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Abstract—Path-biased random testing is an interesting
alternative to classical path-based approaches faced to
the explosion of the number of paths, and to the weak
structural coverage of random methods based on the input
domain only. Given a graph representation of the system
under test a probability distribution on paths of a certain
length is computed and then used for drawing paths. A
limitation of this approach, similarly to other methods
based on symbolic execution and static analysis, is the
existence of infeasible paths that often leads to a lot of
unexploitable drawings.

We present a prototype for pruning some infeasible
paths, thus eliminating useless drawings. It is based on
graph transformations that have been proved to preserve
the actual behaviour of the program. It is driven by
symbolic execution and heuristics that use detection of
subsumptions and the abstract-check-refine paradigm. The
approach is illustrated on some detailed examples.

I. INTRODUCTION

White-box, path-based, testing is a well-known tech-
nique, largely used for the validation of programs. Given
the control-flow graph (CFG) of the program under test,
generation of a test suite is viewed as the process of first
selecting a collection of paths of interest, then trying to
provide, for each path in the collection, concrete values
for the program parameters that will make the program
follow exactly that path during a run.

For the first step, there are various ways to define what
is meant by paths of interest: structural testing methods
aim at selecting some set of paths that fulfills coverage
criteria related to elements of the graph (vertices, edges,
paths of given length, etc); in random-based techniques,
paths are selected according to a given distribution of
probability over these elements (for instance, uniform
probability over all paths of length less than a given
bound). Both approaches can be combined as in struc-
tural statistical testing [1, 2]. The random-based methods
above have the advantage of providing a way to assess

the quality of a test set as the minimal probability of
covering an element of a criterion.

Handling the second step requires to produce for each
path its path predicate, which is the conjunction of
all the constraints over the input parameters that must
hold for the system to run along that path. This is
done using symbolic execution techniques [3]. Then,
constraint-solving is used to compute concrete values to
be used for testing the program. If for no input values the
path predicate evaluates to true, the path is infeasible. It
is very common for a program to have infeasible paths
and such paths can largely outnumber feasible paths.
Every infeasible path selected during the first step will
not contribute to the final test suite, and there is no
better choice than to select another path, hoping for
its feasibility. Handling infeasible paths is the serious
limitation of structural methods since such methods can
spend most of the time selecting useless paths. It is also
a major challenge for all techniques in static analysis of
programs, since the quality of the approximations they
provide is lowered by data computed for paths that do
not exist at program runs.

To overcome this problem, different methods have
been proposed, like concolic testing (see Section VII)
or random testing based on the input domain [4]. In
path-biased random testing, paths in the CFG are drawn
according to a given distribution and checking the fea-
sibility of paths is done in a second step. In [5], for
each drawing yielding an infeasible path, a new path was
drawn, while trying to learn infeasibility patterns from
the set of rejected paths. But the experimental results
were not satisfactory for programs with many infeasible
paths. Here, we follow another approach, namely we
present a prototype that builds better approximations of
the behavior of a program than its CFG, providing a
transformed CFG, which still over-approximates the set
of feasible paths but with fewer infeasible paths. This
transformed graph is used for drawing paths at random.



In [6] we modelled our graph transformations and
formally proved the two key properties that establish
the correctness of our approach: all feasible paths of the
original CFG have counterparts in the transformed graph,
and to each path in the new graph corresponds a path in
the original CFG performing the same computations.

Our algorithm uses symbolic execution of the paths in
the CFG, which, in conjunction with constraint solving,
allows to detect whether some paths are infeasible. As
programs can contain loops, their graphs can contain
cycles. In order to avoid to follow infinitely a cyclic
path, we enrich symbolic execution with the detection
of subsumptions. Roughly speaking, a subsumption can
be interpreted as the fact that some node met during
the analysis is a particular case of another node met
previously. As a result, there is no need to explore the
successors of the subsumed node: they are subsumed by
the successors of the subsumer.

The paper is organized as follows. In Section II we
recall classical definitions, and introduce the basic oper-
ations performed by the algorithm: symbolic execution,
detection of subsumption, and abstraction. In Section III,
we present our main algorithm and its heuristics before
describing in Section IV, how it behaves on an example.
Section V shows experimental results on three examples.
Section VI briefly reports about proving the correctness
of the approach. Finally, we present related works in
Section VII and conclude in Section VIII.

II. BACKGROUND

A. Modelling programs

Programs are modelled by labelled transition systems
(LTS). A LTS is a quadruple (L, l0,∆, F ) where L is
the set of program locations, l0 ∈ L is the entry point of
the program and F ⊆ L the set of final vertices, i. e. exit
points. ∆ ⊆ L×Labels×L is the transition relation, with
Labels being a set of labels whose elements represent the
basic operations that can occur in programs.

In this paper, a label can be as follows:
• Skip, used for edges associated with break, continue

or jump statements,

• Assume φ, where φ is a boolean expression over
Vars , the set of program variables,

• Assign v e, where v is a program variable and e an
expression over elements of Vars .

Vertex l0 has no incoming edge and elements in F
have no outgoing edges. In the underlying graph, all

vertices are reachable from l0 and reach an element in
F .

The transition relation represents the operations that
are executed when control flows from a program location
to another. We write l

label→ l′ to denote the transition
leading from l ∈ L to l′ ∈ L executing the operation
corresponding to label ∈ Labels .

Conditional statements are directly encoded using the
underlying graph structure of the LTS by adding edges
labelled with the condition to the successors.

