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Abstract 

In this paper, we propose a high level query language for expressing analytic queries over big data 
sets. A main contribution of our approach is the clear separation between the conceptual and the 
physical level. An analytic query and its answer are defined at the conceptual level independently of 
the nature and location of data. The abstract definitions are then mapped to lower level evaluation 
mechanisms, taking into account the nature and location of data, as well as other related aspects. 
Our overall objective is to have query formulation done on an abstract level, while actual query 
evaluation can adapt to the evaluation mechanisms offered in each case. To achieve this objective it 
is necessary to raise the level of abstraction, by providing a sound mathematical basis for the 
mapping of queries to lower level evaluation mechanisms. However, raising the level of abstraction 
offers three advantages: (a) useful insights into the process of data analytics in general, and 
MapReduce in particular (b) a formal approach to the rewriting of analytic queries and the 
generation of query execution plans and (c) the possibility of leveraging structure and semantics in 
data in order to improve performance. We emphasize that, although theoretical in nature, this work 
uses only basic and well known mathematical concepts (namely functions and set partitions). 
\end{abstract} 

Category: H.2.4 {Database Management}{Systems}                                                                                
Terms: MapReduce, Query Language, Data Analytics 

Résumé  

Dans cet article nous proposons un langage de requêtes de haut niveau pour l’analyse de données 
massives. Une des contributions principales de notre approche est la séparation claire entre le niveau 
conceptuel et le niveau physique. Une requête analytique et sa réponse sont définies au niveau 
conceptuel, indépendamment de la nature et de l’emplacement des données sous‐jacentes. Les 
définitions abstraites sont ensuite traduites vers des mécanismes d’évaluation à un niveau inférieur, 
en tenant compte de la nature et de l’emplacement des données, ainsi que d’autres aspects 
pertinents à l’évaluation de requêtes. Notre objectif principal est de pouvoir formuler des requêtes à 
un niveau abstrait, et adapter leur évaluation aux mécanismes disponibles dans chaque 
environnement physique. Pour atteindre cet objectif il est nécessaire de raisonner à un niveau 
abstrait en se servant d’une base mathématique solide pour pouvoir ensuite traduire les requêtes 
vers des mécanismes d’évaluation concrets. Cette approche offre les avantages suivants : (a) une 
meilleure compréhension du processus d’analyse de données de manière générale, et de l’analyse de 
données suivant MapReduce en particulier (b) une approche formelle de la réécriture des requêtes 
analytiques et de la génération de plans d’évaluation de telles requêtes et (c) la possibilité de 
s’appuyer sur la structure et sur la sémantique de données pour améliorer les performances. A noter 
que, bien que notre approche soit de nature théorique, elle ne fait appel qu’à des notions 
mathématiques élémentaires (notamment des fonctions et des partitions d’un ensemble).    

Catégorie : H.2.4 {Database Management}{Systems}                                                                              
Termes : MapReduce, Query Language, Data Analytics 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Abstract. In this paper, we propose a high level query language for ex-
pressing analytic queries over big data sets. A main contribution of our
approach is the clear separation between the conceptual and the physi-
cal level. An analytic query and its answer are defined at the conceptual
level independently of the nature and location of data. The abstract def-
initions are then mapped to lower level evaluation mechanisms, taking
into account the nature and location of data, as well as other related
aspects. Our overall objective is to have query formulation done on an
abstract level, while actual query evaluation can adapt to the evaluation
mechanisms offered in each case. To achieve this objective it is necessary
to raise the level of abstraction, by providing a sound mathematical basis
for the mapping of queries to lower level evaluation mechanisms. How-
ever, raising the level of abstraction offers three advantages: (a) useful
insights into the process of data analytics in general, and MapReduce in
particular (b) a formal approach to the rewriting of analytic queries and
the generation of query execution plans and (c) the possibility of lever-
aging structure and semantics in data in order to improve performance.
We emphasize that, although theoretical in nature, this work uses only
basic and well known mathematical concepts (namely functions and set
partitions).

1 Introduction

Data analysis is a well established research field with multiple applications in
several domains. However, the methods and tools of data analysis evolve rapidly,
and in significant ways, as the size of data accumulated by modern applications
increases in unprecedented rates. The work reported in this paper contributes in
this evolution by proposing a high level query language for big data analytics.
In this section we first introduce the context of our work (i.e big data and big
data analytics) and then we present briefly our motivations and contributions.

1.1 Big Data

Today, scientists regularly encounter limitations due to the very large sizes of
data sets, in many areas, including meteorology, genomics, complex physics sim-
ulations, and biological and environmental research. The limitations also affect
Internet search, finance and business informatics.
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Examples of such large data sets include web logs, social network data, In-
ternet text and documents, Internet search indexing, call detail records, medical
records, photography archives, video archives, and large-scale e-commerce data.
Striking examples from the business world include Facebook, which handles 40
billion photos from its user base; and Walmart, which handles more than 1 mil-
lion customer transactions every hour, imported into databases estimated to
contain more than 2.5 petabytes of data.

The term “big data” refers to data sets with sizes beyond the ability of
commonly used software tools to capture, curate, manage, and process the data
within a reasonable lapse of time [30]. As a consequence, what is considered big
data varies depending on the capabilities of the organization managing the data
set. However, though big data is a moving target, what is considered big data
today is in the order of petabytes to exabytes[26].

It is worth noting here that size is not the only characteristic of big data. As
stated in [7], big data are high-volume, high-velocity, and/or high-variety infor-
mation assets that require new forms of processing to enable enhanced decision
making, insight discovery and process optimization.

The potential uses of big data, but also the difficulties connected with their
capture, curation, management and processing have been recognized at the high-
est administration levels [27][28].

However, the use of big data has drawn considerable criticism as well. Broader
critiques have been leveled at the assertion that big data will spell the end of
theory, focusing in particular on the notion that big data will always need to be
contextualized in their social, economic and political contexts [3][22]. Another
criticism comes from the fact that, even as companies invest huge amounts to
derive insight from information streaming in from suppliers and customers, less
than half of the employees have sufficiently mature processes and skills to do so.

Moreover, consumer privacy advocates are concerned about the threat to pri-
vacy represented by increasing storage and integration of personally identifiable
information; and expert panels have released various policy recommendations to
conform practice to expectations of privacy [38] (see also the articles in ”The
Guardian” and ”Washington Post”, June 6, 2013, on the controversial PRISM
project). All this criticism simply points to the fact that there is another side to
big data regarding societal benefits and risks [34][31].

However, inspite the criticism that the use of big data has drawn recently,
their collection and processing holds big promises for a variety of human activ-
ities. In fact, a new field centered on big data is emerging, usually referred to
as “data science”, and several universities and educational institutions already
offer degrees in this field [47]. [18].

1.2 Data Analytics

Big data is difficult to analyze and to work with using relational databases and
desktop statistics and visualization packages, requiring instead massively parallel
software running on tens, hundreds, or even thousands of servers [29][36][37].
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The analysis of data, or data analytics, is the process of highlighting useful
information drawn from big data sets, usually with the goal to support decision
making. Data analysis has multiple facets and approaches, encompassing diverse
techniques under a variety of names, in different business, science, and social
science domains. It differs from data mining which is a particular data analysis
technique that focuses on modeling and knowledge discovery for predictive rather
than purely descriptive purposes.

Big data analytics demands real or near-real time information delivery, and
latency is therefore avoided whenever and wherever possible. With this difficulty,
a new platform of big data tools has arisen, such as in the Apache Hadoop Big
Data Platform [13] derived from papers on Google’s MapReduce and Google File
System.

Actually, MapReduce [15] is emerging as a leading framework for performing
scalable parallel analytics and data mining; and there is already an impressive
body of literature on MapReduce, but also some controversy coming mainly from
the database community [44][4][45].

The success of MapReduce is due to several reasons: it is offered as a free and
open source implementation; it is easy to use [40]; it is widely used by Google,
Yahoo! and Facebook; and it has been shown to deliver excellent performance on
extreme scale benchmarks [14][51]. All these factors have resulted in the rapid
adoption of MapReduce for many different kinds of data analysis and processing
[10][33][49][39][11].

Originally, MapReduce was mainly used for Web indexing, text analytics,
and graph data mining. Today, as MapReduce is becoming the de facto data
analysis standard, it is also used for the analysis of structured data, an area
traditionally dominated by relational databases in data warehouse deployments.
Even though many argue that MapReduce is not optimal for analyzing struc-
tured data [44][40], it is nonetheless used increasingly frequently for that purpose
because of a growing tendency to unify the data management platform.

In fact, there is already a significant body of literature on integrating MapRe-
duce and relational database technology [48][2][12][53] [17][9], following one of
two approaches: either adding MapReduce features to a parallel database sys-
tem [20][12][52] or adding database technology to MapReduce[48][53] [2][17][9].
The second approach seems to be more promising as MapReduce is offered as a
free and open source implementation while there exists no widely available open
source parallel database system. The most notable representative of the second
approach is HadoopDB [2], which is commercialized by Hadapt [24][5].

1.3 Motivation and Contributions

There are many systems developed today for the parallel processing of big data
sets [21][48][35] [19][6][2]. All these systems co-exist, each carefully optimized
in accordance with the final application goals and constraints. However, their
evolution has resulted in an array of solutions catering to a wide range of diverse
application environments. Unfortunately, this has also fragmented the big data
solutions that are now adapted to particular types of applications.
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At the same time, applications have moved towards leveraging multiple paradigms
in conjunction, for instance combining real time data and historical data. This
has led to a pressing need for solutions that seamlessly and transparently allow
practitioners to mix different approaches that can function and provide answers
as an all-in-one solution.

Based on this observation, the overall objective of our work is to separate
clearly the conceptual and the physical level so that one can express analysis
tasks as queries at the conceptual level independently of how their evaluation is
done at the physical level. To achieve this objective we propose (a) a high level
language in which we can formulate queries and study their properties at the
conceptual level and (b) mappings to existing evaluation mechanisms (e.g. SQL
engines, MapReduce) which perform the actual evaluation of queries. In other
words, we propose a language which is agnostic of the application environment
as well as of the nature and location of data.

In defining our language, the basic notion that we use is that of attribute of
the data set. However, we view an attribute as a function from the data set to
some domain of values. For example, if the data set D is a set of tweets, then the
attribute “character count” (cc) is seen as a function cc : D → Integers such
that, for each tweet i, cc(i) is the number of characters in i.

A query in our language is defined to be a triple Q = (g,m, op) such that
g and m are attributes of the data set D, and op is an aggregate operation
applicable on m-values. The evaluation of Q is done in three steps as follows: (a)
group the items of the data set D using the values of g (i.e. items with the same
g-value gi are grouped together), (b) in each group of items thus created, extract
from D the m-value of each item in the group, and (c) aggregate the m-values
in each group to obtain a single value vi. The aggregate value vi is defined to be
the answer of Q on gi, that is ansQ(gi) = vi. This means that a query is a triple
of functions and its answer is also a function.

Conceptually, all one needs in order to perform the three-step query eval-
uation described above is the ability to extract attribute values from the data
set. Now, the method of extraction depends on the nature and location of data.
For example, if the data resides in relational tables then one can use SQL in
order to extract attribute values, whereas if the data resides in a distributed file
system then one needs specialized algorithms to do the extraction. We note in
this respect that, while raw, in-situ data processing is traditionally perceived
as a significant performance bottleneck, novel indexing and caching structures
gradually speed up raw data access.

Anyhow, at the conceptual level, we are not interested in how attribute values
are extracted from the data set. Rather, we are interested in using the definition
of a query and its answer in order to define formal methods for query rewriting
that will help improve performance of query evaluation at a lower level. Ad-
ditionally, we are interested in the use of rewriting to leverage structure and
semantics in data in order to improve performance.

As for user interaction, in our approach, the analyst interacts with the data
set using a set of attributes of interest that we call an “analysis context”. The
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analyst uses the attributes of his context to write analytic queries in the form
of triples, in the way described above. He can add or remove attributes to the
context at will, so an analysis context can be seen as a “light-weight” schema
which is agnostic of the nature and location of data. This is in sharp contrast
to “heavy-weight” schemas such as relational schemas, which are aware of the
structure of data into tables.

In previous work [8] a functional data model was presented as an alternative
to the relational model. Although the scope of that work is different than ours,
some of the functional operations used are similar to those that we use in the
definition of our language.

In [42], a functional model was presented for data analysis in data ware-
houses over star schemas, using a definition of query similar to ours. We build
on that work by enlarging the scope to big data environments, by introducing
the concept of analysis context and by presenting a formal method for query
rewriting and generating query execution plans. Moreover, we provide mappings
from our model to existing evaluation mechanisms (SQL engines, MapReduce)
where actual query evaluation takes place.

