S st2 �E cs) ∧ c) }
[definition of R, with x1 = α(st1 �E cs, st2 �E cs, c) \ αcst.1]

= { cst : st1 J cs, c K st2 • (cst.1,∃ x2 • (st1 �E cs =S st2 �E cs) ∧ c) }
[property of sets, with x2 = (α(st1 �E cs, st2 �E cs), αc ∩ α(st1, st2), αc \ α(st1, st2)) \ αcst.1]

= { cst : st1 J cs, c K st2 • (cst.1,∃ x3 • (st1 �E cs =S st2 �E cs) ∧ c) }
[αcst.1 ⊆ α(st1, st2), with x3 = (α(st1 �E cs, st2 �E cs), αc ∩ α(st1, st2)) \ αcst.1, αc \ α(st1, st2)]

= { cst : st1 J cs, c K st2 • (cst.1,∃ x4 • (st1 �E cs =S st2 �E cs) ∧ ∃(αc \ α(st1, st2)) • c) }
[predicate calculus, with x4 = (α(st1 �E cs, st2 �E cs, αc ∩ α(st1, st2)) \ αcst.1]

= { cst : st1 J cs, (∃(αc \ α(st1, st2)) • c) K st2 •
(cst.1,∃ x4 • (st1 �E cs =S st2 �E cs) ∧ ∃(αc \ α(st1, st2)) • c) }

[Lemma 3]

= { cst : st1 J cs, (∃(αc \ α(st1, st2)) • c) K st2 •
R(cst.1, (st1 �E cs =S st2 �E cs) ∧ ∃(αc \ α(st1, st2)) • c) }

[definition of R]

= { cst : st1 J cs, (∃(αc \ α(st1, st2)) • c) K st2 • R(cst) } [Lemma 2]

= R L st1 J cs, (∃(αc \ α(st1, st2)) • c) K st2 M [relational image]

2

The following lemma establishes that the set of traces st1 J cs, c K st2 is not empty exactly when c is

33



satisfiable, even in the presence of the synchronisation requirements imposed by st1 and st2.

Lemma 5.

(st1 J cs, c K st2) 6= ∅ ⇔ ∃ a1, a2 • (st1 �E cs) =S (st2 �E cs) ∧ c

where αst1 ≤ a1 and αst2 ≤ a2.

Proof. By induction.

Case 1.

(〈 〉 J cs, c K 〈 〉) 6= ∅
⇔ c [definition of (〈 〉 J cs, c K 〈 〉)]
⇔ ∃ a1, a2 • (〈 〉 �E cs) =S (〈 〉 �E cs) ∧ c [(〈 〉 �E cs) = 〈 〉 and 〈 〉 =S 〈 〉 = true]

Case 2(a). : d 6∈ cs

(〈 〉 J cs, c K 〈d.β〉) 6= ∅
⇔ c [definition of (〈 〉 J cs, c) K 〈d.β〉)]
⇔ ∃ a1, a2 • (〈 〉 �E cs) =S (〈d.β〉 �E cs) ∧ c [〈d.β〉 �E cs = 〈 〉]

Case 2(b). : d ∈ cs

(〈 〉 J cs, c K 〈d.β〉) 6= ∅
⇔ false [definition of (〈 〉 J cs, c) K 〈d.β〉)]
⇔ ∃ a1, a2 • (〈 〉 �E cs) =S (〈d.β〉 �E cs) ∧ c [〈d.β〉 �E cs = 〈d.β〉 and 〈 〉 =S 〈d.β〉 = false]

Case 3:. d1 ∈ cs, d2 6∈ cs

((〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2)) 6= ∅

⇔ ((〈d1.α〉a st1) J cs, c K st2) 6= ∅ [definition of (〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2)]

⇔ ∃ a1, a2 • ((〈d1.α〉a st1) �E cs) =S (st2 �E cs) ∧ c [induction hypothesis]

⇔ ∃ a1, a2 • ((〈d1.α〉a st1) �E cs) =S ((〈d2.β〉a st2) �E cs) ∧ c [((〈d2.β〉a st2) �E cs) = (st2 �E cs)]

Case 4:. d ∈ cs

((〈d.α〉a st1) J cs, c K (〈d.β〉a st2)) 6= ∅

⇔ (st1 J cs, (c ∧ α = β) K st2) 6= ∅ [definition of (〈d.α〉a st1) J cs, c K (〈d.β〉a st2)]

⇔ ∃ a1, a2 • (st1 �E cs) =S (st2 �E cs) ∧ c ∧ α = β [induction hypothesis]

⇔ ∃ a1, a2 • (〈d.α〉a (st1 �E cs)) =S (〈d.β〉a (st2 �E cs)) ∧ c [definition of =S]

⇔ ∃ a1, a2 • ((〈d.α〉a st1) �E cs) =S ((〈d.β〉a st2) �E cs) ∧ c [definition of �E]

Case 5:. d1 6= d2, d1 ∈ cs, d2 ∈ cs

((〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2)) 6= ∅

⇔ false [definition of (〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2)]

⇔ ∃ a1, a2 • ((〈d1.α〉a st1) �E cs) =S ((〈d2.β〉a st2) �E cs) ∧ c

[((〈d1.α〉a st1) �E cs) =S ((〈d2.α〉a st2) �E cs) is false]
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Case 6:. d1 6∈ cs, d2 6∈ cs

((〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2)) 6= ∅

⇔ ((〈d1.α〉a st1) J cs, c K st2) 6= ∅ ∨ (st1 J cs, c K (〈d2.β〉a st2)) 6= ∅

[definition of (〈d1.α〉a st1) J cs, c K (〈d2.β〉a st2)]

⇔ (∃ a1, a2 • ((〈d1.α〉a st1) �E cs) =S (st2 �E cs) ∧ c) ∨
(∃ a1, a2 • (st1 �E cs) =S ((〈d2.β〉a st2) �E cs) ∧ c)

[induction hypothesis]

⇔ ∃ a1, a2 • ((〈d1.α〉a st1) �E cs) =S ((〈d2.β〉a st2) �E cs) ∧ c

[(〈d1.α〉a st1) �E cs) = (st1 �E cs) and ((〈d2.β〉a st2) �E cs) = (st2 �E cs)]

2

With the next lemma, we establish that, if the projection of both traces st1 and st2 to synchronisation
channels is nonempty, then the projection of all synchronisation traces to these channels is nonempty.

Lemma 6.

∀ st, c1 • (st, c1) ∈ (st1 J cs, c2 K st2)⇒ st �C cs 6= 〈 〉st1 �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉

provided (st1 J cs, c2 K st2) 6= ∅.

Proof. By induction.

Case 1.

∀ st, c1 • (st, c1) ∈ (〈 〉 J cs, c2 K 〈 〉)⇒ st �C cs 6= 〈 〉
⇔ false [definitions of (〈 〉 J cs, c2 K 〈 〉) and �C]

⇔ 〈 〉 �C cs 6= 〈 〉 ∧ 〈 〉 �C cs 6= 〈 〉 [〈 〉 �C cs = 〈 〉]

Case 2. : d 6∈ cs

∀ st, c1 • (st, c1) ∈ (〈 〉 J cs, c2 K 〈d.β〉)⇒ st �C cs 6= 〈 〉
⇔ false [definition of (〈 〉 J cs, c2 K 〈d.β〉) and 〈d.β〉 �C cs = 〈 〉, if d 6∈ cs]

⇔ 〈 〉 �C cs 6= 〈 〉 ∧ 〈d.β〉 �C cs 6= 〈 〉 [〈 〉 �C cs = 〈 〉 (and 〈d.β〉 �C cs = 〈 〉)]

Case 3:. d1 ∈ cs, d2 6∈ cs

∀ st, c1 • (st, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2))⇒ st �C cs 6= 〈 〉

⇔ ∀ st, c1 • (st, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K st2)⇒ (〈d2.β〉a st) �C cs 6= 〈 〉

[definition of (〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2)]

⇔ ∀ st, c1 • (st, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K st2)⇒ st �C cs 6= 〈 〉 [definition of �C]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉 [induction hypothesis]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d2.α〉a st2) �C cs 6= 〈 〉 [definition of �C]
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Case 4:. d ∈ cs

∀ st, c1 • (st, c1) ∈ ((〈d.α〉a st1) J cs, c2 K (〈d.β〉a st2))⇒ st �C cs 6= 〈 〉

⇔ ∀ st, c1 • (st, c1) ∈ (st1 J cs, (c2 ∧ α = β) K st2)⇒ (〈d.β〉a st) �C cs 6= 〈 〉

[definition of (〈d.α〉a st1) J cs, c2 K (〈d.β〉a st2)]

⇔ true [(〈d.β〉a st) �C cs 6= 〈 〉 by definition of �C]

⇔ (〈d.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d.β〉a st2) �C cs 6= 〈 〉 [definition of �C]

Case 5:. d1 6∈ cs, d2 6∈ cs

∀ st, c1 • (st, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2))⇒ st �C cs 6= 〈 〉

⇔ (∀ st, c1 • (st, c1) ∈ ((〈d1.α〉a st1) J cs, c2 K st2)⇒ (〈d2.β〉a st) �C cs 6= 〈 〉) ∧
(∀ st, c1 • (st, c1) ∈ (st1 J cs, c2 K (〈d2.β〉a st2))⇒ (〈d1.α〉a st) �C cs 6= 〈 〉)

[definition of ((〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2))]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉 ∧
st1 �C cs 6= 〈 〉 ∧ (〈d2.β〉a st2) �C cs 6= 〈 〉

[induction hypothesis]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d2.β〉a st2) �C cs 6= 〈 〉 [definition of �C]

2

The following lemmas lift to the synchronisation operator for constrained symbolic traces results similar to
some previously established for the operator for symbolic traces.

Lemma 7.

∀ cst • cst ∈ N a L cst1 J cs K cst2 M⇒ cst �C cs 6= 〈 〉 ⇔ cst1 �C cs 6= 〈 〉 ∧ cst2 �C cs 6= 〈 〉

where αst1 ≤ a1 and αst2 ≤ a2, and provided N a L cst1 J cs K cst2 M 6= ∅.

Proof.