Such LTS model programs as if they were the result
of a pre-compiler for a simple imperative programming
language where basic operations are either assignments
or Skip; Conditional statements are either If-Then-Else
blocks (the Else-branch being optional) or While-loops.
There is no explicit block structure as it is assumed that,
after some scope analysis and renaming, all variables
are defined at the topmost level. We call D the domain
of program variables. A program state is a function
σ : Vars → D. In the following examples, we assume
D to be the set of integers. This could be extended
to arrays, records and other constructs. Actually, the
approach presented here can be combined with existing
memory models such as [7, 8]: this leads to consider new
kinds of formulae, but the notions of subsumption and
abstraction will remain relevant. The real limit comes
from the constraint solver in use.

In Figure 1, we give the LTS for a program that merges
two sorted arrays. Its input are two arrays a and b of
integers and their respective lengths la and lb. It returns
a third array A containing the elements of a and b, sorted
in ascending order. The program code is made essentially
of three loops. The first one iterates on both a and b, and
stores their elements in A until one of the two arrays
is exhausted. The array that has not been completely
traversed is then processed by one of the last two loops.

Although simple, this program contains a lot of infea-
sible paths, assuming no pre-condition about la or lb.
We distinguish seven "groups" of infeasible paths, and
five of feasible paths (one group with a single path).
For example, any path going through 2

ia≥la→ 9 (resp.
3

ib≥lb→ 9) then 9
ia<la→ 10 (resp. 12

ib<lb→ 13) is infeasible.
Also, any feasible path can enter at most one of the
last two loops and not entering either loop is feasible
only when the input arrays are empty. We do not detail
the other groups, but in the case of merging sort, the
reason of infeasibility generally lies in the fact that a
and b cannot have been both completely visited when
the execution exits the first loop.
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Figure 1: The LTS for the merging sort algorithm.

B. Symbolic Execution

A symbolic variable is an indexed version of a pro-
gram variable. The set Vars×N of all symbolic variables
is denoted SymVars .

Symbolic execution performs over configurations,
which are pairs (s, π). The first member s, the store, is a
function from program variables to indexes which maps
program variables to symbolic variables. The second
member π, the path predicate, is a formula over symbolic
variables which is the conjunction of constraints met
during symbolic execution. The set of all configurations
is denoted by C. A configuration is satisfiable if and only
if its path predicate is satisfiable.

We represent symbolic execution by a function SE :
C× Labels → C, and define it as follows:

SE c l =


c if l = Skip

(s, π ∧ φs) if l = Assume φ

(s′, π ∧ (v, s′(v)) = es) if l = Assign v e

where:
• es (resp. φs) denotes the expression obtained from
e (resp. φ) by substituting every occurrence of a
program variable v by (v, s(v)),

• s′ is obtained by updating s in such a way that the
symbolic variable (v, s′(v)) is fresh1 for c.

C. Subsumption

Subsumption is a relation between configurations.
Informally, a configuration c is subsumed by a configu-

1i.e. it is not yet associated to a program variable by the store and
it does not occur in the path predicate.

ration c′ if it is a particular case of c′. More precisely, a
configuration represents a set of program states and c is
subsumed by c′ if the set of program states represented
by c is a subset of the set of program states represented
by c′. In the following, we define the concepts needed to
formalise this notion of program states represented by a
configuration.

Given a store s, a program state σ : Vars → D and a
symbolic state σsym : SymVars → D, σ and σsym are
said to be consistent with s, noted cons(s, σ, σsym), if

∀ v ∈ Vars. σ(v) = σsym((v, s(v)))

Given an arithmetic or boolean expression e over
program (resp. symbolic) variables and a program state
σ (resp. a symbolic state σsym), we write e(σ) (resp.
e(σsym)) the evaluation of e in σ (resp. in σsym).

The set of program states represented by a configura-
tion c = (s, π), or simply the set of states of c, denoted
States(c), can then be defined in the following way:

States(c) = {σ. ∃ σsym. cons(s, σ, σsym) ∧ π(σsym)}

If the path-predicate of a configuration is unsatisfiable,
its set of states is empty.

A configuration c is subsumed by another configura-
tion c′, noted c v c′, if States(c) ⊆ States(c′).

Symbolic execution is monotonic with respect to this
definition of subsumption. There is no need to explore
the successors of a subsumed point, as they are subsumed
by the successors of the subsumer. It follows that the set
of feasible paths starting at the subsumee is a subset of
the set of feasible paths starting at the subsumer [6].



Therefore, as subsumption corresponds to an inclu-
sion of paths, adding a subsumption to the symbolic
execution tree often comes at the price of introducing
infeasible paths into it. A challenge is thus to accept
only subsumptions that introduce a reasonable number
of infeasible paths. This is addressed in section III.

D. Abstraction

Unfolding loops by symbolic execution in a LTS may
yield an infinite symbolic execution tree. To get a finite
representation, loops must be subject to subsumption
at some point. Every time a loop header is reached
when extending a symbolic execution path, the algorithm
checks if a subsumption can apply with one of the
previous occurrences of the same loop header on the
path. The configurations at the subsumer and subsumee
record two snapshots of the (symbolic) values of vari-
ables along that path, as given by the store and the path
predicate. Except for trivial loops, the symbolic values
of some variables have changed between the configura-
tions and subsumption might not occur. Abstracting a
configuration means forgetting part of the information
in the configuration at the subsumer for forcing the
subsumption. The store component of a configuration
merely records the symbolic variable currently associated
with a program variable; in the path predicate constraints
over symbolic variables are expressed as conjunctions of
formulae on symbolic variables, reflecting decisions and
assignments that take place along the path. Abstraction
discards some of these formulae and there are various
ways to do so: remove a set of conjuncts, or compute a
weaker form of the path predicate that would be implied
by the current path predicates of both configurations, see
for instance [9, 10]. Abstraction at a loop header amounts
to compute some kind of invariants for that loop.