In other recent work [43], a language for data analysis was presented based
entirely on partitions of the data set. Moreover, a notion of query rewriting was
proposed based on the concept of quotient partition. However, no algorithms for
query rewriting were presented and no definition of query execution plan was
given.

The remaining of the paper is organized as follows. In section 2 we present
the conceptual model. In section 2.1 we present the abstract definition of a query
and its answer; in section 2.2 we introduce the concept of analysis context and
its query language; in section 2.3 we present a formal approach to the rewriting
of analytic queries; and in section 2.4 we use query rewriting to provide a formal
method for generating query execution plans. Section 3 is devoted to mappings
between the conceptual and the physical level. In section 3.1 we present a gen-
eral, conceptual scheme for query evaluation based on our abstract definition
of query. Then we present the mapping of our conceptual evaluation scheme to
three important, practical application environments: MapReduce (section 3.2),
Column Databases (section 3.3) and Row Databases (section 3.4). Section 4
contains some concluding remarks and outlines research perspectives.

We emphasize that, although theoretical in nature, our approach uses only
basic and well known mathematical concepts, namely functions and set parti-
tions.

2 The Formal Model

In the formal model that we present in this section, we consider a data set D,
whose elements we call data items, and we make two assumptions:

– Item identification: We assume that D consists of data items that can be
uniquely identified. For example, if D is a set of tweets then each tweet can
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be identified by a time stamp or by a URI; and if D is the set of tuples in
a relational table then each tuple can be identified by a tuple identifier or
some key of the table.

– Attributes as functions: We assume that each attribute of D is a function
associating each data item of D with a value, in some set of values. For
example, if D is a set of tweets then the attribute Date is seen as a function
associating each tweet in D with the date in which the tweet was sent. In
the remaining of the paper we shall use the terms “function on D” and
“attribute of D” interchangeably.

We note that the attributes-as-functions assumption is compatible with the
notion of attribute in both column databases and row databases (i.e. relational
databases). Indeed, a column database stores columns instead of rows of data
(e.g. MonetDB). At the conceptual level, a column database can be seen as
storing a set of functions of the form fA : IDA → A, where A is an attribute and
IDA is a subset of the set ID of identifiers used by the column store. Similarly,
in a table T of a row database, we can associate each attribute A of T with a
function fA : TIDT → A, where TIDT is the set of tuple identifiers in T ; this
function is defined as follows: fA(t) = t(A), for each tuple identifier t in TIDT ,
where t(A) denotes the value of t on attribute A. Note that if we assume TIDT

to be an extra attribute of T , then the function fA can be extracted from T by
projection over TIDT and A; in other words, fA = projTIDT ,A(T ).

We emphasize that, apart from the two assumptions above, we make no other
assumption whatsoever throughout the paper. In other words, the data set can
be structured or unstructured, homogeneous or heterogeneous, centrally stored
or distributed. Our results apply in all these cases. Moreover, as we shall see in
Section 3, if the data is structured, then our approach can leverage structure
and semantics to improve performance.

2.1 The definition of analytic query and its answer

As we have already mentioned in the introduction, a query in our language is
defined to be a triple Q = (g,m, op) such that g and m are attributes of the data
set D, and op is an aggregate operation applicable on m-values. The attributes
g and m are called the “grouping attribute” and the “measuring attribute”,
respectively. The evaluation of Q is done in three steps as follows:

– Grouping: Group the items of the data set D using the values of g (i.e.
items with the same g-value gi are grouped together)

– Measuring: In each group of items thus created, extract from D the m-value
of each item in the group

– Reduction: Aggregate the m-values in each group to obtain a single value
vi

The aggregate value vi is defined to be the answer of Q on gi, that is
ansQ(gi) = vi.
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Quantity 

Product Branch 

b p 

q d Date D 

Fig. 1. Running example

Let us see an example in detail in order to motivate the definition of “query”
in our approach. We shall use this example as our running example throughout
the paper. Suppose D is the set of all delivery invoices over a year, in a distribu-
tion center (e.g. Walmart), which delivers products of various types in a number
of branches. A delivery invoice has an identifier (e.g. an integer) and shows the
date of delivery, the branch in which the delivery took place, the type of product
delivered (e.g. CocaLight) and the quantity (i.e. the number of units delivered
of that type of product). There is a separate invoice for each type of product
delivered.

The data of all invoices during the year is stored in a database for analysis
purposes. The stored data is shown schematically in Figure 1, where D represents
the set of all delivery invoices and the arrows represent attributes of D. For
each stored invoice, the function d returns the date in which the delivery took
place; the function b returns the branch in which the delivery occurred; and the
functions p and q return the type of product delivered and the quantity (i.e. the
number of units) of that type of product.

D Qty Branch 
b q 

1 
2 
3 
4 
5 
6 
7 

Branch-1 
 
Branch-2 
 
Branch-3 

200 
100 
200 
400 
100 
400 
100 

300 

600 

600 

TotQty 
sum 

Fig. 2. Computing the total quantity delivered by branch

Suppose now that we want to know the total quantity delivered to each
branch (during the year). This computation needs the extensions of the functions
b and q. Figure 2 shows a toy example of the data returned by b and q, where
the data set D consists of seven invoices, numbered 1 to 7. In order to find the
total quantity by branch we proceed in three steps as follows:
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Grouping: During this step we group together all invoices referring to the
same branch (using the function b). We obtain the following groups of invoices
(as shown in the figure):

– Branch-1: 1, 2
– Branch-2: 3, 4
– Branch-3: 5, 6, 7

Measuring: In each group of the previous step, we find the quantity corre-
sponding to each invoice (using the function q):

– Branch-1: 200, 100
– Branch-2: 200, 400
– Branch-3: 100, 400, 100

Reduction: In each group of the previous step, we sum up the quantities
found:

– Branch-1: 200+100= 300
– Branch-2: 200+400= 600
– Branch-3: 100+400+100= 600

Then the association of each branch to the corresponding total quantity is
the desired result (called TotQty in the figure):

– Branch-1 → 300
– Branch-2 → 600
– Branch-3 → 600

Branch-1 
Branch-2 
Branch-3 

300 
600 
600 

Branch TotQty answer intension 

answer extension 

Q= (b, q, sum) 

evaluation of Q 

ansQ 

(a) 

(b) 

D Qty Branch 
b q 

1 
2 
3 
4 
5 
6 
7 

Branch-1 
 
Branch-2 
 
Branch-3 

200 
100 
200 
400 
100 
400 
100 

300 

600 

600 

TotQty 
sum 

Fig. 3. An analytic query and its answer
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We view the ordered triple Q = (b, q, sum) as a query over D (see Figure 3
(a)), the function ansQ : Branch → TotQty as the answer to Q (see Figure 3
(b)), and the computations in Figure 3 (a) as the query evaluation process. Note
that what makes the association of branches to total quantities possible is the
fact that b and q have a common source (which is D in this example).

The function b that appears first in the triple (b, q, sum) and is used in the
grouping step is called the grouping function; the function q that appears second
in the triple is called the measuring function, or the measure; and the function
sum that appears third in the triple is called the reduction operation or the
aggregate operation. Actually, a triple such as (b, q, sum) should be regarded as
the specification of an analysis task to be carried out over the data set D.

Note that, as our example shows, the requirements for a triple such as
(b, q, sum) to qualify as a query over D are the following:

– the grouping and measuring function must both be attributes of D (i.e.
functions with D as their common source)

– the reduction operation must be an operation among those applicable over
the target of the measuring function

Also note that, as the only requirement for b and q is that they must be
attributes of D, each of them can play the role of either a grouping function or
a measuring function. In other words, the triple (q, b, count) is a valid query and
asks for the number of branches by quantity delivered. To answer this query we
use q to group together all invoices having the same quantity delivered (this is
the grouping step); then we use b to find the branches that were delivered that
quantity (this is the measuring step); and finally we count the branches in each
group (this is the reduction step). For example, in Figure 2, if we consider the
quantity 200, then we find that there are 2 branches that were delivered that
quantity (namely Branch-1 and Branch-2).

To see another example of query, suppose that D is a set of tweets accumu-
lated over a year; dd is the function associating each tweet t with the date dd(t)
in which the tweet was sent; and cc is the function associating each tweet t with
its character count, cc(t). If we want to know the average number of characters
in a tweet by date, then we can follow the same steps as in the delivery invoices
example: first we group the tweets by date (using dd); then we find the number
of characters per tweet (using cc); and finally we take the average of the char-
acter counts in each group (using “average” as the reduction operation). The
appropriate query formulation in this case is (dd, cc, avg).

We note that the grouping and reduction steps can be applied independently
of the nature of data. Indeed, in the delivery invoices example, the data will
most likely be a set of records in a relational table (therefore structured data),
whereas in the tweets example the data is text of variable length (therefore
unstructured data). Yet in both cases the definition of a query and its answer
is done in the same way. However, in order to actually evaluate the answer, we
need the extensions of the grouping and measuring attribute (as was the case
for attributes b and q in Figure 2). These extensions will have to be extracted
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from the underlying data set. This means that for each attribute (grouping or
measuring attribute) we need an algorithm for extracting that attribute’s value
from each data item.

In view of the preceding discussion, we can now give the formal definition of
a query and its answer in our model.

Definition 1 (Query). Let D = {d1, . . . , dn} be a finite set. An analytic query
(or simply query) over D is a triple Q = (g,m, op) such that g : D → A and
m : D → V are attributes of D, and op is an operation over V taking its values
in a set W .

The reduction operation op is actually a function that associates every finite
tuple of elements from V with an element in a set W . In our running example,
where the reduction operation is “sum”, the set V is the set of integers (number
of units delivered) and so is W (sums of quantities delivered); therefore in this
example we have V = W . However, in general, V can be different than W .
Indeed, in our tweets example, where V is the set of integers (character counts)
and op is the operation “average”, the set W is the set of real numbers (averages
of character counts) and therefore V 6= W .

It is important to note that the reduction operation must be among those
operations that are applicable on V . For example, if V is the set of integers (as
in the tweets example), then the reduction operation can be any among “sum”,
“average”, “median”, “count”, “max”, “min”, and so on.

In order to define formally the answer to a query over D, we need to define
formally the steps of grouping and reduction.

Definition 2 (Grouping).
Let D = {d1, . . . , dn} be a finite set, let g : D → A be an attribute of D and

let {a1, . . . , ak} be the values of g over D (clearly, k ≤ n). We call grouping of
D by g the partition induced by g on D.

We denote this partition by πg, therefore we have:

πg = {g−1(a1), . . . , g−1(ak)}

Note: We recall that a partition of D is any collection of nonempty subsets
of D (also called the “blocks” of the partition), with the following properties: (a)
the subsets are pairwise disjoint and (b) their union is D.

For example, in Figure 3 (a), the grouping of D by b consists of three groups,
one for each of the values of b:

– b−1(Branch-1) = {1, 2}
– b−1(Branch-2) = {3, 4}
– b−1(Branch-3) = {5, 6, 7}

We now define formally the reduction operation.
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Definition 3 (Reduction).
Let D = {d1, . . . , dn} be a finite set, let m : D → V be an attribute of D,

and let op be an operation over V with values in a set W . The reduction of m
with respect to op, denoted red(m, op), is a value of W defined as follows:

red(m, op) = op(〈m(d1), . . . ,m(dn)〉)

Note that in the above definition of reduction we use the notation op(〈m(d1),
. . . ,m(dn)〉) to emphasize that all values of m must be taken into account, even
if there are repeated values (i.e. even if m(di) = m(dj), for some di 6= dj). For
example, in Figure 3(a), although we have q(5) = q(7) = 100, the value 100 is
taken twice into account when computing the sum of all values.

Here is an example of reduction of the function q : D → Quantity in Figure
3 (a): red(q, sum) = 200 + 100 + 200 + 400 + 100 + 400 + 100 = 1500. Other
examples of reductions in that same figure are the following:

– red(q/b−1(Branch-1), sum) = 200 + 100 = 300
– red(q/b−1(Branch-2), sum) = 200 + 400 = 600
– red(q/b−1(Branch-3), sum) = 100 + 400 + 100 = 600

Here q/b−1(Branch-i) denotes the restriction of function q to the subset
b−1(Branch-i) of D, i= 1, 2, 3.

We can now define formally the notion of query answer.

Definition 4 (Query Answer). Let Q = (g,m, op) be a query over D, where
D = {d1, . . . , dn} is a finite set, g : D → A and m : D → V are attributes of D,
and op is an operation over V with values in a set W . Let {a1, . . . , ak} be the
values of g over D. The answer to Q, denoted ansQ, is a function from the set
of values of g to W defined by:

ansQ(ai) = red(m/g−1(ai), op), i = 1, 2, ..., k,

Figure 3(b) shows schematically the answer, ansQ (which is a function); and
Figure 4 shows the relationship between ansQ and the functions appearing in the
query Q. It is worth noting that a query is a triple of functions and the answer is
also a function. Moreover, as we shall see later, the fact that ansQ(ai) is given by
a closed formula facilitates the proof of theorems when studying query rewriting.

