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Practically Self-Stabilizing Paxos Replicated State-Machine
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Abstract. We present the first (practically) self-stabilizing replicated state machine for asynchronous message
passing systems. The scheme is based on a variant of the Paxos algorithm and ensures that starting from an
arbitrary configuration, the replicated state-machine eventually exhibits the desired behaviour for a long enough
execution regarding all practical considerations.

1 Introduction

To provide a highly reliable system, a common approach is to replicate a state-machine over many servers (replicas).
From the system’s client point of view, the replicas implement a unique state-machine which acts in a sequential
manner. This problem is related to the Consensus problem. Indeed, if all the replicas initially share the same state
and if they execute the same requests in the same order, then the system is coherent from the client’s point of view.
In other words, we can picture the system as a sequence of Consensus instances that decide on the request to execute
at each step. In an asynchronous message-passing system prone to crash failures, solving a single consensus instance
has been proven impossible [10]. This hinders the possibility of a state-machine replication protocol.

Lamport, however, has provided an algorithmic scheme, namely Paxos [14,15], that partially satisfies the re-
quirements of state-machine replication in the following sense. The safety property (two processes cannot decide to
execute different requests for the same step) is always guaranteed. On the other hand, the liveness property (every
non-crashed process eventually decides) requires additional assumptions, usually any means to elect a unique leader
for a long enough period of time. Note that the original formulation [15] presented Paxos as a (partial) solution to
the Consensus problem, but its actual purpose is to implement a replicated state-machine. Since then, many improve-
ments have been proposed, e.g., Fast Paxos [17], Generalized Paxos [16], Byzantine Paxos [18], and the study of
Paxos has become a subject of research on its own. The extreme usefulness of such an approach is proven daily by
the usage of this technique by the very leading companies [5].

Unfortunately, none of these approaches deal with the issue of transient faults. A transient fault may put the
system in a completely arbitrary configuration. In the context of replicated state-machine, the consequences (among
many other unanticipated scenarios) may be the following: (a) the states of the replica are incoherent, (b) the replicas
never execute the same requests in the same order, (c) the replicas are blocked even if the usual liveness conditions
(e.g., unique leader) are satisfied. The issues (a) and (b) hinder the linearizability of the state-machine, whereas the
issue (c) hinders the liveness of the state-machine.

A self-stabilizing system is able to recover from any transient fault after a finite period of time. In other words,
after any transient fault, a self-stabilizing system ensures that eventually the replicas have coherent states, execute
the same requests in the same order and progress is achieved when the liveness conditions are satisfied.

Nevertheless, completing this goal is rather difficult. One of the main ingredients of any Paxos-based replicated
state-machine algorithm is its ability to distinguish old and new messages. At a very abstract level, one uses natural
numbers to timestamp data, i.e., each processor is assumed to have an infinite memory. At a more concrete level, the
processes have a finite memory, and the simplest timestamp structure is given by a natural number bounded by some
constant 2b (b-bits counter). Roughly speaking, this implies that the classic Paxos-based replicated state-machine
approach is able to distinguish messages in a window of size 2b.
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This constant is so large that it is sufficient for any practical purposes, as long as transient faults are not considered.
For example, if a 64-bits counter is initialized to 0, incrementing the counter every nanosecond will last about 500
years before the maximum value is reached; this is far greater than any concrete system’s timescale. But, a transient
fault may corrupt the timestamps (e.g., counters set to the maximum value) and, thus, lead to replicas executing
requests in different order or being permanently blocked although the usual liveness related conditions (e.g., unique
leader) are satisfied.

This remark leads to a realistic form of self-stabilizing systems, namely practically self-stabilizing systems.
Roughly speaking, after any transient fault, a practically self-stabilizing system is ensured to reach a finite segment
of execution during which its behavior is correct, this segment being “long enough” relatively to some predefined
timescale. We give details in Sec. 2.

In this paper, we provide a new bounded timestamp architecture and describe the core of a practically self-
stabilizing replicated state-machine, in an asynchronous message passing communication environment prone to crash
failures.

Related work. If a process undergoes a transient fault, then one can model the process behaviour as a Byzantine
behaviour. In [4], Castro and Liskov present a concrete1 replicated state-machine algorithm that copes with Byzantine
failures. Lamport presents in [18] a Byzantine tolerant variant of Paxos which has some connections with Castro and
Liskov’s solution. Note, however, that in both cases, the number of Byzantine processes must be less than one third
of the total number of processes. This is related to the impossibility of a Byzantine tolerant solution to Consensus
where more than one third of the system are Byzantine. The approach of self-stabilization is comprehensive, rather
than addressing specific fault scenarios (risking to miss a scenario), and thus is somehow orthogonal to Byzantine
fault tolerance. The issue of bounded timestamp system has been studied in [6] and [12], but these works do not deal
with self-stabilization. The first work, as far as we know, on a self-stabilizing timestamp system is presented in [1], but
it assumes communications based on a shared memory. In [2] and [9], the authors present the notion of practically
stabilizing algorithm and provide an implementation of practically self-stabilizing replicated state machine using
shared memory, and the message passing implementation of a practically self-stabilizing single-write multi-reader
atomic register. Doing so, they introduce a self-stabilizing timestamp system. However, their approach assumes that
a single processor (the writer) is responsible for incrementing timestamps and stabilization is conditional on such
write executions. Our timestamp system is a generalization which allows many processors to increment timestamps.
A first formulation of the present work has been given in [3].

The paper starts with a background and description of techniques and correctness in a nutshell. Then we turn to
a more formal and detailed description.

2 Overview

In this section, we define the Replicated State-Machine (RSM) problem and give an overview of the Paxos algo-
rithm. In addition, we give arguments for the need of a self-stabilizing algorithm that would solve the Replicated
State-Machine Problem. Doing so, we investigate the recently defined kind of self-stabilizing behaviour, namely the
practically self-stabilizing behaviour, and also briefly present the core idea of our algorithm.

Replicated State-Machine. Replicated State-Machine (RSM) aims at providing a reliable service to clients. From
the client point of view, it is only required that the RSM acts as a correct sequential machine, and that every client
request eventually gets a response. Formally, the problem is defined by the two following properties: (Safety) every
execution yields a history of client requests and responses that is linearizable [11], (Liveness) in this history, every
request has a corresponding response.

Original Paxos. Although the original Paxos algorithm [15] has been formulated as a (partial) solution to the
Consensus problem, its actual purpose is to implement a RSM. Hence, in the following, our presentation of Paxos
will include aspects related to the RSM problem.

The original Paxos algorithm allows to implement a RSM property in an asynchronous complete network of
processors communicating by message-passing such that less than half of the processors are prone to crash failures.

1 In their paper, “practical” is not related to our notion of practical self-stabilization.



Precisely, the safety of the RSM is always guaranteed, whereas the liveness is guaranteed if some conditions (e.g.,
unique leader) are satisfied. We refer to these conditions as the liveness conditions. The algorithm uses unbounded
integers and also assumes that the system starts in a consistent initial configuration.

If it were possible to elect a unique leader in the system, then implementing a replicated state-machine would be
easy: this leader receives the client requests, chooses an order, and tells the other processors. But, since the leader
may crash (no more leader), and since it is impossible to reliably detect the crashes (many leaders at the same time),
a take-over mechanism is required. To do so, the Paxos algorithm defines three roles: proposer (or leader), acceptor
and learner.