∀ cst • cst ∈ N a L (st1, c) J cs K (st2, c) M⇒ cst �C cs 6= 〈 〉

⇔ ∀ st, c • (st, c) ∈ ((st1, c1) J cs K (st2, c2))⇒ (st, c) �C cs 6= 〈 〉 [definition of N ]

⇔ ∀ st, c • (st, c) ∈ (st1 J cs, (c1 ∧ c2) K st2)⇒ (st, c) �C cs 6= 〈 〉
[definition of synchronising operator]

⇔ ∀ st, c • (st, c) ∈ (st1 J cs, (c1 ∧ c2) K st2)⇒ st �C cs 6= 〈 〉
[definition of �C for constrained symbolic traces]

⇔ st1 �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉 [Lemma 6 and proviso]

⇔ (st1, c1) �C cs 6= 〈 〉 ∧ (st2, c2) �C cs 6= 〈 〉 [definition of �C for constrained symbolic traces]

2

Lemma 8.

∃ cst • cst ∈ N a L cst1 J cs K cst2 M ∧ cst �C cs 6= 〈 〉
⇒
cst1 �C cs 6= 〈 〉 ∧ cst2 �C cs 6= 〈 〉 ∧ satisfiablecs(cst1, cst2)
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Proof.

∃ cst • cst ∈ N a L (st1, c1) J cs K (st2, c2) M ∧ cst �C cs 6= 〈 〉

⇔ ∃ st, c • (st, c) ∈ ((st1, c1) J cs K (st2, c2)) ∧ (st, c) �C cs 6= 〈 〉 [definition of N ]

⇔ ∃ st, c • (st, c) ∈ (st1 J cs, (c1 ∧ c2) K st2) ∧ (st, c) �C cs 6= 〈 〉 [definition of synchronisation operator]

⇔ ∃ st, c • (st, c) ∈ (st1 J cs, (c1 ∧ c2) K st2) ∧ st �C cs 6= 〈 〉
[definition of �C for constrained symbolic traces]

⇒ st1 �C cs 6= 〈 〉 ∧ st2 �C cs ∧ satisfiablecs((st1, c1), (st2, c2)) [Lemma 11]

⇔ (st1, c1) �C cs 6= 〈 〉 ∧ (st2, c2) �C cs ∧ satisfiablecs((st1, c1), (st2, c2))

[definition of �C for constrained symbolic traces]

2

The lemma below establishes that the traces built from the (local) traces of P1 and P2, are all those of the
parallelism between P1 and P2.

Lemma 9. For every pair of disjoint alphabets a1 and a2

cstracesa(P1 J cs K P2) =
⋃
{ cst1 : cstracesa1(P1); cst2 : cstracesa2(P2) • N a L cst1 J cs K cst2 M }

Proof. In giving the semantics of P1 J cs K P2, we observe that we can assume, without loss of generality,
that

P1 = begin state [x1 : T1] • A1 end and P2 = begin state [x2 : T2] • A2 end

with x1 ∩ x2 = ∅, where x1 and x2 are the lists of state components of P1 and P2, and for simplicity, we
sometimes use x1 and x2 as sets of variable names.

cstracesa(P1 J cs K P2)

= cstracesa(begin state [x1 : T1; x2 : T2] • A1 J x1 | cs | x2 K A2end) [semantics of process parallelism]

= cstracesa(w1 ∈ T1 ∧ w2 ∈ T2, x1, x2 := w1, w2, A1 ‖ A2)
[definition of cstraces for processes and abbreviation ‖ for Jx1 | cs | x2K]

= { st, c2, s2, A3 | αst ≤ a ∧
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1 ‖ A2)

st
=⇒ (c2 | s2 |= A3)

• R(st, c2)}

[definition of cstraces for actions]

= { st, c2 | αst ≤ a ∧
∃ st1, c′1, s′1, A′1, st2, c′2, s′2, A′2, b •

(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st1=⇒ (c1

′ | s′1 |= A′1) ∧
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A2)

st2=⇒ (c2
′ | s′2 |= A′2) ∧

αc1
′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧ αst ≤ b ∧

R(st, c2) ∈ N b LR L st1 J cs, (c1′ ∧ c2
′) K st2 M M

• R(st, c2)}

[Proposition 6]

= { st, c2 | ∃ st1, c′1, s′1, A′1, st2, c′2, s′2, A′2 •
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st1=⇒ (c1
′ | s′1 |= A′1) ∧

(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A2)
st2=⇒ (c2

′ | s′2 |= A′2) ∧
αc1

′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2
R(st, c2) ∈ N a LR L st1 J cs, (c1′ ∧ c2

′) K st2 M M
• R(st, c2)}

[Lemma 13 and αst ≤ a by definition of N a and R]
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= { st, c2 | ∃ st1, c′1, s′1, A′1, st2, c′2, s′2, A′2 •
(w1 ∈ T1 ∧ w2 ∈ T2 | x1 := w1 |= A1)

st1=⇒ (c1
′ | s′1 |= A′1) ∧

(w1 ∈ T1 ∧ w2 ∈ T2 | x2 := w2 |= A2)
st2=⇒ (c2

′ | s′2 |= A′2) ∧
αc1

′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧
R(st, c2) ∈ N a LR L st1 J cs, (c1′ ∧ c2

′) K st2 M M
• R(st, c2)}

[Proposition 1]

