QUERY-DRIVEN REPAIRING OF INCONSISTENT DL-LITE KNOWLEDGE BASES

BIENVENU M / BOURGAUX C / GOASDOUE F

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud-LRI

04/2016

Rapport de Recherche N° 1585

CNRS – Université de Paris Sud
Centre d’Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)
Query-driven Repairing of Inconsistent DL-Lite Knowledge Bases

Meghyn Bienvenu
CNRS, Univ. Montpellier, Inria
Montpellier, France

Camille Bourgaux
Univ. Paris-Sud, CNRS
Orsay, France

François Goasdoué
Univ. Rennes 1, CNRS
Lannion, France

Abstract

We consider the problem of query-driven repairing of inconsistent DL-Lite knowledge bases: query answers are computed under inconsistency-tolerant semantics, and the user provides feedback about which answers are erroneous or missing. The aim is to find a set of ABox modifications (deletions and additions), called a repair plan, that addresses as many of the defects as possible. After formalizing this problem and introducing different notions of optimality, we investigate the computational complexity of reasoning about optimal repair plans and propose interactive algorithms for computing such plans. For deletion-only repair plans, we also present a prototype implementation of the core components of the algorithm.

1 Introduction

Ontology-mediated query answering (OMQA) is a promising recent approach to data access in which conceptual knowledge provided by an ontology is exploited when querying incomplete data (see [Bienvenu and Ortiz, 2015] for a survey). As efficiency is a primary concern, significant research efforts have been devoted to identifying ontology languages with favorable computational properties. The DL-Lite family of description logics (DLs) [Calvanese et al., 2007], which underlies the OWL 2 QL profile [Motik et al., 2012], has garnered significant interest as it allows OMQA to be reduced, via query rewriting, to standard database query evaluation.

Beyond efficiency, it is important for OMQA systems to be robust to inconsistencies stemming from errors in the data. Inspired by work on consistent query answering in databases [Bertossi, 2011], several inconsistency-tolerant semantics have been developed for OMQA, with the aim of providing meaningful answers in the presence of inconsistencies. Of particular relevance to the present paper are the brave semantics [Bienvenu and Rosati, 2013], which returns all query answers that are supported by some internally consistent set of facts, and the more conservative IAR semantics [Lembo et al., 2010] that requires that facts in the support not belong to any minimal inconsistent subset. Both semantics have appealing computational properties: for most DL-Lite dialects, including the dialect DL-LiteQ considered in this paper, conjunctive query answering is tractable in data complexity and can be implemented using query rewriting techniques [Lembo et al., 2011; Bienvenu and Rosati, 2013].

While inconsistency-tolerant semantics are essential for returning useful results when consistency cannot be achieved, they by no means replace the need for tools for improving data quality. That is why in this paper we propose a complementary approach that exploits user feedback about query results to identify and correct errors. We consider the following scenario: a user interacts with an OMQA system, posing conjunctive queries and receiving the results, which are sorted into the possible answers (i.e., those holding under the weaker brave semantics) and the (almost) sure answers (holding under IAR semantics). When reviewing the results, the user can indicate that some of the retrieved answer tuples are erroneous, whereas other tuples should definitely be considered answers. Ideally, the unwanted tuples should not be returned as possible (brave) answers, and all of the desired tuples should be found among the sure (IAR) answers. The aim is thus to construct a set of atomic changes (deletions and additions of facts), called a repair plan, that achieves as many of these objectives as possible, subject to the constraint that the changes must be validated by the user.

There are several reasons to use queries to guide the repairing process. First, we note that it is typically impossible (for lack of time or information) to clean the entire dataset, and therefore reasonable to focus the effort on the parts of the data most relevant to users’ needs. In the database arena, this observation inspired work on integrating entity resolution into the querying process [Altwaijry et al., 2013]. Second, expert users may have a good idea of which answers are expected for queries concerning their area of expertise, and thus queries provide a natural way of identifying flaws. Indeed, Kontokostas et al. (2014) recently proposed to use queries to search for errors and help evaluate linked data quality. Finally, even non-expert users may notice anomalies when examining query results, and it would be a shame to not capitalize on this information, and in this way, help distribute the costly and time-consuming task of improving data quality as argued in [Bergman et al., 2015].

The contributions of this paper are as follows. In Section 3, we formalize query-driven repairing problems and illustrate the main challenges, in particular, the fact that there may not
exist any repair plan that resolves all identified errors. This leads us to introduce in Section 4 different notions of optimal repair plan. Adopting DL-Lite as the ontology language, we study the complexity of reasoning about the different kinds of optimal repair plan and provide interactive algorithms for constructing such plans. In Section 5, we focus on the important special case of deletion-only repair plans, for which all of the optimality notions coincide. We take advantage of the more restricted search space to improve the general approach, and we analyze the complexity of the decision problems used in our algorithm. Finally, in Section 6, we present preliminary experiments about our implementation of the core components of the algorithm for the deletion-only case. We conclude with a discussion of related and future work.

The appendix provides proofs and experiments details.

2 Preliminaries
Following the presentation of [Bienvenu et al., 2016], we recall the basics of DLs and inconsistency-tolerant semantics.

Syntax A DL knowledge base (KB) consists of an ABox and a TBox, both constructed from a set NC of concept names (unary predicates), a set NR of role names (binary predicates), and a set NI of individuals (constants). The ABox (dataset) is a finite set of concept assertions A(a) and role assertions R(a, b), where a ∈ NC, R ∈ NR, a, b ∈ NI. The ABox (ontology) is a finite set of axioms whose form depends on the particular DL. In DL-Lite, TBox axioms are either concept inclusions B ⊑ C or role inclusions P ⊑ S built according to the following syntax (where A ∈ NC and R ∈ NR):

B := A | ∃P, C := B | ¬B, P := R | R̸⊂ | S := P | ¬P

Semantics An interpretation has the form I = (ΔI, ⃗ι), where ΔI is a non-empty set and ⃗ι maps each ∈ NI to a ∈ ΔI to ⃗ι(a) ∈ ΔI, each ∈ NC to A ⊑ ΔI, and each ∈ NR to R ⊑ ΔI × ΔI. The function ⃗ι is extended to general concepts and roles in the standard way, e.g. (R−1)I = {(d, e) | (e, d) ∈ RI} and (∃P)I = {d | ∃e : (d, e) ∈ PI}. An interpretation I satisfies an inclusion G ⊑ H if G ⊑ I ⊑ H; it satisfies A(a) (resp. R(a, b)) if a ∈ AI (resp. (a, b)I ∈ RI). We call I a model of K = (T, A) if I satisfies all axioms in T and assertions in A. A KB is consistent if it has a model, and an ABox A is T-consistent if the KB (T, A) is consistent.

Example 1. As a running example, we consider a simple KB Kex = (Tes, Aes) about the university domain that contains concepts for postdoctoral researchers (Postdoc), professors (Pr), PhD holders (PhD), and graduate courses (Grad), as well as roles to link advisors to their students (Adv), instructors to their courses (Teach) and student to the courses they attend (TakeC). The ABox Aex provides information about an individual a:

Tes = {Postdoc ⊑ PhD, Pr ⊑ PhD, Postdoc ⊑ ¬Pr, FPr ⊑ Pr, APr ⊑ Pr, APr ⊑ ¬FPr, ∃Adv ⊑ Pr}
Aes = {Postdoc(a), APr(a), Adv(a, b), Teach(a, c)}

Observe that Aes is Tes-inconsistent.

Queries We focus on conjunctive queries (CQs) which take the form q(⃗x) = ⃗ψ(⃗x, ⃗y), where ⃗ψ is a conjunction of atoms of the forms A(t) or R(t, t'), with t, t' individuals or variables from ⃗x ∪ ⃗y. A CQ is called Boolean (BCQ) if it has no free variables (i.e. ⃗x = ∅). Given a CQ q with free variables ⃗x = (x1, ..., xk) and a tuple of individuals ⃗a = (a1, ..., ak), we use q(⃗a) to denote the BCQ resulting from replacing each xi by ai. A tuple ⃗a is a certain answer to q over K, written K ⊨ q(⃗a), iff q(⃗a) holds in every model of K. When we use the generic term query, we mean a CQ.

Causes and conflicts A cause for a BCQ q w.r.t. KB K = (T, A) is a minimal T-consistent subset C ⊆ A such that (T, C) ⊨ q. We use causes(q, K) to refer to the set of causes for q. A conflict for K is a minimal T-inconsistent subset of A, and confl(K) denotes the set of conflicts for K.

When K is a DL-Lite KB, every conflict for K has at most two assertions. We can thus define the set of conflicts of a set of assertions C ⊆ A as follows:

confl(C, K) = {β | ∃α ∈ C, {α, β} ⊆ confl(K)}

Inconsistency-tolerant semantics A repair of K = (T, A) is an inclusion-maximal subset of A that is T-consistent. We consider two previously studied inconsistency-tolerant semantics based on repairs. Under IAR semantics, a tuple ⃗a is an answer to q over K, written K ⊨ IAR q(⃗a), just in the case that (T, B⃗a) ⊨ q(⃗a), where B⃗a is the intersection of all repairs of K (equivalently, B⃗a contains some cause for q(⃗a)). If there exists some repair B such that (T, B) ⊨ q(⃗a) (equivalently: causes(q(⃗a), K) = ∅), then ⃗a is an answer to q under brave semantics, written K ⊨ brave q(⃗a).

Example 2. There are two repairs of the example KB Kex:

{Postdoc(a), Teach(a, c)}, {APr(a), Adv(a, b), Teach(a, c)}

Evaluating the queries q1 = ∃yTeach(x, y) and q2 = Prof(x) on Kex yields the following results: Kex ⊨ IAR q1(a), and Kex ⊨ brave q2(a) but Kex ⊨ ¬IAR q2(a).

In DL-Lite, CQ answering under IAR or brave semantics is in P w.r.t. data complexity (i.e. in the size of the ABox) [Lembo et al., 2010; Bienvenu and Rosati, 2013].

3 Query-driven repairing
A user poses questions to a possibly inconsistent KB and receives the sets of possible answers (i.e. those holding under brave semantics) and almost sure answers (those holding under IAR semantics). When examining the results, he detects some unwanted answers, which should not have been retrieved, and identifies wanted answers, which should be present. To fix the detected problems and improve the quality of the data, the objective is to modify the ABox in such a way that the unwanted answers do not hold under brave semantics and the wanted answers hold under IAR semantics.

A first way of repairing the data is to delete assertions from the ABox that lead to undesirable consequences, either because they contribute to the derivation of an unwanted answer or because they conflict with causes of some wanted answer.

Example 3. Reconsider the KB K = (Tes, Aes), and suppose a is an unwanted answer for Pr(x) but a wanted answer for Phd(x). Deleting the assertions APr(a) and Adv(a, b) achieve the objectives since (Tes, {Postdoc(a), Teach(a, c)}) ⊭ brave Pr(a) and (Tes, {Postdoc(a), Teach(a, c)}) ⊭ IAR Phd(a).
The next example shows that, due to data incompleteness, it can also be necessary to add new assertions.