Basically, a proposer is a willing-to-be leader. It receives requests from clients, orders them (using a step number
s, natural number) and proposes them to the acceptors. The acceptor accepts a request for a step s according to some
specific rules discussed below. A request can be decided on for step s when a majority of acceptors have accepted it
in step s. Finally, the learner learns when some request has been accepted by a majority of acceptors for some step
and decides accordingly. The learner has a local copy of the state-machine, and it applies the decided requests in an
increasing step order.

There are many possible mappings of these roles to the processors of a concrete system. In our case, we assume
that every processor is both an acceptor and a learner. We also assume that some unreliable failure detector elects
some processors; the elected processors, in addition to their other roles, become proposers.

To deal with the presence of many proposers, the Paxos algorithm uses ballot numbers 1 (unbounded natural
numbers). Every proposer can create new ballot numbers (two proposers include their identifiers to produce mutually
distinct ballot numbers). Every acceptor records a ballot number which roughly represents the proposer it is attached
to. When a processor becomes a proposer, it executes the following prepare phase or phase 1. It creates a new ballot
number t, and tries to recruit a majority of acceptors by broadcasting its ballot number (p1a message) and waiting
for replies (p1b) from a majority. An acceptor adopts the ballot number t (i.e., is recruited by the proposer) only if its
previously adopted ballot number is strictly smaller. In any case, it replies to the proposer. If the proposer does not
manage to recruit a majority of acceptors, it increments its ballot number and tries again.

An acceptor α adds to its p1b reply, the lastly accepted request acceptedα [s] for each step s (if any), along with
the corresponding ballot number at the time of acceptance. Thanks to this data, at the end of the prepare phase,
the proposer knows the advancement of a majority of acceptors, and can compute requests to propose which do
not interfere with possibly previous proposals. It selects, for each step s, the most recent (by refering to the ballot
numbers of the accepted requests) accepted request, and if there are no such requests, it can pick any requests it has
personally received from clients.

Then for each step s for which the proposer has a request to propose, the proposer executes the following accept
phase or phase 2. The proposer broadcasts to the acceptors a p2a message containing its ballot number t, the step
s, and the proposed request p. An acceptor accepts this request for step s if the ballot number t is greater than or
equal to its previously adopted ballot number, and acknowledges the proposer. If the proposer sees an acceptor with
a greater ballot number, it reexecutes phase 1. Otherwise, it receives positive answers from a majority of acceptors,
and it tells the learners to decide on the request for the corresponding step.

Phase 2 can be thought as the “normal case” operation. When a proposer is unique, each time it receives a request
from a client, it assigns to it a step number and tell the acceptors. Phase 1 is executed when a processor becomes a
proposer. Usually, a processor becomes a proposer when it detects the crash of the previous proposer, e.g., according
to some unreliable failure detector. Phase 1 serves as a “take-over” mechanism: the new proposer recruits a majority
of acceptors and records, for each of them, their lastly accepted requests. In order for the proposer to make sure that
these lastly accepted requests are accepted by a majority of acceptors, it executes phase 2 for each corresponding
step.

The difficulty lies in proving that the safety property holds. Indeed, since the failure detection is unreliable, many
proposers may be active simultaneously. Roughly speaking, the safety correctness is given by the claim that once
a proposer has succeeded to complete phase 2 for a given step s, the chosen request is not changed afterwards for
step s. Ordering of events in a common processor that answers two proposers yields the detailed argument, and the
existence of such a common processor stems from the fact that any two majorities of acceptors always have non-
empty intersection. The liveness property, however, is not guaranteed. A close look at the behaviour of Paxos shows
why it is so. Indeed, since every proposer tries to produce a ballot number that is greater than the ballot numbers of
a majority of acceptor, two such proposers may execute many unsuccessful phases 1. Intuitively though, if there is

1 These ballot numbers are not used to indexed the requests like the step numbers above



a single proposer in the system during a long enough period of time, then requests are eventually decided on, and
progress of the state-machine is ensured.

Practically Self-Stabilizing Replicated State-Machine. As we pointed out in the previous section, the Paxos al-
gorithm uses unbounded integers to timestamp data (ballot and step numbers). In practice, however, every integer
handled by the processors is bounded by some constant 2b where b is the integer memory size. Yet, if every integer
variable is initialized to a very low value, the time needed for any such variable to reach the maximum value 2b

is actually way larger than any reasonable system’s timescale. For instance, counting from 0 to 264 by increment-
ing every nanosecond takes roughly 500 years to complete. Such a long sequence is said to be practically infinite.
This leads to the following important remark from which the current work stems. Assuming that the integers are
theoretically unbounded is reasonable only when it is ensured, in practice, that every counter is initially set to low
values, compared to the maximum value. In particular, any initialized execution of the original Paxos algorithm with
bounded integers is valid as long as the counters are not exhausted.

In the context of self-stabilization, a transient fault may hinder the system in several ways as explained in the
introduction. First, it can corrupt the states of the replicas or alter messages leading to incoherent replicas states.
Second, and most importantly, a transient fault may also corrupt the variables used to timestamp data (e.g., ballot
or step number) in the processors memory or in the communication channels, and set them to a value close to the
maximum value 2b. This leads to an infinite suffix of execution in which the State-Machine Replication conditions are
never jointly satisfied. This issue is much more worrying than punctual breakings of the State-Machine Replication
specifications.

Intuitively though, if one can manage to get every integer variable to be reset to low values at some point in time,
then there is consequently a finite execution (ending with ballot or step number reaching the maximum value 2b)
during which the system behaves like an initialized original Paxos-based State-Machine Replication execution that
satisfies the specifications. Since we use bounded integers, we cannot prove the safe execution to be infinite (just like
the original Paxos cannot), but we can prove that this safe execution is as long as counting from 0 to 2b, which is as
long as the length of an initialized and safe execution assumed in the original Paxos prior to exhausting the counters.
This is what we call a practically self-stabilizing behaviour.

More formally, a finite execution is said to be practically infinite when it contains a causally ordered (Lam-
port’s happen-before relation [13]) chain of events of length greater than 2b. We then formulate the Practically Self-
Stabilizing Replicated State-Machine (PSS-RSM) specification as follows: (Safety) Every infinite execution contains
a practically infinite segment that yields a linearizable history of client requests and responses, (Liveness) In this
history, every request has a corresponding response.

Tag System. Our algorithm uses a new kind of timestamping architecture, namely a tag system, to deal with the
overflow of integer variables. We first describe a simpler tag system that works when there is a single proposer,
before adapting it to the case of multiple proposers.

One of the key ingredient of Paxos is the possibilty for a proposer to increment its ballot number t. We start with
t being a natural number between 0 and a large constant 2b, namely a bounded integer. Assume, for now, that there is
a single proposer in the system. With an arbitrary initial configuration, some processors may have ballot numbers set
to the maximum 2b, thus the proposer will not be able to produce a greater ballot number. To cope with this problem,
we redefine the ballot number to be a couple (l t) where t is a bounded integer (the integer ballot number), and l a
label, which is not an integer but whose type is explicited below. We simply assume that it is possible to increment a
label, and that two labels are comparable. The proposer can increment the integer variable t, or increment the label
l and reset the integer variable t to zero. Now, if the proposer manages to produce a label that is greater than every
label of the acceptors, then right after everything is as if the (integer part of the) ballot numbers of the processors
have all started from zero, and, intuitively, we get a practically infinite execution that looks like an initialized one. To
do so, whenever the proposer notices an acceptor label which is not less than or equal to the proposer current label
(such an acceptor label is said to cancel the proposer label), it records it in a history of canceling labels and produces
a label greater than every label in its history.

