http://www.lri.fr/~blsk/GOL

TD9 - Ordres

Exercice 1 Fonction de Ackermann Soient $(A, <_A)$ et $(B, <_B)$ des ensembles, chacun muni d'un ordre strict bien fondé. On définit une relation binaire $< \sup A \times B$ par les conditions suivantes :

$$\frac{a_1 <_A a_2}{(a_1,b_1) < (a_2,b_2)} \qquad \frac{b_1 <_B b_2}{(a,b_1) < (a,b_2)}$$

1. En admettant que cette relation est un ordre strict, montrer qu'il est bien fondé.

On veut définir une fonction ack: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ qui vérifie les équations suivantes :

- 2. Donner un système d'inférence définissant une relation ternaire Ack telle que Ack(m,n,r) représente le fait que ack(m,n) = r.
- 3. Montrer que la relation Ack est totale, c'est-à-dire que pour tous m,n il existe un r tel que Ack(m,n,r).

Correction:

Avec la définition de l'ordre bien fondé comme "toute partie non vide admet un élément minimal". Soit P une partie non vide de A × B. L'ensemble A' = {a ∈ A | ∃b ∈ B,(a,b) ∈ P} est une partie non vide de A. Comme <_A est un ordre bien fondé, A' admet un élément minimal, qu'on note a₀. L'ensemble B' = {b ∈ B | (a₀,b) ∈ P} est une partie non vide de B. Comme <_B est un ordre bine fondé, B' admet un élément minimal, qu'on note b₀. Alors (a₀,b₀) est un élément minimal de P.

Justification de la minimalité de (a_0,b_0) : soit $(a,b) \in P$ tel que $(a,b) < (a_0,b_0)$. Par inversion, soit $a < a_0$ soit $a = a_0 \land b < b_0$.

- Supposons $a < a_0$. Comme $(a,b) \in P$ on déduit $a \in A'$. Contradiction avec la minimalité de a_0 .
- Supposons $a = a_0$ et $b < b_0$. Comme $(a_0, b) \in P$ on déduit $b \in B'$. Contradiction avec la minimalité de b_0 .

Donc(a,b) est un élément minimal de P.

2.

$$\frac{\mathit{Ack}(m,1,r)}{\mathit{Ack}(0,n,n+1)} \qquad \frac{\mathit{Ack}(m,1,r)}{\mathit{Ack}(m+1,0,r)} \qquad \frac{\mathit{Ack}(m+1,n,p) \quad \mathit{Ack}(m,p,r)}{\mathit{Ack}(m+1,n+1,r)}$$

3. On note $P(m,n) \equiv \exists r$, Ack(m,n,r) et on démontre $\forall m,n$, P(m,n) par induction bien fondée sur l'ordre lexicographique donné en question 1.

Soit (m,n) tels que pour tout (m',n') < (m,n) on a P(m,n). (on cherche alors à démontrer P(m,n)) Par cas sur m:

- Si m = 0, alors par la première règle on a Ack(0, n, n + 1), et P(0, n) est vérifiée.
- Sinon, par cas sur n:
 - Si n = 0. Alors (m 1, 1) < (m, 0) (première règle de l'ordre lexicographique) et par hypothèse de récurrence il existe r tel que Ack(m-1,1,r). Alors par la deuxième règle de Ack on déduit Ack(m,0,r).

— Sinon, alors (m,n-1) < (m,n) (deuxième règle de l'ordre lexicographique) et par hypothèse de récurrence il existe p tel que Ack(m,n-1,p). De plus (m-1,p) < (m,n) (première règle de l'ordre lexicographique), donc par hypothèse de récurrence il existe r tel que Ack(m-1,p,r). Avec la troisième règle de Ack tout ceci permet de déduire Ack(m,n,r), et P(m,n) est vérifiée.

Exercice 2 Ordre sur les mots

Soit \mathbb{B} l'ensemble des booléens $\{0,1\}$. On note \mathbb{B}^n l'ensemble des mots de longueur n sur l'alphabet \mathbb{B} et \mathbb{B}^* l'ensemble des mots finis (de longueur quelconque).

On introduit une relation binaire \prec sur \mathbb{B}^* par le système d'inférence suivant $(x \in \mathbb{B} \text{ et } m, m_1, m_2 \in \mathbb{B}^*)$:

$$\frac{1}{\epsilon < xm} \qquad \frac{m_1 < m_2}{0m_1 < 1m_2} \qquad \frac{m_1 < m_2}{xm_1 < xm_2}$$

On admettra sans le démontrer que cette relation est un ordre strict sur les mots.

- 1. Montrer que 100 < 11.
- 2. Comparer les mots 0000, 00 et 1.
- 3. Définir par des équations récursives une fonction $\mathsf{test} \in \mathbb{B}^* \times \mathbb{B}^* \to \mathbb{B}$ telle que $\mathsf{test}(m_1, m_2)$ est vrai exactement lorsque $m_1 < m_2$. On pourra introduire des équations pour les quatre cas :

$$test(\epsilon, \epsilon) = \dots$$
 $test(\epsilon, xm) = \dots$ $test(xm, \epsilon) = \dots$ $test(xm_1, ym_2) = \dots$

- 4. Montrer que si $test(m_1, m_2)$ est faux alors soit $m_1 = m_2$, soit $m_2 < m_1$, (ce qui implique que la relation < est un ordre total).
- 5. Si $x \in \mathbb{B}$, on note x^n le mot de longueur n qui ne contient que des x. On peut définir ce mot par des équations récursives sur n:

$$x^0 = \epsilon \qquad x^{n+1} = x(x^n)$$

Montrer par récurrence sur n les deux propriétés suivantes :

- (a) $\forall n \in \mathbb{N}, x^n < x^{n+1}$
- (b) $\forall n \in \mathbb{N}, 0^{n+1} 1 < 0^n 1$
- 6. La relation < est-elle un ordre bien fondé? justifier votre réponse.

Correction .

- 1. 100 < 11 car 00 < 1 par troisième règle, et 00 < 1 par deuxième règle.
- 2. 00 < 0000 < 1

3.

$$test(\epsilon,\epsilon) = 0$$

$$test(\epsilon,xm) = 1$$

$$test(xm,\epsilon) = 0$$

$$test(0m_1,1m_2) = 1$$

$$test(xm_1,xm_2) = test(m_1,m_2)$$

- 4. Par récurrence. $test(m_1, m_2)$ est faux dans ces trois cas :
 - $m_1 = m_2 = \epsilon \ (alors \ m_1 = m_2)$
 - $m_1 \neq \epsilon$ et $m_2 = \epsilon$ (alors $m_2 < m_1$)
 - $m_1 = xm'_1$ et $m_2 = xm'_2$ avec $test(m'_1, m'_2)$ faux, et conclusion par hypothèse de récurrence.

5.

6. Non, la suite $(0^{n+1}1)_{n\in\mathbb{N}}$ de la question précédente est un contre-exemple.