Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Winter 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 1: lambda-calculus

1 A computational theory of function

Timeline

1870 Which ground for mathematics? Sets or functions?
1920 Moses Schönfinkel, Haskell Curry: combinatory logic. Basic blocks for building functions.
1936 Alonzo Church: λ-calculus. Characterization of computable functions. Equivalent to Turing machines. Solves the Entscheidungsproblem.
$1970+\lambda$-calculus grows together with computer science. Functional programming. Proof assistants.

Functions

One concept, various notations.

```
Maths \(\quad x \mapsto x\)
    \(f \mapsto(x \mapsto f(f(x)))\)
Caml fun \(\mathrm{x} \rightarrow \mathrm{x}\)
    fun \(f\)-> (fun \(x \rightarrow f(f x)\) )
Python lambda x: x
    lambda f: (lambda \(x: f(f(x))\) )
\(\lambda\)-calculus \(\lambda x . x\)
    \(\lambda f .(\lambda x . f(f x))\)
```


2λ-calcul: basic definitions

The λ-calculus is defined by a set of terms, which represent programs or algorithms, and by conversion rules, which describe how computation is performed.

Terms (expressions)

The λ-calculus syntax consists of a notion of expression, or term. Terms are built using three constructs.
x variable, reference to a function parameter
$t_{1} t_{2}$ application of a term t_{1} to a term t_{2}, t_{1} is to be seen as a function and t_{2} as its given argument.
$\lambda x . t$ function with a single parameter x, whose result is given by t
Functions are defined by their behaviour.

Examples

- Identity

$$
\lambda x \cdot x
$$

takes a paremeter x and returns the value of x

- Constant functions generator

$$
\lambda c .(\lambda x . c)
$$

takes a parameter c and returns a constant function whose result is constantly c

- Distribution

$$
\lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x z)(y z))))
$$

takes a parameter x and... let's see later

- What?

$$
\lambda x \cdot\left(\begin{array}{ll}
x & x
\end{array}\right)
$$

takes a parameter x and self-applies it?

Notations

- Instead of $\lambda x_{1} .\left(\ldots\left(\lambda x_{n} . t\right) \ldots\right) \quad$ we write

$$
\lambda x_{1} \ldots x_{n} . t
$$

- Instead of $\left(\ldots\left(t u_{1}\right) \ldots u_{n}\right)$ we write

$$
t u_{1} \ldots u_{n}
$$

or even $t \vec{u} \quad$ with $\quad \vec{u}=u_{1} \ldots u_{n}$
For instance:

$$
\begin{array}{ll}
\lambda c .(\lambda x . c) & \lambda c x . c \\
\lambda x .(\lambda y .(\lambda z .((x z)(y z)))) & \lambda x y z . x z(y z)
\end{array}
$$

Curryfication and n-ary functions

There is no cartesian product in core λ-calculus.

- A function $\quad(x, y) \mapsto t \quad$ with two parameters is encoded as

$$
\lambda x . \lambda y . t \quad \text { or } \quad \lambda x y . t
$$

- An application $f(x, y)$ of a binary function to two parameters is encoded as

$$
f x y
$$

Functions are curryfied (tribute to Haskell Curry).
This encoding allows partial applications.

Computing with the λ-calculus

Smallest computing block: a function applied to an argument.

$$
(\lambda x . t) u \quad \rightarrow \quad t\{x \leftarrow u\}
$$

Result :

$$
t \text { where each occurrence of } x \text { is replaced by } u \mathrm{t}\{x \longleftarrow u\}
$$

Sample computation

$$
\begin{array}{ll}
(\lambda x y z \cdot x z(y z))(\lambda a b \cdot a) t u & \{x \leftarrow \lambda a b \cdot a\} \\
\rightarrow(\lambda y z \cdot(\lambda a b \cdot a) z(y z)) t u & \{y \leftarrow t\} \\
\rightarrow(\lambda z \cdot(\lambda a b \cdot a) z(t z)) u & \{z \leftarrow u\} \\
\rightarrow(\lambda a b \cdot a) u(t u) & \{a \leftarrow u\} \\
\rightarrow(\lambda b \cdot u)(t u) & \{b \leftarrow t u\} \\
\rightarrow u &
\end{array}
$$

Exercise : reduction

Compute the result of

$$
(\lambda x y . y x)(\lambda a b . b)(\lambda s . s t u)
$$

Answer

$$
\begin{aligned}
& (\lambda x y . y x)(\lambda a b . b)(\lambda s . s t u) \\
& \rightarrow(\lambda y . y(\lambda a b . b))(\lambda s . s t u) \\
& \rightarrow(\lambda s . s t u)(\lambda a b . b) \\
& \rightarrow(\lambda a b . b) t u \\
& \rightarrow(\lambda b . b) u \\
& \rightarrow u
\end{aligned}
$$

Exercise : combinatory logic

Combinatory logic (Schönfinkel, 1920 - Curry, 1930) uses the five symbols I, K, S, B, C (called "combinators") and one reduction rule for each.

$$
\begin{aligned}
I x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z) \\
B x y z & \rightarrow x(y z) \\
C x y z & \rightarrow x z y
\end{aligned}
$$

Find λ-terms equivalent to these combinators
Compute the results of the following expressions

1. $S K K x$
2. $S(K S) K$

Answer λ-terms equivalent to combinators

- $I=\lambda x \cdot x$
- $K=\lambda x y \cdot x$
- $S=\lambda x y z \cdot x z(y z)$
- $B=\lambda x y z \cdot x(y z)$
- $C=\lambda x y z . x z y$