Example 4. Consider $K = (T_{ex}, \{APr(a)\})$ with the same wanted and unwanted answers as in Ex. 3. The assertion $APr(a)$ has to be removed to satisfy the unwanted answer, but then there remains no cause for the wanted answer. This is due to the fact that the only cause of PhD(a) in K contains an erroneous assertion: there is no ‘good’ reason in the initial ABox for PhD(a) to hold. A solution is for the user to add a cause he knows for PhD(a), such as Postdoc(a). ◀

We now provide a formal definition of the query-driven repairing problem investigated in this paper.

Definition 1. A query-driven repairing problem (QRP) consists of a KB $K = (\mathcal{T}, A)$ to repair and two sets W, U of BCQs that K should entail (W) or not entail (U). A repair plan (for A) is a pair $R = (E_-, E_+)$ such that $E_- \subseteq A$ and $E_+ \cap A = \emptyset$; if $E_+ = \emptyset$, we say that R is deletion-only.

The sets U and W correspond to the unwanted and wanted answers in our scenario: $q(\tilde{a}) \in U$ (resp. W) means that \tilde{a} is an unwanted (resp. wanted) answer for q. Slightly abusing terminology, we will use the term unwanted (resp. wanted) answers to refer to the BCQs in U (resp. W). We say that a repair plan (E_-, E_+) addresses all defects of a QRP (K, W, U) if the KB $K' = (\mathcal{T}, (A \cup E_-) \cup E_+)$ is such that $K' \models_{IAR} q$ for every $q \in W$, and $K' \not\models_{brave} q$ for every $q \in U$.

The next example shows that by considering several answers at the same time, we can exploit the interaction between the different answers to reduce the search space.

Example 5. Evaluating the queries $q_1(x) = \text{PhD}(x)$ and $q_2(x) = \exists y \text{Pr}(x) \land \text{Teach}(x, y) \land \text{GrC}(y) \land \text{TakeC}(z, y)$ over the KB $K = (T_{ex}, A)$ with $A = \{\text{Pr}(a), \text{APr}(b), \text{FPr}(b), \text{Teach}(a, c), \text{Teach}(b, c), \text{GrC}(c), \text{TakeC}(s, c)\}$ yields:

$$K \models_{brave} q_1(b) \quad K \models_{brave} q_2(b) \quad K \models_{IAR} q_2(a).$$

We consider the QRP (K, W, U) with wanted answers $W = \{q_1(b), q_2(a)\}$ and unwanted answers $U = \{q_2(b)\}$.

Two deletion-only repair plans address all defects: $\{\text{APr}(b), \text{Teach}(b, c)\}$ and $\{\text{FPr}(b), \text{Teach}(b, c)\}$. Indeed, we must delete exactly one of $\text{APr}(b)$ and $\text{FPr}(b)$ for $q_1(b)$ to be entailed under IAR semantics, and we cannot remove $\text{GrC}(c)$ or $\text{TakeC}(s, c)$ without losing the wanted answer $q_2(a)$. Thus, the only way to get rid of $q_2(b)$ is to delete $\text{Teach}(b, c)$.

If we consider only U (i.e. $W = \emptyset$), there are additional possibilities such as $\{\text{GrC}(c)\}$ and $\{\text{TakeC}(s, c)\}$, and there is no evidence that $\text{Teach}(b, c)$ has to be deleted. ◀

If we want to avoid introducing new errors, a fully automated repairing process is impossible: we need the user to validate every assertion that is removed or added in order to remove (resp. add) only assertions that are false (resp. true).

Example 6. Reconsider the problem from Ex. 5, and suppose that the user knows that $\text{TakeC}(s, c)$ is false and every other assertion in A is true. An automatic repairing will remove the true assertion $\text{Teach}(b, c)$, the problem is due to the absence of a ‘good’ cause for the wanted answer $q_2(a)$ in A. ◀

Since we will be studying an interactive repairing process, in which users must validate changes, we will also need to formalize the user’s knowledge. For the purposes of this paper, we assume that the user’s knowledge is consistent with the considered TBox \mathcal{T}, and so can be captured as a set M_{user} of models of \mathcal{T}. Instead of using M_{user} directly, it will be more convenient to work with the function $user$ induced from M_{user} that assigns truth values to BCQs in the obvious way: $user(q) = \text{true}$ if q is true in every $I \in M_{user}$, $user(q) = \text{false}$ if q is false in every $I \in M_{user}$, and $user(q) = \text{unknown}$ otherwise. We will assume throughout the paper the following truthfulness condition: $user(q) = \text{false}$ for every $q \in U$, and $user(q) = \text{true}$ for every $q \in W$.

We now formalize the requirement that repair plans only contain changes that are sanctioned by the user.

Definition 2. A repair plan (E_-, E_+) is validatable w.r.t. user1 just in the case that $user(\alpha) = \text{false}$ for every $\alpha \in E_-$ and $user(\alpha) = \text{true}$ for every $\alpha \in E_+$.

Unfortunately, it may be the case that there is no validatable repair plan addressing all defects. This may happen, for instance, if the user knows some answer is wrong but cannot pinpoint which assertion is at fault, as we illustrate next.

Example 7. Consider the QRP given by:

$$K = (T_{ex}, \{\text{FPr}(a), \text{Teach}(a, c), \text{GrC}(c)\}),$$

$$U = \{\exists x \text{Pr}(a) \land \text{Teach}(a, x) \land \text{GrC}(x)\}, \quad W = \{\text{Pr}(a)\}. $$

Suppose that $user(\text{FPr}(a)) = \text{false}$, $user(\text{Teach}(a, c)) = \text{unknown}$, $user(\text{GrC}(c)) = \text{unknown}$, and $user(\text{APr}(a)) = \text{true}$. It is not possible to satisfy the wanted and unwanted answers at the same time, since adding the true assertion $\text{APr}(a)$ creates a cause for the unwanted answer that does not contains any assertion α with $user(\alpha) = \text{false}$: the user does not know which of $\text{Teach}(a, c)$ and $\text{GrC}(c)$ is erroneous. ◀

As validatable repair plans addressing all defects are not guaranteed to exist, our aim will be to find repair plans that are optimal in the sense that they address as many of the defects as possible, subject to the constraint that the changes must be validated by the user.

4 Optimal repair plans

To compare repair plans, we consider the answers from U and W that are satisfied by the resulting KBs, where:

- $q \in U$ is satisfied by K if $K \not\models q$.
- $q \in W$ is satisfied by K if there exists $C \in \text{causes}(q, K)$ such that $\text{conf}(C, K) = \emptyset$ and there is no $\alpha \in C$ with $user(\alpha) = \text{false}$.

Remark 1. Note that for $q \in W$ to be satisfied by K, we require not only that $K \models q$, but also that there exists a cause for q that does not contain any assertions known to be false, i.e. $K \models q$ should hold ‘for a good reason’.

We say that a repair plan $R = (E_-, E_+)$ satisfies $q \in U \cup W$ if the KB $K_R = (\mathcal{T}, (A, \emptyset) \cup E_+)$ satisfies q, and we use $S(R)$ (resp. $S_I(R)$, $S_W(R)$) to denote the sets of answers (resp. unwanted answers, wanted answers) satisfied by R.

Two repair plans R and R' can be compared w.r.t. the sets of unwanted and wanted answers that they satisfy: for

1In what follows, we often omit ‘w.r.t.’ user and leave it implicit.
A ∈ {U, W}, we define the preorder ≼_A by setting R ≼_A R′ iff \(S_A(R) \subseteq S_A(R′) \), and obtain the corresponding strict order (≺_A) and equivalence relations (∼_A) in the usual way. If the two criteria are equally important, we can combine them using the Pareto principle: R ≼_{U, W} R′ iff R ≼_U R′ and R ≼_W R′. Alternatively, we can use the lexicographic method to give priority either to the wanted answers (≺_{U,W}) or unwanted answers (≺_{W,U}) of the unwanted answer, which could not be repaired by removing the unwanted answer, which could not be repaired by removing.

For each of the preceding preference relations \(≼ \), we can define the corresponding notions of \(≼ \)-optimal repair plan.

Definition 3. A repair plan \((E_−, E+)\) is globally (resp. locally) \(≼ \)-optimal w.r.t. user iff it is validatable w.r.t. user and there is no other validatable repair plan \((E′_−, E′+)\) such that \((E_−, E+) \prec (E′_−, E′+)\) (resp. \(E_− \subseteq E′_−, E_+ \subseteq E′_+ \) and \(E_− \prec E′_− \)).

Remark 2. If a repair plan is validatable and addresses all defects of a QRP, then it is globally \(≼ \)-optimal. If it additionally satisfies every q ∈ W (ensuring that there is a ‘good’ cause for every q ∈ W), then it is globally \(≼ \)-optimal for every \(∃ \in W, (U, W) \), \(U, W \), \(W \).

The following example illustrates the difference between local and global optimality.

Example 8. Consider the QRP \((\{T_{eq}, A\}, W, U)\) where

\[A = \{\text{Teach}(a, e), \text{Adv}(a, b), \text{takeC}(b, c), \text{takeC}(b, e), \text{GrC}(e)\}, W = \{∃ \text{Teach}(a, x) \land \text{takeC}(b, x) \land \text{GrC}(x)\}, U = \{∃ y \text{Teach}(a, y) \land \text{Adv}(a, y) \land \text{takeC}(y, x) \land \text{GrC}(x)\}.

Suppose that \(\text{user}(\text{Teach}(a, e)) = \text{user}(\text{GrC}(e)) = \text{false}, \text{user}(α) = \text{unknown} \) for the other α ∈ A, and the user knows that \(\text{Teach}(a, c), \text{Teach}(a, d) \) and \(\text{GrC}(c), \text{GrC}(d) \) are true.

It can be verified that the repair plan \(R_1 = \{(\text{Teach}(a, e), \text{GrC}(e)), (\text{Teach}(a, c))\} \) satisfies the first answer in \(W \) and the (only) answer in \(U \). It is locally \(≼_{(U, W)} \)-optimal since the only way to satisfy the second wanted answer would be to add \(\text{GrC}(c) \), which would create a cause for the unwanted answer, which could not be repaired by removing additional assertions as the user does not know which of \(\text{Adv}(a, b) \) and \(\text{takeC}(b, c) \) is false. However, \(R_1 \) is not globally \(≼_{(U, W)} \)-optimal because \(R_2 = \{(\text{Teach}(a, e), \text{GrC}(e)), (\text{Teach}(a, d), \text{GrC}(c))\} \) satisfies all answers in \(W \cup U \).