Obviously, the label type cannot be an integer. Actually, it is sufficient to have some finite set of labels along with
a comparison operator and a function that takes any finite (bounded by some constant) subset of labels and produces
a label that is greater than every label in this subset. Such a device is called a finite labeling scheme (see Sec. 3).

In the case of multiple proposers, the situation is a bit more complicated. Indeed, in the previous case, the single
proposer is the only processor to produce labels, and thus it manages to produce a label greater than every acceptor



label once it has collected enough information in its canceling label history. If multiple proposers were also producing
labels, none of them would be ensured to produce a label that every other proposer will use. Indeed, the first proposer
can produce a label l1, and then a second proposer produces a label l2 such that l1 ≺ l2. The first proposer then sees
that the label l2 cancels its label and it produces a label l3 such that l2 ≺ l3, and so on.

To avoid such interferences between the proposers, we elaborate on the previous scheme as follows. Instead of
being a couple (l, t) as above, a ballot number will be a couple (v, t) where t is the integer ballot number, and v is a
tag, i.e., a vector of labels indexed by the identifiers of the processors. We assume that the set of identifiers is totally
ordered. A proposer µ can only create new labels in the entry µ of its tag. By recording enough of the labels that
cancel the label in the entry µ , µ is able to produce a greatest label in the entry µ; therefore the entry µ becomes a
valid entry (it has a greatest label) that can be used by other proposers. In order for the different processors to agree
on which valid entry to use, we simply impose that each of them uses the valid entry with the smallest identifier.

Finally, in the informal presentation above, we presented the tag system as a means to deal with overflows of
ballot numbers, but the same goes for overflows of any other kind of ever increasing (but bounded) sort of variables.
In particular, in any implementation of Paxos, the processors record the sequence of executed requests (which is
related to the step number); our tag system also copes with overflows of this kind of data.

3 System Settings
Model. All the basic notions we use (state, configuration, execution, asynchrony, . . . ) can be found in, e.g., [7,19].
Here, the model we work with is given by a system of n asynchronous processors in a complete communication net-
work. Each communication channel between two processors is a bidirectional asynchronous communication channel
of finite capacity C [8]. Every processor has a unique identifier and the set Π of identifiers is totally ordered. If
α and β are two processor identifiers, the couple (α,β ) denotes the communication channel between α and β . A
configuration is the vector of states of every processor and communication channel. If γ is a configuration of the
system, we note γ(α) (resp. γ(α,β )) for the state of the processor α (resp. the communication channel (α,β )) in
the configuration γ . We informally1 define an event as the sending or reception of a message at a processor or as a
local state transition at a processor. Given a configuration, an event induces a transition to a new configuration. An
execution is denoted by a sequence of configurations (γk)0≤k<T , T ∈ N∪{+∞} related by such transitions2. A local
execution at processor λ is the sequence of states obtained as the projection of an execution on λ .

We consider transient and crash faults only. The effect of a transient fault is to corrupt the state of some processors
and/or communication channels; but it does not corrupt the memory where the program is located3. As usual in self-
stabilization, it is assumed that all the basic services related to message transmission (in particular identifiers) are
reliable. Also, we only consider the suffix of execution after the last transient fault; though crash faults may occur
in this suffix. This amounts to assume that the initial configuration of every execution is arbitrary and at most f
processors are prone to crash failures.

A quorum is any set of at least n− f processors. The maximum number of crash failures f satisfies n ≥ 2 · f + 1.
Thus, there always exists a responding majority quorum and any two quorums have a non-empty intersection. We
also use the “happened-before” strict partial order introduced by Lamport [13]. In our case, we note e f and we
say that e happens before f , or f happens after4 e. Each processor plays the role of a proposer, acceptor and learner.
A proposer can be active or inactive5. We simply assume that at least one processor acts as a proposer infinitely often.
This proposer is not required to be unique in order for our algorithm to stabilize. A unique proposer is required only
for the liveness of the state-machine (Sec. 6). Finally, we fix a state-machine M , and each processor has a local copy
of M . A request corresponds to a transition of the state-machine. We assume that the machine M has a predefined
initial state.

Data Structures. Given a positive integer b, a b-bounded integer, or simply a bounded integer, is any non-negative
integer less than or equal to 2b. A finite labeling scheme is a 4-tuple L = (L ,≺,d,ν) where L is a finite set whose
elements are called labels, ≺ is a partial relation on L that is irreflexive (l 6≺ l) and antisymmetric ( 6 ∃(l, l′) l ≺
l′∧ l′ ≺ l), d is an integer, namely the dimension of the labeling scheme, and ν is the label increment function, i.e.,

1 For a formal definition, refer to, e.g., [7,19].
2 For sake of simplicity, the events and the transitions are omitted.
3 This would create Byzantine processes, and is outside of our scope.
4 Note that the sentences “ f happens after e” and “e does not happen before f ” are not equivalent.
5 How a proposer becomes active can be modeled by a the output of a failure detector.



a function that maps any finite set A of at most d labels to a label ν(A) such that for every label l in A, we have
l ≺ ν(A). We denote the reflexive closure of ≺ by 4. The definition of a finite labeling scheme imposes that the
relation ≺ is not transitive. Hence, it is not a preorder relation. Given a label l, a canceling label for l is a label cl
such that cl 64 l. See [2] for a concrete construction of finite labeling scheme of any dimension.

A tag is a vector v[µ] = (l cl) where µ ∈Π is a processor identifier, l is a label, cl is either the null symbol⊥, the
overflow symbol ∞ or a canceling label for l. The entry µ in v is said to be valid when the corresponding canceling
field is null, v[µ].cl =⊥. If v has at least one valid entry, we denote by χ(v) the first valid entry of v, i.e., the smallest
identifier µ such that v[µ] is valid. If v has no valid entry, we set χ(v) = ω where ω is a special symbol (not in Π ).
Given two tags v and v′, we note v≺ v′ when either χ(v) > χ(v′) or χ(v) = χ(v′) = µ 6= ω and v[µ].l < v′[µ].l. We
note v' v′ when χ(v) = χ(v′) = µ and v[µ] = v′[µ]. We note v4 v′ when either v≺ v′ or v' v′.

A fifo label history H of size d, is a vector of size d of labels along with an operator + defined as follows. Let
H = (l1, . . . , ld) and l be a label. If l does not appear in H, then H + l = (l, l1, . . . , ld−1), otherwise H + l = H. We
define the tag storage limit K and the canceling label storage limit Kcl by K = n+C n(n−1)

2 and Kcl = (n+1)K.

4 The Algorithm

In this section, we describe the Practically Self-Stabilizing Paxos algorithm. In its essence, our algorithm is close to
the Paxos scheme except for some details. First, in the original Paxos, the processors decide on a unique request for
each step s. In our case, there is no actual step number, but the processors agree on a growing sequence of requests
of size at most 2b as in [16] (see Remark 1 below). Second, our algorithm includes tag related data to cope with
overflows.

The variables are presented in Alg. 1. The clients are not modeled here; we simply assume that each active
proposer α can query a stream queueα to get a client request to propose. The variables are divided in three sections
corresponding to the different Paxos roles: proposer, acceptor, learner. In each section, some variables are marked as
Paxos variables1 while the others are related to the tag system.