Reductions

- $S K K$ is equivalent to I

$$
\begin{aligned}
S K K x & \rightarrow K x(K x) \\
& \rightarrow x
\end{aligned}
$$

- $S(K S) K$ is equivalent to B

$$
\begin{aligned}
S(K S) K x y z & \rightarrow(K S x)(K x) y z \\
& \rightarrow S(K x) y z \\
& \rightarrow(K x z)(y z) \\
& \rightarrow x(y z)
\end{aligned}
$$

Dubious replacements / variable capture

How should we resolve the following replacements?

$$
\left.\begin{array}{ll}
(\lambda x \cdot(\lambda x \cdot x)) y & \rightarrow
\end{array} \quad(\lambda x \cdot x)\{x \leftarrow y\}\right\}
$$

Related: what is the live-range of a variable?

3 Formalization of λ-terms

Set of terms

The set Λ of the λ-terms is the smallest set that contains:

1. x for all variable x
2. $\lambda x . t \quad$ if $t \in \Lambda$
3. $t_{1} t_{2} \quad$ if $t_{1} \in \Lambda$ and $t_{2} \in \Lambda$

Same definition, stated as an algebraic grammar.

$$
t::=x \left\lvert\, \begin{array}{ll|l}
& \lambda x . t & t_{1} t_{2}
\end{array}\right.
$$

This definition is recursive, and allows recursive reasoning.

Term = tree

The expression

$$
(\lambda x y \cdot x y(x(\lambda z . z))(\lambda a b . b a)
$$

denotes the tree

Positions in a term

Position: word over the alphabet $\{0,1,2\}$ denoting a path from the root.

Set $\operatorname{pos}(t)$ of the positions of the term t

```
    pos(x) = {\varepsilon}
pos(\lambdax.t) = {\varepsilon} u 0 0}\operatorname{pos}(t
pos(t\mp@subsup{t}{2}{})=1\cdot\operatorname{pos}(\mp@subsup{t}{1}{})\quad\cup\quad2\cdot\operatorname{pos}(\mp@subsup{t}{2}{})
```


Encoding in caml

An algebraic datatype for λ-terms

```
type term =
    | Var of string
    | Abs of string * term
    | App of term * term
```

Encoding of the term $\lambda a b . b a$
Abs("a", Abs("b", App(Var "b", Var "a")))

Defining functions on lambda-terms

Recursive definition of f, with three cases:

- $f(x)$

base

using $f(t)$
using $f\left(t_{1}\right)$ and $f\left(t_{2}\right)$

Examples
$f_{@}$: number of applications $\quad f_{v}:$ number of variable occurrences

$$
\begin{array}{ll}
f_{@}(x)=0 & f_{v}(x)=1
\end{array}
$$

$$
f_{@}(\lambda x . t)=f_{@}(t) \quad f_{v}(\lambda x . t)=f_{v}(t)
$$

$$
f_{@}\left(t_{1} t_{2}\right)=1+f_{@}\left(t_{1}\right)+f_{@}\left(t_{2}\right)
$$

$$
f_{v}\left(t_{1} t_{2}\right)=f_{v}\left(t_{1}\right)+f_{v}\left(t_{2}\right)
$$

Defining a function in caml

Coding $f_{@}$

```
let rec nb_app = function
    | Var _ \(\quad\)-> 0
    | Abs (_, t) \(\quad->\) nb_app \(t\)
    | App (t1, t2) -> \(1+n b_{-} a p p t 1+n b \_a p p ~ t 2\)
```

Coding f_{v}

```
let rec nb_var = function
    | Var _ -> 1
    | Abs(_, t) -> nb_var t
    | App(t1, t2) -> nb_var t1 + nb_var t2
```


Induction principle on lambda-terms

Goal: proving that a property P is true for all λ-terms. Three steps:

- prove $P(x)$ for any variable x
- prove $P(\lambda x . t)$ assuming that $P(t)$ is true
- prove $P\left(t_{1} t_{2}\right)$ assuming that $P\left(t_{1}\right)$ and $P\left(t_{2}\right)$ are both true

Example of inductive reasoning

Goal: for any $t \in \Lambda, f_{v}(t)=1+f_{@}(t)$

- Proof of $P(x)$. By definition, $f_{v}(x)=1$ and $f_{@}(x)=0$ Then $f_{v}(x)=1+f_{@}(x)$
- Proof of $P(t) \Rightarrow P(\lambda x . t)$. Assume $f_{v}(t)=1+f_{@}(t)$. Then

$$
\begin{aligned}
f_{v}(\lambda x . t) & =f_{v}(t) & & \text { by definition of } f_{v} \\
& =1+f_{@}(t) & & \text { by induction hypothesis } \\
& =1+f_{@}(\lambda x . t) & & \text { by definition of } f_{@}
\end{aligned}
$$