It should be clear from the above definition of query answer that the task
of evaluating Q can be easily parallelized. Indeed, if for each i we consider the
evaluation of ansQ(ai) as a sub-task then we can assign the sub-tasks to a number
of processors, each processor receiving one or more sub-tasks. Each processor
then executes its own sub-task(s) independently of all other processors, and the
results from all processors, put together, constitute the answer to the query.

Note: While evaluating a sub-task, a processor may decide to further partition
the sub-task block into smaller blocks, before performing reduction (and this can
be done recursively). This is possible under the assumption that the reduction
operation is “distributive”, a concept to be defined later on.
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Fig. 4. A query Q and its answer, ansQ

For example, in Figure 2, if the sub-tasks ansQ(Branch-1), ansQ(Branch-2)
and ansQ(Branch-3) are assigned to three different processors, then the first pro-
cessor will produce as a result ansQ(Branch-1) = 300, the second ansQ(Branch-
2) = 600, and the third ansQ(Branch-3) = 600; and all three results, put to-
gether, constitute the answer to the query.

A query Q = (g,m, op) over D can be enriched by introducing functional
restriction at either of two levels: at the level of attributes or at the level of the
query answer (recall that the query answer is itself a function). This is stated
formally in the following definition.

Definition 5 (Restricted Query).
Let Q = (g,m, op) be a query over D as defined earlier. Then the following

are also queries over D:

– Attribute-Restricted Query: (g/E,m, op), where E is any subset of D
(i.e. of the domain of definition of g).

– Result-Restricted Query: (g,m, op)/F , where F is any subset of the target
of g (i.e. of the domain of definition of ansQ).

In our discussions we shall use the term “restricted query” to mean a query
which is attribute-restricted and/or result-restricted. Conceptually, the evalua-
tion of a restricted query is straightforward:

Attribute-Restricted Query: to evaluate the query (g/E,m, op), compute the
restriction g/E and then evaluate the query (g/E,m, op) over E

Result-Restricted Query: to evaluate the query (g,m, op)/F , evaluate the query
Q = (g,m, op) over D, to obtain its answer (i.e. the function ansQ), and
then compute the restriction ansQ/F

Attribute- and Result-Restricted Query: to evaluate the query (g/E,m, op)/F
evaluate the query Q′ = (g/E,m, op) over E and then compute the restric-
tion ansQ′/F

As an example of attribute-restricted query, refer to Figure 3(a) and suppose
that we want the totals by branch for the subset E = {3, 4, 5, 6} of D. Formally,
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this query (call itQ1) is written asQ1 = (b/E, q, sum), and its answer is obtained
by first computing the restriction b/E and then evaluating Q1 over E. We find
the following answer:

– ansQ1
(Branch-2) = 600 (because b(3) = b(4) =Branch-2, q(3) = 200 and

q(4) = 400)

– ansQ1
(Branch-3) = 500 (because q(5) = q(6) =Branch-3, q(5) = 100 and

6(9) = 400)

Note that the grouping based on b/E creates a group for Branch-3 which
is different than that obtained when grouping is based on b; whereas the group
for Branch-2 is the same when the grouping is based either on g/E or on g
(as invoices 3 and 4 are present both in D and in E). Also note that Branch-1
does not appear among the values of q/E, as no invoice in E is associated with
Branch-1.

Now, as an example of result-restricted query, assume we want the totals
by branch, but only for branches Branch-1 and Branch-2. Formally, this query
(call it Q2) is written as Q2 = (b, q, sum)/F , where F = {Branch-1, Branch-2}.
Its answer is obtained by first evaluating the query Q = (b, q, sum) over D (as
shown in Figure 3) and then restricting its answer, ansQ, to the subset F of its
domain of definition. We find the following answer:

– ansQ2
(Branch-1) = 300

– ansQ1(Branch-2) = 600

In other words, we keep from ansQ only its values on Branch-1 and Branch-2
and their corresponding totals.

Note that, in practice, it is often the case that some query Q is used as a basis
for defining several restricted queries. In such cases, the definition of Q is stored
in a cache together with its answer at some point in time, in order to accelerate
the evaluation of all restricted queries using Q as a basis. Such a stored query is
an example of what is usually referred to as a materialized view. One problem
with materialized views is their maintenance, as the stored answer might need
to be changed when the data set D changes (see for example [23]).

One issue regarding restricted queries is how to define the sets E and F that
appear in their definitions. More generally, given a function h : X → Y , the
issue is how to define a subset E of X to which we want the function h to be
restricted. The obvious way is to enumerate the elements of E as we did in our
examples above (assuming E is finite). There is however another way to define E
which is in fact generally used in data management. It consists in (a) considering
a second function, say r : X → Z, with the same domain of definition as h, (b)
specifying a subset W of Z and (c) defining E to be equal to the inverse image
of W under r, that is E = r−1(W ).

As an example, referring to Figure 1, we can define a subset E of D by giving
a set W of products of interest, and defining E to be the set of all invoices in
D that correspond to one of the given products; formally, E = p−1(W ). This is
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precisely what is done when querying a relational table T by issuing a statement
such as:

Select * From T Where Product=P1 or Product=P2 .

Indeed, this statement returns all tuples whose value on attribute Product is
either P1 or P2.

Note that we can even use the function h itself for defining a subset E of its
domain of definition. For example, consider the function b of Figure 2 and let
W = {Branch-1,Branch-2}. Then we can define E = b−1(W ) = {1, 2, 3, 4}.

We end this section with two important remarks regarding the definition
of a query and its answer. First, the mathematical concepts used are actually
elementary: (a) the concept of function, (b) the inverse of a function and the
partition that this inverse induces on its domain of definition, and (c) the re-
striction of a function to a subset of its domain of definition. As we have seen
in this section these concepts are sufficient in order to define an analytic query
and its answer at the conceptual level; and as we shall see shortly, these same
concepts are sufficient in order to define formally query rewriting.

Our second remark concerns the fact that, in a query Q = (g,m, op), the
functions g and m might not be defined on every item of D. Therefore grouping
and reduction as described earlier can be performed only on the set of items on
which g and m are both defined. However, in order to simplify the presentation,
and without loss of generality, we shall assume that g and m are defined on
all items of D. In other words, D actually represents the common domain of
definition of g and m, defined as D = def(g)∩def(m), where def(g) and def(m)
denote the domains of definition of g and m, respectively.

2.2 Analysis Context

Analysts are usually interested in analyzing a data set in many ways, using a
number of different attributes in their analytic queries. For example, in Figure
1, one can define analytic queries using any of the attributes b, p and q. These
are “factual”, or direct attributes of D as their values appear on the delivery
invoices.

However, apart from these factual or direct attributes, analysts might be
interested in attributes that are not direct but can be “derived” from the di-
rect attributes. Figure 5(a) shows several derived attributes. For instance, the
attributes m and y are derived attributes as their values can be computed from
those of attribute d (e.g. from the date 05/06/1986 one can derive the month
06/1986 and the year 1986). Similarly, the attribute r can be derived from geo-
graphical information on the locations of the branches; and the attributes s and
c might be possible to derive from data carried by RFID tags embedded in the
products themselves.

Roughly speaking, the set of attributes of interest to a group of analysts is
what we call an analysis context (or simply a context); and these attributes can
be direct or derived attributes of the data set. Hence the following definition.
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Definition 6 (Analysis Context). Let D be a data set and let A be the set
of all attributes of D (direct or derived). An analysis context over D (or simply
“context”) is any set of attributes from A.

Figure 5(a) shows a context in our running example, containing direct and
derived attributes. Figure 5(b) shows three other contexts, one of which is not
rooted in D (it is rooted in Product).

Actually, an analysis context is the interface between the analyst and the data
set, therefore it can be seen as a schema. However, in contrast to, say, a relational
schema, an analysis context is not aware of structure in data. Moreover, a context
is not fixed: analysts can remove attributes from their context at will, or add
new attributes if necessary for the analysis process. In other words, a context is
a kind of “light weight”, dynamic schema reflecting the analyst’s needs.

As a context customizes the needs of a group of analysts, a parallel can be
made with the notion of view in relational databases or the notion of data mart
in data warehouses.

Note that a context is a directed labelled graph whose nodes represent data
sets, and whose edges are functions (i.e. attributes) between these data sets. We
note here that the nodes represent sets of values that are independent from each
other (in much the same way as attribute domains in the relational model are
assumed to be sets of independent values).

Seen as syntactic objects, the edges of a context are triples of the form (source,
label, target), therefore two edges are different if they differ in at least one
component of this triple. This implies that two edges can have the same label if
they have different source and/or different target. Moreover, two different edges
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can have the same source and the same target as long as they have different
labels (we call such edges “parallel edges”).

Most importantly, a context is always an acyclic graph, in the sense described
by the following proposition.

Proposition 1 (Context Acyclicity).
Let C be a context over D. Then for every node A of C the only possible cycle
on A is ιA, that is the identity function on A.

Proof. Let A and B be two nodes of C, and suppose there is a cycle on A
consisting of two functions: f : A → B and g : B → A. Suppose that there is
some element a in A such that g ◦ f(a) = a′ and a 6= a′. This implies that a′

depends on a, a contradiction to our assumption that the nodes of C represent
sets of independent values. Therefore the only possibility to have a cycle on A
is when g ◦ f(a) = a for all a in A; in other words the only possible cycle on A
is ιA, where ιA is the identity function on A.

A typical example where identity cycles occur is when prices of products
are given in two or more different currencies, such as the price in dollars and
the price in euros of the same product: Price-in-Dollars → Price-in-Euros and
Price-in-Euros → Price-in-Dollars. In such cases the two nodes are equivalent,
in the sense that there is one-to-one correspondence between their values.

We note that, although acyclic, a context is not necessarily a tree. It can
have one or more roots and it can also have parallel edges and parallel paths
(“parallel” in the sense “same source and same target”).

In general, the users of a context have two main ways for expressing queries.
First, they can express queries on any node of the context - not just on D.
For example, in the context of Figure 5(a), suppose we add an attribute u :
Product → UnitPrice, giving the unit price for each product. Then one can
formulate the following query on Product: (c, u,max), asking for the maximum
unit price by product category.

Second, users of a context can combine its attributes to form complex group-
ing functions. For example, in the context of Figure 5(a) one can ask for the
total quantities by region, using as grouping function the composition of the
attributes b and r: (r ◦ b, q, sum).

In our model, we can form complex grouping functions using the following
four operations on functions: composition, pairing, restriction and Cartesian
product projection. These operations form the so called functional algebra (see
for example [42]). We note that the operations of the functional algebra are well
known, elementary operations except probably for pairing, which is defined as
follows.

Definition 7 (Pairing). Let f : X → Y and g : X → Z be two functions with
common domain X. The pairing of f and g, denoted by f × g is a function from
X to Y × Z defined as follows: f × g(x) = (f(x), g(x)), for all x in X

The above definition of pairing can be extended to more than two functions
in the obvious way. Roughly speaking, pairing works as a tuple constructor.
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Indeed, if we view the elements of X as identifiers, then for each x in X the
pairing constructs a tuple of the images of x under its input functions; and this
tuple is identified by x.

To see an example of using pairing, refer to Figure 5(a) and consider the
following query: (b×p, q, sum). This query asks for the total quantities delivered
by branch and product (i.e. its answer associates every pair (branch, product)
with a total quantity).

Note that the order of the images in the result of pairing is immaterial, as
long as each image is prefixed by the function that produced it. In other words,
pairing can be actually defined as follows: f × g(x) = {f : f(x), g : g(x)}, for all
x ∈ X. This definition implies that pairing is a commutative operation. On the
other hand, when pairing two or more other pairings we obtain nested sets. If we
agree to “flatten” the results, then pairing becomes an associative operation as
well, and we can parenthesize at will, or even omit inner parentheses altogether,
without ambiguity.

Using the operations of the functional algebra we can form not only complex
grouping functions but also complex conditions when defining restrictions. For
example, in Figure 5(a), we can ask for the total quantities by region and sup-
plier, only for the month of January, using the following query: (((r ◦ b) × (s ◦
p))/E, q, sum), where E = {x|x ∈ D ∧m ◦ d(x) = January}

Region 
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Category Supplier 
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r 
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s c 

q d Date D 

Product Branch 

h 

Fig. 6. A context with parallel paths

As another example, refer to Figure 6, showing a context with two parallel
paths from D to Region. In this context, for each supplier, the attribute h gives
the region where the suppliers’ headquarters is located. Suppose now that we
want the total quantities by Category, only for those invoices in D for which
the branch is located in the same region as the headquarters of the product
supplier. This is expressed by the following query: ((h ◦ c)/E, q, sum), where
E = {x|x ∈ D ∧ (h ◦ s ◦ p)(x) = (r ◦ b)(x)}.