Once abstraction has been performed for the sub-
sumer, configurations located in its subtree must be
recomputed by propagating the abstract configurations
to the successors. Propagating the abstraction could rule
out existing subsumptions involving successors of the
subsumer. Moreover, it must also be checked that the
abstraction propagated to the subsumee is now subsumed
by the abstracted subsumer, which is not guaranteed.
When such a conflict exists, we keep the existing sub-
sumptions and discard the abstraction.

When no abstraction is retained with any of the previ-
ous occurrences on the path of the same loop header, the
loop is unfolded again by symbolic execution, hoping for
a future subsumption.

Forcing a subsumption with an abstraction is not

always profitable: each abstraction discards part of in-
formation about the current symbolic values of variables
at that program point and possibly add a whole set
of new infeasible paths, in comparison to the set of
feasible paths one would have obtained with classical
symbolic execution. In Section III we describe how our
heuristics limit that problem. A crucial point for limiting
the unfolding of loops without introducing infeasible
paths is the choice of the predecessor with which to
subsume and of the abstraction that makes it possible.

E. Limiting Abstractions

To prevent from performing unwanted abstractions at
a configuration, or for recording that some abstraction
has been banned by some kind of counterexample driven
refinement [10], predicates can be attached to configu-
rations for loop headers. They act as safeguard against
too crude abstractions: only abstract configurations that
imply the additional predicate will be considered. This
predicate is usually obtained after some kind of refine-
ment. In Section III we use a weakest-precondition calcu-
lus for that purpose. To make sure that no feasible path is
discarded by attaching the predicate to a configuration,
the predicate must hold for all states described by the
configuration. This additional predicate is not part of the
configuration and is not propagated to successors.

III. ALGORITHM

Our algorithm transforms a given CFG into one with
fewer infeasible paths. It takes an LTS S and an initial
configuration c as inputs, and produces a new LTS S′.
In [6] we have formally proved that S′ fulfills the two
following properties: (i) for every path in S′ there exists
a path with the same trace in S; (ii) for every feasible
path of S starting with the initial configuration c, there
exists a path with the same trace in S′.

A. Red-Black Graphs

The algorithm builds an intermediate structure that we
call a red-black graph, which is turned back into a LTS
when the analysis is over. A red-black graph RB is a
6-uple (B,R,S, C,M,Φ) where:
• B = (L, l0,∆, F ) is the input LTS that we call the

black part. It is never modified during the analysis,
• R = (V, r, E) is a rooted graph (a LTS without

labels) that we call the red part, which represents
the symbolic execution tree built so far and can
be seen as a partial unfolding of the black part;
V ⊆ L × N is its set of vertices, called the red
vertices; they are indexed versions of elements of



L representing occurrences of locations of B met
during the analysis; r ∈ V is its root; E ⊆ V ×V is
its set of edges. Function fst returns the first element
of a couple; we use it to retrieve the black vertex
associated with a red vertex,

• S ⊆ V ×V is the subsumption relation between red
vertices computed so far,

• C is a function from red vertices to configuration
stacks: a red vertex can have multiple configurations
(reflecting different choices of abstraction) during
the analysis and we need to keep track of these
configurations. In the following, given a red vertex
rv , we call configuration of rv the configuration on
top of the stack associated with rv ,

• M, the marking, is a function from red vertices to
boolean values recording partial information about
unsatisfiability: given a red vertex rv , M(rv) is
true only if the configuration of rv has been proved
unsatisfiable. A constraint solver is used for that
purpose (assumed to be correct, but not complete).
For performance reasons, it is not called upon
every vertex. If M(rv) is false, then rv has been
proved satisfiable or nothing is known about its
satisfiability and it is treated as if it is satisfiable.
Symbolic execution stops at vertices for which M
holds. Hence, no element in V is a successor of
such vertex,

• Φ is a function from red vertices to formulae over
program variables recording the predicates used for
limiting abstractions (see Section II-E).

We give the pseudo code of the main parts of the
algorithm in Figures 2 and 3. The algorithm maintains a
global data structure rvs of red vertices to visit. In the
current version, rvs is a stack built according to a DFS
traversal of the LTS. It starts with the original LTS and
an initial configuration c whose store maps each program
variable to a symbolic variable and whose path predicate
is a user-provided formula (precondition of the program
under test). In practice this formula must belong to the
logic supported by the constraint solver, as must do the
formulae of the Assume transitions in the LTS.

B. Building the Red-Black Graph

The main function, build (Figure 2), is a loop that
runs until there are no more red vertices to visit in the
stack rvs , in which case the analysis is complete.

Initialization: When the analysis starts, build is
called with RB in the following initial state:
• B is S, the LTS under analysis,

• the root r of R is the couple (l0, 0), which is also
the only element of V ,

• E and S are empty, since the red graph is empty,
• C associates with r a one-element stack that con-

tains the initial configuration c,
• M associates false with r,
• Φ associates true with r,

and rvs contains r only.

If the stack rvs is not empty (line 2), its first element,
called rv , is popped. If the configuration of rv is marked
(line 5), i.e. it is known to be unsatisfiable (thanks to
a call to a constraint solver), the symbolic execution
halts along that path. Otherwise, the path p leading from
r to rv in R is recovered (modelled by the primitive
path_to at line 6).

Symbolic execution: this is the nominal action when
none of the special cases detailed below apply: it per-
forms a partial unfolding of R by a symbolic execution
step at rv (lines 17, 19). We explain here howM, C and
Φ propagate to the immediate successors.

For every transitions (fst rv)
label→ l in ∆:

• the edge (rv , (l, i)) is added to E, where i is a fresh
index for location l,

• the configuration SE (top (C rv)) label (see Sec-
tion II-B) is pushed on C (l, i),

• if label is of the form Assume φ, with φ being
false2, then (l, i) is marked in M. If φ is neither
false nor true, then a constraint solver is called to
check the satisfiability of the new configuration:
(l, i) is marked in M only if the solver proves it is
unsatisfiable (as for the case of subsumption),

• Φ is updated such that it associates true with (l, i).
Successors are then pushed onto rvs in order to be
processed in the next iterations of the loop.