= { st, c2 | ∃ st1, c′1, s′1, A′1, st2, c′2, s′2, A′2 •
(w1 ∈ T1 | x1 := w1 |= A1)

st1=⇒ (c1
′ | s′1 |= A′1) ∧

(w2 ∈ T2 | x2 := w2 |= A2)
st2=⇒ (c2

′ | s′2 |= A′2) ∧
αc1

′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧
R(st, c2) ∈ N a LR L st1 J cs, (c1′ ∧ c2

′) K st2 M M
• R(st, c2)}

[Proposition 2]

= { st, c2 | ∃ st1, c′1, st2, c′2, b1, b2 •
R(st1, c

′
1) ∈ cstracesb1(w1 ∈ T1, x1 := w1, A1) ∧

R(st2, c
′
2) ∈ cstracesb2(w1 ∈ T1, x2 := w2, A2) ∧

αc1
′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧

R(st, c2) ∈ N a LR L st1 J cs, (c1′ ∧ c2
′) K st2 M M

• R(st, c2)}

[definition of cstraces]

= { st, c2 | ∃ st1, c′1, st2, c′2, b1, b2 •
R(st1, c

′
1) ∈ cstracesb1(w1 ∈ T1, x1 := w1, A1) ∧

R(st2, c
′
2) ∈ cstracesb2(w1 ∈ T1, x2 := w2, A2) ∧

αc1
′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧

R(st, c2) ∈ N a LR L st1 J cs, (∃ x • c1′ ∧ c2
′) K st2 M M

• R(st, c2)}

[Lemma 4, with x = α(c′1, c
′
2) \ α(st1, st2)]

= { st, c2 | ∃ st1, c′1, st2, c′2, b1, b2 •
R(st1, c

′
1) ∈ cstracesb1(w1 ∈ T1, x1 := w1, A1) ∧

R(st2, c
′
2) ∈ cstracesb2(w1 ∈ T1, x2 := w2, A2) ∧

αc1
′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧

R(st, c2) ∈ N a LR L st1 J cs, ((∃ x1 • c′1) ∧ (∃ x2 • c′2)) K st2 M M
• R(st, c2)}

[αc′1 ∩ αc′2 = ∅, with x1 = αc′1 \ αst1 and x2 = αc′2 \ αst2]

= { st, c2 | ∃ st1, c′1, st2, c′2, b1, b2 •
R(st1, c

′
1) ∈ cstracesb1(w1 ∈ T1, x1 := w1, A1) ∧

R(st2, c
′
2) ∈ cstracesb2(w1 ∈ T1, x2 := w2, A2) ∧

αc1
′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧

R(st, c2) ∈ N a L (st1,∃ x1 • c′1) J cs K (st2,∃ x2 • c′2) M
• R(st, c2)}

[definition of synchronisation operator]

= { st, c2 | ∃ st1, c′1, st2, c′2, b1, b2 •
R(st1, c

′
1) ∈ cstracesb1(w1 ∈ T1, x1 := w1, A1) ∧

R(st2, c
′
2) ∈ cstracesb2(w1 ∈ T1, x2 := w2, A2) ∧

αc1
′ ∩ αc2′ = ∅ ∧ αst1 ⊆ αc′1 ∧ αst2 ⊆ αc′2 ∧

R(st, c2) ∈ N a LR(st1, c
′
1) J cs KR(st2, c

′
2) M

• R(st, c2)}

[definition of R]

= { st, c2 | ∃ b1, b2 •
∃ cst1 : cstracesb1(w1 ∈ T1, x1 := w1, A1); cst2 : cstracesb2(w1 ∈ T1, x2 := w2, A2) •

disjoint(b1, b2) ∧ R(st, c2) ∈ N a L cst1 J cs K cst2 M
• R(st, c2)}

[predicate calculus and property of cstraces]
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=
⋃
{ b1, b2, cst1 : cstracesb1(w1 ∈ T1, x1 := w1, A1); cst2 : cstracesb2(w1 ∈ T1, x2 := w2, A2) |

disjoint(b1, b2)
• N a L cst1 J cs K cst2 M}

[property of sets and relational image]

=
⋃
{ cst1 : cstracesb1(w1 ∈ T1, x1 := w1, A1); cst2 : cstracesb2(w1 ∈ T1, x2 := w2, A2)

• N a L cst1 J cs K cst2 M}
[Lemma 12 and assumption: disjoint(b1, b2)]

2

Appendix C.2. Properties of satisfiability

Satisfiability, as captured by satisfiablecs((st1, c1), (st2, c2)), does not ensure that there is an actual
synchronisation arising from the traces st1 and (st2, since their projections (st1 �E cs) and (st2 �E cs) might
be empty. It does ensure, however, that the set of traces defined by the synchronisation operator is not
empty. This is established by the Lemma 10 proved below.

Lemma 10.

(st1 J cs, (c1 ∧ c2) K st2) 6= ∅⇔ satisfiablecs((st1, c1), (st2, c2))

Proof.

(st1 J cs, (c1 ∧ c2) K st2) 6= ∅
⇔ ∃ a1, a2 • (st1 �E cs) =S (st2 �E cs) ∧ c1 ∧ c2 [Lemma 5, with αst1 ≤ a1 and αst2 ≤ a2]

⇔ satisfiablecs((st1, c1), (st2, c2)) [definition of satisfiable]

2

This relationship between the notion of satisfiability and the existence of synchronisation traces reassures
us of the adequacy of the definition of satisfiability.