Note that in the above restricted query we use equality of two functional
expressions in order to define attribute restriction. As we shall see in the section
on rewriting (Section 2.3), equality of two functional expressions can be also
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used as an integrity constraint on the context itself, and as such it can be used
in query rewriting.

In general, a query over a context is a usual query (as defined in the previous
section) in which we can use functional expressions instead of just functions.
More formally, a functional expression over a context is defined as follows.

Definition 8 (Functional Expression). A functional expression over a con-
text C is either an edge of C or a well formed expression whose operands are
edges and whose operations are those of the functional algebra.

We note that if we evaluate a functional expression we obtain again a func-
tion. Therefore every functional expression e can be associated with a source and
a target, defined recursively based on the notions of source and target of the edges
in C. For example, if e1 = r ◦ b then source(e1) = D and target(e1) = Region;
similarly, if e2 = (r ◦ b) × p then source(e2) = D and target(e2) = Region ×
Product.

e = r�b 
 

e’= c�p 

Quantity 

e e’ 

q d Date D 

Category Region 

Fig. 7. A context with “complex” attributes (and their definitions)

Functional expressions should be regarded as complex attributes that are de-
rived from other attributes using operations of the functional algebra. Therefore
they can be used in defining contexts. For example, the context of Figure 7 uses
two direct attributes (d and q) and two complex attributes (e and e′), whose
definitions are given in the figure. Queries over such extended contexts can be
defined as usual. For example, in the context of Figure 7, the following query
asks for the total quantities by region and category: (e×e′, q, sum). Actually, the
labels e and e′ can be seen as macros facilitating the reference to possibly com-
plex expressions. They work in much the same way as view names in relational
databases.

We are now ready to give the definition of the query language of a context.

Definition 9 (The Query Language of a Context). Let C be a context. A
query over C is a triple (e, e′, op) such that e and e′ have a common source (that
can be any node of C) and op is an operation over the target of e′. Restricted
queries are defined in the same way as we have seen in the previous section. The
set of all queries over C is called the query language of C.

Now, as stated in Proposition 1 above, a context is an acyclic graph in which
the only possible cycle on a node A is ιA, the identity function on A. In view
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of this proposition, we shall assume that every node A of a context is endowed
with the identity function ιA. Moreover, we shall assume that every context C is
endowed with an extra node denoted by K such that: (a) K denotes a singleton
set {All} and (b) for every node A of C there is an edge from A to K denoted
by κA; that is κA : A→ K.

From a strictly technical point of view, the introduction of the functions ιA
and κA is justified as follows. The inverses of all functions on A induce the set
of all partitions of A. This set is partially ordered by: π ≤ π′ if each block of π
is a subset of a block of π′. Under this ordering the set of partitions becomes a
complete lattice with least, or bottom element the fine partition (i.e. the partition
{{a}/a ∈ A}); and with largest, or top element the coarse partition (i.e. the
partition {{A}}). Now, the fine partition of A is induced by any injective function
on A, and in particular by ιA, the identity function on A; and the coarse partition
of A is induced by any constant function on A, and in particular by κA

3.

Clearly, given a context C, we can use ιA and κA in the same way as any other
edge of C. In particular, we can use them in queries or in functional expressions.
For example, referring to Figure 5(a), consider the following queries using ιA:

Q1 = (ιD, q, sum) and Q2 = (q, ιD, count)

During the evaluation of Q1, in the grouping step, the function ιD puts each
element of D in a single block. Therefore summing up the values of q in each
block we simply find the value of q on the single element of D in that block; then
the measuring step simply returns this value of q. It follows that ansQ1

= q.

As for the query Q2, the grouping function q groups together all invoices
having the same delivered quantity; and as ιD doesn’t change the values in each
block, the answer to Q2 is the number of invoices by quantity delivered.

The function ιA is typically used for finding the cardinality of A, using the
following query: (κA, ιA, count). The constant function κA, on the other hand, is
typically used for finding the reduction of the whole of A under some measuring
function.

Consider for example the following query: Q3 = (κD, q, sum). During the
evaluation of Q3, in the grouping step, the function κD puts all elements of D
in a single block. Therefore by summing up the values of q in that block we find
the total of all quantities delivered (i.e. for all dates, branches and products).

Regarding the use of ιA and κA in functional expressions, we note the fol-
lowing facts: for any nodes A and B, and any functional expression e : A→ B,
we have:

e ◦ ιB = ιA ◦ e = e

e ◦ κB = κA

3 The reason why we denote the unique value of κ by All is in order to hint to the
fact that the function κA puts all the elements of A in a single block of the partition
it induces on A
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One important aspect regarding the evaluation of analytic queries in a con-
text is visualization of the results. In our model, as the answer to a query is a
function, its visualization can be done in any of the known ways for representing
a (finite) function.

For example, consider the query Q = (b× (s◦p), q, sum) asking for the totals
by branch and supplier. The answer to this query is the following function:

ansQ : Branch× Supplier → TotQty

One way to represent its extension is by a binary table < y, TotQty(y) >, in
which each pair y = (bi, sj) of a branch bi and a supplier sj , corresponds to a
total quantity TotQty(y) (this table can also be seen as a ternary table with
Branch, Supplier and TotQty as its columns). This is the standard way for
representing a function by its graph.

However, a different (but equivalent) representation is possible, based on the
following observation: any triple of values (x, y, z) is equivalent to the triple
(x, (y, z)), in the sense that they both carry the same information but encoded
in different ways. Following this observation, the above answer can be also rep-
resented as follows: if we fix a value bi of b then for each value sj of s there
corresponds a value of TotQty. In other words, each branch bi is associated with
a function fi : Supplier → TotQty. Therefore, for each branch bi, one can “vi-
sualize” the corresponding function fi using some visualization template (e.g. a
histogram, a pie or any other template). Similarly, if we fix a value si of s then
for each value bj of b there corresponds a value of TotQty. In other words, each
supplier si is associated with a function hi : Branch → TotQty, providing a
different visualization of the answer.

The existence of two or more representations of the answer, combined with
various visualization templates, is highly valuable in data analysis. Indeed, one
might envisage a user friendly interface allowing the user to formulate an ana-
lytic query, and then explore its answer by switching from one representation
to another, while selecting appropriate templates for visualizing each represen-
tation. In doing so, the user can explore the answer from different angles, thus
getting better insight into the answer, and “discovering” patterns of information
that might miss in a single representation.

In general, when the target of the grouping function is a Cartesian product,
there is a formal method for generating all possible representations of the an-
swer using Currification [46]. However, a detailed treatment of visualization and
exploration of query results lies outside the scope of the present paper.

As a final remark, the fact that a context is an acyclic graph implies that it
might have one or more roots. The existence of a single root means that data
analysis concerns a single data set, such as the set D of our running example.
The existence of two or more roots means that data analysis concerns two or
more data sets possibly sharing attributes (and possibly being of different nature
and structure). In such cases, one might want to combine information coming
from queries over the two or more data sets to obtain further insights into the
data.



21

2.3 Query Rewriting

In the previous section, we presented the definition of our query language over
an analysis context. In section 3, we shall see how queries in our model can be
evaluated by providing mappings to existing evaluation mechanisms. However,
no matter how a query is evaluated, an orthogonal issue is the following: how
can we rewrite a given query, at the conceptual level, in terms of one or more
other queries. In this section we present the basic rewriting rules of our model.
First, we note that query rewriting has two major applications:

– Optimizing the evaluation of a query: This is done by rewriting an incoming
query in terms of the results of queries which have already been evaluated
and their results stored (for example in a cache). The stored queries and
their results are usually referred to as “materialized views”. In query op-
timization, finding a rewriting of a query using a set of materialized views
can yield a more efficient query execution plan.This problem also arises in
data integration and data warehousing systems, where data sources can be
described as precomputed views over a mediated schema.

– Optimizing the evaluation of a set Q of queries: In this approach, the queries
of Q are arranged in a graph, in which there is an edge from query Q to
query Q′ if Q′ can be rewritten in terms of Q. The problem is then to find
an optimal execution plan for the whole set Q, (using eventually materialized
views if such views are available).

Query rewriting has been studied extensively in the 1990s (see [25] for a
survey), and it is still an active topic of research in areas such as the semantic
web [50]. Basically, as far as we are concerned in this paper, there are three
distinct cases of rewriting a set Q of queries:
Q = {(g,m, op1), ..., (g,m, opn)}: Here, the set Q contains n queries, all hav-

ing the same grouping function and the same measuring function but possi-
bly different reduction operations. In this case we can rewrite Q as follows:
Q = ((g,m), {op1, ..., opn}), meaning that grouping and measuring is done only
once and the n reduction operations are applied to the result of measuring. In
other words, grouping and measuring are “factored out”.

Q = {(g,m1, op1), ..., (g,mn, opn)}: Here, the set Q contains n queries,
all having the same grouping function but possibly different measuring func-
tions and reduction operations. In this case we can rewrite Q as follows: Q =
(g, {(m1, op1), ..., (mn, opn)}), meaning that grouping is done only once whereas
the n measuring and reduction steps are applied to the result of grouping. In
other words, grouping is “factored out”.
Q = {(g1,m, op), ..., (gn,m, op)}: Here, the set Q contains n queries, having

the same measuring function and the same reduction operation but possibly
different grouping functions. There is no obvious rewriting of the set Q this
time, and this is precisely the problem that we tackle in this section.

Our approach to query rewriting is based on the form that a functional
expression can have when used as a grouping function. To see intuitively how
our approach works, consider the following queries on the context of Figure 5(a):
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Q = (p, q, sum), asking for the totals by product
Q′ = (c ◦ p, q, sum), asking for the totals by product category

Clearly, the query Q′ can be answered directly, following the abstract defi-
nition of answer (i.e. by grouping, measuring and reduction). However, Q′ can
also be answered indirectly, if we know (a) the totals by product and (b) which
products are in which category. Then all we have to do is to sum up the totals by
product in each category to find the totals by category. Now, the totals by prod-
uct are given by the answer to Q, and the association of products with categories
is given by the function c. Therefore the query Q′ can be answered by the follow-
ing query Q′′, which uses the answer to Q as its measure: Q′′ = (c, ansQ, sum),
asking for the sum of answers to Q by product category. Note that the query
Q′′ is well formed as c and ansQ have Product as their (common) source.

This observation leads to our basic rewriting rule, stated formally in Propo-
sition 2 below. However, in order to state this proposition, we need the following
definition of “distributive operation”.

Definition 10 (Distributive Operation).
Let X be a finite set, let m : X → V be an attribute of X, and let op be an

operation over V with values in a set W . Then op is called distributive if for
every partition π = {X1, . . . , Xr} of X the following holds:

– red(m, op) = op(red(m/X1, op) . . . , red(m/Xr, op))

Many common operations (such as sum, max, min etc.) are distributive but
some common operations, such as “average” are not, as the following example
shows: avg(1, 2, 3, 4, 5) 6= avg(avg(1, 2), avg(3, 4, 5)). Although there are “correc-
tive” algorithms allowing the use of many non-distributive operations (average,
median, etc.), we shall not pursue this subject any further. Rather, in order to
simplify the discussion, we shall tacitly assume that all reduction operations are
distributive.

Proposition 2 (Rewriting Compositions). Let C be a context; let f : A→ B
and g : B → C be two (composable) edges of C. Let m : A→ V be an edge of C
and let op be a distributive operation on V (with values in V ). Let Q = (f,m, op),
Q′ = (g ◦ f,m, op), Q′′ = (g, ansQ, op) be three queries on C. Then we have:
ansQ′ = ansQ′′

Proof. Observe first that, as ansQ is a function with source B, the query Q′′ is
well formed, that is, its grouping function g and its measuring function ansQ
have the same source (namely B), and op is an operation on the target of ansQ.

Let c ∈ C. It follows from well known properties of functions that:

if g−1(c) = {b1, . . . , bk} then (g ◦ f)−1(c) = f−1(b1)
⋃
. . .

⋃
f−1(bk)

From our definition of answer, we have:

ansQ′(c) = red(m/(g ◦ f)−1(c), op)
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As op is a distributive operation and the family {f−1(b1), . . . , f−1(bk)} is a
partition of (g ◦ f)−1(c), we have:

ansQ′(c) = red(m/(g ◦ f)−1(c), op)

= op(red(m/f−1(b1), op), . . . , red(m/f−1(bk), op))

= op(ansQ(b1), . . . , ansQ(bk))

= red(m/g−1(c), op)

= ansQ′′(c)

Therefore ansQ′(c) = ansQ′′(c) for all c in C and this concludes the proof.