Handling final locations and limiting abstractions: If
rv is an occurrence of a final location of B (line 7),
the algorithm checks the infeasibility of p from the
initial configuration (call ifp to a solver at line 8).
If p turns out to be infeasible, it could come from
one of the abstractions made along p, at some red
vertex rv ′, resulting in a loss of information about the
program state that caused p to be considered feasible.
A "refine-and-restart" phase is triggered. The refine-part
consists in searching such rv ′ along p, which is done by
faulty_abs (line 9). We do not give its pseudo code,

2In this paper this would occur only in case of a loop or conditional
with a true condition in the original CFG.



but the idea is to search back in p the red vertex rv ′

whose stack of configurations contains two (consecutive)
configurations ci and cj such that the suffix of p starting
at rv ′ is infeasible from ci but was feasible from cj :
configuration cj corresponds to the faulty abstraction.

In lines 10 and 11, the algorithm computes a condition
that will block any attempt to build p again. Let p′ be
the subpath of p going from rv ′ to its first successor in
p whose configuration is unsatisfiable: the condition φ
returned by ifp_cond is the weakest precondition of
false w.r.t. to the trace of p′. φ is then joined to Φ(rv ′).

Next, the configuration of rv ′ prior to the faulty ab-
straction is restored (line 12) and its subtree is destroyed
(line 13), i.e. RB is updated in the following way:
• configuration stacks of successors of rv ′ are re-

moved from C,
• subsumptions involving rv ′ or any of its successor

are removed from S,
• successors of rv ′ marked in M are unmarked,
• entries of Φ involving successors of rv ′ are re-

moved,
• every edge starting or ending in a successor of rv ′

is removed from E,
• and every successor of rv ′ is removed from rvs .

Finally, rv ′ is pushed on rvs so that the analysis restarts
at rv ′, now strengthened with φ, for the next iteration of
the loop in build.

In our prototype, the whole refine-restart part is con-
troled by a user switch: without it, when a final vertice
is reached the algorithm simply selects the next vertex
to visit in rvs; building the final LTS is faster but it
often keeps many infeasible paths because of loose ab-
stractions. With it, the risk is that no better abstraction is
found and the loop is unfold once more without guaranty
about finding a better situation at the next occurrence
of the loop header, yielding a possible infinite chain of
unfoldings. This is due to the fact that our method of
abstracting does not learn from the safeguard condition:
the subsumption is postponed in the hope that a more
accurate abstraction can be found later. A compromise
is to keep the refine-restart and bound the maximal length
of paths or unfoldings, but experimenting with learning
abstraction methods is definitely worth doing.

Finding abstraction: Suppose that rv is an occurrence
of a loop header (line 15), the algorithm attempts at
detecting a subsumption of rv with a red vertex, for the
same black location, previously met along p (line 16).
Function subsumed (Figure 3) iterates over the vertices
of p. When an occurrence rv ′ for the same black vertex

is found (line 22), the constraint solver is called to check
if the configuration of rv ′ subsumes the one at rv (line
23). If yes, the subsumption is established and (rv , rv ′)
is added to S (line 24). If the answer is negative or
unknown3, function abs (line 26) attempts at abstracting
the configuration of rv ′ in order that i) it subsumes the
configuration of rv and ii) it entails Φ(rv ′).

There are various ways to find such abstractions. The
current version of abs replaces the first conjunct in
the path predicate of the configuration of rv ′ by true,
checks if Φ(rv ′) is entailed then checks if the abstracted
configuration subsumes the configuration of rv . If this
is the case, the abstracted configuration is returned.
Otherwise, abs replaces the second conjunct (still using
true in place of the first conjunct), and so on. If Φ(rv ′)
is no longer entailed, the search for an abstraction is
canceled. If Φ(rv ′) still have its default value of true
and no better abstraction is found, we end up with a
path predicate becoming equivalent to true and a trivial
abstraction occurs.

The ability of the algorithm to eliminate infeasible
paths depends on the precision of the way configurations
are abstracted, and we plan to experiment with more
precise methods of abstraction. In Section IV-B we
present a heuristics based on a fixed lookahead of the
feasiblity of the successors of the subsumed vertices.
The current simple and greedy algorithm used by abs
requires only a number of calls to the constraint solver
that is linear in the initial number of conjuncts.

If an abstraction is returned by abs, it is checked that
it can be propagated without invalidating existing sub-
sumptions involving successors of rv ′ (line 27). If this
is not the case, the subsumption at the loop header does
not take place and the search for an abstraction halts,
since a looser abstraction will not help here. Otherwise,
the abstraction is propagated (line 28) by performing
symbolic execution in the subtree with root rv ′ with
the abstracted configuration pushed on its stack, and
pushing newly computed configurations on the stacks of
the successors of rv .

One can observe that depending on the order in which
the LTS is traversed, a successor of rv ′ can have been al-
ready abstracted (i.e. its stack of configurations contains
more elements than the stack of rv ′). To account for
both abstractions, the path predicate of the configuration
pushed on its stack is the conjunct of all sub-formulae

3In the case of an unknown answer, accepting the subsumption
would result in a loss of feasible paths in the resulting LTS when the
configuration of rv is not subsumed by the one at rv ′.