The following lemma identifies a stronger condition that holds when the set of synchronisation traces
not only is not empty, but also contains at least one trace with at least one synchronisation.

Lemma 11.

∃ st, c • (st, c) ∈ (st1 J cs, (c1 ∧ c2) K st2) ∧ st �C cs 6= 〈 〉
⇒
st1 �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉 ∧ satisfiablecs((st1, c1), (st2, c2))

Proof. By induction.

Case 1.

∃ st, c • (st, c) ∈ (〈 〉 J cs, (c1 ∧ c2) K 〈 〉) ∧ st �C cs 6= 〈 〉
⇔ false [definitions of (〈 〉 J cs, c2 K 〈 〉) and �C]

⇔ 〈 〉 �C cs 6= 〈 〉 ∧ 〈 〉 �C cs 6= 〈 〉 ∧ satisfiablecs((〈 〉, c1), (〈 〉, c2)) [〈 〉 �C cs = 〈 〉]

Case 2. : d 6∈ cs

∃ st, c • (st, c) ∈ (〈 〉 J cs, (c1 ∧ c2) K 〈d.β〉) ∧ st �C cs 6= 〈 〉

⇔ false [definition of (〈 〉 J cs, c2 K 〈d.β〉) and 〈d.β〉 �C cs = 〈 〉, if d 6∈ cs]

⇔ 〈 〉 �C cs 6= 〈 〉 ∧ 〈d.β〉 �C cs 6= 〈 〉 ∧ satisfiablecs((〈 〉, c1), (〈d.β〉, c2)) [〈 〉 �C cs = 〈 〉 (and 〈d.β〉 �C cs = 〈 〉)]
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Case 3:. d1 ∈ cs, d2 6∈ cs

(∃ st, c • (st, c) ∈ ((〈d1.α〉a st1) J cs, (c1 ∧ c2) K (〈d2.β〉a st2)) ∧ st �C cs 6= 〈 〉)

⇔ (∃ st, c • (st, c) ∈ ((〈d1.α〉a st1) J cs, (c1 ∧ c2) K st2) ∧ (〈d2.β〉a st) �C cs 6= 〈 〉)

[definition of (〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2)]

⇔ ∃ st, c • (st, c) ∈ ((〈d1.α〉a st1) J cs, (c1 ∧ c2) K st2) ∧ st �C cs 6= 〈 〉 [definition of �C]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉 ∧ satisfiablecs((〈d1.α〉a st1, c1), (st2, c2))

[induction hypothesis]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d2.α〉a st2) �C cs 6= 〈 〉 ∧ satisfiablecs((〈d1.α〉a st1, c1), (st2, c2))

[definition of �C]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d2.α〉a st2) �C cs 6= 〈 〉 ∧
satisfiablecs((〈d1.α〉a st1, c1), (〈d2.α〉a st2, c2))

[definitions of satisfiable and �E]

Case 4:. d ∈ cs

∃ st, c • (st, c) ∈ ((〈d.α〉a st1) J cs, (c1 ∧ c2) K (〈d.β〉a st2)) ∧ st �C cs 6= 〈 〉

⇔ (∃ st, c1 • (st, c) ∈ (st1 J cs, (c1 ∧ c2 ∧ α = β) K st2) ∧ (〈d.β〉a st) �C cs 6= 〈 〉)

[definition of (〈d.α〉a st1) J cs, c2 K (〈d.β〉a st2)]

⇔ ∃ st, c1 • (st, c) ∈ (st1 J cs, (c1 ∧ c2 ∧ α = β) K st2) [(〈d.β〉a st) �C cs 6= 〈 〉 by definition of �C]

⇔ ∃ a1, a2 • (st1 �E cs) =S (st2 �E cs) ∧ c1 ∧ c2 ∧ α = β [Lemma 5, with αst1 ≤ a1 and αst2 ≤ a2]

⇔ ∃ a1, a2 • ((〈d.α〉a st1) �E cs) =S ((〈d.β〉a st2) �E cs) ∧ c1 ∧ c2 [definitions of �E and =S]

⇔ satisfiablecs((〈d.α〉a st1, c1), (〈d.β〉a st2, c2)) [definition of satisfiable]

⇔ (〈d.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d.β〉a st2) �C cs 6= 〈 〉 ∧ satisfiablecs((〈d.α〉a st1, c1), (〈d.β〉a st2, c2))

[definition of �C]

Case 5:. d1 6= d2, d1 ∈ cs, d2 ∈ cs

(∃ st, c • (st, c) ∈ ((〈d1.α〉a st1) J cs, (c1 ∧ c2) K (〈d2.β〉a st2)) ∧ st �C cs 6= 〈 〉)

⇔ false [(〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2) = ∅]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d2.β〉a st2) �C cs 6= 〈 〉 ∧
satisfiablecs((〈d1.α〉a st1, c1), (〈d2.β〉a st2, c2))

[definition of satisfiable and (〈d1.α〉a st1 �E cs) =S (〈d2.β〉a st2 �E cs) is false]
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Case 6:. d1 6∈ cs, d2 6∈ cs