In the above proposition, it is important to note that Q is a query on A,
whereasQ′′ (which is used for the rewriting ofQ) is a query on B. This fact points
to an important side effect, namely the possibility of avoiding join computations
through rewriting.

Indeed, suppose that the extensions of f and g reside in different files, say F
and G respectively. If the query Q′ is evaluated directly (i.e. without rewriting)
then a join of F and G followed by a projection is necessary in order to compute
the composition g ◦ f (which serves as the grouping function for Q′). On the
other hand, if Q′ is evaluated indirectly (i.e. using rewriting), then this can be
done without joining F and G as follows: first evaluate the query Q on A (in the
file F ), and then the query Q′′ on B (in the file G) to obtain the answer to Q′

(since ansQ′ = ansQ′′).
Therefore, when using rewriting, the extension of f (the grouping function of

Q) is extracted from F , and the extension of g (the grouping function of Q′′) is
extracted from G, and no join is needed. In other words, the grouping functions
f and g are each extracted from the file in which its extension resides and no
join is needed.

In view of the previous proposition, we shall adopt the following notation for
rewritings:

The Basic Rewriting Rule : (g ◦ f,m, op) = (g, (f,m, op), op)

We shall refer to the above notation as a rewriting of (g ◦ f,m, op) based
on g. The meaning of this rewriting is as follows: to obtain the answer of the
query on the left, first replace the “nested query” Q = (f,m, op) on the right
by its answer, ansQ, and then evaluate the resulting query (g, ansQ, op). The
basic rewriting rule will be used in the next section for generating efficient query
execution plans.

Now, using the basic rewriting rule we can derive a rewriting rule for pairings.
To this end, we need the following proposition which ties together composition,
pairing and projection of Cartesian product of sets. Its proof is an immediate
consequence of the definitions (and it is actually a rephrasing of the mathematical
definition of Cartesian product of sets [41]).
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Proposition 3 (Decomposing a pairing). Let f : X → Y and g : X → Z be
two functions with common domain X. Then the following hold:

– f = projY ◦ (f × g) and g = projZ ◦ (f × g)

In other words, each of the factors of f × g can be reconstructed from f × g
by composition with the corresponding projection function. This leads naturally
to the following rewriting rule for pairings (which is a direct consequence of our
basic rewriting rule and the above proposition).

Proposition 4 (Rewriting with Pairings).
Let C be a context; let f : A→ B, g : A→ C be two edges of C with common

source. Then we have:

– (f,m, op) = (projB , (f × g,m, op), op)
– (g,m, op) = (projC , (f × g,m, op), op)

To see how this rewriting rule for pairings works, refer to Figure 5(a) and
suppose that the query Q = (b × p, q, sum) has been evaluated and its result
stored (e.g. in a cache). Then we can compute the totals by branch and the
totals by product from the result of Q, using the following rewritings:

(b, q, sum) = (projBranch, (b× p, q, sum), sum)
(p, q, sum) = (projProduct, (b× p, q, sum), sum)

Clearly, the more the rewritings the better the chances for improving perfor-
mance during the evaluation of a set of queries. One way to increase the number
of possible rewritings among queries is to use properties of functional opera-
tions. A prime example in case is distributivity of composition over pairing as
stated in the following proposition. Its proof is an immediate consequence of the
definitions.

Proposition 5 (Composition Distributes over Pairing).

Let C be a context; let f : A→ B, g : B → C and h : B → D be three edges
of C. Then we have: (g × h) ◦ f = (g ◦ f)× (h ◦ f)

This proposition can be used to derive additional rewriting rules. For exam-
ple, refer to Figure 5(a) and consider the following rewritings:

((s× c) ◦ p, q, sum) = ((s× c), (p, q, sum), sum)
(s ◦ p, q, sum) = (projSupplier, ((s× c) ◦ p, q, sum), sum)
(c ◦ p, q, sum) = (projCategory, ((s× c) ◦ p, q, sum), sum)

The first rewriting allows to compute the totals by supplier and category
from the totals by product; the second rewriting allows to compute the totals by
supplier from the totals by supplier and category; and the third rewriting allows
to compute the totals by category from the totals by supplier and category.
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equality constraint: 
r�b= h�s�p 

(a) 

Q1 = (b, q, sum)  asking for the totals by branch 
Q2= (p, q, sum)  asking for the totals by product 
Q3= ((r�b, q, sum)  asking for the totals by region 
Q4= (s�p, q, sum)  asking for the totals by supplier 

query rewritings 
using the constraint 

(b) 

queries 

Q1= ((r�b, q, sum) = (r, (b, q, sum), sum) 
Q2= ((r�b, q, sum) = (h�s�p, q, sum) = (h�s, (p, q, sum), sum)  
Q3= ((r�b, q, sum) = (h�s�p, q, sum) = (h, (sop, q, sum), sum) 
Q4= ((s�p, q, sum) = (s, (p, q, sum), sum)  

Region 

Quantity 

Category Supplier 

b 

r 

p 

s c 

q d Date D 

Product Branch 

h 

Fig. 8. A context with equality constraint and examples of query rewritings using the
constraint

What makes it possible to have the second and third rewriting is the fact that
composition distributes over pairing (Proposition 5).

Another way to increase the possibilities of rewritings among queries is to
make use of equality constraints over the context (if any). For example, in the
previous section, we mentioned the following equality constraint (also shown in
Figure 8 (a)): r ◦ b = h ◦ c ◦ p, meaning that the invoices in the data set D
concern branches that are located in the same region as the headquarters of
their suppliers. Figure 8(b) shows examples of how we can use this constraint in
query rewriting. Note that, in the absence of the constraint, we can’t have the
second and third rewriting shown in the figure.

We note here that in traditional database systems, constraints are typically
expressed as part of a stable schema, and involve the structure of data. If the
data is unstructured then there is no stable schema and equality constraints
seem to provide a natural alternative. Indeed, equality constraints express the
semantics of data based on attributes without reference to structure. However,
a detailed study of constraints lies outside the scope of the present paper.

In the next section we use query rewriting as the main tool for defining and
generating query execution plans for a set of queries.

2.4 Query Execution Plans

A query execution plan is an ordered set of steps used to access data. Our goal
in this section is to define formally the concept of query execution plan, as well
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as its graphical representation using the concepts introduced so far. We describe
how one can generate execution plans but do not address the issue of generating
optimal query execution plans.

The formal definition of a query execution plan in our model relies essentially
on two concepts, namely that of rewriting graph and that of query execution
graph that we define next.

As we have seen earlier, at the conceptual level, a query in our model can be
evaluated either directly, based on the definition of its answer, or after rewriting.
The goal of rewriting an incoming query Q′ in terms of an already evaluated
query Q is to reuse the result of Q in evaluating Q′ (assuming that the result of
Q has been stored either in temporary memory or in a cache).

In this section we consider a more general problem that can be stated roughly
as follows: given a set of queries that have to be evaluated in a given analysis
context, define an ordered set of steps such that (a) each query is evaluated once
(and only once) and (b) the evaluation order implied by rewriting is maintained.
Our approach is based on the following two observations:

Sharing Two or more queries might have rewritings in terms of the same query,
and therefore they can share its (stored) result.

Choice A given query might have two or more different rewritings in terms of
other queries in the set, therefore a choice is necessary (according to some
criterion).

Let us see an example illustrating the above observations. Consider again the
context of Figure 8(a) with its equality constraint: r ◦ b = h ◦ s ◦ p, where the
function h gives the region in which the headquarters of each supplier is located.

We recall that an equality between two functional expressions can be used
in two different ways: (a) as a means to formulate a restricted query or (b) as a
constraint over the data set being analyzed (as in Figure 8(a)).

In Figure 8(b) we see four queries, Q1, Q2, Q3 and Q4 and four rewrit-
ings among these queries. Note that what makes possible the second and third
rewriting is precisely the presence of the equality constraint. These rewritings are
shown in Figure 9(a) encoded in the form of a graph, where each edge Q→ Q′

with label l means that Q′ can be rewritten in terms of Q using the attribute
l of the context. For example, the edge from Q1 to Q3 has label r because the
following rewriting holds: (r ◦ b, q, sum) = (r, (b, q, sum), sum). We shall call
this graph the “query rewriting graph”. However, in order to define this concept
formally we need the following definition.

Definition 11 (Comparing Grouping Functions).
Let f and g be two functions having the same source, say A.

– (a) We shall say that f is less than or equal to g, denoted by f ≤ g, if for
all a, a′ in A, f(a) = f(a′) implies g(a) = g(a′); or equivalently, if πf ≤ πg
(i.e. if the partition of A induced by f is less than or equal to the partition
of A induced by g).
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– (b) We shall say that f and g are equivalent, denoted by f ≡ g, if f ≤ g and
g ≤ f (i.e. if πf = πg).

This definition can be extended to functional expressions in the obvious way.
We note that two queries having equivalent grouping functions, the same mea-
suring function and the same reduction operation are equivalent queries in the
sense that they always return the same answer. This follows from the fact that
equivalent grouping functions induce the same partition on their common source.

Definition 12 (Query Rewriting Graph). Let Q be a set of queries to be
evaluated in a given analysis context, such that:

– No two queries have equivalent grouping functions
– All queries have the same measuring function and the same reduction oper-

ation.

We define the query rewriting graph of Q to be a directed graph with labelled
edges such that:

– The nodes of the graph are the queries of Q
– There is an edge from node Q to node Q′ if Q′ can be rewritten in terms

of Q. The label of the edge Q → Q′ is the function on which is based the
rewriting of Q′ in terms of Q

Now, rewriting is a binary relation, which is actually a partial order over
queries. Indeed, we can show that rewriting is a reflexive, transitive and anti-
symmetric relation (up to equivalence of grouping functions):

Reflexivity Every query Q can be rewritten in terms of itself (trivially, based
on the identity function).

Transitivity Consider three queries Q = (g,m, op), Q′ = (g′,m, op) and Q′′ =
(g′′,m, op) such that: Q rewrites Q′ and Q′ rewrites Q′′. It follows that: there
exist functions h′, h′′ such that g = h′ ◦ g′ and g′ = h′′ ◦ g′′. Therefore we
have: g = h′ ◦ g′ = h′ ◦ h′′ ◦ g′′ = (h′ ◦ h′′) ◦ g′′ It follows that Q rewrites Q′′

based on (h′ ◦ h′′).
Anti-symmetry Suppose Q rewrites Q′ and Q′ rewrites Q. It follows that there

exist functions h′, h′′ such that g′ = h′◦g and g = h′′◦g′. Therefore we have:
g = h′ ◦ h′′ ◦ g. It follows that h′ ◦ h′′ is the identity function and therefore
Q = Q′.

We shall denote by ≤w the above partial order defined by query rewriting.
Recall now that, given a set of queries, its query rewriting graph gives all

possible rewritings among the queries in the set; and that each edge Q → Q′

implies that query Q should be evaluated before query Q′ if we want Q′ to
use the result of Q. Moreover, as we observed earlier, each query in the query
rewriting graph might have more than one rewriting in terms of other queries;
therefore a choice of one among the possible rewritings of each query is necessary
before evaluating the given set of queries. So the problem is to find a subgraph
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of the query rewriting graph such that (a) the evaluation order implied by the
rewritings is maintained and (b) each query is evaluated exactly once. These
observations lead to the following definition of query execution graph.

Definition 13 (Query Execution Graph). A query execution graph for a set
Q of queries is defined to be a subgraph EG of the query rewriting graph of Q
such that:

– The nodes of EG are the queries of Q (i.e. EG has the same nodes as the
query rewriting graph of Q)

– Each node of EG has at most one predecessor

Note that every query execution graph is an acyclic graph. This follows from
the fact that query rewriting is a partial order and therefore the rewriting graph
is an acyclic graph.

two different  
execution graphs  
EG-1 and EG-2 

two different  
execution plans 
EP-1.1 and EP-1.2 
derived from EG-1 

EG-1 EG-2 

EP-1.1 EP-1.2 

(b) 

(c) 

Q1= (b, q, sum) 
Q2= (p, q, sum) 
Q3= (r�b, q, sum)= (h�s�p, q, sum) 
Q4= (s�p, q, sum) 

a set of queries to be executed  
and their rewriting graph RG 

r s 

h

h�s 

Q1 Q2 

Q4 Q3 

(a) 
RG 

r s 

Q1 Q2 

Q4 Q3 
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Q1 Q2 
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Q4 Q3 

s 

h
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Q4 Q3 

Fig. 9. A query rewriting graph RG, two of its query execution graphs, EG-1 and
EG-2, and two query execution plans EP-1.1 and EP-1.2 from EG-1

Figure 9(a) shows a set of queries and their rewriting graph RG; and Figure
9(b) shows two query execution graphs, EG-1 and EG-2 of RG. The fact that
an edge of the rewriting graph is not present in a query execution graph simply
means that the corresponding rewriting is not considered as an option (for some
reason). In other words the query execution graph allows the freedom of not
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using some rewritings present in the rewriting graph. On the other hand, both,
rewriting graphs and query execution graphs might have isolated nodes (as in
EG-1). An isolated node simply means that it will be evaluated in isolation,
neither reusing the result of another query nor being reused in the evaluation of
another query).