The message flow is similar to Paxos. When a proposer λ becomes active, it executes a prepare phase (phase 1),
trying to recruit a majority of acceptors. An acceptor α is recruited if the proposer ballot number is (strictly) greater
than its own ballot number. In this case, it adopts the ballot number. It also replies (positively or negatively) to the
leader with its latest accepted sequence of requests acceptedα along with the corresponding (integer) ballot number.
After recruiting a quorum of acceptors, the proposer λ records the latest sequence (w.r.t. the associated integer ballot
numbers) of requests accepted by them in its variable proposed proposedλ . If this phase 1 is successful, the proposer
λ can execute accept phases (phase 2) for each request received in queueλ . For each such request r, the proposer λ

appends r to its variable proposedλ , and tell the acceptors to accept proposedλ . An acceptor accepts the proposal
proposedλ when the two following conditions are satisfied: (1) the proposer’s ballot number is greater than or equal
to its own ballot number, and (2) if the ballot integer associated with the lastly accepted proposal is equal to the
proposer’s ballot integer, then proposedλ is an extension of the lastly accepted proposal. Roughly speaking, this
last condition avoids the acceptor to accept an older (hence shorter) sequence of request. In any case, the acceptor
replies (positively or negatively) to the proposer. The proposer λ plays the role of a special learner in the sense
that it waits for positive replies from a quorum of acceptors, and, sends the corresponding decision message. The
decision procedure when receiving a decision message is similar to the acceptation procedure (reception of a p2a
message), except that if the acceptor accepts the proposal, then it also learns (decides on) this proposal and execute
the corresponding new requests.

We now describe the treatment of the variables related to the tag system. Anytime a processor α (as an acceptor,
learner or proposer) with tag vα receives a message with a tag v′, it updates the canceling label fields before comparing
them, i.e., for any µ , if vα [µ].l (or vα [µ].cl) is a label that cancels v′[µ].l, or vα [µ].cl = ∞ is the overflow symbol,
then the field v′[µ].cl is updated accordingly2, and vice versa. Also, if the processor α notices an overflow in its own
variables (e.g. its ballot integer, or one of the request sequence variables, has reached the upper bound), it sets the
overflow symbol ∞ in the canceling field of the first valid entry of the tag. If after such an update, the label vα [α].l is
canceled, then the corresponding canceling label is added to Hcl

α as well as the label vα [α].l, and vα [α].l is set to the

1 They come from the original formulation of Paxos.
2 i.e., the field v′[µ].cl is set to vα [µ].(l or cl). In case, there is a canceling label and the overflow symbol, the canceling label is

prefered.



new label ν(Hcl
α ) created from the labels in Hcl

α with the label increment function. The purpose of Hcl
α is to record

enough canceling labels for the proposer to produce a greatest label. In addition, if, after the update, it appears that
vα 4 v′, then α adopts the tag v′, i.e., it copies the content of the first valid entry µ = χ(v′) of v′ to the same entry in
vα (assuming µ < α). Doing so, it also records the previous label in vα in the label history Hα [µ]. If there is a label
in Hα [µ] that cancels vα [µ].l, then the corresponding field is updated accordingly. The purpose of Hα [µ] is to avoid
cycle of labels in the entry µ of the tag. Recall that the comparison between labels is not a preorder. In case µ = α ,
then α uses the label increment function on Hcl

α to produce a greater label as above.
We say that there is an epoch change in the tag vλ if either the first valid entry χ(vλ ) has changed, or the first

valid entry has not changed but the corresponding label has changed. Whenever there is an epoch change in the tag
vλ the processor cleans the Paxos related variables. For a proposer λ , this means that the proposer ballot integer
t p
λ

is reset to zero, the proposed requests proposedλ to the empy sequence; in addition, the proposer proceeds to a
new prepare phase. For an acceptor (and learner) α , this means that the acceptor ballot integer is reset to zero, the
sequences acceptedα and learnedα are reset to the empty sequence, and the local state q∗α is reset to the predefined
initial state of the state-machine.

The pseudo-code in Algorithms 2 and 3 sums up the previous description. Note that, the predicate (vα , tα) <
(vλ , tλ ) (resp. (vα , tα)≤ (vλ , tλ )) means that either vα ≺ vλ , or vα ' vλ and tα < tλ (resp. tα ≤ tλ ).

Remark 1. Note that, in our algorithm, the replicas agree on growing sequences of requests, of length at most 2b.
Our goal in this paper is not to provide an optimized solution, but to pave the way to it. Yet, a means to control the
length of the sequences would be to replace a prefix of request sequence by the state reached from the initial state
when applying the prefix. Then the replicas can agree on (possibly conflicting) states by the latest found in a quorum.

Algorithm 1: Variables at processor α

1 (tag system)
2 vα : tag
3 canceling label history, Hcl

α : fifo history of size (K+1)Kcl

4 for each µ ∈Π , label history, H[µ] : fifo history of size K
5 (proposer)
6 client requests, queueα : queue (read-only)
7 [Paxos] proposer ballot integer, t p

α : bounded integer
8 [Paxos] proposed requests, proposedα : requests sequence of size ≤ 2b

9 (acceptor)
10 [Paxos] acceptor ballot integer, ta

α : bounded integer
11 [Paxos] accepted requests, acceptedα = (t,seq) : t bounded integer, seq requests sequence of size ≤ 2b

12 (learner)
13 [Paxos] learned requests, learnedα : requests sequence of size ≤ 2b

14 [Paxos] local state, q∗α : state of the state-machine

5 Proofs

Due to lack of space, proofs are only sketched. More details can be found in [3].

5.1 Tag Stabilization

Definition 1 (Interrupt). Let λ be any processor (as a proposer, or an acceptor) and consider a local subexecution
σ = (γk(λ ))k0≤k≤k1 at λ . We denote by vk

λ
the λ ’s tag in γk(λ ). We say that an interrupt has occurred at position k

in the local subsexecution σ when one of the following happens

– µ < λ , type [µ,←] : the first valid entry moves to µ such that µ = χ(vk+1
λ

) < χ(vk
λ
), or the first valid entry does

not change but the label does, i.e., µ = χ(vk+1
λ

) = χ(vk
λ
) and vk

λ
[µ].l 6= vk+1

λ
[µ].l.



Algorithm 2: Prepare phase (Phase 1)

1 Processor λ becomes a proposer:
2 increment tλ
3 if tλ reaches 2b then
4 set vλ [χ(vλ )].cl to ∞

5 update the entry vλ [λ ] with Hcl if it is invalid
6 clean the proposer Paxos variables
7 broadcast 〈p1a,vλ , tλ ,λ 〉
8 collect replies R from some quorum Q
9 update (if necessary) the tag vλ and the label histories

10 if no epoch change in vλ and all replies are positive then
11 order R with lexicographical order

(acceptedα .t, |acceptedα .seq|)
12 proposedλ ← acceptedα .seq the maximum in R

(break ties if necessary)
13 if proposedλ has reached max length then
14 set vλ [χ(vλ )].cl to ∞

15 update the entry vλ [λ ] with Hcl if it is invalid
16 clean the Paxos variables
17 repeat phase 1
18 else
19 if epoch change in vλ then
20 clean the Paxos variables
21 repeat phase 1

22

23 Processor α receives p1a message from λ :
24 update canceling fields in (vα ,vλ )
25 if (vα , tα ) < (vλ , tλ ) then
26 adopt vλ , tλ
27 if epoch change in vα then
28 clean Paxos variables
29 reply to λ , 〈p1b,vα , tα ,acceptedα ,α〉
30