In order to gain a better understanding of the computational properties of the different ways of ranking repair plans, we study the complexity of deciding if a given repair plan is optimal w.r.t. the different criteria. Since validatability of a repair plan depends on user, in this section, we measure the complexity w.r.t. \(|A|, |U|, |W|\), as well as the size of the set \(\text{True}_{\text{user}} = \{α ∈ \text{True}_{\text{user}} | \text{there exists } q ∈ W \text{ such that } α ∈ C \text{ for some } C \in \text{causes}(q, A ∈ \text{True}_{\text{user}})\} \), where \(\text{True}_{\text{user}} = \{α | \text{user}(α) = \text{true}\} \).

We make the reasonable assumption that \(\text{True}_{\text{user}} \) (hence \(\text{True}_{\text{user}} \)) is finite.

Theorem 1. Deciding if a repair plan is globally \(≼ \)-optimal is coNP-complete for \(≼ ∈ \{≽_{(U, W)}, ≽_{U, W}, ≽_{W, U}\} \), and in \(P \) for \(≼ ∈ \{≽_{W}, ≽_{U}\} \). Deciding if a repair plan is locally \(≼ \)-optimal is in \(P \) for \(≼ ∈ \{≽_{U, W}, ≽_{U}, ≽_{W, U}\} \).

For the coNP upper bounds, we note that to show that \(R \) is not \(≼ \)-optimal (for \(≼ ∈ \{≽_{(U, W)}, ≽_{U, W}, ≽_{W, U}\}\)), we can guess another repair plan \(R′ \) and verify in \(P \) that both plans are validatable and that \(R′ \) satisfies more answers than \(R \). The lower bounds are by reduction from (variants of) UNSAT.

To establish the tractability results from Theorem 1, we provide characterizations of optimal plans in terms of the notion of satisfiability of answers, defined next.

Definition 4. An answer \(q ∈ U ∪ W \) is satisfiable if there exists a validatable repair plan that satisfies \(q \). We say that \(q \) is satisfiable w.r.t. a validatable repair plan \(R = (E_−, E_+) \) if there exists a validatable repair plan \(R′ = (E′_−, E′_+) \) such that \(E_− ⊆ E′_−, E_+ ⊆ E′_+ \) and \(q ∈ S(R′) \), and \(R ⊆ (U, W) \) \(≼ \).

Proposition 1. Deciding if an answer is satisfiable, satisfiable, or satisfiable w.r.t. a repair plan is in \(P \).

Combining Prop. 1 with the following characterizations yields polynomial-time procedures for optimality testing.

Proposition 2. A validatable repair plan \(R \) is:

- globally \(≼_{U} \) (resp. \(≼_{W} \)) optimal if and only if it is satisfiable w.r.t. \(q ∈ U \) (resp. \(q ∈ W \)).
- locally \(≼_{U, W} \)-optimal if and only if it is satisfiable w.r.t. \(q ∈ U ∪ W \).
- locally \(≼_{W, U} \)-optimal if and only if it is satisfiable w.r.t. \(q ∈ W \) and every \(q ∈ U \).

Our complexity analysis reveals that the notions of global optimality based upon the preference relations \(≼_{(U, W)}, ≼_{U, W}, ≼_{W, U} \) and \(W, U \) have undesirable computational properties: even when provided with all relevant user knowledge, it is intractable to decide whether a given plan is optimal. Moreover, while plans globally \(≼_{U} \) (resp. \(≼_{W} \)) optimal can be interactively constructed in a monotonic fashion by removing further false assertions (resp. and adding further true assertions), building a globally optimal plan for a preference relation that involves both \(U \) and \(W \) may require backtracking over answers already satisfied (cf. the situation in Example 8).

For the preceding reasons, we target validatable repair plans that are both globally optimal for \(≼_{U} \) or \(≼_{W} \) (depending which is preferred) and locally optimal for \(≼_{(U, W)} \). In Fig. 1, we give an interactive algorithm \(\text{OptRP}_U \) for building such a repair plan when \(U \) is preferred; if \(W \) is preferred, we use the algorithm \(\text{OptRP}_W \) obtained by removing Step C.6 from \(\text{OptRP}_U \). The algorithms terminate provided the user knows only a finite number of assertions that may be inserted.

In this case, the algorithms output optimal repair plans.

Theorem 2. The output of \(\text{OptRP}_U \) (resp. \(\text{OptRP}_W \)) is globally \(≼_{U} \) (resp. \(≼_{W} \)) and locally \(≼_{(U, W)} \)-optimal.

Proof idea. We sketch the proof for \(\text{OptRP}_U \). Step B adds to \(E− \) all assertions known to be false that belong to a cause of some \(q ∈ U ∪ W \) or a conflict of some cause of \(q ∈ W \). Thus, at the end of this step, \(E− \) satisfies every satisfiable answer in \(U \) (i.e., we are globally \(≼_{U} \)-optimal). The purpose of Step C is to add new true assertions to create causes for the wanted answers not satisfied after Step B, while preserving \(S_q(E−, E+) \). The user is asked to input true assertions to complete a cause for an unsatisfied \(q ∈ W \). If he is unable to do so, we remove \(q \) from \(W \) (since it cannot be satisfied); otherwise, we update \(E− \) and \(E+ \) using \(T_q(C.3) \). Note that since...
Algorithm OptDRP, Input: QRP \((K, (T, A), UC, W))\) Output: repair plan

1. Ask user to mark all false (\(F\)) and true (\(T\)) assertions
2. Return all \(E_+\) such that \(T_q\) does not exist, and \(E_+\) is necessarily false.
3. If an assertion \(q\) is necessarily false, remove \(q\) from the repair plan.
4. If an assertion \(q\) is necessarily true, remove \(q\) from the repair plan.
5. Output the repair plan that satisfies all wanted answers under IR semantics, so either user(\(\alpha\)) \(\neq\) false, or it is not possible to satisfy all wanted answers. We call such assertions necessarily false.

When a potential solution does not exist, a minimal correction subset of wanted answers (MCSW) is an inclusion-minimal subset \(W' \subseteq W\) such that removing \(W'\) from \(W\) yields a QRP with a potential solution. Because of the truthfulness condition, we know that the absence of a potential solution means that some wanted answers are supported only by causes containing erroneous assertions (otherwise the wanted and unwanted answers would be contradictory, which would violate the truthfulness condition). Moreover, since removing all such answers from \(W\) yields the existence of a potential solution, there exists a MCSW which contains only such answers, which we call an erroneous MCSW. This is why MCSWs can help identify the wanted answers that cannot be satisfied by a deletion-only repair plan.

Theorem 3. For complexity w.r.t. \(|A|, |U|\) and \(|W|\), deciding if a potential solution exists is NP-complete, deciding if an assertion is necessarily (non)false is coNP-complete, and deciding if \(W' \subseteq W\) is a MCSW is \(BH_2\)-complete.

The lower bounds are proven by reduction from propositional (unsatisfiability and related problems. For the upper bounds, we construct in polynomial time a propositional CNF \(\varphi\) with variables drawn from \(\{x_\alpha\mid \alpha \in A\} \cup \{w_C\mid C \in causes(q, K), q \in U \cup W\}\) having the following properties:

- there exists a potential solution iff \(\varphi\) is satisfiable (satisfying assignments correspond to potential solutions);
- \(\alpha\) is necessarily false iff \(\varphi \land \neg x_\alpha\) is unsatisfiable;
- \(\alpha\) is necessarily nonfalse iff \(\varphi \land x_\alpha\) is unsatisfiable;
- there exist disjoint subsets \(S, H\) of the clauses in \(\varphi\) such that the MCSWs correspond to the minimal correction subsets (MCSs) of \(\varphi\) w.r.t. \(H\), i.e. the subsets \(M \subseteq S\) such that (i) \((S \setminus M) \cup H\) is satisfiable, and (ii) \((S \setminus M') \cup H\) is unsatisfiable for every \(M' \subseteq M\).

We present in Fig. 2 an algorithm OptDRP for computing optimal deletion-only repair plans. Within the algorithm, we denote by \(R(K, UC, W, A')\) (resp. \(N(K, UC, W, A')\), \(N_a(K, UC, W, A')\)) the set of assertions from \(A' \subseteq A\) that are relevant (resp. necessarily false, nonfalse) for the QRP \((K, UC, W)\) when deletions are allowed only in \(A'\) (the set \(A'\) will be used to store assertions whose truth value is not yet determined). The general idea is that the algorithm incrementally builds a set of assertions that are false according to the user. It aids the user by suggesting assertions to remove, or wanted answers that might not be satisfiable when there is no potential solution, while taking into account the knowledge the user has already provided. If there exists a potential solution, the algorithm computes the necessarily (non)false assertions and asks the user either to validate them or to input false and nonfalse assertions to justify why they cannot be validated, and then to input further true or false assertions if the current set of false assertions does not address all defects. When a potential solution is found, the user has to verify that each wanted answer has a cause that does not contain any false assertion. If there does not exist a potential solution at some point, either initially or after some user inputs, the algorithm looks for an erroneous MCSW by computing all MCSWs, then showing for each of them the assertions involved
in the causes of each query of the MCSW. If there is a query which has a cause without any false assertion, the MCSW under examination is not erroneous, nor are the other MCSWs that contain that query. Otherwise, the MCSW is erroneous and its queries are removed from \(W \), and we return to the case where a potential solution exists.

Theorem 4. The algorithm OptDRP always terminates, and it outputs an optimal deletion-only repair plan.

Proof idea. Termination follows from the fact that every time we return to Step B, something has been added to \(\mathcal{E}_- \) or deleted from \(W \), and nothing is ever removed from \(\mathcal{E}_- \) or added to \(W \). Since we only add false assertions to \(\mathcal{E}_- \), the output plan is validable. If the algorithm ends at Step B.2.b.ii, then \(\mathcal{E}_- \) satisfies every answer characterized in Prop. 3. Indeed, since \(\mathcal{E}_- \) is a potential solution, it satisfies every unwanted answer. Moreover, the answers removed from \(W \) at Step C.2.c do not fulfill the conditions of Prop. 3, and for every remaining \(q \in W \), we ensure that there is a conflict-free cause of \(q \) that contains no false assertions. If the algorithm ends at Step B.2.c.i, the user has deleted all false assertions he knows among the relevant assertions, and thus it is not possible to improve the current repair plan further. A similar argument applies if the algorithm ends at Step C.3.

To avoid overwhelming the user with relevant assertions at Step B.2.c, it is desirable to reduce the number of assertions presented at a time. This leads us to propose two improvements to the basic algorithm. First, we can divide QRPs into independent subproblems. Two answers are considered dependent if their causes (and conflicts in the case of wanted answers) share some assertion. Independent sets of answers do not interact, so they can be handled separately. Second, at Step B.2.c, the assertions can be presented in small batches. Borrowing ideas from work on reducing user effort in interactive revision, we can use a notion of impact to determine the order of presentation of assertions. Indeed, deleting or keeping an assertion may force us to delete or keep other assertions to get a potential solution. Relevant assertions can be sorted using two scores that express the impact of being declared false or true. For the impact of an assertion \(\alpha \) being false, we use the number of assertions that becomes necessarily (non)false if \(\alpha \) is deleted. The impact of \(\alpha \) being true also takes into account the fact that the conflicts of \(\alpha \) can be marked as false: we consider the number of assertions that are in conflict with \(\alpha \) or become necessarily (non)false when we disallow \(\alpha \)'s removal. We can rank assertions by the minimum of the two scores, using their sum to break ties.