1 Function build(RB = (B,R,S, C,M,Φ))

2 while ¬ empty(rvs) do
3 let rv = top(rvs);
4 pop(rvs);
5 if ¬ M rv then
6 let p = path_to(rv , R);
7 if fst(rv) ∈ F then
8 if ifp(p, top(C r), B) then
9 let rv ′ = faulty_abs(p, C, B)

10 and φ = ifp_cond(p, rv ′, B);
11 Φ rv ′ ← Φ rv ′ ∧ φ;
12 restore(rv ′, p, C);
13 destroy(rv ′, R, S , C, M, Φ);
14 push(rv ′, rvs);
15 else if loop_header(rv , B) then
16 if ¬ subsumed(rv , p, RB) then
17 build_succs(rv , B, R, C, M);
18 else
19 build_succs(rv , B, R, C, M);

Figure 2: Building the symbolic execution tree.

common to the path predicates of both abstractions (the
two stores are identical).

Besides, propagating an abstraction can turn configu-
rations back from unsatisfiable to satisfiable. Red vertices
where this phenomenon occurs must be unmarked and
pushed on the stack rvs .

Once the abstraction has been propagated, the new
subsumption is added to S (line 29).

The algorithm may not terminate. Our implementation
takes the maximal red length, noted mrl, of symbolic
paths as an additional parameter. Whenever the current
symbolic path reaches this bound, the algorithm is not
allowed to extend it further (but it can attempt to trigger
a refine-and-restart phase or to subsume it).

C. Building the new LTS

Once the analysis is over, RB is turned back into a
new LTS S′ by removing from the red part R the edges
leading to marked red vertices, replacing the targets of
edges leading to subsumed red vertices by their sub-
sumers, then renaming vertices and label edges between
red vertices with the label of the edge between their black
counterparts. For red vertices where the analysis halted
because of the mrl limit, if any, the edges whose target
is not final are connected to the corresponding vertex in
the black part, i.e. to the original CFG. This trick and
the fact that transformations on the red part never rule
out (prefixes of) feasible paths ensures that S′ preserves
the feasible paths of S.

IV. EXAMPLE: MERGING SORT

We now detail how our algorithm behaves in the
case of merging sort. In this example, statements and
conditions that use the values of the elements in arrays

20 Function subsumed(rv , p, RB = (B,R,S, C,M,Φ))

21 foreach rv ′ ∈ p do
22 if fst(rv ′) = fst(rv) then
23 if top(C rv) v top(C rv ′) then
24 S ← S ∪ {(rv , rv ′)};
25 return true;
26 if abs(rv ′, rv , C, Φ) = Some(a) then
27 if can_prop(a, rv ′, B, R, C, S) then
28 propagate(a, rv ′, B, R);
29 S ← S ∪ {(rv , rv ′)};
30 return true;
31 return false;

Figure 3: Detecting a subsumption.
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Figure 4: Simplified LTS for the merging sort example.

a, b and A have no influence at all on the feasibility
of paths. In the following, we proceed with a slightly
simplified and compacted version of the LTS of Figure 1,
which is shown in Figure 4: subpaths 4− 5− 6− 2 and
4 − 7 − 8 − 2 in the CFG are replaced by two edges
4−2 in the new LTS, with the labels of the two original
edges 6− 2 and 8− 2. We suppose that at each traversal
of the loop, any of these two edges can be chosen non-
deterministically. Instead of a sort program we have a
program traversing two arrays in an arbitrary way. Again,
this change does not influence the set of infeasible paths
which only depends on how indexes in input arrays vary.
But it does impact time spent in the constraint-solver.

First, we show and interpret the result given by the
algorithm as it was presented in Section III. Then, we
show how to greatly improve this result using a simple
heuristic that discards too crude subsumptions. In the
following, we write li to denote the red vertex (l, i).

A. Merging sort without heuristic

Initialization: The analysis starts at red vertex 00

(Figure 5). We make no particular assumption over
program variables: the initial configuration is ({ia 7→
ia0, ib 7→ ib0, la 7→ la0, lb 7→ lb0}, true).



Handling the first assignments: Symbolic execution is
used for handling 00 then 10 before reaching vertex 20.

Execution of the body of the first loop: Here, both
successors of 20, namely 30 and 50, are built and pushed
on the stack. We assume that 30 is on top. When the latter
is visited, its successors 40 and 51 are built and pushed
to the stack. We assume 40 is on top: 21 and 22 are built,
pushed and will be visited in this order. At this point,
rvs contains 21, 22, 51 and 50, 21 being on top.

Subsumption of 21 by 20: Since 21 is an occurrence of
a loop header, the algorithm checks if it can be subsumed
by its ancestor 20. The configuration of 21 is ({ia 7→
ia2, ib 7→ ib1, la 7→ la0, lb 7→ lb0}, ia1 = 0 ∧ ib1 = 0 ∧
ia1 < la0 ∧ ib1 < lb0 ∧ ia2 = ia1+1), which does not
entail ({ia 7→ ia2, ib 7→ ib1, la 7→ la0, lb 7→ lb0}, ia1 =
0 ∧ ib1 = 0), the configuration of 20: ia must be equal
to 0 at 20 but to 1 at 21. The algorithm introduces an
abstraction at 20 by removing ia1 = 0 from the path
predicate of top (C 20). This allows the subsumption
from 21. The abstraction is propagated from 20 to 21 and
(21, 20) is added to the subsumption relation, which is
represented by a dotted edge in Figure 5.

Subsumption of 22 by 20: Next, 22 is visited. As
previously, subsumption by 20 cannot happen without
abstraction since now ib must be equal to 0 at 20 but
to 1 at 22. Hence, we remove ib1 = 0 from the path
predicate of top (C 20). Since this new abstraction does
not invalidate subsumption (21, 20), it is propagated in
the subtree rooted by 20 and (22, 20) is added to the
subsumption relation.