- Proof of $P\left(t_{1}\right) \wedge P\left(t_{2}\right) \Longrightarrow P\left(t_{1} t_{2}\right)$. Assume $f_{v}\left(t_{1}\right)=1+f_{@}\left(t_{1}\right)$ and $f_{v}\left(t_{2}\right)=1+f_{@}\left(t_{2}\right)$. Then

$$
\begin{array}{ll}
f_{v}\left(t_{1} t_{2}\right) & \\
=f_{v}\left(t_{1}\right)+f_{v}\left(t_{2}\right) & \text { by definition off } f_{v} \\
=1+f_{@}\left(t_{1}\right)+1+f_{@}\left(t_{2}\right) & \text { by induction hypotheses } \\
=1+\left(1+f_{@}\left(t_{1}\right)+f_{@}\left(t_{2}\right)\right) & \\
=1+f_{@}\left(t_{1} t_{2}\right) & \text { by definition of } f_{@}
\end{array}
$$

4 Variables and substitutions

A note on variables

The λ-abstraction

$$
\lambda x . t
$$

introduces a variable x locally in t We call it a bound variable
In other words:

- the name x is not known outside of t
- seen from the outside, the name x means nothing
- changing the name x does not affect the outside world

Free variables

Variables that can be seen from "outside"

$$
\begin{aligned}
\mathrm{fv}(x) & =\{x\} \\
\mathrm{fv}\left(t_{1} t_{2}\right) & =\mathrm{fv}\left(t_{1}\right) \cup \mathrm{fv}\left(t_{2}\right) \\
\mathrm{fv}(\lambda x . t) & =\mathrm{fv}(t) \backslash\{x\}
\end{aligned}
$$

Term with no free variables: closed term, or combinator
A name which appears both free and bound in a term:

$$
x(\lambda x . x)
$$

Substitution

Replacing free occurrences of x in t by u.

$$
t\{x \leftarrow u\}
$$

Definition: inductively on the structure of t.

$$
\begin{aligned}
y\{x \leftarrow u\} & = \begin{cases}u & \text { if } x=y \\
y & \text { if } x \neq y\end{cases} \\
\left(t_{1} t_{2}\right)\{x \leftarrow u\} & =t_{1}\{x \leftarrow u\} t_{2}\{x \leftarrow u\} \\
(\lambda y . t)\{x \leftarrow u\} & = \begin{cases}\lambda y . t & \text { if } x=y \\
\lambda y . t\{x \leftarrow u\} & \text { if } x \neq y \text { and } y \notin \mathrm{fv}(u) \\
\lambda z . t\{y \leftarrow z\}\{x \leftarrow u\} & \text { if } x \neq y \text { and } y \in \operatorname{fv}(u) \\
& z \text { new variable }\end{cases}
\end{aligned}
$$

Barendregt's convention

To avoid abuse of names, we consider only terms where no variable name appears both free and bound in any given subterm

$$
\begin{array}{cc}
\text { Don't write... } & \text { Write } \ldots \text { instead } \\
\hline \lambda x .(x(\lambda x . x)) & \lambda x .(x(\lambda y . y)) \\
\hline
\end{array}
$$

Simplified definition for the substitution, relying on the convention

$$
\begin{aligned}
y\{x \leftarrow u\} & =\left\{\begin{aligned}
u & \text { si } x=y \\
y & \text { si } x \neq y
\end{aligned}\right. \\
\left(t_{1} t_{2}\right)\{x \leftarrow u\} & =t_{1}\{x \leftarrow u\} t_{2}\{x \leftarrow u\} \\
(\lambda y \cdot t)\{x \leftarrow u\} & =\lambda y \cdot t\{x \leftarrow u\}
\end{aligned}
$$

(Un)stability of Barendregt's convention

$$
\begin{aligned}
& (\lambda x . x x)(\lambda y z \cdot y z) \\
& \rightarrow \quad(\lambda y z \cdot y z)(\lambda y z \cdot y z) \\
& \rightarrow \quad \lambda z .((\lambda y z \cdot z y) z)
\end{aligned}
$$

Preserving Barendregt's convention over reduction requires changing some variable names during computation

Bound variables renaming: α-conversion

$$
\lambda x . t \quad={ }_{\alpha} \quad \lambda y \cdot(t\{x \leftarrow y\}) \quad \text { if } y \notin \mathrm{fv}(t)
$$

The α-conversion does not change the meaning of a term:

- we can apply it whenever we need it

The α-conversion is a congruence:

$$
\begin{aligned}
t={ }_{\alpha} t^{\prime} & \Longrightarrow \lambda x \cdot t={ }_{\alpha} \lambda x \cdot t^{\prime} \\
t_{1}={ }_{\alpha} t_{1}^{\prime} & \Longrightarrow t_{1} t_{2}={ }_{\alpha} t_{1}^{\prime} t_{2} \\
t_{2}={ }_{\alpha} t_{2}^{\prime} & \Longrightarrow t_{1} t_{2}={ }_{\alpha} t_{1} t_{2}^{\prime}
\end{aligned}
$$

- we can apply it wherever we need it

From now on we assume that any term we work with satisfies Barendregt's convention.

Exercise : bound variables and renaming

Rename some variables of these terms suivants so that they obey Barendregt's convention.