6 Preliminary experiments

We report on experiments made on core components of the above OptDRP algorithm. We focused on measuring the time to decide whether a potential solution exists (Step B), to compute necessarily (non)false and relevant assertions (Step B.1), to rank the relevant assertions w.r.t. their impact (Step B.2.c), and to find the MCSWs (Step C).

The components were developed in Java using the CQAPri system (www.lri.fr/~bourgaux/CQAPri) to compute query answers under IAR and brave semantics, with their causes, and the KB’s conflicts. We used SAT4J (www.sat4j.org) to solve the (UN)SAT reductions in Section 5.

We borrowed from the CQAPri benchmark [Bienvenu et al., 2016] available at the URL above, its: (i) TBox which is the DL-Lite \(_R \) version of the Lehigh University Benchmark [Lutz et al., 2013] augmented with constraints allowing for conflicts, (ii) c5 and c29 ABoxes with \(\sim 10 \) million assertions and, respectively, a ratio of assertions involved in conflicts of 5%, that we found realistic, and of 29%, and (iii) \(q_1, q_2, q_3, q_4 \) queries. We built 13 QRPs per ABox, by adding more and more answers to \(\mathcal{U} \) or \(W \). The size of \(W \) size varies from 8 to 121.

In all of our experiments, deciding if a potential solution exists, as well as computing the relevant assertions, takes a few milliseconds. The difficulty of computing the necessarily (non)false assertions correlates with the number of relevant assertions induced by QRPs. For the c5 QRPs involving 85 to 745 relevant assertions, it takes 30ms to 544ms, while it takes 24ms to 133ms for the c29 QRPs involving 143 to 1404 relevant assertions. While these times seem reasonable in practice, ranking the remaining relevant assertions based on their impact is time consuming (it requires a number of calls to the SAT solver quadratic in the number of assertions): it takes less than 10s up to \(\sim 150 \) assertions, less than 5min up
to \(\sim 480\) assertions, and up to 25mn for 825 assertions. Finally, computing the MCSWs takes a few milliseconds; for all the QRPs we built, we found at most one MCSW.

7 Discussion

The problem of modifying DL KBs to ensure (non)entailments of assertions and/or axioms has been investigated in many works, see e.g. [De Giacomo et al., 2009; Calvanese et al., 2010; Gutierrez et al., 2011].

Our framework is inspired by that of [Jiménez-Ruiz et al., 2011], in which a user specifies two sets of axioms that should be entailed or not by a KB. Repair plans are introduced as pairs of sets of axioms to remove and add to obtain an ontology satisfying these requirements. Deletion-only repair plans are studied in [Jiménez-Ruiz et al., 2009] where heuristics based on the confidence and the size of the plan are used to help the user to choose a plan among all minimal plans.

When axiom (in)validation can be partially automatized, ranking axioms by their potential impact reduces the effort of manual revision [Meilicke et al., 2008; Nikitina et al., 2012]. In our setting, we believe that validating sets of necessarily (non)false assertions requires less effort than hunting for false assertions among all relevant assertions, leading us to propose a similar notion of impact to rank assertions to be examined.

Compared to prior work, distinguishing features of our framework are the specification of changes at the level of CQ answers, the use of inconsistency-tolerant semantics, and the introduction of optimality measures to handle situations in which not all objectives can be achieved.

In future work, two aspects of our approach deserve further attention. First, when insertions are needed, it would be helpful to provide users with suggestions of assertions to add. The framework of query abduction [Calvanese et al., 2013], which was recently extended to inconsistent KBs [Du et al., 2015], could provide a useful starting point. Second, our experiments revealed the difficulty of ranking relevant assertions, so we plan to develop optimized algorithms for computing impact and explore alternative definitions of impact.

Acknowledgements

This work was supported by the ANR project PAGODA (ANR-12-JS02-007-01).

References

A Complexity proofs for Section 4

Throughout the appendix, we assume that T is the considered TBox and A is the considered ABox, unless otherwise indicated.

We will use the following notations for the sets of false, unknown, and true ABox assertions:

- $\text{False}_{\text{user}} = \{ \alpha \in A \mid \text{user}(\alpha) = \text{false} \}$
- $\text{Unk}_{\text{user}} = \{ \alpha \in A \mid \text{user}(\alpha) = \text{unknown} \}$
- $\text{True}_{\text{user}} = \{ \alpha \mid \text{user}(\alpha) = \text{true} \}$

Checking if an assertion is false (resp. unknown, true) is in P w.r.t. the size of $\text{False}_{\text{user}}$ (resp. $\text{Unk}_{\text{user}}, \text{True}_{\text{user}}$). The sets $\text{False}_{\text{user}}$ and Unk_{user} are included in A, while $\text{True}_{\text{user}}$ may be larger. However, only the assertions of $\text{True}_{\text{user}}$ that are relevant to the given QRP need to be considered. We thus measure complexity w.r.t. $|A|$, $|U|$, $|W|$, as well as the size of the set

$\text{True}^{\text{rel}}_{\text{user}} = \{ \alpha \in \text{True}_{\text{user}} \mid \text{there exists } q \in W \text{ such that } \alpha \in C \text{ for some } C \in \text{causes}(q, A \cup \text{True}_{\text{user}})\}$

We begin with the following lemma which shows that removing false assertions or adding true assertions (whose conflicts are false) can only satisfy more wanted answers, and removing additional false assertions, while adding the same set of true assertions, can only satisfy more unwanted answers.

Lemma 1. Let $(E_-, E_+) \subseteq (E'_-, E'_+)$ be validatable repair plans.

1. If $E_- \subseteq E'_-$ and $E_+ \subseteq E'_+$, then $S_W(E_-, E_+) \subseteq S_W(E'_-, E'_+)$.
2. If $E_- \subseteq E'_-$ and $E_+ = E'_+$, then $S_U(E_-, E_+) \subseteq S_U(E'_-, E'_+)$.

Proof. Suppose that $E_- \subseteq E'_-$ and $E_+ \subseteq E'_+$ and let $q \in S_W(E_-, E_+)$. There exists a cause C for q in $(A \setminus E_-) \cup E_+$ such that C does not contain any false assertion and has no conflicts in $(A \setminus E_-) \cup E_+$. Since $C \subseteq A \cup E_+$ and $E_+ \subseteq E'_+$, $C \subseteq A \cup E'_+$, and since C does not contain any false assertion and (E'_-, E'_+) is validatable, $C \cap E'_- = \emptyset$, so $C \subseteq (A \setminus E'_-) \cup E'_+$. Moreover, C has no conflict in $(A \setminus E'_-) \cup E'_+$, so the set of assertions of A in conflict with C is included in $E_\emptyset \subseteq E'_-$, so C has no conflict in $(A \setminus E'_-) \cup E'_+$ (note that since the assertions of C are nonfalse, and the repair plans are validatable, assertions of C cannot conflict with assertions of E'_+). It follows that $q \in S_W(E'_-, E'_+)$.

Suppose that $E_- \subseteq E'_-$ and $E_+ = E'_+$ and let $q \in S_U(E_-, E_+)$. There is no cause for q in $(A \setminus E_-) \cup E_+ \subseteq (A \setminus E'_-) \cup E'_+$, so $q \in S_U(E'_-, E'_+)$.

The next lemma characterizes when a validatable repair plan satisfies an unwanted answer.

Lemma 2. Let $(E_-, E_+) \subseteq (E'_-, E'_+)$ be a validatable repair plan. Then $(E_-, E_+) \subseteq (E'_-, E'_+) \subseteq (E'_-, E'_+)$.

Proof. For the first direction, suppose that $(E_-, E_+) \subseteq (E'_-, E'_+)$. Then $E_- \subseteq E'_-$ and $E_+ \subseteq E'_+$, and for every $C \subseteq \text{causes}(q, (T, A \cup E_+))$.

Proof. For the first direction, suppose that $(E_-, E_+) \subseteq (E'_-, E'_+)$. Then $E_- \subseteq E'_-$ and $E_+ \subseteq E'_+$, and for every $C \subseteq \text{causes}(q, (T, A \cup E_+))$.

The next lemma characterizes when a validatable repair plan satisfies an unwanted answer.

Lemma 3. Let $(E_-, E_+) \subseteq (E'_-, E'_+)$ be a validatable repair plan. Then $(E_-, E_+) \subseteq (E'_-, E'_+) \subseteq (E'_-, E'_+)$.

Proof. For the first direction, suppose that $(E_-, E_+) \subseteq (E'_-, E'_+)$. Then $E_- \subseteq E'_-$ and $E_+ \subseteq E'_+$, and for every $C \subseteq \text{causes}(q, (T, A \cup E_+))$.

The next lemma characterizes when a validatable repair plan satisfies an unwanted answer.

Lemma 4. Let $(E_-, E_+) \subseteq (E'_-, E'_+)$ be a validatable repair plan. Then $(E_-, E_+) \subseteq (E'_-, E'_+) \subseteq (E'_-, E'_+)$.

Proof. For the first direction, suppose that $(E_-, E_+) \subseteq (E'_-, E'_+)$. Then $E_- \subseteq E'_-$ and $E_+ \subseteq E'_+$, and for every $C \subseteq \text{causes}(q, (T, A \cup E_+))$.

References

follows that for every $C \in \text{causes}(q, (T \cup A \cup E))$, we have $C \subseteq (A \cup E) \cup E$, hence $C \cap E = \emptyset$.

For the second direction, suppose that $E_{-} \cap C = \emptyset$ for every $C \in \text{causes}(q, (T \cup A \cup E))$. It follows that

$$\text{causes}(q, (T \cup (A \cup E)) \cap E) = \emptyset.$$

Since (E_{-}, E_{+}) is validatable, we know that $\text{user}(\alpha) = \text{false}$ for every $\alpha \in E_{-}$ and $\text{user}(\alpha) = \text{true}$ for every $\alpha \in E_{+}$. In particular, this means that $E_{-} \cap E_{+} = \emptyset$, so $(A \cup E) \cap E = (A \cup E) \cup E_{+}$. We therefore have $\text{causes}(q, (T \cup (A \setminus E_{-}) \cup E_{+})) = \emptyset$, hence $(T \cup (A \setminus E_{-}) \cup E_{+}) \not\models q$.

The proof of Proposition 1 relies on the following characterizations of satisfiable answers and answers satisfiable w.r.t. a repair plan.

Lemma 3. An answer $q \in U$ is satisfiable iff for every $C \in \text{causes}(q, (T, A))$ there exists $\alpha \in C$ such that $\text{user}(\alpha) = \text{false}$.