Algorithm 3: Accept phase (Phase 2) and Decision

1 Once λ gets requests in queueλ :
2 append requests to proposedλ

3 broadcast 〈p2a,vλ , tλ , proposedλ 〉
4 collect replies R from some quorum Q
5 update (if necessary) the tag vλ and the label histories
6 if no epoch change in vλ and all replies are positive then
7 broadcast 〈dec,vλ , tλ , proposedλ 〉
8 else
9 if epoch change in vλ then clean the Paxos variables

10 proceed to phase 1
11

12 Processor α receives p2a or dec message from λ :
13 update canceling fields in (vα ,vλ )
14 if (vα , tα )≤ (vλ , tλ ) then
15 adopt vλ , tλ
16 if epoch change in vα then clean the Paxos variables
17 if acceptedα .t < tλ or acceptedα .seq is a prefix of

proposedλ then
18 accept (tλ , proposedλ )
19 if it is a dec message then
20 learn proposedλ

21 update q∗α by executing the new requests
22 if it is a p2a message then
23 reply to λ , 〈p2b,vα , tα ,acceptedα ,α〉
24



– µ < λ , type [µ,→] : the first valid entry moves to µ such that µ = χ(vk+1
λ

) > χ(vk
λ
).

– type [λ ,∞] : the first valid entry is the same but there is a change of label in the entry λ due to an overflow of
one of the Paxos variables; we then have χ(vk+1

λ
) = χ(vk

λ
) = λ and vk

λ
[λ ].l 6= vk+1

λ
[λ ].l.

– [λ ,cl] : the first valid entry is the same but there is a change of label in the entry λ due to the canceling of the
corresponding label; we then have χ(vk+1

λ
) = χ(vk

λ
) = λ and vk

λ
[λ ].l 6= vk+1

λ
[λ ].l.

For each type [µ,∗] (µ ≤ λ ) of interrupt, we denote by |[µ,∗]| the total number (possibly infinite) of interrupts of
type [µ,∗] that occur during the local subexecution σ .

If there is an interrupt like [µ,←], µ < λ , occurs at position k, then necessarily there is a change of label in the
field vλ [µ].l (due to the adoption of received tag). In addition, the new label l′ is greater than the previous label l, i.e.,
l ≺ l′. Also note that, if χ(vk

λ
) = λ , the proposer λ never copies the content of the entry λ of a received tag, say v′, to

the entry λ of its tag, even if vk
λ
[λ ].l ≺ v′[λ ].l. New labels in the entry λ are only produced with the label increment

function applied to the union of the current label and the canceling label history Hcl
λ

.

Definition 2 (Epoch). Let λ be a processor. An epoch σ at λ is a maximal (for the inclusion of local subexecutions)
local subexecution at λ such that no interrupts occur at any position in σ except for the last position. By the definition
of an interrupt, all the tag’s values within a given epoch σ at λ have the same first valid entry, say µ , and the same
corresponding label, i.e., for any two processor states that appear in σ , the corresponding tag values v and v′

satisfies χ(v) = χ(v′) = µ and v[µ].l = v′[µ].l. We denote by µσ and lσ the first valid entry and the corresponding
label common to all the tag values in σ .

Definition 3 (h-Safe Epoch). Consider an execution E and a processor λ . Let Σ be a subexecution in E such that the
local subexecution σ = Σ(λ ) is an epoch at λ . Let γ∗ be the configuration of the system right before the subexecution
Σ , and h be a bounded integer. The epoch σ is said to be h-safe when the interrupt at the end of σ is due to an overflow
of one of the Paxos variables. In addition, for every processor α (resp. communication channel (α,β )), for every tag
x in γ∗(α) (resp. γ∗(α,β )), if x[µσ ].l = lσ then any corresponding integer variables (ballot integers, or lengths of
request sequences) have values less than or equal to h.

If there is an epoch σ at processor λ such that µσ = λ and λ has produced the label lσ , then necessarily, at the
beginning of σ , the Paxos variables have been reset. However, other processors may already be using the label lσ
with, for example, arbitrary ballot integer value. Such an arbitrary value may be the cause of the overflow interrupt
at the end of σ . The definition of a h-safe epoch ensures that the epoch is truly as long as counting from h to 2b.

Since a processor λ always checks that the entry vλ [λ ] is valid (updating with ν(Hcl
λ

) if necessary), it is now
assumed, unless stated explicitly, that we always have χ(vλ )≤ λ .

Consider a configuration γ and a processor identifier µ . Let S(γ) be the set of every tag present either in a
processor memory or in some message in a communication channel, in the configuration γ . Let Scl(µ,γ) be the set
of labels l such that either l is the value of the label field x[µ].l for some tag x in S(γ), or l appears in the label history
Hα [µ] of some processor α , in the configuration γ . Then, we have |S(γ)| ≤K and |Scl(µ,γ)| ≤Kcl . In particular, the
number of label values x[µ].l with x in S(γ) is less than or equal to K.

Lemma 1 (Cycle of Labels). Consider a subexecution E, a processor λ and an entry µ < λ in the tag variable
vλ . The label value in vλ [µ].l can change during the subexecution E and we denote by (li)1≤i≤T+1 for the sequence
of successive distinct label values that are taken by the label vλ [µ].l in the entry µ during the subexecution E. We
assume that the first T labels l1, . . . , lT are different from each other, i.e., for every 1 ≤ i < j ≤ T , li 6= l j. If T > K,
then at least one of the label li has been produced1 by the processor µ during E. If T ≤K and lT+1 = l1, then when
the processor λ adopts the label lT+1 in the entry µ of its tag vλ , the entry µ becomes invalid.

Proof (Sketch). This stems from the fact that in any configuration there are at most K different tags in the system,
and that λ records the last K label values of the entry µ of its tag. ut

Lemma 2 (Counting the Interrupts). Consider an infinite execution E∞ and let λ be a processor identifier such that
every processor µ < λ produces labels finitely many times. Consider an identifier µ < λ and any processor ρ ≥ λ .
Then, the local execution E∞(ρ) at ρ induces a sequence of interrupts such that |[µ,←]| ≤Rµ = (Jµ +1) ·(K+1)−1
where Jµ is the number of times the processor µ has produced a label since the beginning of the execution.

1 Precisely, it has invoked the label increment function to update the entry µ of its tag vµ .



Proof (Sketch). Assume the contrary. Then there are Rµ + 1 successive distinct label values in the field vρ [µ].l,
l1 ≺ ·· · ≺ lRµ +1. We can divide this sequence in Jµ +1 segments of length K+1. Due to the previous lemma, there
is one segment containing a cycle of labels of length ≤K; this is a contradiction since ρ records the last K labels in
Hρ [µ]. ut

Theorem 1 (Existence of a 0-Safe Epoch). Consider an infinite execution E∞ and let λ be a processor such that
every processor µ < λ produces labels finitely many times. We denote by |λ | the number of identifiers µ ≤ λ , Jµ for
the number of times a proposer µ < λ produces a label and we define

Tλ = ( ∑
µ<λ

Rµ +1) · (|λ |+1) · (Kcl +1) · (K+1) (1)

where Rµ = (Jµ + 1) · (K + 1)− 1. Assume that there are more than Tλ interrupts at processor λ during E∞ and
consider the concatenation Ec(λ ) of the first Tλ epochs, Ec(λ ) = σ1 . . .σTλ . Then Ec(λ ) contains a 0-safe epoch.