1. $\lambda x \cdot(\lambda x \cdot x y)(\lambda y \cdot x y)$
2. $\lambda x y \cdot x(\lambda y \cdot(\lambda y \cdot y) y z)$

Compute the result of

$$
(\lambda f . f f)(\lambda a b . b a b)
$$

Answer

1. $\lambda x \cdot(\lambda x \cdot x y)(\lambda y \cdot x y)=\alpha \quad \lambda x \cdot(\lambda z \cdot z y)(\lambda t \cdot x t)$
2. $\lambda x y \cdot x(\lambda y \cdot(\lambda y \cdot y) y z) \quad={ }_{\alpha} \quad \lambda x y \cdot x(\lambda a \cdot(\lambda b \cdot b) a z)$
3.

$$
\begin{array}{rll}
(\lambda f . f f)(\lambda a b . b a b) & \rightarrow_{\beta} & (\lambda a b . b a b)(\lambda a b . b a b) \\
& \rightarrow_{\beta} & \lambda a b . b(\lambda a b . b a b) b \\
& =_{\alpha} & \lambda b . b(\lambda x y . y x y) b
\end{array}
$$

Exercise : free variables and substitution

Prove that

$$
\mathrm{fv}(t\{x \leftarrow u\}) \subseteq(\mathrm{fv}(t) \backslash\{x\}) \cup \mathrm{fv}(u)
$$

Are these two sets equal?
Answer Proof by induction on the structure of t

- Case where t is a variable
- case $x: \operatorname{fv}(x\{x \leftarrow u\})=\mathrm{fv}(u) \subseteq(\mathrm{fv}(t) \backslash\{x\}) \cup \mathrm{fv}(u)$
- case $y \neq x: \operatorname{fv}(y\{x \leftarrow u\})=\operatorname{fv}(y)=\{y\}$, and $\{y\}$ is indeed a subset of $(\mathrm{fv}(y) \backslash\{x\}) \cup \mathrm{fv}(u)=$ $\{y\} \cup \mathrm{fv}(u)$
- Case where t is an application $t_{1} t_{2}$. Assume $\operatorname{fv}\left(t_{1}\{x \leftarrow u\}\right) \subseteq\left(f v\left(t_{1}\right) \backslash\{x\}\right) \cup \mathrm{fv}(u)$ and $\mathrm{fv}\left(t_{2}\{x \longleftarrow u\}\right) \subseteq\left(f \mathrm{v}\left(t_{2}\right) \backslash\{x\}\right) \cup \mathrm{fv}(u)$ (it is our induction hypothesis). Then

```
\(\mathrm{fv}\left(\left(t_{1} t_{2}\right)\{x \leftarrow u\}\right)\)
\(=\operatorname{fv}\left(\left(t_{1}\{x \leftarrow u\}\right)\left(t_{2}\{x \leftarrow u\}\right)\right) \quad\) by definition of substitution
\(=\operatorname{fv}\left(t_{1}\{x \leftarrow u\}\right) \cup \mathrm{fv}\left(t_{2}\{x \leftarrow u\}\right) \quad\) by definition of fv
\(\subseteq\left(f \vee\left(t_{1}\right) \backslash\{x\}\right) \cup f \vee(u) \cup\left(f \vee\left(t_{2}\right) \backslash\{x\}\right) \cup f \vee(u) \quad\) by induction hypothesis
\(=\left(f \vee\left(t_{1}\right) \backslash\{x\}\right) \cup\left(f \vee\left(t_{2}\right) \backslash\{x\}\right) \cup f \vee(u)\)
\(=\left(\left(f \vee\left(t_{1}\right) \cup \mathrm{fv}\left(t_{2}\right)\right) \backslash\{x\}\right) \cup \mathrm{fv}(u)\)
\(=\left(f \mathrm{f}\left(t_{1} t_{2}\right) \backslash\{x\}\right) \cup \mathrm{fv}(u)\)
```

- Case where t is a λ-abstraction $\lambda y \cdot t_{0}$. Assume $x \neq y$ and $y \notin \mathrm{fv}(u)$ (if not, α-rename it). Assume $\mathrm{fv}\left(t_{0}\{x \leftarrow u\}\right) \subseteq\left(\mathrm{fv}\left(t_{0}\right) \backslash\{x\}\right) \cup \mathrm{fv}(u)$ (induction hypothesis). Then

$$
\begin{array}{ll}
\operatorname{fv}\left(\left(\lambda y . t_{0}\right)\{x \leftarrow u\}\right) & \text { since } x \neq y \text { and } y \notin \mathrm{fv}(u) \\
=\operatorname{fv}\left(\lambda y .\left(t_{0}\{x \leftarrow u\}\right)\right) & \\
=\operatorname{fv}\left(t_{0}\{x \leftarrow u\}\right) \backslash\{y\} & \text { induction hypothesis } \\
\subseteq\left(\left(\operatorname{fv}\left(t_{0}\right) \backslash\{x\}\right) \cup \mathrm{fv}(u)\right) \backslash y & \\
=\left(\left(\mathrm{fv}\left(t_{0}\right) \backslash\{x\} \backslash\{y\}\right) \cup(\mathrm{fv}(u) \backslash y)\right. & \\
=\left(\left(\operatorname{fv}\left(t_{0}\right) \backslash\{x\} \backslash\{y\}\right) \cup \mathrm{fv}(u)\right. & \text { since } y \notin \mathrm{fv}(u) \\
=\left(\left(\mathrm{fv}\left(t_{0}\right) \backslash\{y\} \backslash\{x\}\right) \cup \mathrm{fv}(u)\right. & \\
=\left(\operatorname{fv}\left(\lambda y . t_{0}\right) \backslash x\right) \cup \operatorname{fv}(u) &
\end{array}
$$

The sets are not equal: if $x \notin \mathrm{fv}(t)$ then u disappears in $t\{x \leftarrow u\}$, together with its free variables.