(∃ st, c • (st, c) ∈ ((〈d1.α〉a st1) J cs, (c1 ∧ c2) K (〈d2.β〉a st2)) ∧ st �C cs 6= 〈 〉)

⇔ (∃ st, c • (st, c1) ∈ ((〈d1.α〉a st1) J cs, (c1 ∧ c2) K st2) ∧ (〈d2.β〉a st) �C cs 6= 〈 〉)
∨
(∃ st, c • (st, c) ∈ (st1 J cs, (c1 ∧ c2) K (〈d2.β〉a st2)) ∧ (〈d1.α〉a st) �C cs 6= 〈 〉)

[definition of ((〈d1.α〉a st1) J cs, c2 K (〈d2.β〉a st2))]

⇔ ((〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ st2 �C cs 6= 〈 〉 ∧ satisfiablecs((〈d1.α〉a st1, c1), (st2, c2))) ∨
(st1 �C cs 6= 〈 〉 ∧ (〈d2.β〉a st2) �C cs 6= 〈 〉 ∧ satisfiablecs((st1, c1), (〈d2.β〉a st2, c2)))

[induction hypothesis]

⇔ (〈d1.α〉a st1) �C cs 6= 〈 〉 ∧ (〈d2.β〉a st2) �C cs 6= 〈 〉 ∧
satisfiablecs((〈d1.α〉a st1, c1), (〈d2.β〉a st2, c2))

[(〈d2.β〉a st2) �C cs = st2 �C cs and (〈d2.β〉a st2) �E cs = st2 �E cs, and]

[(〈d1.α〉a st1) �C cs = st1 �C cs and (〈d1.α〉a st1) �E cs = st1 �E cs]

2

The reverse implication is a direct consequence of Lemmas 10 and 6.

Appendix C.3. Properties of normalisation

When applied to equivalent constrained symbolic traces, N makes them syntactically equal.

Lemma 12.

cst1 ≡ cst2 ⇒ N a(cst1) = N a(cst2)

Proof. Direct from the definition of N and equivalence of constrained symbolic traces: (st1, c1) ≡ (st2, c2)
if and only if st1�C = st1�C and c1[αst2/αst2] = c2. The projection operation st�C keeps just the channels
of the trace st. 2

The following lemma gives a property of alphabets and N .

Lemma 13. For every a1 and a2 such that αst ≤ a1 and αst ≤ a2,

(st, c) = N a1(cst)⇔ (st, c) = N a2(cst)

Proof.

(st, c) = N a1(st1, c1)

⇔ (st = st1[a1/αst]) ∧ (c = c1[a1/αst]) [definition of N a1 ]

⇔ (st = st1[a2/αst]) ∧ (c = c1[a2/αst]) [αst ≤ a1 and αst ≤ a2 imply (a1 �# st) ≤ a2]

⇔ (st, c) = N a2(st1, c1) [definition of N a2 ]

We use (a �# n) to refer to the first n elements of the alphabet a, and # st for the size of a trace st. 2

Appendix D. Proofs of theorems

Theorem 2.

Scstraces
a,(a1,a2)
cs (P1, P2) = { cst : cstracesa(P1 J cs K P2) | cst �C cs 6= 〈 〉 }
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Proof.

Scstraces
a,(a1,a2)
cs (P1, P2)

=
⋃
{ p : ScstraceP

(a1,a2)
cs (P1, P2) • N a L p.1 J cs K p.2 M } [definition of Scstraces]

=
⋃
{ cst1 : cstracesa1(P1); cst2 : cstracesa2(P2) |

(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2)
• N a L cst1 J cs K cst2 M }

[definition of ScstraceP ]

= { cst1 : cstracesa1(P1); cst2 : cstracesa2(P2); cst : N a L cst1 J cs K cst2 M |
(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2)

• cst }

[property of sets]

= { cst1 : cstracesa1(P1); cst2 : cstracesa2(P2); cst : N a L cst1 J cs K cst2 M |
(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2) ∧ (cst �C cs) 6= 〈 〉

• cst }

[Lemmas 10 and 7]

= { cst1 : cstracesa1(P1); cst2 : cstracesa2(P2); cst : N a L cst1 J cs K cst2 M | (cst �C cs) 6= 〈 〉
• cst }

[Lemma 8]

= { cst :
⋃
{ cst1 : cstracesa1(P1); cst2 : cstracesa2(P2) • N a L cst1 J cs K cst2 M } |

(cst �C cs) 6= 〈 〉 }
[property of sets]

= { cst : cstracesa(P1 J cs K P2) | cst �C cs 6= 〈 〉 } [Lemma 9]

2

Theorem 3.

Scstracesacs(Scstracesa12cs (cstracesa1(P1), cstraces
a2(P2)), cstraces

a3(P3))
=
Scstracesacs(cstraces

a12(P1 J cs K P2), cstracesa3(P3))

Proof.