Proof. If $q \in U$ is satisfiable, then there exists a validatable repair plan (E_{-}, E_{+}) that satisfies q. By Lemma 2, we must have $E_{-} \cap C \neq \emptyset$ for every $C \in \text{causes}(q, (T, A \cup E))$, hence for every $C \in \text{causes}(q, (T, A))$. Since (E_{-}, E_{+}) is validatable, we know that $E_{-} \subseteq \text{False}_{\text{user}}$, hence every cause of q in (T, A) contains at least one assertion α such that $\text{user}(\alpha) = \text{false}$.

In the other direction, if for every $C \in \text{causes}(q, (T, A))$ there exists $\alpha \in C$ such that $\text{user}(\alpha) = \text{false}$, then it is easily shown using Lemma 2 that $(\{\alpha | \exists C \in \text{causes}(q, (T, A)), \alpha \in C, \text{user}(\alpha) = \text{false}\}, 0)$ is a validatable repair plan that satisfies q.

Lemma 4. An answer $q \in W$ is satisfiable iff there exists a T-consistent set of assertions C_{0} such that $(T, C_{0}) \models q$ and for every $\alpha \in C_{0}$, either

- $\text{user}(\alpha) = \text{true}$, or
- $\alpha \in A$, $\text{user}(\alpha) = \text{unknown}$ and for every $\beta \in A$ such that $(T, \{\alpha, \beta\}) \models \bot$, $\text{user}(\beta) = \text{false}$.

(We will call C_{0} a witness for the satisfiability of q.)

Proof. If $q \in W$ is satisfiable, then there exists a validatable repair plan (E_{-}, E_{+}) such that $(A \cup E) \cup E_{+}$ contains a cause C_{0} for q that contains no false assertion and has no conflicts in $(A \setminus E) \cup E_{-}$. It follows that for every $\alpha \in C_{0}$, either $\alpha \in E_{+}$ and $\text{user}(\alpha) = \text{true}$, or $\alpha \in A$ and $\text{user}(\alpha) = \text{true}$ or $\text{user}(\alpha) = \text{unknown}$, and every conflict β of α is in E_{-}, hence is such that $\text{user}(\beta) = \text{false}$.

In the other direction, if q and C_{0} satisfy the conditions of the lemma statement, then one can easily verify that

$$(\{\beta \in A | \exists \alpha \in C_{0}, (T, \{\alpha, \beta\}) \models \bot, \text{user}(\beta) = \text{false}\}, \{\alpha \in C \setminus A | \text{user}(\alpha) = \text{true}\})$$

is a validatable repair plan that satisfies q.

Lemma 5. Let (E_{-}, E_{+}) be a validatable repair plan for the KB (T, A). Then an answer $q \in U$ is satisfiable w.r.t. (E_{-}, E_{+}) iff $q \in U$ is satisfiable for the KB $(T, A \cup E_{+})$.

Proof. If $q \in U$ is satisfiable w.r.t. (E_{-}, E_{+}), then there exists a validatable repair plan (E_{-}', E_{+}') with $E_{-} \subseteq E_{-}'$ and $E_{+} \subseteq E_{+}'$ that satisfies q. By Lemma 2, (E_{-}', E_{+}') must intersect all of the causes of q w.r.t. $(T, A \cup E_{+}')$. Since $E_{+} \subseteq E_{+}'$, the set E_{+}' intersects all of q's causes w.r.t. $(T, A \cup E_{+})$. By applying Lemma 2 again, we can show that the repair plan $(E_{-}', 0)$ witnesses the satisfiability of q for the KB $(T, A \cup E_{+})$.

In the other direction, suppose that $q \in U$ is satisfiable when $(T, A \cup E_{+})$ is the input KB. By Lemma 3, we know that for every $C \in \text{causes}(q, (T, A \cup E_{+}))$ there exists $\alpha \in C$ such that $\text{user}(\alpha) = \text{false}$. Now consider the repair plan (E_{+}', E_{+}') where E_{+}' contains the following assertions

$$E_{-} \cup \{\alpha | \exists C \in \text{causes}(q, (T, A)), \alpha \in C, \text{user}(\alpha) = \text{false}\}.$$

By construction, q is satisfied by the KB $(T, (A \setminus E_{-}) \cup E_{+}')$ induced by (E_{-}', E_{+}'). Since (E_{-}', E_{+}') is known to be validatable, and $(E_{-}', E_{+}') \subseteq \text{False}_{\text{user}}$, it follows that (E_{-}', E_{+}') is also validatable. It follows from Lemma 1 that $S_{W}(E_{-}', E_{+}') \subseteq S_{W}(E_{-}', E_{+})$ and $S_{U}(E_{-}', E_{+}) \subseteq S_{U}(E_{-}', E_{+})$. We have thus found a validatable repair plan that extends (E_{+}', E_{+}') and whose corresponding KB satisfies q and all answers that were already satisfied by (E_{-}', E_{+}'). We can therefore conclude that $q \in U$ is satisfiable w.r.t. (E_{-}', E_{+}').

Lemma 6. Let (E_{-}', E_{+}') be a validatable repair plan for the KB (T, A). Then an answer $q \in W$ is satisfiable w.r.t. (E_{-}', E_{+}') if q is satisfiable for the KB (T, A) with a witness C_{0} such that every $q' \in S_{U}(E_{-}', E_{+}')$ is satisfiable for the KB $(T, A \cup E_{+} \cup C_{0})$.

Proof. If $q \in W$ is satisfiable w.r.t. (E_{-}', E_{+}'), then there exists a validatable repair plan (E_{-}', E_{+}') such that $E_{-} \subseteq E_{+}'$ and $E_{+} \subseteq E_{+}'$ which satisfies q and all answers in $S(E_{-}', E_{+}')$. As q is satisfied by (E_{-}', E_{+}'), the ABox $(A \setminus E_{-}') \cup E_{+}'$ contains a cause C_{0} for q that has no conflict and that does not contain any false assertion. This means that q is satisfiable for (T, A). Now take some $q' \in S_{U}(E_{-}', E_{+}')$. Since $S_{U}(E_{-}', E_{+}') \subseteq S_{U}(E_{-}', E_{+})$, we have $q' \in S_{U}(E_{-}', E_{+})$, and so by Lemma 2, we have $E_{+} \cap C \neq \emptyset$ for every $C \in \text{causes}(q', (T, A \cup E_{+}))$. We observe that $E_{+} \subseteq \text{False}_{\text{user}}$, and $A \cup E_{+} \cup C_{0} \subseteq A \cup E_{+}$. It follows that for every $\beta \in C$ such that $\text{user}(\beta) = \text{false}$, there exists $\alpha \in C$ with $\text{user}(\alpha) = \text{false}$. By Lemma 3, we can conclude that q' is satisfiable for the KB $(T, A \cup E_{+} \cup C_{0})$.

In the other direction, suppose that $q \in W$ is satisfiable for the KB (T, A) with a witness C_{0} such that every $q' \in S_{U}(E_{-}', E_{+}')$ is satisfiable for the KB $(T, A \cup E_{+} \cup C_{0})$. Consider the repair plan (E_{-}', E_{+}') where

$$E_{-}' = E_{-} \cup \{\beta \in A | \exists \alpha \in C_{0}, (T, \{\alpha, \beta\}) \models \bot, \text{user}(\beta) = \text{false}\}$$

$$\cup \{\alpha | \text{user}(\alpha) = \text{false} \text{ and there exists some } q' \in U \text{ and } C \in \text{causes}(q', (T, A \cup E_{+} \cup C_{0})) \text{ such that } \alpha \in C\}$$

$$E_{+}' = E_{+} \cup \{\alpha \in C \setminus A | \text{user}(\alpha) = \text{true}\}.$$
\[\mathcal{S}_\emptyset(\mathcal{E}_-, \mathcal{E}_+). \] By our earlier assumption, we know that \(q' \) is satisfiable for the KB \((T, A \cup \mathcal{E}_+ \cup \mathcal{C}_0)\), so by Lemma 3, every \(C \in \text{causes}(q', (T, A \cup \mathcal{E}_+ \cup \mathcal{C}_0)) \) contains an assertion \(\alpha \in C \) such that \(\text{user}(\alpha) \) = false, which will thus be included in \(\mathcal{E}'_+ \). Since every cause for \(q' \) in \((T, A \cup \mathcal{E}_+ \cup \mathcal{C}_0)\) has a non-empty intersection with \(\mathcal{E}'_+ \), we can apply Lemma 2 to conclude that \(q' \) is satisfied by \((\mathcal{E}'_-, \mathcal{E}'_+)\).

Proposition 1. Deciding if an answer is satisfied, satisfiable, or satisfiable w.r.t. a repair plan is in P.

\[\text{Proof.} \] Deciding if a wanted (resp. unwanted) answer is satisfied amounts to deciding if it is entailed under IAR semantics (resp. not entailed under brute semantics), so is in P w.r.t. \(|A|\).

• Since computing the causes of a query \(q \) is in P w.r.t. \(|A|\), and the number of causes is polynomial w.r.t. \(|A|\), the characterization of Lemma 3 shows that deciding if an unwanted answer is satisfiable is in P w.r.t. \(|A|\).

• Deciding if a wanted answer \(q \) is satisfiable using the characterization of Lemma 4 can be done by computing the causes of \(q \) and their conflicts in \((T, A \cup True_{\text{user}})\) in P w.r.t. \(|A|\) and \([True_{\text{user}}]\), and verifying in P that at least one of the causes fulfills the required conditions.

• By Lemma 5, checking whether \(q \in U \) is satisfiable w.r.t. \((\mathcal{E}_-, \mathcal{E}_+)\) reduces to checking whether \(q \in U \) is satisfiable for the KB \((T, A \cup \mathcal{E}_+)\). We know from earlier that the latter check can be done in P w.r.t. the size of the ABox. Since \(\mathcal{E}_+ \subseteq True_{\text{user}}\), this condition can be verified in P w.r.t. \(|A|\) and \([True_{\text{user}}]\).

• To check whether an answer \(q \in W \) is satisfiable w.r.t. \((\mathcal{E}_-, \mathcal{E}_+)\), it suffices to check whether \(q \) satisfies the conditions of Lemma 6. These can be verified by: (i) computing the causes of \(q \) and their conflicts in \((T, A \cup True_{\text{user}})\), and (ii) for each candidate cause \(C_0 \) that fulfills the conditions of Lemma 4, and every unwanted answer \(q' \in U \), check that if \(q' \) is satisfied by \((\mathcal{E}_-, \mathcal{E}_+)\), then it is satisfiable for the KB \((T, A \cup \mathcal{E}_+ \cup \mathcal{C}_0)\). Everything can be done in P w.r.t. \(|A|\), \([True_{\text{user}}]\), and \(|U|\) with the same arguments as previous cases.