5 Formalisation of the reduction

β-reduction

Application of a function to an argument

$$
(\lambda x . t) u
$$

The result if given by the function body, in which the formal parameter x is linked to the argument u.

$$
(\lambda x . t) u \quad \rightarrow_{\beta} \quad t\{x \leftarrow u\}
$$

where $t\{x \leftarrow u\}$ denotes substitution without capture
β-reduction, pictured on trees

β-reduction, programmed in caml

Function for reducing a β-redex
let beta_reduction = function
| App(Abs(x, t), u) -> subst $t \times u$
| _ -> failwith "not」a」beta-redex"
Auxiliary function: subst $t \times u$ computes $t\{x \leftarrow u\}$
let rec subst $t \times u=$ match t with
| Var $y \quad->$ if $x=y$ then u else t
| $\operatorname{App}(\mathrm{t} 1, \mathrm{t} 2)$-> $\operatorname{App}($ subst $\mathrm{t} 1 \mathrm{x} u$,
subst t2 x u)
| Abs (y, t) $\quad->$ (* renaming ? *)

Congruence

The β-reduction rule can be applied anywhere in a term. This can be formalized using inference rules.

$$
\begin{aligned}
& \overline{(\lambda x . t) u \quad \rightarrow_{\beta} \quad t\{x \longleftarrow u\}} \\
& \begin{array}{rll}
t & \rightarrow_{\beta} & t^{\prime} \\
\hline t u & \rightarrow_{\beta} & t^{\prime} u
\end{array} \quad \begin{array}{rll}
u & \rightarrow_{\beta} & u^{\prime} \\
\hline t u & \rightarrow_{\beta} & t u^{\prime}
\end{array} \\
& \begin{array}{rll}
t & \rightarrow_{\beta} & t^{\prime} \\
\hline \lambda x . t & \rightarrow_{\beta} & \lambda x . t^{\prime}
\end{array}
\end{aligned}
$$

Position of a reduction

Write

$$
t \xrightarrow{p} \beta \quad t^{\prime}
$$

when t reduces to t^{\prime} by contracting a redex at position p

$$
\begin{aligned}
& \overline{(\lambda x . t) u \xrightarrow{\varepsilon} \beta} \quad t\{x \leftarrow u\} \\
& \begin{array}{rll}
t & \xrightarrow{p}_{\rightarrow} \beta & t^{\prime} \\
\hline t u & \xrightarrow{1 \cdot p}_{\beta} & t^{\prime} u
\end{array} \\
& \begin{array}{rll}
u & \xrightarrow{p}_{\rightarrow} \beta & u^{\prime} \\
\hline t u & \xrightarrow{2 \cdot p}_{\beta} & t u^{\prime}
\end{array} \\
& \begin{array}{rll}
t & \xrightarrow[\rightarrow]{p} \beta & t^{\prime} \\
\hline \lambda x . t & \xrightarrow{0 \cdot p} \beta & \lambda x . t^{\prime}
\end{array}
\end{aligned}
$$

Justifying a reduction using a derivation tree

$$
\begin{array}{rll}
\overrightarrow{(\lambda y \cdot z y) x} & \xrightarrow{\varepsilon} & z x \\
\hline x((\lambda y \cdot z y) x) & \xrightarrow{2} & x(z x) \\
\hline \lambda x \cdot(x((\lambda y \cdot z y) x)) & \xrightarrow{02} & \lambda x \cdot(x(z x)) \\
\hline(\lambda x \cdot x((\lambda y \cdot z y) x)) z & \xrightarrow{102} & (\lambda x \cdot x(z x)) z
\end{array}
$$

Inductive reasoning on a reduction

Since the reduction relation $t \rightarrow_{\beta} t^{\prime}$ is defined by inference rules, there is an associated inductive reasoning principle. On can prove that a property P is such that

$$
\forall t, t^{\prime}, \quad t \rightarrow_{\beta} t^{\prime} \quad \Longrightarrow \quad P\left(t, t^{\prime}\right)
$$

by simply checking the following four points:

- $P((\lambda x . t) u, t\{x \longleftarrow u\})$ for any x, t and u base case
- $P\left(t u, t^{\prime} u\right)$ for any t, t^{\prime} and u such that $P\left(t, t^{\prime}\right)$ inductive case
- $P\left(t u, t u^{\prime}\right)$ for any t, u and u^{\prime} such that $P\left(u, u^{\prime}\right)$ another inductive case
- $P\left(\lambda x . t, \lambda x . t^{\prime}\right)$ for any x, t and t^{\prime} such that $P\left(t, t^{\prime}\right)$ yet another inductive case

Notice that these four conditions are quite similar to the four inference rules

Inductive reasoning on reduction

Reduction does not generate free variables.

$$
\text { If } \quad t \rightarrow t^{\prime} \quad, \text { then } \quad \mathrm{fv}\left(t^{\prime}\right) \subseteq \mathrm{fv}(t)
$$

Proof by induction on the derivation of $t \rightarrow t^{\prime}$.