Proof (Sketch). The bound given by the previous lemma and successive applications of the pigeonhole principle
yield a segment E2(λ ) of (Kcl +1)(K+1) successive epochs with interrupts like [λ ,∞] and [λ ,cl] only. If there is in
E2 a segment E3 of K + 1 successive epochs with interrupts like [λ ,∞] only, λ must have a created a label that was
not present in the system; and the corresponding epoch is 0-safe. Otherwise, there is at least Kcl + 1 interrupts like
[λ ,cl]. This implies that λ has collected all the possible canceling labels. At the end, it produces a greatest label, and
the corresponding epoch is necessarily 0-safe. ut

Note that the epoch found in the proof is not necessarily the unique 0-safe epoch in Ec(λ ). The idea is only to
prove that there exists a practically infinite epoch. If the first epoch σ at λ ends because the corresponding label lσ
in the entry µσ gets canceled, but lasts a practically infinite long time, then this epoch can be considered, from an
informal point of view, safe. One could worry about having only very “short” epochs at λ due to some inconsistencies
(canceling labels or overflows) in the system. Theorem 1 shows that every time a “short” epoch ends, the system
somehow loses one of its inconsistencies, and, eventually, the proposer λ reaches a practically infinite epoch. Note
also that a 0-safe epoch and a 1-safe or a 2-safe epoch are, in practice, as long as each other. Indeed, any h-safe epoch
with h very small compared to 2b can be considered practically infinite. Whether h can be considered very small
depends on the concrete timescale of the system. Besides, every processor α always checks that the entry α is valid.
Doing so the processor α still works to find a “winning” label for its entry α . In that case, if the entry µ becomes
invalid, then the entry α is ready to be used, and a safe epoch can start without waiting any longer.

5.2 Safety

To prove the safety property within a subexecution, we have to focus on the events that correspond to deciding a
proposal, e.g., (v, t, p) at processor α (v being a tag, t a ballot integer, p a sequence of requests). Such an event
may be due to corrupted messages in the communication channels an any stage of the Paxos algorithm. Indeed, a
proposer computes the proposal it will send in its phase 2 thanks to the replies it has received at the end of its phase 1.
Hence, if one of these messages is corrupted, then the safety might be violated. However, there is a finite number of
corrupted messages since the capacity of the communication channels is finite. To formally deal with these issues, we
define the notion of scenario that corresponds to specific chain of events involved in the Paxos algorithm. Consider a
subexecution E = (γk)k0≤k≤k1 . A scenario in E is a sequence U = (Ui)0≤i<I where each Ui is a collection of events
in E. In addition, every event in Ui happens before every event in Ui+1.

Definition 4 (Phase Scenario). Consider a proposer ρ , an acceptor α , quorums S and Q of acceptors, a tag v, a
ballot integer t, and a sequence of requests p.

A phase 1 scenario is defined as follows. The proposer ρ broadcasts a message p1a containing the tag v, and
ballot integer t. Every acceptor in the quorum S receives this message and adopts1 the tag v. Every processor α in
the quorum S replies to the proposer ρ a p1b message telling they adopted the couple (v, t), and containing the last

proposal they accepted. These messages are received by ρ . We denote this scenario by ρ
p1a−−→ (S,v, t)

p1b−−→ ρ .

1 Recall that this means the acceptor, say α , copies the entry v[χ(v)] in the entry vα [χ(v)].



A phase 2 scenario with acceptation is defined as follows. The proposer ρ broadcasts a p2a message containing
the tag v, the ballot integer t, and the proposed sequence of requests p. The acceptor α accepts the proposal (v, t, p).

We denote this scenario by ρ
p2a−−→ (α,v, t, p).

A phase 2 scenario with quorum acceptation is defined as follows. The proposer ρ broadcasts a p2a message
containing the tag v, the ballot integer t, and the proposed sequence of requests p. Every acceptor in the quorum
Q accepts the proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ a p2b message telling

that it has accepted the proposal (v, t, p). The proposer ρ receives these messages. We denote this scenario by ρ
p2a−−→

(Q,v, t, p)
p2b−−→ ρ .

A phase 2 scenario with decision is defined as follows. The proposer ρ broadcasts a p2a message containing
the tag v, the ballot integer t, and the proposed sequence of requests p. Every acceptor in the quorum Q accepts
the proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ a p2b message telling that it has
accepted the proposal (v, t, p). The proposer ρ receives these messages. The proposer ρ sends a decision message
containing the proposal (v, t, p). The processor α receives this message, accepts and decides on the proposal (v, t, p).

We denote this scenario by ρ
p2a−−→ (Q,v, t, p)

p2b−−→ ρ
dec−−→ (α,v, t, p).

In all the previous cases, we say that the phase scenarios are conducted by the proposer ρ and use the ballot
(v, t).

Definition 5 (Simple Acceptation Scenario). A simple acceptation scenario is the concatenation of a phase 1 sce-
nario, followed by a finite number of phase 2 scenarios with quorum acceptation, and ending with a phase 2 scenario
with either acceptation, or decision; all the phase scenarios being conducted by the same proposer ρ , and using the
same ballot (v, t). Let S be the quorum of acceptors in the phase 1 scenario, p be the sequence of requests accepted (or
decided on) in the last event of the scenario, and α be the corresponding acceptor. If the last phase scenario is a phase

scenario with acceptation, then we denote the simple acceptation scenario by ρ
p1a−−→ (S,v, t) ρ

p2a−−→ (α,v, t, p).
If the last phase scenario is a phase scenario with decision, then we denote the simple acceptation scenario by

ρ
p1a−−→ (S,v, t) ρ

p2a−−→ (Q,v, t, p)
p2b−−→ ρ

dec−−→ (α,v, t, p). When we want to indicate that both cases are possible, we
simply denote the simple acceptation scenario by (ρ,S,v, t) (α,v, t, p).

A simple acceptation scenario is simply a basic execution of the Paxos algorithm that leads a processor to either
accept a proposal, or decide on a proposal (accepting it by the way).

Definition 6 (Fake Message). Given a subexecution E = (γk)k0≤k≤k1 , a fake message relative to the subexecution
E, or simply a fake message, is a message that is in the communication channels in the first configuration γk0 of the
subexecution E.

This definition of fake messages comprises the messages at the beginning of E that were not sent by any processor,
but also messages produced in the prefix of execution that precedes E.

Definition 7 (Fake Phase Scenario). Consider a proposer ρ , an acceptor α , quorums S and Q of acceptors, a tag
v, a ballot integer t, and a sequence of requests p. Fix a subexecution E. A fake phase scenario relative to E is one of
the following scenario.

(Fake phase 1 scenario) The proposer ρ sends a p1a message with ballot (v, t). It receives positive replies from a
quorum S, one of these replies at least being fake (i.e. it was not actually sent by an acceptor). We denote this fake

phase scenario by ρ
p1a−−→ (S,v, t)

f ake p1b−−−−−→ ρ .
(Fake phase 2 scenario with acceptation) The acceptor α receives a fake p2a with proposal (v, t, p) that seems to

come from the processor ρ . The acceptor α accepts the proposal. We denote this scenario by ρ
f ake p2a−−−−−→ (α,v, t, p).

(Fake phase 2 scenario with quorum acceptation) The proposer ρ sends a p2a message with proposal (v, t, p).
The proposer ρ receives positive replies from a quorum Q, one of these replies, at least, being fake. Then ρ sends
a decision message with proposal (v, t, p) to the acceptor α , and α decides accordingly. We denote this scenario by

ρ
p2a−−→ (Q,v, t, p)

f ake p2b−−−−−→ ρ
dec−−→ (α,v, t, p).