- In the other direction, it follows from the definition of satisfiable answers that if a validatable repair plan satisfies every satisfiable \(q \in U \) (resp. \(q \in W \)), it is globally \(\preceq_U \) (resp. \(\preceq_W \)) optimal.

- A validatable repair plan is locally \(\preceq_U \) optimal iff it is locally \(\preceq_U \) optimal.

- If a repair plan \((\mathcal{E}_-, \mathcal{E}_+)\) is locally \(\preceq_U \) optimal, it is locally \(\preceq_U \) optimal, otherwise there would be a validatable repair plan \((\mathcal{E}'_-, \mathcal{E}'_+)\) such that \(\mathcal{E}_- \subseteq \mathcal{E}'_- \), \(\mathcal{E}_+ \subseteq \mathcal{E}'_+ \), and \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \), so also such that \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \). Since removing more false assertions cannot deteriorate satisfied wanted answers (see Lemma 1), \((\mathcal{E}_-, \mathcal{E}_+)\) cannot satisfy more unwanted answers otherwise we would have \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \). Hence \((\mathcal{E}'_-, \mathcal{E}'_+)\) must satisfy the same unwanted answers and more wanted answers, which yields \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \), contradicting our assumption of local \(\preceq_U \) optimality.

- A validatable repair plan \(\mathcal{R} \) is locally \(\preceq_U \) optimal iff it satisfies every \(q \in U \cup W \) that is satisfiable w.r.t. \(\mathcal{R} \):
 - Suppose that \((\mathcal{E}_-, \mathcal{E}_+)\) is locally \(\preceq_U \) optimal, and let \(q \in U \cup W \) be an answer that is satisfiable w.r.t. \((\mathcal{E}_-, \mathcal{E}_+)\). Then there exists a validatable repair plan \((\mathcal{E}'_-, \mathcal{E}'_+)\) such that \(\mathcal{E}_- \subseteq \mathcal{E}'_- \), \(\mathcal{E}_+ \subseteq \mathcal{E}'_+ \), and \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \) and \(q \in S(\mathcal{E}'_- \mathcal{E}'_+) \). Since \((\mathcal{E}_-, \mathcal{E}_+)\) is locally \(\preceq_U \) optimal, we must have \((\mathcal{E}_-, \mathcal{E}_+) \sim_U \mathcal{E}_- \mathcal{E}_+ \), and hence \(q \in S(\mathcal{E}_- \mathcal{E}_+) \).
 - In the other direction, suppose that \((\mathcal{E}_-, \mathcal{E}_+)\) is a validatable repair plan that satisfies every \(q \in U \cup W \) that is satisfiable w.r.t. \((\mathcal{E}_-, \mathcal{E}_+)\). Consider a validatable repair plan \((\mathcal{E}'_- \mathcal{E}'_+)\) such that \(\mathcal{E}_- \subseteq \mathcal{E}'_- \), \(\mathcal{E}_+ \subseteq \mathcal{E}'_+ \), and \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \), and take some \(q \in S(\mathcal{E}'_- \mathcal{E}'_+) \). Then \(q \) is satisfiable w.r.t. \((\mathcal{E}_-, \mathcal{E}_+)\), so, by our assumption, it must be satisfied by \((\mathcal{E}_-, \mathcal{E}_+)\). We thus have \((\mathcal{E}_-, \mathcal{E}_+) \sim_U \mathcal{E}_- \mathcal{E}_+ \), so \((\mathcal{E}_-, \mathcal{E}_+)\) is locally \(\preceq_U \) optimal.

- A validatable repair plan \(\mathcal{R} \) is locally \(\preceq_U \) optimal iff it satisfies every satisfiable \(q \in W \) and every \(q \in U \) that is satisfiable w.r.t. \(\mathcal{R} \):
 - Suppose that \((\mathcal{E}_-, \mathcal{E}_+)\) is locally \(\preceq_U \) optimal. First consider some satisfiable \(q \in W \). Then there exists a validatable repair plan \((\mathcal{E}'_- \mathcal{E}'_+)\) such that \(q \in S(\mathcal{E}'_- \mathcal{E}'_+) \). By Lemma 1, we have \((\mathcal{E}_-, \mathcal{E}_+) \preceq_W \mathcal{E}_- \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \), applying our assumption of local \(\preceq_W \) optimality, we have \((\mathcal{E}_-, \mathcal{E}_+) \sim_W \mathcal{E}_- \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \), which implies that \(q \) is satisfied by \((\mathcal{E}_-, \mathcal{E}_+)\).

Next take some \(q \in U \) that is satisfiable w.r.t. \((\mathcal{E}_-, \mathcal{E}_+)\). Then there exists a validatable repair plan \((\mathcal{E}_- \mathcal{E}_+)\) such that \(\mathcal{E}_- \subseteq \mathcal{E}_- \), \(\mathcal{E}_+ \subseteq \mathcal{E}_+ \), \((\mathcal{E}_-, \mathcal{E}_+) \prec_U \mathcal{E}_- \mathcal{E}_+ \), and then \(q \in S(\mathcal{E}_- \mathcal{E}_+) \). Since \((\mathcal{E}_-, \mathcal{E}_+)\) is locally \(\preceq_W \) optimal, we must have \((\mathcal{E}_-, \mathcal{E}_+) \sim_W \mathcal{E}_- \mathcal{E}_+ \), \((\mathcal{E}_-, \mathcal{E}_+) \sim_U \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \mathcal{E}_+ \), and \(\mathcal{E}_- \mathcal{E}_+ \). From the latter, we obtain \(q \in S(\mathcal{E}_- \mathcal{E}_+) \).
- In the other direction, let \((E_-, E_+)\) be a validatable repair plan that satisfies every satisfiable \(q \in W\) and every \(q \in U\) that is satisfiable w.r.t. \((E_-, E_+)\). Take some validatable repair plan \((E'_-, E'_+)\) such that \(E_- \subseteq E'_-\), \(E_+ \subseteq E'_+\), and \((E_- \cup E'_+) \iff (E'_- \cup E'_+)\). We observe that \((E'_-, E'_+)\) cannot satisfy more wanted answers than \((E_-, E_+)\) since \((E_-, E_+)\) satisfies all satisfiable wanted answers, nor can it satisfy more unwanted answers, since otherwise \((E_-, E_+)\) would not satisfy all unwanted answers that are satisfiable w.r.t. \((E_-, E_+)\).

The proof of Theorem 1 uses the coNP-hard problems presented in the two following lemmas.

Lemma 7. NP-hardness of SAT holds if we impose that at least one variable appears in positive and negative form in the formula.

Proof. Reduction from SAT. Let \(\{C_1, \ldots, C_m\}\) be a set of clauses. \(C_1 \land \ldots \land C_m\) is satisfiable iff \(C_1 \land \ldots \land C_m \land (z \lor \neg z)\) is satisfiable, where \(z\) is a fresh variable.

Lemma 8. The following problem is NP-hard: given a set \(\{C_1, \ldots, C_m, C_{m+1}\}\) of clauses such that \(\{C_1, \ldots, C_m\}\) is satisfiable and \(C_{m+1}\) is not a tautology: decide whether \(\{C_1, \ldots, C_m, C_{m+1}\}\) is satisfiable.

Proof. Reduction from SAT. Let \(\{C_1, \ldots, C_m\}\) be a set of clauses. \(C_1 \land \ldots \land C_m\) is satisfiable iff \((C_1 \lor \neg z) \land \ldots \land (C_m \lor \neg z) \land z\) is satisfiable, where \(z\) is a fresh variable, and \((C_1 \lor \neg z) \land \ldots \land (C_m \lor \neg z)\) is satisfiable.

Theorem 1. Deciding if a repair plan is globally \(\preceq\)-optimal is coNP-complete for states \(x \in \{\{\forall u \in W, \exists u \in W, \exists u \in U\}\}, \text{and in } P \text{ for } x \in \{\{\exists u \in W, \forall u \in U\}\} \). Deciding if a repair plan is locally \(\preceq\)-optimal is in \(P \text{ for } x \in \{\{\forall u \in W, \exists u \in W, \forall u \in U\}\} \). The proof is by reduction from SAT when at least one variable appears both in positive and negative form in the formula. Take some CNF formula \(\Phi = \bigwedge_{i=1}^{m+1} C_i\) over the variables \(x_1, \ldots, x_n\) that satisfies this requirement, and consider the QRP described as follows:

\[
\begin{align*}
T &= \{ P \subseteq S, N \subseteq \emptyset \} \\
A &= \{ A(x_j), B(x_j) | 1 \leq j \leq n \} \cup \{ P(b, x_j), N(b, x_j) | 1 \leq j \leq n \} \\
W &= \{ \exists xS(c_1, x), \ldots, \exists xS(c_{m+1}, x) \} \\
U &= \{ \exists x \forall y \forall z P(y, x) \land N(z, x) \land A(x) \land B(x) \}
\end{align*}
\]

where:

\[
\begin{align*}
True_{user} &= \{ P(c_i, x_j) | x_j \in C_i \} \cup \{ N(c_i, x_j) \land \neg x_j \in C_i \} \\
False_{user} &= \{ P(b, x_j), N(b, x_j) | 1 \leq j \leq n \} \\
Unk_{user} &= A \setminus False_{user}
\end{align*}
\]

Let \(\nu\) be a valuation of the \(x_j\) that satisfies \(\bigwedge_{i=1}^{m} C_i\). We show that deciding if the repair \((E_-, E_+)\) with \(E_- = False_{user}\)

\[
E_- = \{ P(c_i, x_j) | x_j \in C_i, \nu(x_j) = true, 1 \leq i \leq m \} \cup \{ N(c_i, x_j) | \neg x_j \in C_i, \nu(x_j) = false, 1 \leq i \leq m \}
\]

is not globally \(\preceq_{U \cup W}\)-optimal iff \(\Phi\) is satisfiable.

First observe that \((E_-, E_+)\) is validatable and satisfies the single unwanted answer. Moreover, as \(\nu\) satisfies the clauses \(c_1, \ldots, c_m\), all of the wanted answers concerning the individuals \(c_1, \ldots, c_m\) are satisfied by \((E_-, E_+)\).

If \(\Phi\) is satisfiable, let \(\nu'\) be a valuation of the \(x_j\) that satisfies \(\Phi\). It is readily verified that the repair plan \((E'_-, E'_+)\) with \(E'_- = False_{user}\)

\[
E'_- = \{ P(c_i, x_j) | x_j \in C_i, \nu'(x_j) = true, 1 \leq i \leq m + 1 \} \cup \{ N(c_i, x_j) | \neg x_j \in C_i, \nu'(x_j) = false, 1 \leq i \leq m + 1 \}
\]

is validatable and satisfies all unwanted and wanted answers, so \((E_-, E_+)\) is not \(\preceq_{U \cup W}\)-globally optimal.