- Case $(\lambda x . t) u \rightarrow t\{x \leftarrow u\}$. We already proved: $\operatorname{fv}(t\{x \leftarrow u\}) \subseteq(f v(t) \backslash\{x\}) \cup \operatorname{fv}(u)$. Moreover, we have

$$
\begin{aligned}
\mathrm{fv}((\lambda x . t) u) & =\mathrm{fv}(\lambda x . t) \cup \mathrm{fv}(u) \\
& =(\mathrm{fv}(t) \backslash\{x\}) \cup \mathrm{fv}(u)
\end{aligned}
$$

- Case $t u \rightarrow t^{\prime} u$ with $t \rightarrow t^{\prime}$. Then

$$
\begin{aligned}
\mathrm{fv}\left(t^{\prime} u\right) & =\mathrm{fv}\left(t^{\prime}\right) \cup \mathrm{fv}(u) & & \text { by definition } \\
& \subseteq \mathrm{fv}(t) \cup \mathrm{fv}(u) & & \text { by induction hypothesis } \\
& =\mathrm{fv}(t u) & & \text { by definition }
\end{aligned}
$$

- Case $t u^{\prime} \rightarrow t u^{\prime}$ with $u \rightarrow u^{\prime}$ similar.
- Case $\lambda x . t \rightarrow \lambda x . t^{\prime}$ with $t \rightarrow t^{\prime}$. Then

$$
\begin{aligned}
\operatorname{fv}\left(\lambda x . t^{\prime}\right) & =\operatorname{fv}\left(t^{\prime}\right) \backslash\{x\} & & \text { by definition } \\
& \subseteq \operatorname{fv}(t) \backslash\{x\} & & \text { by induction hypothesis } \\
& =\operatorname{fv}(\lambda x . t) & & \text { by definition }
\end{aligned}
$$

Reduction sequences

\rightarrow_{β} one step
$\rightarrow{ }_{\beta}^{*}$ reflexive transitive closure: 0,1 or many steps
\leftrightarrow_{β} symmetric closure: one step, forward or backward
$=\beta$ reflexive, symmetric, transitive closure (equivalence)
Additional (optional) rule : η
Depending on what we want to model, can be used in both directions:

- η-contraction

$$
\lambda x .(t x) \quad \rightarrow_{\eta} \quad t
$$

- η-expansion

$$
t \quad \rightarrow_{\eta} \quad \lambda x .(t x)
$$

Related to extensional equality (Leibniz equality)

Alternative formalization: reduction in contexts

Focus on the redex r reduced in a term t

$$
t=\mathcal{C}[r] \quad \rightarrow \quad \mathcal{C}\left[r^{\prime}\right]=t^{\prime}
$$

with $r=(\lambda x . u) v$ and $r^{\prime}=u\{x \leftarrow v\}$
\mathcal{C} is a context: a term with one hole

$$
\mathcal{C}::=\square|\mathcal{C} t| t \mathcal{C} \mid \lambda x . \mathcal{C}
$$

$\mathcal{C}[u]$ is the result of filling the hole of \mathcal{C} with the term u

Exercise: contexts and subterms

Here are some decompositions of $\lambda x \cdot(x \lambda y \cdot x y)$ into a context and a term $\mathcal{C}[u]$

$$
\begin{array}{c|c|c|c|c|c}
C & \square & \lambda x . \square & \lambda x .(\square \lambda y \cdot x y) & \lambda x .(x \square) & \ldots \\
\hline u & \lambda x \cdot(x \lambda y \cdot x y) & x \lambda y \cdot x y & x & \lambda y \cdot x y & \ldots
\end{array}
$$

What are the other possible decompositions?
We already showed that

$$
(\lambda x \cdot x((\lambda y \cdot z y) x)) z \quad \rightarrow \quad(\lambda x \cdot x(z x)) z
$$

What are the context and the redex associated to this reduction?

Answer Other decompositions of $\lambda x .(x \lambda y \cdot x y)$

$$
\begin{array}{c|c|c|c|}
\mathcal{C} & \lambda x .(x(\lambda y . \square)) & \lambda x .(x(\lambda y . \square y)) & \lambda x .(x(\lambda y \cdot x \square)) \\
\hline u & x y & x & y
\end{array}
$$

Decomposition of the reduction:

$$
\mathcal{C}[(\lambda y . z y) x] \quad \rightarrow \quad \mathcal{C}[z x]
$$

with $\mathcal{C}=(\lambda x . x \square) z$

Exercise: equivalence of the two formalizations (first way)

Prove that if

$$
t \rightarrow_{\beta} t^{\prime}
$$

then there are \mathcal{C}, x, u, v such that

$$
t=\mathcal{C}[(\lambda x . u) v] \quad \text { et } \quad t^{\prime}=\mathcal{C}[u\{x \leftarrow v\}]
$$

Answer Proof by induction on the derivation of $t \rightarrow_{\beta} t^{\prime}$.

- Base case $t=(\lambda x . u) v \rightarrow_{\beta} u\{x \leftarrow v\}=t^{\prime}$. Straightforward conclusion with the context \square
- Case $t=t_{1} t_{2} \rightarrow_{\beta} t_{1}^{\prime} t_{2}=t^{\prime}$ with $t_{1} \rightarrow_{\beta} t_{1}^{\prime}$. Assume there are \mathcal{C}_{1}, x, u and v such that $t_{1}=\mathcal{C}_{1}[(\lambda x . u) v]$ and $t_{1}^{\prime}=\mathcal{C}_{1}[u\{x \leftarrow v\}]$ (induction hypothesis). Then conclude with $\mathcal{C}=\mathcal{C}_{1} t_{2}$
- Case $t=t_{1} t_{2} \rightarrow_{\beta} t_{1} t_{2}^{\prime}=t^{\prime}$ with $t_{2} \rightarrow_{\beta} t_{2}^{\prime}$ similar, using context $\mathcal{C}=t_{1} \mathcal{C}_{2}$
- Case $t=\lambda y \cdot t_{0} \rightarrow_{\beta} \lambda y \cdot t_{0}^{\prime}=t^{\prime}$ with $t_{0} \rightarrow_{\beta} t_{0}^{\prime}$ similar, using context $\mathcal{C}=\lambda y \cdot \mathcal{C}_{0}$