(Fake phase 2 scenario with decision) The acceptor α receives a fake decision message with proposal (v, t, p)

which seems to come from the proposer ρ . The acceptor α decides accordingly. We denote this scenario by ρ
f ake dec−−−−−→

(α,v, t, p).



Definition 8 (Simple Fake Acceptation Scenario). A simple fake acceptation scenario is either a fake phase 2
scenario with acceptation, a fake phase 2 scenario with quorum acceptation, a fake phase 2 scenario with decision,
or the concatenation of a fake phase 1 scenario, followed by a finite number of (non-fake) phase 2 scenarios with
quorum acceptation, and ending with a (non-fake) phase 2 scenario with either an acceptation, or a decision; all
the scenarios being conducted by the same proposer ρ , and using the same ballot (v, t). We often denote this kind of
scenarios by f ake (α,v, t, p) where (α,v, t, p) refers to the last acceptation (or decision) event.

A simple fake acceptation scenario is somehow similar to a simple acceptation scenario except for the fact that at
least one fake message (relative to the given subexecution) is involved during the scenario.

Definition 9 (Composition). Consider two simple scenarios

U = X  (α1,v1, t1, p1)
V = (ρ2,S2,v2, t2) (α2,v2, t2, p2)

where X = f ake or X = (ρ1,S1,v1, t1) such that the following three conditions are satisfied. (1) The processor α1
belongs to S2 (2) Let e2 be the event that corresponds to α1 sending a p1b message in scenario V . Then the event
“α1 accepts the proposal (v1, t1, p1)” from U is the last acceptation event before e2 occurring at α1. In addition,
the proposer ρ2 selects the proposal (t1, p1) as the highest-numbered proposal at the end of the Paxos phase 1. In
particular, p1 is a prefix of p2, i.e., p1 @ p2. (3) All the tags involved share the same first valid entry, the same
corresponding label.

Then the composition of the two simple scenarios is the concatenation the scenarios U and V . This scenario is de-
noted by X (α1,v1, t1, p1)→ (ρ2,S2,v2, t2) (α2,v2, t2, p2). Note also that the ballot integer is strictly increasing
along the simple scenarios.

Fig. 1. Composition of scenarios - Time flows downward, straight lines are local executions, arrows represent messages.

Definition 10 (Acceptation Scenario). Given a subexecution E, an acceptation scenario is the composition U of
simple acceptation scenarios U1, . . . ,Ur where U1 is either a simple acceptation scenario or a simple fake acceptation
scenario relative to E, whereas the other are real (i.e. non-fake) simple acceptation scenarios. We denote it by
X  (α1,v1, t1, p1)→ (ρ2,S2,v2, t2) (α2,v2, t2, p1) . . .(ρr,Sr,vr, tr) (αr,vr, tr, pr) where X is either f ake or
some (ρ1,S1,v1, t1).

An acceptation scenario whose first simple scenario is not fake relative to E is called real acceptation scenario
relative to E. An acceptation scenario whose first simple scenario is fake relative to E is called fake acceptation
scenario relative to E.

Given an acceptation event or a decision event, there is always at least one way to trace back the scenario that
has lead to this event. If one of these scenarios involve a fake message, then we cannot control the safety property.
Besides, all the tags involved share the same first valid entry µ and the same corresponding label l. Also, the ballot
integer value, as well as the sequence of requests, is increasing along the acceptation scenario; i.e., if i < j, then
ti < t j and pi @ p j.



Definition 11 (Fake event). Consider an event e that corresponds to some processor accepting a proposal, let U be
the simple acceptation scenarios that ends with the event e. The event e is said to be fake relative to a subexecution
E if U is a fake simple acceptation scenario relative to E. The event e is sait to be real relative to E otherwise.

Definition 12 (Simple Scenario Characteristic). The characteristic of a simple acceptation scenario U with tag v,
ballot integer t, is the tuple char(U) = (χ(v),v[χ(v)].l, t).

Definition 13 (Observed Zone). Consider an execution E. Let λ be a proposer and let Σ be a subexecution such
that the local execution σ = Σ(λ ) at λ is a h-safe epoch. We denote by F the suffix of the execution that starts with
Σ . Assume that λ hears from at least two quorums during its epoch σ . Let Q0, Q f be the first and last quorums
respectively whose messages are processed by the proposer λ during σ . For each processor α in Q0 (resp. Q f ), we
denote by e0(α) (resp. e f (α)) the event that corresponds to α sending to λ a message received in the phase that
corresponds to Q0 (resp. Q f ).

The zone observed by λ during the epoch σ , namely Z(F,λ ,σ), is the set of acceptation scenarios relative to F
described as follows. An acceptation scenario relative to F belongs to Z(F,λ ,σ) if and only if it ends with a real
acceptation (or decision) event (relative to F) that does not happen after the end of σ and it contains a real simple
acceptation scenario U = (ρ,S,v, t) (β ,v, t, p) such that there exists an acceptor α in S∩Q0 ∩Q f at which the
event e0(α) happens before the event e that corresponds to sending a p1b message in U, and the event e happens
before the event e f (α) (cf. Figure 2).

Fig. 2. Scenario (ρ,S,v, t)  (β ,v, t, p) in Z(F,λ ,σ) - Time flows downward, straight lines are local executions, curves are
send/receive events, arrows represent messages.

The observed zone models a globally defined time period during which we will prove, under specific assumptions,
the safety property (cf. Theorem 3).

Lemma 3 (Epoch and Cycle of Labels). Consider an execution E. Let λ be a processor and consider a subexe-
cution Σ such that the local execution σ = Σ(λ ) is an epoch at λ . We denote by F the suffix of the execution E
that starts with Σ . Consider a processor ρ and a finite subexecution G in F as follows: G starts in Σ and induces a
local execution G(ρ) at ρ such that it starts and ends with the first valid entry of the tag vρ being equal to µσ and
containing the label lσ , and the label field in the entry vρ [µσ ] undergoes a cycle of labels during G(ρ). Assume that,
if µσ < λ , the processor µσ does not produce any label during G. Then µσ = λ and the last event of σ happens
before the last event of G(ρ).

Proof. By Lemma 1, since the entry vρ [λ ] remains valid after the readoption of the label l at the end of G(ρ), the
proposer µσ must have produced some label l′ during G (hence µσ = λ ) that was received by ρ during G. Necessarily,
the production of l′ happens after the last event of σ at λ , thus the last event of G(ρ) at ρ also happens after the last
event of σ at λ . ut

Theorem 2 (Safety - Weak Version). Consider an execution E. Let λ be a processor and let Σ be a subexecution
such that the local execution σ = Σ(λ ) at λ is an h-safe epoch. We denote by F the suffix of the execution that

starts with Σ . Consider the two simple scenarios U1 = ρ1
p1a−−→ (S1,v1, t1)  ρ1

p2a−−→ (Q1,v1, t1, p1)
p2b−−→ ρ1

dec−−→
(α1,v1, t1, p1) and U2 = (ρ2,S2,v2, t2) (α2,v2, t2, p2) with characteristics (µσ , lσ , t1) and (µσ , lσ , t2) respectively.