Subsumption of 52 by 51: The next vertex to visit
is 51. Since it is not final and cannot be subsumed,
its successors 60 and 70 are built and pushed. We
reach 51 from 30 itself linked to 20 by the (black)
edge from 2 to 3: the configuration of 51 imposes that
ia < la holds. When processing 70 its configuration is
discovered as unsatisfiable since the transition from 5 to
7 is guarded by ia ≥ la: 70 is marked. From 60, red
vertex 52 is reached, incrementing ia . Since ia has been
incremented, ia < la might not hold anymore at 52,
preventing the latter to be subsumed by 51. However,
subsumption can be established with an abstraction at
51 by removing ia1 < la0 from its predicate. Since no
other subsumption takes place in the subtree with root
51, the abstraction is propagated.

Recall now that 70 was marked because its path
predicate required ia to be both lesser and greater or
equal to la . After the last propagation, only the latter
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Figure 5: A partial unfolding of the LTS of Figure 4.

remains: top (C 70) has been abstracted to a satisfiable
configuration and is thus unmarked.

70 is now visited, and its successors 80 and 90 are
built. The configuration of 80 requires ib to be both lesser
and greater or equal to lb: 80 is marked (denoted by a
⊥ symbol in Figure 5).

Refine the faulty abstraction: 90 is reached. Since it
is an occurrence of the final location, we check if the
unique4 path p in R from the red root to 90 is really
feasible, or if it has been made feasible by a previous
abstraction.

Here p has been made feasible by the abstraction at 51.
A refine-and-restart phase is triggered. We extract from
p the subpath p′ starting at 51 and ending after the first
infeasible step, namely 51 · 70. We compute the weakest
precondition of false along p′, ia < la , and use it as the
limiting condition for abstraction at 51. Then, 51 has its
configuration before the abstraction restored, its subtree
destroyed and 51 is finally pushed back on top of the
stack, and selected during the next iteration of build.

Restart the analysis: The analysis restarts at 51, now
labeled with ia < la (denoted between square brackets
in Figure 6). Its successors 61 and 71 are built and pushed
on the stack. Once again, the occurrence of 7 is detected
infeasible and marked. The algorithm continues until 53

is processed. As previously, 53 is not subsumed by 51

since ia < la might not hold at 53. The algorithm at-
tempts at abstracting 51 in order to force the subsumption
with 53 but now fails since the required abstraction does
not entail Φ(51) = ia < la .

End of the analysis: We do not detail the rest of the
analysis as much. From 53, the second loop is unfolded

4R is a tree and there is a unique path from the root to any vertex.
Taking into account the subsumption links could give an infinite
number of paths and introduce more approximation.
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Figure 6: A complete unfolding of the LTS of Figure 4.

once again, reaching 54. Similarly to 53, the subsumption
(54, 51) cannot be established, since it would require to
abstract top (C 51) to the point where it does not entail
Φ(51) anymore. However, 54 is subsumed by 53 without
requiring any abstraction: none of their configurations
require ia to be lesser than la anymore.

An occurrence of the final location is reached at 91

without asking for a refinement, since the two abstrac-
tions made at 20 did not introduce any infeasible paths.

The first occurrence of 5, 50, is finally processed and
its subtree is completely built. The subsumption (74, 73)
needed to stop unfolding the third loop does not require
an abstraction of 73: no refinement is needed when 92

is reached.

Interpretation of results: Once the analysis is over, the
new LTS is obtained from the unfolding, as described in
Section III. Let us call S′ this LTS (cf Figure 6). The
two following groups of infeasible paths of the LTS in
Figure 4 have been eliminated in S′:
• paths going through both ending loops,
• paths exiting of the first loop through 3

ib≥ib→ 5
without going at least once through the second loop.

However, S′ still contains five groups of infeasible
paths. We now show how the algorithm can be slightly
modified to eliminate the remaining infeasible paths.

B. Merging sort with feasible path sets comparisons

Recall that subsumption was defined as an inclusion
of sets of program states represented by configurations.
Hence, when the algorithm detects the subsumption of
a red vertex by another, it is usually the case that the
set of feasible paths going through the subsumee is a
strict subset of the set of feasible paths going through the
subsumer. Thus, adding such a subsumption introduces
infeasible paths into the new graph. However, this is
the price to pay in order to turn the potentially infinite
symbolic execution tree into a finite graph.

The choice of the potential subsumer when trying
to establish a subsumption is crucial for limiting the
unfolding of loops without introducing too many infea-
sible paths. The previous example shows that the first
subsumption that can be established is not always (and
often not) the best one in terms of pruning infeasible
paths. We also observe that the refine-and-restart mech-
anism can help us detect infeasible paths only when
it is the shortest path to a given final red vertex that
has been made feasible by some abstraction. We need
additional mechanisms to control subsumptions to better
detect infeasible paths.

An ideal definition of subsumption would require
sets of feasible paths going through the two considered
red vertices to be equal, but this is not realistic: this
would require the full enumeration of paths starting at
the two vertices, something very costly at best, and
impossible when the sets are infinite. However, we can
compare these sets of feasible paths starting at the two
vertices up to a certain lookahead. Here we make the
assumption that, given two red vertices representing the
same original black location, the closer their sets of
feasible paths, the lesser one will have to abstract the
subsumer - if abstraction is needed at all - and the lesser
infeasible paths are introduced into the new graph. To
add this feature to the algorithm as shown in section III,
one would have to surround the two If-Then blocks going
from line 23 to 30 (Figure 3) by a third one, whose con-
dition would be cmp_fp_sets(rv , rv ′,B,R, C) where
cmp_fp_sets is responsible for comparing the two
sets of feasible paths.

Applying the new algorithm in the previous context
while comparing feasible paths sets up to a lookahead
of two edges gives the complete unfolding shown in
Figure 7, which contains no infeasible paths. In this
example, no refine-and-restart phase is triggered for ob-
taining this new LTS. Whenever the algorithm attempts
at subsuming two occurrences of black vertex 2, com-
paring sets of feasible paths starting at both occurrences
up to a depth of two suffices to deduce which index
was incremented last in the main loop and to decide
if the subsumption will be precise enough. Also, when
attempting to subsume occurrences of 5 (resp. 7), this
lookahead mechanism prevents the abstraction to forget
that ia (resp. ib) is lesser than la (resp. lb).