In the other direction, if \((E_-, E_+)\) is not globally \(\preceq_{U \cup W}\)-optimal, then there must exist a repair plan \((E'_-, E'_+)\) that is validatable and satisfies all of the answers in \(U \cup W\). Then it can be straightforwardly verified that \(\Phi\) is satisfiable by the valuation \(\nu'\) of the \(x_j\) defined by \(\nu'(x_j) = true\) if there exists \(c_i\) such that \(P(c_i, x_j) \in E_+\). Indeed, every \(c_i\) has an outgoing edge in \((A \setminus E'_+) \cup E'_+\), and so \(x_j\) has both \(P\) and \(N\)-incomin edges, since otherwise the unwanted answer would not be satisfied.

- Globally \(\preceq_{U \cup W}\)-optimal repair plans:

 The proof is by reduction from SAT when at least one variable appears both in positive and negative form in the formula. Take some CNF formula \(\Phi = \bigwedge_{i=1}^{m+1} C_i\) over the variables \(x_1, \ldots, x_n\) that satisfies this requirement, and consider the QRP described as follows:

 \[
 T = \{ P \subseteq S, N \subseteq \emptyset \} \\
 A = \{ A(x_j), B(x_j) | 1 \leq j \leq n \} \cup \{ P(b, x_j), N(b, x_j) | 1 \leq j \leq n \} \\
 W = \{ \exists xS(c_1, x), \ldots, \exists xS(c_{m+1}, x) \} \\
 U = \{ \exists x \forall y \forall z P(y, x) \land N(z, x) \land A(x) \land B(x) \}
 \]

 where:

 \[
 \begin{align*}
 True_{user} &= \{ P(c_i, x_j) | x_j \in C_i \} \cup \{ N(c_i, x_j) \land \neg x_j \in C_i \} \\
 False_{user} &= \{ P(b, x_j), N(b, x_j) | 1 \leq j \leq n \} \\
 Unk_{user} &= A \setminus False_{user}
 \end{align*}
 \]

 It is easy to see that the repair plan \((E_-, E_+) = (False_{user}, True_{user})\) is validatable and satisfies all wanted answers but does not satisfy the unwanted answer because at least one \(x_j\) has both incoming \(N\)- and \(P\)-edges. In fact, we can show that \((E_-, E_+)\) is not globally \(\preceq_{U \cup W}\)-optimal (i.e., there is some validatable repair plan that satisfies all of \(U \cup W\)).
iff \(\Phi \) is satisfiable. Indeed, every validatable repair plan that satisfies all unwanted and wanted answers gives rise to a satisfying valuation for \(\Phi \), and conversely, any such valuation induces such a repair plan (add either \(N(c_i, x_j) \) or \(P(c_i, x_j) \) for each \(x_j \) in such a way that every \(c_i \) has an outgoing edge). \(\square \)

B Complexity proofs for Section 5

Proposition 3. A validatable deletion-only plan is optimal iff it satisfies every \(q \in U \) such that every \(C \in \text{causes}(q, K) \) has \(\alpha \in C \) with \(\text{user}(\alpha) = \text{false} \), and every \(q \in W \) for which there exists \(C \in \text{causes}(q, K) \) such that \(\text{user}(\alpha) \neq \text{false} \) for every \(\alpha \in C \) and \(\text{user}(\beta) = \text{false} \) for every \(\beta \in \text{conflict}(C, K) \).

Proof. In the case of deletion-only repair plans, being satisfiable or satisfiable w.r.t. a given repair plan is equivalent since removing more false assertions can only improve the satisfied answers (see Lemma 1). Hence, a validatable deletion-only plan is optimal iff it satisfies every answer satisfied by the ‘maximal’ deletion-only plan \(\{ \alpha | \text{user}(\alpha) = \text{false} \} \), or more precisely: every \(q \in U \) such that every \(C \in \text{causes}(q, K) \) has \(\alpha \in C \) with \(\text{user}(\alpha) = \text{false} \), and every \(q \in W \) for which there exists \(C \in \text{causes}(q, K) \) such that \(\text{user}(\alpha) \neq \text{false} \) for every \(\alpha \in C \) and \(\text{user}(\beta) = \text{false} \) for every \(\beta \in \text{conflict}(C, K) \).

CNF formula for deletion-only repair plans. Let \(\phi = \phi_U \land \phi_W \) with

\[
\phi_U = \bigwedge_{q \in U} \bigwedge_{C \in \text{causes}(q, K)} \bigvee_{\alpha \in C} x_\alpha \\
\phi_W = \bigwedge_{q \in W} \bigwedge_{C \in \text{causes}(q, K)} \bigwedge_{\alpha \in C} \neg w_C \lor \neg x_\alpha \\
\land \bigwedge_{q \in W} \bigwedge_{C \in \text{causes}(q, K)} \bigwedge_{\beta \in \text{conflict}(C, K)} \neg w_C \lor x_\beta
\]

Lemma 9. The CNF formula \(\phi \) has the following properties:

1. there exists a potential solution iff \(\phi \) is satisfiable (every satisfying assignment corresponds to a potential solution);
2. \(\alpha \) is necessarily false iff \(\phi \land \neg x_\alpha \) is unsatisfiable;
3. \(\alpha \) is necessarily nonfalse iff \(\phi \land x_\alpha \) is unsatisfiable;
4. there exist disjoint subsets \(S, H \) of the clauses in \(\phi \) such that the MCSWs correspond to the minimal correction subsets (MCSs) of \(S \) w.r.t. \(H \), i.e. the subsets \(M \subseteq S \) such that (i) \(S \setminus M \cup H \) is satisfiable, and (ii) \((S \setminus M') \cup H \) is unsatisfiable for every \(M' \not\subseteq M \).

Proof. First suppose that there exists a potential solution \(\mathcal{E} \), and let \(\nu \) be a valuation of the variables of \(\phi \) defined as follows: \(\nu(x_\alpha) = \text{true} \) iff \(\alpha \in \mathcal{E} \), and \(\nu(w_C) = \text{true} \) iff \(C \subseteq A \setminus \mathcal{E} \) and \(\text{conflict}(C, K) \subseteq \mathcal{E} \) for every \(C \in \text{causes}(q, K) \) with \(q \in W \).

Since \(\mathcal{E} \) is a potential solution, it contains at least one assertion of each unwanted answer, otherwise this answer would still be entailed under brave semantics in \(A \setminus \mathcal{E} \). It follows that \(\phi_{\mathcal{E}} \) is satisfied by \(\nu \). Moreover, every \(q \in W \) has at least one cause \(C \) without any conflict in \(A \setminus \mathcal{E} \), so \(C \setminus \mathcal{E} = \emptyset \) and \(\text{conflict}(C, K) \subseteq \mathcal{E} \). By the way we defined \(\nu \), it satisfies \(\phi_W \), and hence the full formula \(\phi \).

In the other direction, suppose that the formula \(\phi \) is satisfiable, with satisfying valuation \(\nu \). Let \(\mathcal{E} = \{ \alpha | \nu(x_\alpha) = \text{true} \} \). For every \(q \in U \) and \(C \in \text{causes}(q, K) \), \(\mathcal{E} \) contains an assertion \(\alpha \in C \), so there is no cause for \(q \in A \setminus \mathcal{E} \), so every \(q \in U \) is satisfied by \(\mathcal{E} \). For every \(q \in W \), there is a cause \(C \in \text{causes}(q, K) \) such that \(\nu(w_C) = \text{true} \). By the way we defined \(\nu \), this means that for every \(\alpha \in C \), \(\nu(\alpha) = \text{false} \), so \(C \cap \mathcal{E} = \emptyset \), and for every \(\beta \in \text{conflict}(C, K) \), \(\nu(\beta) = \text{true} \), so \(\text{conflict}(C, K) \subseteq \mathcal{E} \). It follows that all \(q \in W \) are satisfied by \(\mathcal{E} \).

Since the assertions assigned to true in a satisfying assignment correspond to a potential solution, \(\alpha \) is necessarily false (resp. necessarily nonfalse) iff \(\phi \land \neg x_\alpha \) (resp. \(\phi \land x_\alpha \)) is unsatisfiable: \(\alpha \) belongs to every potential solution (resp. no potential solution) iff there is no satisfying valuation with \(\alpha \) assigns to false (resp. true).

For the final point, let \(H = \{ \bigvee_{C \in \text{causes}(q, K)} w_C | q \in W \} \), and \(S = \phi \setminus H \). We will show that \(M \subseteq W \) is a MCSW iff \(M = \{ \bigvee_{C \in \text{causes}(q, K)} w_C | q \in M \} \) is a MCS of \(S \) w.r.t. \(H \). First suppose that \(M \) is a MCS. Since removing \(M \) from \(W \) yields a QRP that has a potential solution \(\mathcal{E} \), the valuation \(\nu \) such that \(\nu(w_C) = \text{false} \) for every \(C \in \text{causes}(q) \) with \(q \in M \), and \(\nu(x_\alpha) = \text{true} \) for \(\alpha \in C \), and \(\nu(\beta) = \text{true} \) for \(\beta \in \text{conflict}(C, K) \) for every \(C \in \text{causes}(q) \) with \(q \in W \), \(\nu \) satisfies \(\phi \setminus M \). Moreover, since removing \(M' \not\subseteq M \) from \(W \) does not yield a QRP that has a potential solution, \(M \) is a MCS. The other direction is similar. \(\square \)

Lemma 10. Given two sets of soft and hard clauses \(S, H \), deciding if \(M \subseteq S \) is a MCS of \(S \) w.r.t. \(H \) is BH₂-complete.

Proof. To show that \(M \) is a MCS of \(S \): show in NP that \((S \setminus M) \cup H \) is satisfiable and in coNP that \(M \) is minimal (to show in NP that \(M \) is not minimal, guess \(M' \subseteq M \) and check that satisfies \((S \setminus M') \cup H \)).

Hardness is shown by reduction from SAT-UNSAT: let \(\phi_S, \phi_U \) be two CNF formulas that do not share variables. Then \(\neg \phi \) is a MCS of \(\phi = \phi_S \land (\phi_U \land \neg x) \land \neg x \) iff \(\phi_S \) is satisfiable and \(\phi_U \) is unsatisfiable. \(\square \)

Theorem 3. For complexity w.r.t. \(|A|, |U| \) and \(|W| \), deciding if a potential solution exists is NP-complete, deciding if an assertion is necessarily (non)false is coNP-complete, and deciding if \(W \subseteq W \subseteq \text{MCSW} \) is BH₂-complete.

Proof. The upper bounds follow from Lemma 9 and the fact that the formula \(\phi \) can be constructed in polynomial time in \(|A|, |U| \) and \(|W| \). Indeed, the construction relies upon computing the causes and conflicts of (un)wanted answers, which is known to be computable in P in \(|A| \).

The lower bounds can be shown by reduction from propositional satisfiability related problems.