Now, while the rewriting graph of a set Q of queries gives all possible rewrit-
ings among the queries in Q, each query execution graph of Q gives those rewrit-
ings that are to be used during the evaluation of the queries in Q. The rewritings
of a query execution graph indicate the order in which the queries in Q should
be executed in order to reuse the results of previously executed queries.

Privileging query rewriting is certainly reasonable, as query rewriting takes
into account the semantics of data. However, apart from rewriting there might
be other factors that influence the overall performance of query evaluation. In
general, these other factors include the following:

– The physical storage of data, namely their format and their possible distri-
bution

– The model of distributed computation
– The availability of cached query results
– The availability of processors and their configuration
– Load balancing
– etc.

In this work we privilege query rewriting and do not discuss the above factors
any further. Instead, we assume that their influence is expressed as an ordering
of the queries to be evaluated. We shall call this ordering the external order and
we shall denote it by ≤e. Actually, what we call a query execution plan, is a
query execution graph together with an external order.

Definition 14 (Query Execution Plan). A query execution plan for a set
Q of queries is defined to be a query execution graph together with an external
order ≤e compatible with the rewriting order ≤w.

Compatibility in the above definition means that the resulting graph is
acyclic. Technically speaking, this means that the relation ≤w ∪ ≤e is an acyclic
relation; we shall denote this relation by ≤. In case ≤w ∪ ≤e is not an acyclic
relation, we shall remove a minimal number of external edges so that it becomes
acyclic (and this is a non-deterministic process). In other words, we shall privi-
lege the rewriting order while leaving in the result as big a part of the external
order as possible.

We note that a query execution graph is itself a query execution plan (with
the trivial order as external order). We also note that the rewriting order ≤w

depends on the semantics of queries whereas the external order ≤e is application
dependent.

Figure 9(c) shows two query execution plans, EP-1.1 and EP-1.2, derived
from the query execution graph EG-1. The rewriting order ≤w is indicated by
the edges in solid line, whereas the external order ≤e is indicated by the edges in
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dotted line. The basic difference between an external edge and a rewriting edge is
that the latter carries semantic information in addition to ordering information.
For example, in EP-1.1 the external edge from Q3 to Q4 simply means that
evaluation of Q4 must follow that of Q3, whereas the rewriting edge from Q2 to
Q4 means that evaluation of Q4 must follow that of Q2 and that the evaluation
of Q4 must use the results produced by the evaluation of Q2.

We note that it is not necessary for external edges to have labels. However,
such labels might be useful. Indeed, the label of an external edge might be a
clickable name, holding the address of a short text (e.g. in a web page) explaining
the reasons for having the external edge. For example, in Figure 9(c), one reason
for having the external edge from Q3 to Q4 could be that the evaluation of Q3

uses much fewer resources than that of Q4.
One of the intentions behind the definition of a query execution plan is that

nodes which are non-comparable under ≤ can be evaluated in any order, or in
parallel; whereas the evaluation of comparable nodes has to follow the order ≤.

For example, in the query execution plan EP-1.1, the nodes Q1 and Q2 can
be evaluated in any order, or in parallel. This means that the evaluation of Q1

can precede or follow that of Q2, or it can be done in parallel with that of Q2.
By the way, a node such as Q1 is called an isolated node as it is comparable to
no other node in the query execution plan. On the other hand, the evaluation
of nodes Q3 and Q4 will take place after that of Q2, and moreover will use the
results of the evaluation of Q2. However, Q3 will be evaluated before Q4, as
indicated by the external edge from Q3 to Q4.

As another example, in the query execution plan EP-1.2, the node Q2 will be
evaluated after Q1 but will not use the results of the evaluation of Q1; whereas
the nodes Q3 and Q4 will be evaluated after Q2, in any order or in parallel, but
will both use the result of the evaluation of Q2.

We note that the evaluation of a set Q of queries according to a query exe-
cution plan can be organized in various ways. For example, as query execution
plans are acyclic graphs, one can organize evaluation to take place “levelwise”.
To explain how this is done, we first recall briefly the concept of “level” in an
acyclic graph.

Definition 15 (Query Level). The level of a query Q in a query execution
plan, denoted by l(Q), is defined as follows:

– if Q is a root then l(Q) = 0
– else l(Q) is the length of a longest path from a root to Q

We denote by Li the set of all queries of level i, i = 0, . . . k, where k is the
maximum length of path among all paths from a root of the query execution
plan. For example, in the query execution plan EP-1.1 of Figure 9(c) the queries
at level i are as follows, i = 0, 1, 2 (in this example, the length of a longest path
is 2):

L0 = {Q1, Q2}, L1 = {Q3}, L2 = {Q4}
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The following facts are immediate consequences of the above definition of
level:

Fact 1 No two queries of Li are comparable, i = 0, . . . k (therefore the queries
of Li can be executed in any order or in parallel)

Fact 2 Each query Q′ at level i has at most one predecessor at level i− 1 (i.e.
there is at most one rewriting of Q′ in terms of a query Q at level i− 1)

The sets Li can be computed by topological sorting of the query execution
plan, in time linear with respect to n + e, where n is the number of nodes and
e is the number of edges of the query execution plan. Once the levels have been
computed, evaluation can be done in a number of different ways. For example,
one way is to follow the order of the levels (i.e. first executing the queries of L0,
then the queries of L1, and so on).

It is important to note that, as all nodes of any given level are pairwise non
comparable, their evaluation can be done in any order or in parallel. This means,
in particular, that once the evaluation of a node Q at level i has terminated, we
can proceed with the evaluation of the successors of Q (if any) at level i+1 (and
this independently of all other nodes at level i).

We end this section with a few remarks regarding query execution plans.
First, in our definition of query execution plan, we have privileged the rewriting
order over the external order. Clearly one could privilege the external order over
the rewriting order (or mix the two, provided that the result is a partial order).
The method described above would remain the same, as the only thing that
matters is acyclicity.

Second, our definition of query execution plan is “static”, in the sense that
the execution plan is defined before query evaluation starts, and it is followed
until the last query is evaluated. However, our formal framework applies also
in dynamic environments in which the actual order (i.e. the next query to be
evaluated) is decided “on the fly” depending on the current values of a set of
parameters (e.g. currently available processors). In this case, we start not with
a query execution plan but with the query rewriting graph to which we add the
external order; the resulting graph shows all possibilities of rewritings but will
possibly have conflicts with the external order. Choosing one among all possible
rewritings of a query and resolving conflicts between the rewriting order and the
external order is done on the fly when deciding the next query to be evaluated.
However, we shall not elaborate any further on dynamic query execution plans
in this paper.

3 From Theory to Practice

As we mentioned in the introduction, data analysis is the process of highlighting
useful information “hidden” in big data sets, usually with the goal to support
decision making. Data analysis usually requires the execution of several analysis
tasks, and a query Q = (g,m, op), as defined in section 2.1, can be seen as a
means to specify one such task.
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In the formal model presented in the previous section, there is a clear sepa-
ration between the conceptual and the physical level. An analytic query and its
answer are defined at the conceptual level independently of the nature and loca-
tion of data. However, the abstract definitions have to be mapped to lower level
evaluation mechanisms, at the physical level, where the actual query evaluation
is done.

In this section we first propose a conceptual query evaluation scheme and
then we explain how this scheme can be mapped in three important cases,
namely in MapReduce, in column databases and in row databases (i.e. relational
databases). Moreover, we explain how our model can leverage structure and se-
mantics in data in order to improve the performance of the query evaluation
process.

3.1 Our Conceptual Query Evaluation Scheme

At the conceptual level, the answer to a query Q = (g,m, op) is defined in a
straightforward manner that we briefly recall here. Let g1, . . . , gn be the values
of g and let πg = {G1, . . . , Gn} be the partition of D into blocks, induced by g
(i.e. Gj = g−1(gj), j = 1, . . . , n). Then the answer of Q on value gj is defined as
follows: ansQ(gj) = red(m/Gj , op). In other words the answer of Q on value gj
is the reduction (under op) of the values of m on the block Gj = g−1(gj).

However, this abstract definition of the answer assumes that the (extensions
of the) functions g and m are stored in some repository and that they are ac-
cessible for processing. In practice, this assumption is rarely true. Actually, the
functions g and m usually have to be extracted from the (possibly) much larger
data set D in which they are embedded; and their extraction may require one
or more joins, which are expensive operations.

Moreover, the data set from which the functions g and m are extracted is
usually distributed, and this further complicates their extraction. Indeed, the
data assets of an institution usually reside in several different repositories that
can even be geographically distributed.

For example, in a big company with several branches, it is very likely that
the sales transactions in each branch will be stored in a local database. As a
result, data analysis queries concerning the company data assets, as a whole,
will have to take into account data distribution. Moreover, even if we assume
that all transactions are stored in a central repository, the size of the data set
might require their deployment over several computational nodes for reasons of
parallel processing. Indeed, in some application environments, the size of the data
set is such that massive parallel processing is the only way to achieve acceptable
performance.

The conceptual evaluation scheme that we propose in this section consists of
three steps:

– Query input preparation
– πg construction
– πg reduction
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In what follows we explain each step in detail. More precisely, we consider
the query Q = (g,m, op) over the data set D of Figure 3, and we explain how
we can obtain its answer following the abstract definition of answer.

Query input preparation Let us call query input, denoted by IN(Q), the set
of triples (i, g(i),m(i)), where i is the data item identifier and g(i), m(i) are the
values of i under the attributes g and m, respectively. This set of triples contains
the data necessary for evaluating the query Q (together with op which we shall
tacitly assume). We distinguish two cases, as shown in Figure 10:

(1, Branch-1, 200) 
(2, Branch-1, 100) 
(3, Branch-2, 200) 

(4, Branch-2, 400) 
(5, Branch-3, 100) 
(6, Branch-3, 400) 
(7, Branch-3, 100) 

(1, Branch-1, 200) 
(2, Branch-1, 100) 
(3, Branch-2, 200) 

IN(Q)=  
(i, g(i), m(i)) 

I1 

I2 

D 

Q= (g, m, op) 
extraction of triples 

partitioning  D 
D1 IP1 

D2 IP2 

IN(Q)=  
(i, g(i), m(i)) 

I1 

I2 

D1 

Q= (g, m, op) 

extraction of triples 
IP1 

IP2 D2 

Case 1:  
D is centrally stored  

Case 2:  
D is distributed 

(4, Branch-2, 400) 
(5, Branch-3, 100) 
(6, Branch-3, 400) 
(7, Branch-3, 100) 

Fig. 10. Query input preparation

– Case 1: The data set D is centrally stored.
In this case, D is first partitioned into k subsets D1, . . . , Dk, and each sub-
set Dj is assigned for processing to an input processor IPj (also called a
“mapper”), which extracts the triples (i, g(i),m(i)) from Dj , j = 1, . . . , k
(in Figure 10, in order to simplify our discussions, we have assumed that
each subset is processed by exactly one input processor). The result of this
phase is a partition πIN(Q) = {I1, . . . , Ik} of the input set IN(Q). In the
example of Figure 10, we have k = 2. Note that the k processors may reside
in n nodes, where n ≤ k.

– Case 2: The dataset D is distributed in the form of k data sets, D1, . . . , Dk,
stored in k locations (which might be geographically distant).
Let us assume that there is a processor IPj (a mapper) assigned to each
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location for extracting the triples (i, g(i),m(i)) at that location, and let Ij
be the set of triples extracted from Dj , j = 1, . . . , k. Again, the result of this
phase is a partition πIN(Q) = {I1, . . . , Ik} of the input set IN(Q).

We call the above process query input preparation. In each case, it returns k
sets of triples I1, . . . , Ik that form a partition πIN(Q) of the query input IN(Q).
Therefore πIN(Q) = {I1, . . . , Ik}.

πg construction This step constructs the partition πg = {G1, . . . , Gn}, whose
reduction will give the answer to the query. The partition πg is constructed using
the partition πIN(Q) of the previous step.

Note first that πIN(Q) and πg are partitions of the same set, namely the query
input IN(Q). Therefore, conceptually, each block Gj of πg intersects each block
Ii of πIN(Q) (some intersections might be empty).