V. RESULTS

We now present experimental results obtained with
our prototype when approximating the sets of feasible
paths of three programs: merging sort, bubble sort and
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Figure 7: A complete unfolding of the LTS of Figure 4. No infeasible paths remain.

substring search. These examples are simple but they all
have at least two unbounded loops with dependencies
between the loops. The code of these programs are given
in appendix. Merging sort has three successive loops;
the inner loop in bubble sort is always executed the
same number of times for each traversal of the outer
loop; substring search has two nested loops related by a
different kind of dependency.

For each of these programs, we first build new LTSs
using different values of the current parameters of our
tool: the way abstractions are computed, the depth of the
lookahead and the fact that restarts are allowed or not.
Then, for each LTS we compare the number of paths
from the entry point to the exit of a given maximal length
l with the corresponding number of feasible paths. Paths
are counted and drawn using the Rukia library [1]. Given
an LTS S with n paths of length at most l, we draw
uniformly at random n distinct paths of length at most l,
then count the number of feasible paths. As the original
and transformed LTS have the same set of feasible paths,
counting feasible paths is more efficiently done in the
new LTS that has a much smaller total number of paths.

The second column of the tables shows which method
for finding abstraction is used: with a = 1, abstractions
are computed as shown in Section III; with a = 2,
abstraction associates fresh symbolic values to program
variables defined between the two candidates for sub-

sumption, until the subsumption is stated5.
A mark in the third column indicates if restarts are

enabled for the experiment. Next columns give the
number of paths of length at most l (eliminated paths
are all infeasible) and the number of such feasible paths.

A. Merging Sort

Table I shows the results for merging sort using a
lookahead of two. The first line gives the results for the
original LTS S from Figure 4. The second line shows
the results for the LTS S′ built from the red-black graph
in Figure 7: no infeasible paths remain with the first
method for finding abstractions.

When using the second method of abstraction and
allowing restarts, the analysis does not terminate without
bounding the length of paths. For merging sort, the ab-
stractions computed this way are too crude to not trigger
a restart. As said in Section III, since our algorithm does
not learn yet from safeguard conditions, restart phases
postpone subsumptions, but the same phenomenon can
occur again after unfolding the loop. Learning from the
safeguard-condition when computing abstractions would
rule out such chains of restarts.

The third line gives the results obtained with the
second method of abstraction, mrl being set to 30.
The red part is no longer complete, and the LTS in
which paths are drawn is obtained by connecting the

5Abstracting configurations in this way requires to combine them
appropriately at loop headers, during their propagation.



Table I: Paths (P ) and feasible paths (FP ) in merging sort.

a r
l = 30 l = 50 l = 100

P FP P FP P FP

S 1224

140

24434

2300

~25.8M

~2.3M
S′

1 X 140 2300 ~2.3M

2 X 140 4652 ~23.9M

2 210 3271 ~3.2M

red vertices that were not expanded to the black part.
A path of length at most 30 is entirely in the red part.
Paths of length more than 30 can end in the black part
rather than in the red one.

The fourth line shows the results for the LTS obtained
with the second method of abstraction, disabling restarts.
Without restarts, the second method of abstraction de-
tects a fair number of infeasible paths.

B. Bubble Sort

Table II gives the results for bubble sort6. With a
lookahead of 0 or 1 and either method of abstraction,
the only infeasible path removed is the one that does
not enter the outer loop. With a lookahead of at least
2, S′ better approximates the set of feasible paths: from
2 to 7, the algorithm produces the same LTSs, but at
8, more dependencies about traversals of the inner loop
are discovered. The value of the lookahead cannot be
increased too much in practice as comparing the sets of
feasible paths of candidates is exponential.

Method of abstraction 1 performs worst here. In bub-
ble sort, a variable keeps track whether any permutation
occurs during a traversal of the inner loop. Information
about the value of this variable can be lost when ab-
stracting the configuration at the entry of the inner loop,
introducing infeasible paths. This phenomenon does not
happen with method 2.

With both methods, the analysis terminates without the
need of mrl . There remains a fair number of infeasible
paths in S′. Unlike merging sort, the set of feasible paths
of bubble sort is not a regular language because of the
dependency between the number of traversal of its two
loops. We believe that the results in Table II can be
improved with more accurate methods of abstraction,
but bubble sort clearly shows some limitations of our
approach in its current state.

C. Substring

Table III shows the results for substring. The function
takes as input strings s1 and s2, and returns true if s2 is

6Discriminating feasible paths for l = 100 was not tractable here.

Table II: Paths and feasible paths in bubble sort. An additional
column gives the depth for the lookahead.

a r la
l = 30 l = 50 l = 100

P FP P FP P

S 1474

20

643692

217

~2.3× 1012

S′

1 X
2

741 321962 ~1.2× 1012

2 X 203 44504 ~2.9× 1011

1 X
8

285 69457 ~6.6× 1010

2 X 103 13249 ~6.4× 109

Table III: Paths and feasible paths in substring.

a r la
l = 30 l = 50 l = 100

P FP P FP P

S 1433

87

195874

2108

~4.2× 1010

S′

1 X
0 143 4180 9227464

2 X

1 X
10

130 3803 8395424

2 X 98 2818 6217117

a substring of s1. Loops present some dependencies: for
example, let s be a (strict) prefix of s2 of length ls found
to be a substring of s1. Then s2 has length at least ls,
and no latter iteration of the outer loop can return true
without doing at least ls comparisons. The set of feasible
paths of substring is not a regular language.