Existence: The proof is by reduction from satisfiability of a CNF \(C_1 \land ... \land C_m \) over \(x_1, ..., x_n \). Consider the following QRP setting:

\[T_0 = \{ \exists P \subseteq S, \exists N \subseteq S \} \]
the set of clauses $C_1 \land \ldots \land C_{m+1}$ is unsatisfiable iff no potential solution contains the assertion $S(c_{m+1})$ (i.e., we are forced to keep $S(c_{m+1})$ to satisfy the wanted answers).

Necessarily false: The proof is by reduction from unsatisfiability of $C_1 \land \ldots \land C_{m+1}$ given that $C_1 \land \ldots \land C_m$ is satisfiable (cf. Lemma 8). We reuse the sets \mathcal{U} and \mathcal{W}_1 of unwanted and wanted answers from before, and consider the following TBox and ABox:

$$\mathcal{T}_2 = \mathcal{T}_0 \cup \{E \subseteq S, U \subseteq \lnot E\}$$

$$\mathcal{A}_2 = \{P(c_i, x_j) | x_j \in C_i\} \cup \{N(c_i, x_j) | x_j \in C_i\}$$

We show that $U(c_{m+1})$ is necessarily false iff $C_1 \land \ldots \land C_{m+1}$ is unsatisfiable. Since there exists a valuation ν that satisfies $C_1 \land \ldots \land C_{m+1}$, the repair plan

$$\mathcal{E} = \{P(c_i, x_j) | \nu(x_j) = \text{false}\} \cup \{N(c_i, x_j) | \nu(x_j) = \text{true}\}$$

$$\cup \{U(c_{m+1})\} \cup \{P(c_{m+1}, x_j), N(c_{m+1}, x_j)\} \cap \mathcal{A}_2$$

is a potential solution: the wanted answer $S(c_{m+1})$ is satisfied by the assertion $S(c_{m+1})$, and the other wanted answers are satisfied by outgoing P- or N-edges as in proof for existence.

C Proofs of algorithms

The algorithms OptRP\mathcal{U} and OptRP\mathcal{W} terminate provided the user knows only a finite number of assertions that may be inserted.

Theorem 2. The output of OptRP\mathcal{U} (resp. OptRP\mathcal{W}) is globally $\leq_{\mathcal{U}}$ (resp. $\leq_{\mathcal{W}}$) and locally $\leq_{(\mathcal{U},\mathcal{W})}$-optimal.

Proof. We give first the proof for OptRP\mathcal{U}.

First observe that at every point during the execution of the algorithm, the current repair plan is validatable, since only true assertions are added to E_+ and false assertions are added to E_-. (They are either marked as false by the user, or conflict with assertions that have been marked as true).

Step B adds to E_- all assertions known to be false that belong to a cause of some $q \in \mathcal{U} \cup \mathcal{W}$ or a conflict of some cause of $q \in \mathcal{W}$. Thus, at the end of this step, E_- satisfies every satisfiable answer in \mathcal{U}, that is, every answer in \mathcal{U} every cause of which contains at least one false assertion (cf. proof of Proposition 1). Hence (E_-, E_+) is globally $\leq_{(\mathcal{U},\mathcal{W})}$-optimal at the end of step B. Moreover, every false assertion that occurs in a cause or conflict of a cause of a wanted answer has been removed, so if $q \in \mathcal{W}$ is not satisfied at this point, then it has no cause without any conflict in $A \setminus \{\alpha | user(\alpha) = \text{false}\}$.

The purpose of Step C is to add new true assertions to create causes for the wanted answers not satisfied after Step B, while preserving $S_\mathcal{U}(E_-, E_+)$. For every $q \in \mathcal{W}$, while q is not satisfied, the user is asked to input true assertions to complete a cause for q in Step C.1. If he is unable to do so, at Step C.2, we remove q from \mathcal{W} (since it cannot be satisfied w.r.t. user); otherwise, we update E_- and E_+ using T_q (C.3). Note that since T_q contains only true assertions, we
can remove its conflicts without affecting already satisfied wanted answers; this step is necessary because T_q may conflict with assertions of A that are not involved in the causes and conflicts presented at Step B. In Step C.4, we remove false assertions appearing in a new cause for q or its conflicts (such assertions may not have been examined in Step B). Step C.5 removes false assertions of new causes of unwanted answers, and Step C.6 undoes the addition of T_q if it affects $S_U(E_-, E_+)$. Thus, at the end of Step C, for every wanted answer, either it is satisfied, or the user is unable to supply a cause that does not deteriorate $S_U(E_-, E_+)$. It follows that (E_-, E_+) is locally $\preceq_{(U \cup W)}$-optimal.

For OptRP_{W}, Step C.6 is removed, so every satisfiable answer in W is satisfied at the end of Step C, and (E_-, E_+) is globally \preceq_{W}-optimal. To see why (E_-, E_+) is locally $\preceq_{(U \cup W)}$-optimal, observe that (E_-, E_+) satisfies every $q \in U$ that is satisfiable w.r.t. (E_-, E_+), i.e. is such that every cause for $q \in A \cup E_+$ contains some false assertion. Indeed, the assertions of every such cause have been presented to the user either at Step B or at Step C.5.

Theorem 4. The algorithm OptDRP always terminates, and it outputs an optimal deletion-only repair plan.

Proof. Termination follows from the fact that every time we return to Step B, something has either been added to E_- or deleted from W, nothing is ever removed from E_- or added to W, and only assertions from the original ABox A can be added to E_-. Note first the following invariants:

- The set E_- contains only false assertions, since every time E_- is modified, the assertions added have been marked as false by the user, or are conflicts of assertions that have been declared true. Hence, the output plan is validatable.

- The set $E_- \cup A'$ contains all assertions $\alpha \in A$ such that user(α) = false. Indeed, A' is initialized to A, and whenever α is removed from A', it is either added to E_-, or it has been shown to be nonfalse.

- The satisfiable answers (i.e. those that fulfill the conditions of Proposition 3) are never removed from U and W. Indeed, U is never modified and W is modified only at Step C.2.c, where only answers that do not fulfill the conditions of Proposition 3 are removed from W, since all their causes contain some false assertion. It follows that if at some point E_- satisfies every answer in $U \cup W$, then E_- is optimal.

The algorithm can end at three different steps:

- If the algorithm ends at Step B.2.b.ii, then E_- is a potential solution for $(K_0, U \cup W)$. That means that for every $q \in U \cup W$, $(T, A \setminus E_-) \not\models q$, i.e. q is satisfied by E_-, and for every $q \in W$, $(T, A \setminus E_-) \models q$. Moreover, for every $q \in W$, Step 2.b.1 ensures that there is a cause of q in $K = (T, A \setminus E_-)$ without conflicts that contains no false assertions, so q is satisfied by E_-. It follows that E_- satisfies every satisfiable answer since such answers always remain in $U \cup W$. The output set E_- is thus an optimal deletion-only repair plan.

- If the algorithm ends at Step B.2.c.i, the user has been required to input some false or true assertions at Step B.2.c and he was not able to input anything, so the user has deleted all false assertions he knows among the relevant assertions, and thus it is not possible to improve the current repair plan further. Indeed, the set of relevant assertions contains every assertion that appear in a cause of $q \in U \cup W$ or in a conflict of a cause of $q \in W$ and has not be declared false, true or nonfalse yet, so it is not possible to satisfy additional answers by removing further assertions that are not relevant, either because they are not involved in the problem at all, or because they are known to be nonfalse.

- If the algorithm ends at Step C.3, Step B of the general algorithm OptRP$_U$ is applied: the user is asked to mark every false and true assertion in the relevant assertions, so the output is optimal since it takes into account everything the user knows.

D Experiments details

Experimental setting. Figure 3 displays the queries used in the experiments. We slightly modify the queries q_1, q_2, q_3, q_4 used in [Bienvenu et al., 2016], changing only some constants or variables, to get dependent answers (whose causes and conflicts of causes share some assertions).

When building QRPs, the unwanted answers are picked from a set of “false answers” that contains: (i) the answers that were not answers over the initial consistent ABox c_0, and (ii) the answers such that all their causes contain some assertions that we choose arbitrary and consider to be false. We choose seven such assertions in total. The wanted answers are picked from the complement of these false answers. Table 1 shows the number of false and true answers for each query and ABox. We built in sequence 13 QRPs for c_5, one being obtained from the preceding QRP by adding further queries answers to U or W. They have for each of the four queries 1 up to 25 wanted answers and 1 up to 24 unwanted answers. We did the same for c_{29}. QRPs have for each query 1 up to 25 wanted answers and 1 up to 24 unwanted answers. $U \cup W$ size varies from 8 to 121. We also randomly built a few QRPs to get some QRPs with MCSW but we found at most one MCSW.

Our hardware is an Intel Xeon X5647 at 2.93 GHz with 16 GB of RAM, running CentOS 6.7. Reported times are averaged over 5 runs.

Experimental results. In all of our experiments, deciding if a potential solution exists, as well as computing the relevant assertions, takes a few milliseconds. The difficulty of computing the necessarily (non)false assertions correlates with the number of relevant assertions induced by QRPs. For the c_5 QRPs involving 85 to 745 relevant assertions, it takes 30ms to 544ms, while it takes 24ms to 1333ms for the c_{29} QRPs involving 143 to 1404 relevant assertions. Figure 4 shows the time needed to compute necessarily (non)false assertions

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>184</td>
<td>4</td>
<td>184</td>
</tr>
<tr>
<td>24</td>
<td>286</td>
<td>7</td>
<td>286</td>
</tr>
</tbody>
</table>

Table 1: Number of false and true answers per query and ABox.
\[q_1 = \exists y \text{ Person}(x) \land \text{takesCourse}(x, y) \land \text{GraduateCourse}(y) \land \text{takesCourse}((\text{GraduateStudent131}), y) \land \text{Person}((\text{GraduateStudent131})) \]

\[q_2 = \exists x \text{ Employee}(x) \land \text{memberOf}(x, \text{Department2.University0}) \land \text{degreeFrom}(x, y) \]

\[q_3 = \exists y \text{ teacherOf}(x, y) \land \text{degreeFrom}(x, \text{University532}) \]

\[q_4 = \exists z \text{ Employee}(x) \land \text{degreeFrom}(x, \text{University532}) \land \text{memberOf}(x, z) \land \text{Employee}(y) \land \text{degreeFrom}(y, \text{University532}) \land \text{memberOf}(y, z) \]

Figure 3: Queries.

Figure 4: Time (in seconds) to compute necessarily false and nonfalse assertions w.r.t. the number of relevant assertions induced by QRPs.

Figure 5: Time (in seconds) to rank relevant assertions that are not necessarily (non)false w.r.t. their number.

w.r.t. the number of relevant assertions. While these times seem reasonable in practice, ranking the remaining relevant assertions based on their impact is time consuming (it requires a number of calls to the SAT solver quadratic in the number of assertions): it takes less than 10s up to \(~150\) assertions, less than 5mn up to \(~480\) assertions, and up to 25mn for 825 assertions. Figure 5 shows the time needed to rank remaining assertions w.r.t. their number.