It follows that a block Gj can be constructed from its intersections with the
blocks of πIN(Q). Let us call a fragment of Gj in πIN(Q) each of its intersections
with a block of πIN(Q); and let us denote by Fji the fragment of Gj in block Ii
of πIN(Q) (i.e. Fji = Gj ∩ Ii). Then we have: Gj = Fj1 ∪ . . . ∪ Fjk.

Therefore, conceptually, each block Gj of πg is made up of its fragments
in πIN(Q). Now, to find the fragment Fji of Gj in Ii, it is sufficient to do the
following: group together all triples of Ii having the same value gj .

However, each block Ii might also contain fragments of blocks of πg other
than Gj . One way to find all fragments of blocks of πg contained in Ii is to
sort the triples of Ii according to their values under g. Let us call fragment
construction the process of finding all fragments of blocks of πg contained in Ii,
for i = 1, . . . , k. Clearly, finding the fragments of blocks of πg contained in two
different blocks of πIN(Q) can be done in parallel.

Now, in order to construct each block Gj of πg, the fragments of Gj in πIN(Q)

will have to be put together. Let us suppose that the construction of each block
Gj of πg is under the responsibility of an output processor OPj (also called a
“reducer”). Let us also suppose that as soon as a processor IPi computes its
fragments, it sends them to the appropriate output processors (i.e. it sends F1i

to OP1, F12 to OP2, and so on). Clearly, as soon as processor OPj receives the
fragments sent by all processors IPi it can construct the block Gj by taking
the union of all fragments received. The output of this step is the partition πg
(hence the name “πg construction”). The whole process is shown schematically
in Figure 11.

πg reduction Once the block Gj has been constructed by processor OPj , it
can be reduced (using op) to obtain the answer on the value gj of g: ansQ(gj) =
red(m/Gj , op); and once this is done for j = 1, . . . , n, the evaluation of the
answer is complete.

Figure 11 shows schematically the πg reduction phase as well as the flow of
information during the three steps that lead to the computation of the answer,
namely query input preparation, πg construction, and πg reduction.
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In the following sections we shall see how these steps can be implemented in
MapReduce, in column databases and in row databases.

πg ansQ πIN(Q) 

πg - construction query input preparation πg - reduction 

summing up  
quantities in 
each block 

IP1 

IP2 

OP1 

OP2 

OP3 

(1, Branch-1, 200) 
(2, Branch-1, 100) 

(3, Branch-2, 200) 

(4, Branch-2, 400) 

(5, Branch-3, 100) 
(6, Branch-3, 400) 
(7, Branch-3, 100) 

GBranch-1 

GBranch-2 

GBranch-3 

(1, Branch-1, 200) 
(2, Branch-1, 100) 
(3, Branch-2, 200) 

IN(Q)=  
(i, g(i), m(i)) 

I1 

I2 

(4, Branch-2, 400) 
(5, Branch-3, 100) 
(6, Branch-3, 400) 
(7, Branch-3, 100) 

300 
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600 

U�

U�

U�

(see figure 10) 

sending fragments 
constructing 
the blocks of πg 

Fig. 11. The three steps of our conceptual evaluation scheme

However, before ending this section, we would like to make a few remarks
regarding our conceptual evaluation scheme. First, in order to simplify the pre-
sentation, we have assumed as many input processors as there are blocks in
the partition πIN(Q). Obviously this assumption is not necessary, as an input
processor might be able to process two or more blocks; and conversely, a block
might be further partitioned and assigned to two or more different processors. In
general, the number of blocks into which the set of triples is partitioned (i.e. the
partition πIN(Q)), the number of input processors used and the assignment of
blocks of πIN(Q) to input processors depend on several practical considerations
(e.g. load balancing) that we do not discuss here.

The second remark is that the output processors do not have to work syn-
chronously. In other words, as soon as the output processor OPj receives all
fragments of Gj , it can proceed to construct Gj (by taking the union of all frag-
ments) and then it can reduce Gj to obtain ansQ(Gj) - and this independently
of the remaining output processors.

The third remark is that our conceptual evaluation scheme can be improved
by applying “early reduction”. This means that, instead of sending fragments
to the output processors, each input processor first reduces the fragments it
contains, and then sends fragment reductions to the output processors (instead
of sending the fragments themselves). However, early reduction can be done only
if each output processor can compute the reduction of a block of πg from the
reductions of its fragments - and this depends on the reduction operation: if the
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reduction operation is distributive, in the sense defined in section 2.3 (Definition
10) then early reduction is possible.

As a final remark, the conceptual evaluation scheme that we have seen in
this section makes no claim of efficiency. Its only purpose is to show how the
abstract definition of answer at the conceptual level can be reformulated so that
to be mapped to existing evaluation mechanisms that work on the actual data.

In what follows we shall see first how our conceptual evaluation scheme can
be mapped to MapReduce (section 3.2); then to column databases (section 3.3);
and finally to row databases (section 3.4). In the last two cases, we shall also
explain how the presence of functional dependencies influences the rewriting
process.

3.2 MapReduce

Our conceptual evaluation scheme can be implemented in MapReduce in a
straightforward manner using the correspondences shown in Figure 12(a).

Our evaluation scheme Map Reduce evaluation 
query input preparation map 
fragment construction sorting 
union of fragments merging 
πg reduction reduction 
input processor mapper 
output processor reducer 

πg const- 
ruction shuffling 

Our terminology  Map Reduce Terminology 
value of g key 
value of m value 
(g(i), m(i)) key-value pair 

Fig. 12. The mapping of our evaluation scheme to MapReduce

Moreover, the correspondence between our terminology and that of MapRe-
duce is shown in Figure 12 (b).

We note that, in MapReduce, fragment construction is done by sorting the
triples of each block of πIN(Q). Clearly, this sorting can be done only under the
assumption that the codomain of g is linearly ordered - which is usually the case.
However, there are cases where this assumption does not hold. For example if g
is the attribute “Color” then sorting of colors is not possible unless the colors
are given some numeric code (at an additional cost). In such cases, grouping the
triples of each block of πIN(Q) must be done in some other way.
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Similarly, if the fragments of each block of πg are sorted then it is possible
to perform their union efficiently using merge-sort. Otherwise their union must
be done in some other way.

Finally, we note that, in MapReduce, the construction of fragments of πg
blocks by the input processors (using sorting), together with the construction of
πg blocks by the output processors (using merge-sort) is referred to, collectively,
as “shuffling”.

3.3 Column Stores

There has been a significant amount of recent work on column oriented databases
(column-stores) [1].

A column-oriented database stores data tables as sections of columns of data
rather than as rows of data. In comparison, traditional relational databases
store data in rows (row-stores). Column oriented databases have been shown
to perform more than an order of magnitude better than traditional relational
databases on analytical workloads such as those found in data warehouses, deci-
sion support, and business intelligence applications, or other ad-hoc query sys-
tems where aggregates are computed over large numbers of similar data items.
The reason behind this performance difference is straightforward: column-stores
are more I/O efficient for read-only queries since they only have to read from
disk (or from memory) those attributes accessed by a query.

At the conceptual level, a column oriented database can be seen as storing
a set of functions (i.e. attributes) of the form fA : IDA → A, where IDA is
a subset of a set ID of identifiers used throughout the column store, and A is
some set of values. Therefore mapping our conceptual evaluation scheme to a
column store is straightforward. Indeed, let gA : IDA → A and mB : IDB → B
be attributes in a column store, and suppose we want to evaluate the query
Q = (gA,mB , op), following our conceptual evaluation scheme.

During the query input preparation step, the query input set IN(Q) =
{(i, gA(i),mB(i))/i ∈ IDA ∩ IDB} is computed by accessing the attributes
gA : IDA → A and mB : IDB → B in the column store, and by “joining”
them on ID. In other words, IN(Q) = {(i, gA(i),mB(i))/i ∈ IDA ∩ IDB}. This
completes the query input preparation step. The remaining two steps, namely,
πgA construction and πgA reduction can be performed (in the way explained
earlier) by passing the set IN(Q) to MapReduce.

We note that if the attributes gA and mB reside in different column stores
then we can compute the set IN(Q) by performing a semi-join.

3.4 Row Stores

In this section, we explain how a query Q = (g,m, op) in our language can be
evaluated when the data set D is stored in a relational database. We present
two different methods for doing the evaluation. Following the first method, the
set IN(Q) of triples is extracted from the database, using SQL, and then passed
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to MapReduce for the remaining two steps, namely πg construction and πg re-
duction. Following the second method, the query Q is mapped directly to an
SQL group-by query and evaluation is done by the database management sys-
tem. In this second case, we show how our approach can leverage structure and
semantics in data in order to improve performance of query evaluation.

Extracting the set of triples from the Database First we recall that the
projection of a table T over an attribute A can be seen as a function, namely
projA : TIDT → A, defined as follows: projA(t) = t(A), for all tuples t in T .
Here t(A) denotes the value of tuple t on attribute A (also called the A-value of
t); and TIDT denotes the set of tuple identifiers in T . Note that this definition
of projection corresponds to the concept of attribute in our approach, and also
to the concept of attribute in column databases. Also note that, as TIDT does
not appear explicitly in a relational table, it can be replaced by a key of the
table.

Clearly, the definition of projection can be extended to a projection projAB :
TIDT → AB over two (or more) attributes as follows: projAB(t) = t(AB), for
all tuples t in T , where t(AB) denotes the value of tuple t over the attribute
set AB (also called the AB-value of t). We note that the projection projAB can
be defined in an equivalent way using our definition of pairing (Definition 7):
projAB = projA × projB

Consider now a query Q = (gA,mB , op) in our language, using two attributes
gA and mB , where A and B are attributes appearing in the database, and let us
see how we can evaluate Q using our conceptual evaluation scheme. In the first
step (i.e. during query input preparation), in order to extract the set of triples
IN(Q), we distinguish two cases:

– Case 1: The attributes A and B appear in the same table, say T .
In this case, we can obtain IN(Q) by projection of T over the attribute set
{TIDT , A,B}, that is: IN(Q) = projTID,A,B(T ). Using SQL, the set IN(Q)
can be obtained as the answer to the following query: Select TIDT , A, B From T .

Clearly we can also use a “Where” clause if Q is an attribute-restricted query.

– Case 2: The attributes A and B appear in two different tables, say S and T .
In this case a join is needed in order to obtain the set IN(Q):
IN(Q) = projTIDT ,A,B(S ./ T ).
Using SQL we will have: Select TIDT , A, B From join(S, T )

Clearly, the above method for extracting IN(Q) can be extended to complex
queries involving more than two attributes in a straightforward manner.

Once the set IN(Q) is computed, the remaining two steps, namely, πgA
construction and πgA reduction, can be performed by passing the set IN(Q) to
MapReduce.
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Mapping directly to SQL Another way to evaluate the answer to the query
Q = (gA,mB , op) is to map it to a group-by SQL query as follows:

– Case 1: The attributes A and B appear in the same table, say T .
In this case we can obtain the answer of Q using the following group-by
statement of SQL:

Select A, op(B) as ansQ(A) From T Group by A

– Case 2: The attributes A and B appear in two different tables, say S and T .
In this case we can obtain the answer of Q using the following group-by
statement of SQL:

Select A, op(B) As ansQ(A) From join(S, T ) Group by A

extraction  
of IN(Q)  πg reduction 

πg construction  

SELECT A,  op(B) AS ansQ(A) 
FROM T 
GROUP BY A 

SELECT A,  op(B) AS ansQ(A) 
FROM T 
 
GROUP BY A 

Fig. 13. The group-by query decomposed into the steps of our conceptual evaluation
scheme

Figure 13 shows roughly the correspondence between our conceptual evalua-
tion scheme and evaluation by a group-by statement.

In the above SQL queries, “ansQ(A)” is a user-defined attribute, and in each
of these two cases, the SQL query returns the answer of Q = (gA,mB , op) in
the form of a table with two attributes, A and ansQ(A). Clearly, attribute-
restricted queries and result-restricted queries of our language can be mapped
to SQL queries in the obvious manner, using “Where” and “Having” clauses,
respectively.

Let us see some concrete examples of mapping analytic queries directly to
SQL. To this end, we shall use the context of Figure 14 and we shall assume that
the data set is stored in the form of a (relational) data warehouse under the star
schema shown in that figure4. This star schema consists of the fact table FT
and two dimensional tables: the dimensional table DTBranch of Branch and the

4 We recall that a data warehouse is a read-only database in which data is accumulated
over long periods of time for analysis purposes in decision support and business
intelligence applications [16]
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dimensional table DTProduct of Product. The edges of the context are embedded
in these three tables as functional dependencies that the tables must satisfy, and
the underlined attribute in each of these three tables is the key of the table.