We denote by ei the acceptation event (αi,vi, ti, pi). Assume that the events e1 and e2 occur in F and that h≤ t1 ≤
t2. In addition, assume that, if µσ < λ , then the processor µσ does not produce any label during F. We then have two



cases: (a) If t1 = t2, then either p1 @ p2, or p2 @ p1, or the last event of σ happens before one of the event e1 or e2.
(b) If t1 < t2, then p1 @ p2 or the last event of σ happens before one of the event e1 or e2.

Proof (Sketch). We assume that both events e1 and e2 do not happen after the last event of σ and we prove the result.
We denote by γ∗ the configuration right before the subexecution Σ . We prove the result by induction on the value of
t2.

(Bootstrapping). We first assume that t2 = t1. Recall the ballot integers include the identifiers of the proposer,
hence ρ1 = ρ2. If p1 6@ p2 and p2 6@ p1, then ρ1 has sent two p2a messages with different proposals and the same
ballot. Let e and f be the events corresponding to these two sendings. None of the events e and f occurs in the
execution prefix A, otherwise, since e1 and e2 occur in F , the configuration γ∗ would contain a ballot (x, t) with
x[µσ ].l = lσ and t ≥ h; this is a contradiction since σ is h-safe. We will refer to this argument as the safe epoch
argument. Hence, e and f occur in F . The fact that p1 6@ p2 and p2 6@ p1 implies that there must be a cycle of labels
in the entry vρ1 [µσ ] between the e and f . By Lemma 3, this implies that the last event of σ happens before the event
e1 or e2; this is a contradiction. We will refer to this argument as the cycle of label argument. Hence, p1 @ p2 or
p2 @ p1.

(Induction). Now, t1 < t2 and we assume the result holds for every value t such that t1 ≤ t < t2. Pick some acceptor
β in Q1∩S2. From its point of view, there are two events f1 and f2 at β that respectively correspond to the acceptation
of the proposal (v1, t1, p1) in the scenario U1 (reception of a p2a message), and the adoption of the ballot (v2, t2) in
the scenario U2 (reception of a p1a message).

First, the events f1 and f2 occur in the suffix F (same argument as in bootstrapping). Since t1 < t2, by the cycle of
labels argument, f1 happens before f2. The p1b message the acceptor β has sent contains a non-null lastly accepted
proposal (t, p) such that t1 ≤ t < t2 and p1 @ p. Otherwise, the cycle of labels argument would show (again) a
contradiction.

Now, the proposer ρ2 receives a set of proposals from the acceptors of the quorum S2, including at least one
non-null proposal from β . Then, it selects among the replies, the accepted proposal (tc, pc) with the highest ballot
integer, and highest request sequence length (lexicographical order). Since ρ2 has received the proposal (t, p) from
β , we then have h≤ t1 ≤ t ≤ tc < t2 and (t, |p|)≤ (tc, |pc|) (lexicographically).

Let βc be the proposer in S2 which has sent to ρ2 the proposal (tc, pc) in the p1b message. By the safe epoch
argument, there is an event fc in F that corresponds to βc accepting the proposal (tc, pc). Consider the simple accep-
tation scenario Vc that ends with fc, and let char(Vc) = (µc, lc, tc) be its characteristic. Since fc is the last acceptation
event before βc replies to ρ2 (with a p1a message), we must have (µc, lc) = (µσ , lσ ); otherwise, the accepted variable
acceptedβc would have been cleared (epoch change at βc), and βc would have not sent the non-null proposal (tc, pc)
to ρ2. Because of the safe epoch argument, Vc cannot be a fake simple acceptation scenario; thus Vc is a real simple
acceptation scenario.

By applying the induction hypothesis to Vc, and since fc cannot happen after the last event of σ (otherwise e2
would also happen after it), we have two cases. The case (A) t1 = tc. Then p1 @ pc or pc @ p1. But, the fact that
(t, |p|)≤ (tc, |pc|) (lexicographically) and p1@ p implies that |pc| ≥ |p| ≥ |p1|, and thus p1@ pc. The case (B) t1 < tc.
But then p1 @ pc.

In all cases, we have p1 @ pc. But, we also have pc @ p2 (scenario U2), hence p1 @ p2. ut

Corollary 1. Consider an execution E. Let λ be a processor and let Σ be a subexecution such that the local execution
σ = Σ(λ ) at λ is an h-safe epoch. We denote by F the suffix of the execution that starts with Σ .

Consider two decision events ei = (αi,vi, ti, pi), i = 1,2, such that χ(vi) = µσ , vi[µσ ].l = lσ and ti ≥ h. Assume
that both events e1 and e2 are real decision events relative to F. In addition, assume that, if µσ < λ , then the processor
µσ does not produce any label during F. Then either p1 @ p2, p2 @ p1 or the last event of σ happens before one of
the event e1 or e2.

Theorem 3 (Safety). Consider an execution E, a proposer λ proposer and a subexecution Σ such that the local
execution σ = Σ(λ ) at λ is a h-safe epoch for some bounded integer h. We denote by F the suffix of execution
that starts with Σ . Assume that the observed zone Z(F,λ ,σ) is defined and that, if µσ < λ , then the processor µσ

does not produce any label during F. Consider two scenarios U1 and U2 in Z(F,λ ,σ) ending with acceptation events
e1 = (α1,v1, t1, p1) and e2 = (α2,v2, t2, p2). Let µi = χ(vi) and li = vi[µi], i = 1,2, and assume that µσ ≤min(µ1,µ2)
and t1, t2 ≥ h. Then (µ1, l1) = (µ2, l2) = (µσ , lσ ), and p1 @ p2 or p2 @ p1.

Proof (Sketch). The definition of the observed zone imply that (µ1, l1) = (µ2, l2) = (µσ , lσ ) because the correspond-
ing scenarios has been “seen” by λ during its epoch. Then the previous corollary applies. ut



In the case µσ < λ , assuming that µσ does not produce any label during F means that the proposer λ should be
the live processor with the lowest identifier. To deal with this issue, one can use a failure detector.

6 Self-Stabilizing Failure Detector

Liveness in Paxos is not guaranteed unless there is a unique proposer. The original Paxos algorithm assumes that the
choice of a distinguished proposer is done through an external module. In the sequel, we present an implementation
of a self-stabilizing failure detector that works under a partial synchronism assumption. Note that this assumption is
strong enough to implement an eventual perfect failure detector, but such a failure detector is not mandatory for our
tag system to stabilize. This brief section simply explains how a self-stabilizing implementation can be done; which
is, although not difficult, not obvious either. Each processor α has a vector Lα indexed by the processor identifiers;
each entry Lα [µ] is an integer whose value is comprised between 0 and some predefined maximum constant W . Every
processor α keeps broadcasting a hearbeat message 〈hb,α〉 containing its identifier (e.g., by using [7,8]). When the
processor α receives a heartbeat from processor β , it sets the entry Lα [β ] to zero, and increments the value of every
entry Lα [ρ], ρ 6= β that has value less than W . The detector output at processor α is the list Fα of every identifier
µ such that Lα [µ] = W . In other words, the processor α assesses that the processor β has crashed if and only if
Lα [β ] = W .

(Interleaving of Heartbeats). For any two live processors α and β , between two receptions of heartbeat 〈hb,β 〉
at processor α , there are strictly less than W receptions of heartbeats from other processors. Under this condition,
for every processor α , if the processor β is alive, then eventually the identifier β does not belong to the list Fα . A
distinguished proposer ρ can be defined as follows: ρ = min(µ; Lρ [µ] < W ).
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