Scstracesacs(Scstracesa12cs (cstracesa1(P1), cstraces
a2(P2)), cstraces

a3(P3))

= Scstracesacs(Scstraces
a12,(a1,a2)
cs (P1, P2), cstraces

a3(P3)) [definition of Scstraces]

= Scstracesacs({ cst : cstracesa12(P1 J cs K P2) | cst �C cs 6= 〈 〉 }, cstracesa3(P3)) [Theorem 2]

=
⋃
{ p : ScstracePcs( { cst : cstracesa12(P1 J cs K P2) | cst �C cs 6= 〈 〉 }, cstracesa3(P3)) •

N a L p.1 J cs K p.2 M }
[definition of Scstraces]

=
⋃
{ p : { cst1 : { cst : cstracesa12(P1 J cs K P2) | cst �C cs 6= 〈 〉 }; cst2 : cstracesa3(P3)) |

(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2) } •
N a L p.1 J cs K p.2 M }

[definition of ScstraceP ]

=
⋃
{ cst1 : { cst : cstracesa12(P1 J cs K P2) | cst �C cs 6= 〈 〉 }; cst2 : cstracesa3(P3)) |

(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2) •
N a L cst1 J cs K cst2 M }

[property of sets]
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=
⋃
{ cst1 : cstracesa12(P1 J cs K P2); cst2 : cstracesa3(P3)) |

(cst1 �C cs) 6= 〈 〉 ∧ (cst2 �C cs) 6= 〈 〉 ∧ satisfiablecs(cst1, cst2) •
N a L cst1 J cs K cst2 M }

[property of sets]

=
⋃
{ p : ScstraceP

(a12,a3)
cs (P1 J cs K P2, P3) | N a L p.1 J cs K p.2 M } [definition of ScstraceP ]

= Scstraces
(a12,a3)
cs (P1 J cs K P2, P3) [definition of Scstraces]

= Scstracesacs(cstraces
a12(P1 J cs K P2), cstracesa3(P3)) [definition of Scstraces]

2

Theorem 4.

selectS a(P) ⊆ cstracesa(P)

Proof. By induction.

Case: basic process. Trivial, because selectS (P) = ∅.

Case: parallelism. Direct consequence of Theorem 2.

Case: choices. We can assume, without loss of generality, that

P1 = begin state [x1 : T1] • A1 end and P2 = begin state [x2 : T2] • A2 end

with x1 ∩ x2 = ∅, where x1 and x2 are the lists of state components of P1 and P2, and for simplicity, we
sometimes use x1 and x2 as sets of variable names.

selectS a(P1 @ P2)

= selectS a(P1) ∪ selectS a(P2) [definition of selectS ]

⊆ cstracesa(P1) ∪ cstracesa(P2) [induction hypothesis]

= cstracesa(w1 ∈ T1, x1 := w1, A1) ∪ cstracesa(w2 ∈ T2, x2 := w2, A2) [definition of cstraces]

= cstracesa(w1 ∈ T1 ∧ w2 ∈ T2, (x1, x2 := w1, w2), A1) ∪ cstracesa(w1 ∈ T1 ∧ w2 ∈ T2, (x1, x2 := w1, w2), A2)

[definition of cstraces, and Propositions 1 and 2]

= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st

=⇒ (c3 | s3 |= A3) • R(st, c2) }
∪
{ st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A2)

st
=⇒ (c3 | s3 |= A3) • R(st, c3) }

[definition of cstraces]

= { st, c3, s3, A3 |
αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st
=⇒ (c3 | s3 |= A3) ∨

αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A2)
st

=⇒ (c3 | s3 |= A3)
• R(st, c3) }

[property of sets]

= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1 @ A2)
st

=⇒ (c3 | s3 |= A3)
• R(st, c3) }

[Proposition 4]

= cstracesa(w1 ∈ T1 ∧ w2 ∈ T2, (x1, x2 := w1, w2), A1 @ A2) [definition of cstraces]

= cstracesa(P1 @ P2) [definition of process external choice and cstraces]

The proof is similar for internal choice.
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Case: sequence. We can assume, without loss of generality, that

P1 = begin state [x1 : T1] • A1 end and P2 = begin state [x2 : T2] • A2 end

with x1 ∩ x2 = ∅, where x1 and x2 are the lists of state components of P1 and P2, and for simplicity, we
sometimes use x1 and x2 as sets of variable names.

selectS a(P1 ; P2)

= selectS a(P1) ∪N a L tcstracesa1(P1) ccat selectS a2(P2) M [definition of selectS ]

⊆ cstracesa(P1) ∪N a L tcstracesa1(P1) ccat cstracesa2(P2) M [induction hypothesis]

= cstracesa(w1 ∈ T1, x1 := w1, A1) ∪
N a L tcstracesa1(w1 ∈ T1, x1 := w1, A1) ccat cstracesa2(w2 ∈ T2, x2 := w2, A2) M

[definitions of cstraces and tcstraces]

= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 | x1 := w1 |= A1)
st

=⇒ (c3 | s3 |= A3) • R(st, c3) } ∪
{ st1, c2, s2, st2, c3, s3, A3 |

αst1 ≤ a1 ∧ (w1 ∈ T1 | x1 := w1 |= A1)
st1=⇒ (c2 | s2 |= Skip) ∧

αst2 ≤ a2 ∧ (w2 ∈ T2 | x2 := w2 |= A2)
st2=⇒ (c3 | s3 |= A3)