FT(D, Date, Branch, Product, Quantity) 
DTBranch(Branch, Region) 
DTProduct(Product, Supplier, Category) 

Region 

Quantity 

Category Supplier 

b 

r 

p 

s c 

q d Date D 

Product Branch 

Fig. 14. A context and its underlying data stored in the form of a star schema

In this setting, consider the query Q = (p, q, sum) over the context, asking
for the totals by product. This query will be mapped to the following SQL query:

Select Product, sum(Quantity) As ansQ(Product)
From FT
Group by Product

As another example, consider the attribute-restricted queryQ = (b/E, q, sum),
where E = {x|x ∈ D ∧ d(x) = 20/01/2014}, asking for the totals by branch in
January 20, 2014. This query will be mapped to the following SQL query:

Select Branch, sum(Quantity) As ansQ(Branch)
From FT
Where Date = 20/01/2014

Group by Branch

Continuing with the previous example, consider the queryQ = (b/E, q, sum)/F ,
where E is as above and F = {y|y ∈ Branch ∧ ansQ(y) ≤ 1000}. This query
asks for the totals by branch in January 20, 2014, only for branches for which the
total is less than or equal to 1000. This query will be mapped to the following
SQL query:

Select Branch, sum(Quantity) As ansQ(Branch)
From FT
Where Date= 20/01/2014

Group by Branch
Having ansQ(Branch) ≤ 1000

As a final and rather extreme example, consider the query Q = (κD, q, sum),
asking for the total quantity delivered (independently of date, branch and prod-
uct type). We recall that κD is the constant function on D (see section 2.3),
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hence it will have to be mapped to the constant function over the table FT ,
which is the projection of FT over the empty set. Indeed, assuming FT is non
empty, the function proj∅ is a constant function with the empty tuple as its only
value. Therefore, the query Q = (κD, q, sum) will be mapped to the following
SQL query:

Select (), sum(Quantity) As ansQ
From FT
Group by ()

Note that, in the above SQL query, we use the symbol () to indicate the
empty list of attributes.

As these examples show, the mapping of queries in our model to queries in
SQL is straightforward (and can be easily rendered automatic, using a simple
algorithm).

In the rest of this subsection, we explain how our approach can leverage
structure and semantics in data in order to improve performance during query
evaluation. To simplify the presentation, we discuss these two cases separately,
using examples.

Leveraging structure Consider again the context shown in Figure 14, and
suppose we need to evaluate the following three queries asking for the totals by
supplier and category, by supplier, and by category, respectively:

Q1 = ((s ◦ p)× (c ◦ p), q, sum)

Q2 = (s ◦ p, q, sum)

Q3 = (c ◦ p, q, sum)

We have two options for evaluating these queries: evaluate them separately
or evaluate them using rewriting. If we evaluate them separately, then we have
to map them to the following SQL queries over the star schema:

Select Supplier, Category, sum(Quantity) As ansQ1(Supplier, Category)
From join(FT,DTProduct)
Group by Supplier, Category

Select Supplier, sum(Quantity) As ansQ(Supplier)
From join(FT,DTProduct)
Group by Supplier

Select Category, sum(Quantity) As ansQ(Category)
From join(FT,DTProduct)
Group by Category
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In this case, the evaluation requires three joins between the tables FT and
DTProduct. However, we observe that Q2 and Q3 can be rewritten in terms of Q1:

Q2 = (projSupplier, ansQ1 , sum)

Q3 = (projCategory, ansQ1
, sum)

Following this observation, we can define an execution plan according to
whichQ1 is executed first and its result stored in a table, call itAUX(Supplier, Category, TotQty);
then the rewritten queries Q2 and Q3 are mapped to the following SQL queries:

Select Supplier, sum(Quantity) As ansQ(Supplier)
From AUX
Group by Supplier

Select Category, sum(Quantity) As ansQ(Category)
From AUX
Group by Category

In this case, the evaluation of the three queries requires one join between the
tables FT and DTProduct for evaluating Q1 and two scans of the table AUX.
Moreover, the evaluations of Q2 and Q3 over AUX can be done sequentially or
in parallel (using a copy of AUX).

Now, the number of tuples in AUX is the cardinality of Supplier times the
cardinality of Category; and this number is typically an order of magnitude
smaller than the cardinality of the fact table FT . Therefore scanning AUX is
less time consuming than scanning FT .

Consider now the case where the data is stored in a single table, say T , con-
taining all the attributes appearing in the context of Figure 14:

T (D,Date,Branch, Product,Quantity,Region, Supplier, Category)

In this case, if we evaluate the three queries separately (i.e. without rewrit-
ing), we need no join. However, this time we need to scan a possibly huge table
T three times (once for each query). However, if we use rewriting then we need
only one scan of T to compute the totals by supplier and category, and two scans
of AUX to compute the totals by supplier and by category.

Incidentally, the above two examples show clearly how our approach works:
first we define queries and execution plans at the conceptual level; then we map
them to a lower level where actual evaluation takes place; and the gains that we
obtain depend on the underlying structure of data (i.e. on whether the data is
stored in the form of a star schema or in a single table T ). In other words, our
approach can leverage structure in data to improve query evaluation. Further-
more, such improvements are compatible with optimizations that the database
management system may perform on individual query evaluation. Indeed, while
evaluating each of the queries of an execution plan, the database management
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system may use its own query optimizer (if any) to further improve the query
evaluation process.

Leveraging semantics Let us now see how our approach can leverage seman-
tics in data to improve query evaluation. To this end we shall consider the case
of the well known functional dependencies of the relational model, and we shall
show how they can be incorporated into query rewriting. The basic observation
here is that a functional dependency X → Y between attribute sets X and Y of
a table T , is actually a function from X to Y , whose extension can be derived
by projecting T over the union of X and Y .

The following proposition will help explain how functional dependecies can
be incorporated in query rewriting, and therefore contribute in improving the
query evaluation process.

Proposition 6. Let f : A → B and g : A → C be two functions having the
same source. Then f ≤ g iff there is a function h : B → C such that g = h ◦ f .
Moreover h is unique up to the range of f (i.e. if there is a function h′ such that
g = h′ ◦ f then h′/range(f) = h/range(f)).

Proof. Suppose first that there is a function h : A → B such that g = h ◦ f .
Then for all a, a′ in A such that f(a) = f(a′) we have: g(a) = h(f(a)) =
h(f(a′)) = g(a′). Therefore f ≤ g. Suppose next that f ≤ g. It follows that
πf ≤ πg. Consider now any b in the range of f and define: h(b) = g(f−1(b)).
As f ≤ g, the block f−1(b) of πf is included in some block of πg, say g−1(c),
where c is in the range of g. It follows that: g(f−1(b)) = c, therefore h is a well
defined function over the range of f . Moreover, from the definition of h we have:
h(f(a)) = g(f−1(b)) = g(b). Therefore h ◦ f = g. Finally, suppose there is a
function h′ : A→ B such that h′ 6= h and h′ ◦ f = g = h ◦ f . Now, for any b in
the range of f there is a in A such that f(a) = b. Therefore h′(b) = h′(f(a)) =
(h′ ◦ f)(a) = g = (h ◦ f)(a). It follows that: h′/range(f) = h/range(f) and this
completes the proof.

As an immediate corollary we obtain the following proposition.

Proposition 7. Let X → Y be a functional dependency over D. Then we have:
X → Y holds in T if and only if there is a unique function h : X → Y such that
h ◦ projX = projY .

Note that the projections projX and projY are seen as functions, in the way
explained earlier.

We note that, if the functional dependency X → Y holds in T , then the
(extension of) function h can be obtained by projecting the table T over XY
(i.e. over the union of attribute sets X and Y ).

As an immediate corollary of the above proposition, and our basic rewriting
rule for compositions, we have the following rewriting rule:

Corollary 1. (projY , projZ , op) = (h, (projX , projZ , op), op)
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Following this rule, the evaluation of any queryQ of the formQ = (projY , projZ , op)
can be done by first evaluating the query Q′ = (projX , projZ , op) and then the
query Q′′ = (h, ansQ′ , op).

Summarizing our discussion so far, it is clear that functional dependencies
can be seamlessly integrated in our model, and moreover, they can be used for
improving query evaluation performance through rewriting.

In fact, Proposition 7 above is a powerful tool for query rewriting when the
data set is a relational table. Moreover, this proposition, combined with a well
known result from relational database theory, provides the basis for studying not
only query rewriting but also the generation of query execution plans. Indeed, a
basic question is: given a query Q = (projX , projZ , op) over a table T , what is the
set of all queries of the form Q′ = (projY , projZ , op) that can be rewritten using
Q. It follows from Proposition 7 that a query of the form Q′ = (projY , projZ , op)
can be rewritten using Q only if the functional dependency X → Y holds in T .

Now, from relational database theory we know that: X → Y holds in T if
and only if Y ⊆ X+, where X+ is the closure of the attribute set X with respect
to the functional dependencies that T must satisfy [32]. Therefore to answer the
above question we need an algorithm for computing X+. Fortunately, there are
efficient (linear) algorithms for the computation of X+ from X ([32]).

Actually, the attributes of a relational table T together with the set of
functional dependencies that hold in T can be seen as an analysis context.
More precisely, let A = {A1, A2, . . . , Am} be the set of attributes of T , F =
{f1, f2, . . . , fn} be the set of functional dependencies of T and TID the set of tu-
ple identifiers of T . As explained earlier, each attribute Ai, can be seen as a func-
tion: projAi

: TID → Ai. Then the set AF = {projA1
, . . . , projAm

, f1, . . . , fn}
can be seen as a context, with TID as its single root, and we can call this context
“the analysis context of T”. Using this context we can express analytic queries
over T , and this independently of whether T is normalized or not, or whether T
is a database table or a table derived from the tables in the database.

Moreover, as attributes may be shared by two or more tables, we can en-
visage combining the results of analytic queries over the contexts of different
tables. For example, referring to Figure 14, suppose that the dimensional table
DTProduct contains an additional attribute u : Product → UnitPrice, giving
the unit price for each type of product delivered. In other words, the table has
now the following form:

DTProduct(Product, Supplier, Category, UnitPrice)

Consider now the following two queries, asking for (a) the total quantity de-
livered by category and (b) the average unit price by category:

Q1 = (c ◦ p, q, sum)

Q2 = (c, u, avg)
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The first query is expressed in the context of the join between the tables
FT and DTProduct, whereas the second is expressed in the context of table
DTProduct. Their results are the following two binary tables:

(Category, ansQ1
(Category))

(Category, ansQ2
(Category))

By combining these two analysis results we may discover, for example, that
in some product category, although the average unit price is quite high, the total
delivered quantity is quite high as well; and this might lead to useful insights as
to the sales of products in that category.

4 Concluding Remarks

In this paper, we have presented a high level query language for expressing
analytic queries over a big data set, based on its attributes. The main features
of our approach are:

– A clear separation between the conceptual and the physical level: queries
are defined at the conceptual level independently of the nature and location
of data and then they are mapped to lower level evaluation mechanisms
(MapReduce, SQL engines) where actual evaluation takes place.

– A lightweight interface, called an analysis context, consisting of a set of
attributes arranged in a graph. Analysts can express analytic queries within
their context by defining triples of the form (g,m, op), where g and m are
attributes of the context having common source, and op is an operation over
the target of m.

– A sound, yet simple mathematical basis (using functions and partitions)
that allows a formal approach to query rewriting, and to the definition and
generation of query execution plans.

– The ability to leverage structure and semantics in data in order to improve
performance through rewriting.

Future work includes several research items. The first concerns the computa-
tion of the query rewriting graph of a set of queries. We have sketched how this
can be done, based on the closure of the set of functional dependencies, in the
case where the data set D is a relational table. We would like to use graph theo-
retic techniques in order to give a general algorithm for computing the rewriting
graph.

The second research item concerns the extension of the concept of query
execution plan for a set Q of queries, in two different directions: (a) Considering
execution plans that, apart from the queries in Q, contain queries outside Q
which are able to rewrite one or more queries in Q. The objective is to accept the
extra cost of evaluating such “external” queries if their rewritings can contribute
to improving the overall performance significantly. (b) Studying the definition
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and use of dynamic query execution plans in the sense explained only briefly in
the section on query execution plans.

The third research item concerns query result visualization and exploration,
based on Currification, in the sense explained in the section on analysis contexts.

The last research item concerns change in the data set D. Indeed, throughout
the paper we have tacitly assumed that the data set is “static”. While this might
be a reasonable assumption in several application environments, it is by no means
true for big data sets in general. Indeed, there are application environments
where the data set changes frequently and where the results to some important,
continuous queries have to be updated frequently as well. The objective here is
to study incremental algorithms that take as input the increment in data and
produce the increment in the query result.
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