With a lookahead of 0, both methods of abstraction
produces the same LTS: the path that returns false when
s2 is empty is ruled out, and the algorithm discovers the
above property for ls = 1. New LTSs are produced with
a lookahead of 10: the algorithm now (re-)discovers the
property for ls = 1 and ls = 2.

Again, the analysis terminates without bounding mrl .

VI. A FORMAL THEORY FOR THE GRAPH

TRANSFORMATIONS

In [6] we present a formal model for our notion of con-
figurations and for the graph transformations on which
our prototype is based. The model makes a conceptual
split between the fundamental aspects (symbolic evalua-
tion, abstraction, subsumptions, predicates for limiting
abstraction) and the heuristics parts of the algorithm
(restricting abstractions and subsumptions). A model of
the CFG (as a labeled transition system), paths, configu-
rations is developed in Isabelle/HOL [11] and a calculus
is provided in which each graph transformation is defined
as either a partial unfolding of the CFG (symbolic execu-
tion, subsumption arc linking vertices) or an annotation
associated with a vertex (abstraction represented by a



weakening of the path predicate, limitation of possible
abstraction by additional formulae, marking vertices as
unsatisfiable). The two key properties of Section III have
been proved, namely: the preservation of traces along the
paths of the original CFG and the preservation of feasible
paths.

Our prototype has the same conceptual organization,
with concrete heuristics for restricting abstractions and
subsumptions added on top of the basic graph trans-
formations. Although we did not develop the entire
system within the model, the formal proofs give strong
confidence of the correctness of the implementation.

VII. RELATED WORK

Unfeasible paths are a general problem when testing
programs or checking models. There is an abundant
literature that is not reviewed here due to lack of space,
where symbolic execution is widely exploited. For a re-
cent account of issues in this area we refer to [3, 12, 13].

A notable advance is concolic testing [14, 15] where
actual execution of the program under test is coupled
with symbolic execution. It reduces the detection of
infeasible paths to those paths that go one branch further
than some feasible one, alleviating the load of the con-
straint solver and decreasing significantly the number of
paths to be considered. This approach leads to coverage
of all feasible paths. Some randomness can be introduced
in the choice of the next branch to be examined, as
mentioned in [15], but the resulting distribution on paths
suffers from the drawback of isotropic random walks,
yielding unbalanced coverage of paths.

To ensure uniform random coverage of paths (and
more generally a maximum minimal probability of cov-
ering components of a coverage criterion [1]), a global
knowledge of the graph is required. Thus concolic or
similar dynamic approaches cannot be used: some global
static analysis is required. It is the application scenario
that motivated the work presented here.

We have taken inspiration from [9] and [16], where
subsumptions, abstractions and interpolation are used to
verify unreachability of selected error locations. Here,
the problem we address is to preserve feasibility rather
than infeasibility. This requires specific finer strate-
gies for subsumptions and abstractions: reusing the ap-
proaches of [9] and [16] would lead to graphs polluted
by numerous new infeasible paths.

The problem of unbounded loops is a general issue
for methods based on symbolic execution [10, 17]. It is
generally treated, as we do, by searching for subsump-
tions, which doesn’t always terminates. The red-black

graph data structure we have defined makes it possible
to deal with these non terminating cases.

Other potential application scenarios of the graph
transformation proposed here include paths selection for
satisfying coverage criteria of elements of a graph, for
instance branches [13], or mutation points [18].

VIII. CONCLUSION

In this work we address the problem of graph trans-
formations that discard infeasible paths, preserving the
behaviour of the program, with path-biased random
testing in mind.

The size of the resulting graph and the length of paths
are not a problem for drawing since the Rukia library we
use for drawing paths scales up extremely well [1]. We
expect the time of construction of the transformed graph
to remain reasonable, thank to the progresses of symbolic
execution tools and constraint solvers. The first results
are encouraging since, on the current examples, the cost
of this preprocessing phase is not an issue, and quite
a significant number of infeasible paths are discarded,
even with a basic set of heuristics.

We plan various improvements of the prototype aim-
ing at improving the quality of the result, i.e. the pro-
portions of infeasible paths in the transformed graph. We
investigate better control of abstractions, taking advan-
tage of safeguard conditions and interpolant propagations
in the spirit of [10]. Using existing methods based on
abstract interpretation and dataflow analysis [19, 20] will
help finding abstractions by providing ranges of values
for some variables, i.e. some kind of additional invari-
ants. Besides, we plan to extend the range of application
of our approach by integration of memory models and
additional language constructs. Our method could also
be improved by using generalisation of infeasible paths
as proposed in [21] for concolic testing.
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IX. APPENDIX

void merge (int ∗ a, int la , int ∗ b, int lb , int ∗ A){
ia := 0;
ib := 0;
while ( ia < la && ib < lb){

if (a[ ia ] < b[ib]){
A[ia+ib] := a[ ia ];
ia := ia + 1;

}
else {

A[ia+ib] := b[ ib ];
ib := ib+1;

}
}
while ( ia < la){

A[ia+ib] := a[ ia ];
ia := ia + 1;

}
while ( ib < lb){

A[ia+ib] := b[ ib ];
ib := ib + 1;

}
}

void bubble ( int ∗ a, int l ){
int i , swapped = 1, tmp;
while (swapped != 0){

swapped = 0;
i = 1;
while ( i < l){

if (a[ i−1] > a[i ]){
tmp = a[i ];
a[ i ] = a[i−1];
a[ i−1] = tmp;
swapped = 1;

}
i++;

}
}

}

int factor (char ∗ s1, int l1 , char ∗ s2, int l2){
int i = 0, j ;
while ( i <= l1 − l2){

j = 0;
while ( j != l2){

if (s2[ j ] == s1[i+j]){
j++;

}
else

break;
}
if ( j == l2)

return 1;
i++;

}
return 0;

}
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