Pure λ-calculus: summary

Minimalistic formalism

- Variables
- λ-abstraction
- Application
- α-renaming
- β-reduction

Theoretically, we do not need anything else! see chapter on λ-computability

6 Extended λ-calculi

PCF: Programming with Computable Functions

The λ-calculus can be extended with various programming features we want to study. Pick your favorite:

- integer arithmetic
- booleans and conditionals
- data structures
- recursive functions
- ...
$P C F$ is a standard package of such extensions

Extending the λ-calculus

Ingredients

- new syntax
- reduction rules
- extended definitions (e.g. substitution)
- extended proofs

Integer arithmetic

New shapes of terms

$$
\begin{array}{rll}
t::= & \ldots & \\
& \left\lvert\, \begin{array}{ll}
n & \text { integer } \\
& t_{1} \text { op } t_{2}
\end{array}\right. & \text { binary operation } \oplus, \ominus, \ldots
\end{array}
$$

New base reduction rules

$$
n_{1} \oplus n_{2} \quad \rightarrow \quad n \quad \text { with } \quad n=n_{1}+n_{2}
$$

New congruence rules

$$
\begin{array}{rlrl}
t_{1} & \rightarrow t_{1}^{\prime} \\
\hline t_{1} \oplus t_{2} & \rightarrow & t_{1}^{\prime} \oplus t_{2}
\end{array} \quad \begin{aligned}
t_{2} & \rightarrow t_{2}^{\prime} \\
\hline t_{1} \oplus t_{2} & \rightarrow t_{1} \oplus t_{2}^{\prime}
\end{aligned}
$$

Extended definitions

$$
\begin{aligned}
\mathrm{fv}\left(t_{1} \text { op } t_{2}\right) & =\mathrm{fv}\left(t_{1}\right) \cup \mathrm{fv}\left(t_{2}\right) \\
\left(t_{1} \text { op } t_{2}\right)\{x \leftarrow u\} & =\left(t_{1}\{x \leftarrow u\}\right) \text { op }\left(t_{2}\{x \leftarrow u\}\right)
\end{aligned}
$$

Booleans and conditionals

New shapes of terms

$t::=$	\ldots	
	T	True
	F	false
	isZero (t)	test
	if t_{1} then t_{2} else t_{3}	conditional expression

New base rules

$$
\begin{aligned}
\text { isZero }(0) & \rightarrow \mathrm{T} \\
\text { isZero }(n) & \rightarrow \mathrm{F} \\
\text { if } \mathrm{T} \text { then } t_{1} \text { else } t_{2} & \rightarrow t_{1} \\
\text { if } \mathrm{F} \text { then } t_{1} \text { else } t_{2} & \rightarrow t_{2}
\end{aligned}
$$

+ new congruence rules

Pairs

New shapes of terms

$$
\begin{array}{rll}
t: & ::= & \\
\mid & \left\langle t_{1}, t_{2}\right\rangle & \text { pair } \\
\left\lvert\, \begin{array}{ll}
|l| & \pi_{1}(t)
\end{array}\right. & \text { left projection } \\
& \pi_{2}(t) & \text { right projection }
\end{array}
$$

New base rules

$$
\begin{array}{rll}
\pi_{1}\left(\left\langle t_{1}, t_{2}\right\rangle\right) & \rightarrow & t_{1} \\
\pi_{2}\left(\left\langle t_{1}, t_{2}\right\rangle\right) & \rightarrow & t_{2}
\end{array}
$$

+ new congruence rules

Linked lists

New shapes of terms

t : : $=$	\ldots	
	Nil	empty list
	$t_{1}:{ }^{\text {t }}$	combine an element (head) and a list (tail)
	is $\mathrm{Nil}(t)$	test
	hd (t)	head element
	$\mathrm{tl}(t)$	tail of the list

New base rules

$$
\begin{array}{rll}
\text { is } \mathrm{Nil}(\mathrm{NiI}) & \rightarrow \mathrm{T} \\
\mathrm{isNil}\left(t_{1}:: t_{2}\right) & \rightarrow & \mathrm{F} \\
\mathrm{hd}\left(t_{1}: t_{2}\right) & \rightarrow t_{1} \\
\mathrm{tl}\left(t_{1}:: t_{2}\right) & \rightarrow t_{2}
\end{array}
$$

+ congruence rules

Recursion

New shapes of terms

$$
\begin{array}{rlll}
t & ::= & \ldots & \\
& \mid & \operatorname{Fix}(t) & \text { fixed point }
\end{array}
$$

New base rules

$$
\operatorname{Fix}(t) \quad \rightarrow \quad t(\operatorname{Fix}(t))
$$

+ congruence rules

Exercise : extended reduction

Compute the value of the expression

$$
\operatorname{Fix}(\lambda f s . \text { if isNil(s) then } 0 \text { else } 1 \oplus(f(\mathrm{tl}(s))))(2:: 4:: 8:: \mathrm{Nil})
$$