• N a(R(st1 a st2, c2 ∧ c3)) }
[relational image, and definitions of ccat, cstraces, and tcstraces]

= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st

=⇒ (c3 | s3 |= A3) • R(st, c3) } ∪
{ st1, c2, s2, st2, c3, s3, A3 |

αst1 ≤ a1 ∧
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st1=⇒ (c2 ∧ w2 ∈ T2 | s2; x2 := w2 |= Skip) ∧
αst2 ≤ a2 ∧ (c2 ∧ w2 ∈ T2 | s2; x2 := w2 |= A2)

st2=⇒ (c3 | s3 |= A3)

• N a(R(st1 a st2, c2 ∧ c3)) }
[Propositions 1 and 2, w2 6= w1, x2 6∈ FV (A1)]

[by construction: w2 6∈ SV (s2, s3), w2 ∩ α(st, st1, st2) = ∅]

[by construction: FV (c2) ∩ ({w2} ∪ SV (s3)) = ∅, FV (c2) ∩ αst2 = ∅]

[FV (s2) ∩ FV (A2) = ∅, since FV (s2) ⊆ FV (s1, A1)]

= { st , c3, s3,A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st

=⇒ (c3 | s3 |= A3) • R(st, c3) }
∪
{ st1, c2, s2, st2, c3, s3, A3 |

αst1 ≤ a1 ∧
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st1=⇒ (c2 ∧ w2 ∈ T2 | s2; x2 := w2 |= Skip) ∧
αst2 ≤ a2 ∧ (c2 ∧ w2 ∈ T2 | s2; x2 := w2 |= A2)

st2=⇒ (c2 ∧ w2 ∈ T2 ∧ c3 | s3 |= A3)

• N a(R(st1 a st2, c2 ∧ w2 ∈ T2 ∧ c3)) }
[Proposition 3]

= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st

=⇒ (c3 | s3 |= A3) • R(st, c3) }
∪
{ st, st1, c2, s2, st2, c3, s3, A3 |

st = st1
a st2 ∧ αst1 ≤ a1 ∧ αst2 ≤ a2 ∧

(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st1=⇒ (c2 | s2 |= Skip) ∧

(c2 | s2 |= A2)
st2=⇒ (c3 | s3 |= A3)

• N a(R(st, c3)) }
[property of sets and Proposition 3]
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= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st

=⇒ (c3 | s3 |= A3)
• N a(R(st, c3)) } ∪

{ st, st1, c2, s2, st2, c3, s3, A3 |
st = st1

a st2 ∧ αst1 ≤ a1 ∧ αst2 ≤ a2 ∧
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st1=⇒ (c2 | s2 |= Skip) ∧
(c2 | s2 |= A2)

st2=⇒ (c3 | s3 |= A3)
• N a(R(st, c3)) }

[N a(R(st, c3)) = R(st, c3) because αst ≤ a]

= { st, c3, s3, A3, st1, c2, s2, st2 |
(αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st
=⇒ (c3 | s3 |= A3))

∨ st = st1
a st2 ∧ αst1 ≤ a1 ∧ αst2 ≤ a2 ∧

(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st1=⇒ (c2 | s2 |= Skip) ∧

(c2 | s2 |= A2)
st2=⇒ (c3 | s3 |= A3)


• N a(R(st, c3)) }

[property of sets]

= { st, c3, s3, A3, st1, c2, s2, st2 | αst ≤ a ∧
(w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)

st
=⇒ (c3 | s3 |= A3)

∨(
st = st1

a st2 ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1)
st1=⇒ (c2 | s2 |= Skip) ∧

(c2 | s2 |= A2)
st2=⇒ (c3 | s3 |= A3)

)


• R(st, c3) }
[property of alphabets and N a(cst) = cst provided αcst = a]

= { st, c3, s3, A3 | αst ≤ a ∧ (w1 ∈ T1 ∧ w2 ∈ T2 | x1, x2 := w1, w2 |= A1 ; A2)
st

=⇒ (c3 | s3 |= A3)
• R(st, c3) }

[Proposition 5]

= cstracesa(w1 ∈ T1 ∧ w2 ∈ T2, (x1, x2 := w1, w2), A1 ; A2) [definition of cstraces]

= cstracesa(P1; P2) [definition of process sequence and cstraces]

Case: hiding. We can assume, without loss of generality, that

P = begin state [x : T] • A end

selectS a(P1 \ cs)

= N a L LselectS a(P) M �Ccs M [definition of selectS ]

⊆ N a L Lcstracesa(P) M �Ccs M [induction hypothesis]

= N a L Lcstracesa(w ∈ T, x := w, A) M �Ccs M [definition of cstraces]

= {cst : cstracesa(w ∈ T, x := w, A) • N a(cst �C cs) } [relational image]

= { st, c2, s2, A2 | αst ≤ a ∧ (w ∈ T | x := w |= A)
st

=⇒ (c2 | s2 |= A2) • N a(R(st, c2) �C cs) }
[definition of cstracesa]

= { st, c3, s3, A3 | αst ≤ a ∧ (w ∈ T | x := w |= A \ cs)
st

=⇒ (c3 | s3 |= A3) • R(st, c3) } [Proposition 7]

= cstracesa(P1 \ cs) [definition of cstracesa]

2
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