Answer. Write $F=\lambda f s$.if isNil (s) then 0 else $1 \oplus(f(\mathrm{tl}(s)))$.

```
\(\operatorname{Fix}(F)(2:: 4:: 8:: \mathrm{Nil})\)
\(\rightarrow \quad F(\operatorname{Fix}(F))(2:: 4:: 8:: N \mathrm{Nil})\)
\(\rightarrow \quad(\lambda s\).if isNil \((s)\) then 0 else \(1 \oplus(\operatorname{Fix}(F))(\mathrm{tl}(s)))(2:: 4:: 8:: \mathrm{Nil})\)
\(\rightarrow \quad\) if isNil(2::4::8::Nil) then 0 else \(1 \oplus(\operatorname{Fix}(F))(\mathrm{tl}(2:: 4:: 8:: \mathrm{Nil}))\)
\(\rightarrow \quad\) if F then 0 else \(1 \oplus(\operatorname{Fix}(F))(\mathrm{tl}(2:: 4:: 8:: \mathrm{Nil}))\)
\(\rightarrow \quad 1 \oplus(\operatorname{Fix}(F))(\mathrm{tl}(2:: 4:: 8:: \mathrm{NiI}))\)
\(\rightarrow \quad 1 \oplus(\operatorname{Fix}(F))(4:: 8:: N \mathrm{NiI})\)
\(\rightarrow \quad 1 \oplus 1 \oplus 1 \oplus(\operatorname{Fix}(F) \mathrm{Nil})\)
\(\rightarrow \quad 1 \oplus 1 \oplus 1 \oplus(F(\mathrm{Fix}(F)) \mathrm{Nil})\)
\(\rightarrow \quad 1 \oplus 1 \oplus 1 \oplus((\lambda s\).if is \(\mathrm{Nil}(s)\) then 0 else \(1 \oplus(\mathrm{Fix}(F))(\mathrm{tl}(s))) \mathrm{Nil})\)
\(\rightarrow \quad 1 \oplus 1 \oplus 1 \oplus(\mathrm{if} \mathrm{isNil}(\mathrm{Nil})\) then 0 else \(1 \oplus(\operatorname{Fix}(F))(\mathrm{tl}(\mathrm{Nil})))\)
\(\rightarrow \quad 1 \oplus 1 \oplus 1 \oplus 0\)
\(\rightarrow \quad 1 \oplus 1 \oplus 1\)
\(\rightarrow \quad 1 \oplus 2\)
\(\rightarrow 3\)
```


7 de Bruijn notation

Use numbers instead of variable names

Replace each variable occurrence with the number of λ between the occurrence and its binder

$$
\lambda . \lambda .01((\lambda .20) 0)
$$

What we gain: the need for variable renamings disappears

de Bruijn, in caml

λ-terms with de Bruijn indices

```
type term =
    | Var of int
    | App of term * term
    | Abs of term
```

Encoding of the term $\lambda . \lambda .01((\lambda .20) 0)$
Abs (Abs (App (App (Var 0, Var 1), App (Abs(App (Var 2, Var 0)), Var 0))))

Substitutions and indices

β-reduction

- substitution of 0 (occurrences bound by the λ in the redex)

$$
(\lambda .0(\lambda .01)) t \quad \rightarrow_{\beta} \quad t(\lambda .0 t)
$$

- other indices under the λ-abstraction of the redex should be adjusted (-1)

$$
(\lambda .01(\lambda .01)) t \quad \leftrightarrow_{\beta} \quad t 1(\lambda .0 t)
$$

il faut les décrementer

- indices in the substituted argument should also be adjusted each time we cross a $\lambda(+1)$

$$
(\lambda .01(\lambda .01)) 0 \quad \mapsto_{\beta} \quad 01(\lambda .00)
$$

Substitution, in caml
Substitution of the index i

```
let rec subst t i u = match t with
    | Var j -> if i=j then u
        else if i<j then Var (j-1)
        else t
    | App(t1,t2) -> App(subst t1 i u,
        subst t2 i u)
    | Abs t -> let u' = shift 0 u in
        Abs (subst t (i+1) u')
```

Auxiliary function: shift indices greater of equal to k

```
let rec shift k u = match u with
    | Var j -> if k<=j
        then Var (j+1)
        else u
    | App(t1, t2) -> App(shift k t1,
                                    shift k t2)
    | Abs t -> Abs (shift (k+1) t)
```


Exercise: de Bruijn notation

Write the following terms using de Bruijn indices

1. $\lambda x \cdot(\lambda x \cdot x y)(\lambda y \cdot x y)$
2. $\lambda x y \cdot x(\lambda y \cdot(\lambda y \cdot y) y z)$

Write the following term using de Bruijn indices, then reduce it

$$
(\lambda f . f f)(\lambda a b . b a b)
$$

Answer

1. $\lambda .(\lambda .02)(\lambda .10)$
2. $\lambda . \lambda .1(\lambda .(\lambda .0) 03$
3.

$$
\begin{aligned}
(\lambda .00)(\lambda . \lambda .010) & \rightarrow(\lambda . \lambda .010)(\lambda . \lambda .010) \\
& \rightarrow \lambda .0(\lambda . \lambda .010) 0
\end{aligned}
$$

Homework - write it down and send it to me before next course Prove that if $\quad x \neq y \quad$ and $\quad x \notin f v(v)$ then

$$
t\{x \leftarrow u\}\{y \leftarrow v\} \quad=\quad t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}
$$

