Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Winter 2023 https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 1: lambda-calculus

1 A computational theory of function

Timeline

1870 Which ground for mathematics ? Sets or functions ?

- 1920 Moses Schönfinkel, Haskell Curry: combinatory logic. Basic blocks for building functions.
- 1936 Alonzo Church: λ -calculus. Characterization of computable functions. Equivalent to Turing machines. Solves the *Entscheidungsproblem*.
- 1970+ λ -calculus grows together with computer science. Functional programming. Proof assistants.

Functions

One concept, various notations.

2 λ -calcul: basic definitions

The λ -calculus is defined by a set of *terms*, which represent programs or algorithms, and by *conversion rules*, which describe how computation is performed.

Terms (expressions)

The λ -calculus syntax consists of a notion of *expression*, or *term*. Terms are built using three constructs.

- x variable, reference to a function parameter
- $t_1 t_2$ application of a term t_1 to a term t_2 , t_1 is to be seen as a function and t_2 as its given argument.
- $\lambda x.t$ function with a single parameter *x*, whose result is given by *t*

Functions are defined by their behaviour.

Examples

• Identity

 $\lambda x.x$

takes a paremeter x and returns the value of x

Constant functions generator

 $\lambda c.(\lambda x.c)$

takes a parameter c and returns a constant function whose result is constantly c

Distribution

$$\lambda x.(\lambda y.(\lambda z.((x \ z) \ (y \ z))))$$

takes a parameter x and... let's see later

• What ?

 $\lambda x.(x x)$

takes a parameter x and self-applies it?

Notations

• Instead of $\lambda x_1 \dots (\lambda x_n . t) \dots$ we write

 $\lambda x_1 \dots x_n . t$

• Instead of $(\dots (t \ u_1) \dots u_n)$ we write

 $t u_1 \dots u_n$

or even $t \vec{u}$ with $\vec{u} = u_1 \dots u_n$

For instance:

$\lambda c.(\lambda x.c)$	$\lambda c x. c$
$\lambda x.(\lambda y.(\lambda z.((x \ z) \ (y \ z))))$	$\lambda x y z. x z (y z)$

Curryfication and *n*-ary functions

There is no cartesian product in core λ -calculus.

• A function $(x, y) \mapsto t$ with two parameters is encoded as

 $\lambda x. \lambda y. t$ or $\lambda x y. t$

• An application f(x, y) of a binary function to two parameters is encoded as

f x y

Functions are *curryfied* (tribute to Haskell Curry).

This encoding allows *partial applications*.

Computing with the λ **-calculus**

Smallest computing block: a function applied to an argument.

 $(\lambda x.t) u \rightarrow t\{x \leftarrow u\}$

Result :

t where each occurrence of *x* is replaced by $u t\{x \leftarrow u\}$

Sample computation

(λx)	$yz.xz(yz))(\lambda ab.a) t u$	
		$\{x \leftarrow \lambda a b.a\}$
\rightarrow	$(\lambda yz.(\lambda ab.a)z (yz)) t u$	
\rightarrow	$(\lambda z.(\lambda ab.a)z (tz)) u$	$\{y \leftarrow t\}$
	(//2.(//40.4)2 (/2)) 4	$\{z \leftarrow u\}$
\rightarrow	$(\lambda ab.a)u (tu)$	
		$\{a \leftarrow u\}$
\rightarrow	$(\lambda b.u) (tu)$	$\{b \leftarrow tu\}$
\rightarrow	и	(U C C C C C C C C C C C C C C C C C C C

Exercise : reduction

Compute the result of

 $(\lambda x y. y x) (\lambda a b. b) (\lambda s. stu)$

Answer

(λx)	y.yx) ($\lambda ab.b$) ($\lambda s.stu$)
\rightarrow	$(\lambda y.y (\lambda ab.b)) (\lambda s.stu)$
\rightarrow	$(\lambda s.stu) (\lambda ab.b)$
\rightarrow	$(\lambda ab.b) t u$
\rightarrow	$(\lambda b.b) u$
\rightarrow	u

Exercise : combinatory logic

Combinatory logic (Schönfinkel, 1920 - Curry, 1930) uses the five symbols *I*, *K*, *S*, *B*, *C* (called "combinators") and one reduction rule for each.

$$I x \rightarrow x$$

$$K x y \rightarrow x$$

$$S x y z \rightarrow xz (yz)$$

$$B x y z \rightarrow x (yz)$$

$$C x y z \rightarrow xz y$$

Find λ -terms equivalent to these combinators

Compute the results of the following expressions

- 1. *S K K x*
- 2. S(K S) K

Answer λ -terms equivalent to combinators

- $I = \lambda x.x$
- $K = \lambda x y . x$
- $S = \lambda x y z . x z (y z)$
- $B = \lambda x y z . x (y z)$
- $C = \lambda x y z . x z y$

Reductions

• S K K is equivalent to I

$$\begin{array}{rccc} S \ K \ K \ x & \longrightarrow & K x (K x) \\ & \longrightarrow & x \end{array}$$

• S(K S) K is equivalent to B

$$\begin{array}{rcl} S\left(K\;S\right)K\;x\;y\;z&\longrightarrow&(K\;S\;x)\left(K\;x\right)\;y\;z\\ &\longrightarrow&S\left(K\;x\right)\;y\;z\\ &\longrightarrow&(K\;x\;z)\left(y\;z\right)\\ &\longrightarrow&x\left(y\;z\right)\end{array}$$

Dubious replacements / variable capture

How should we resolve the following replacements?

$$(\lambda x.(\lambda x.x)) y \rightarrow (\lambda x.x) \{x \leftarrow y\}$$

 $(\lambda x.(\lambda y.x)) y \longrightarrow (\lambda y.x)\{x \leftarrow y\}$

Related: what is the live-range of a variable?

3 Formalization of λ -terms

Set of terms

The set Λ of the λ -terms is *the smallest set* that contains:

1. x for all variable x

2. $\lambda x.t$ if $t \in \Lambda$

3. $t_1 t_2$ if $t_1 \in \Lambda$ and $t_2 \in \Lambda$

Same definition, stated as an algebraic grammar.

t ::= x | $\lambda x.t$ | t_1 t_2

This definition is recursive, and allows recursive reasoning.

Term = tree

The expression

$$(\lambda x y. x y(x(\lambda z. z)) (\lambda a b. b a))$$

denotes the tree

Positions in a term

Position: word over the alphabet {0, 1, 2} denoting a path from the root.

Set pos(t) of the positions of the term t

 $pos(x) = \{\varepsilon\}$ $pos(\lambda x.t) = \{\varepsilon\} \cup 0 \cdot pos(t)$ $pos(t_1 t_2) = 1 \cdot pos(t_1) \cup 2 \cdot pos(t_2)$

Encoding in caml

An algebraic datatype for λ -terms

Encoding of the term $\lambda ab.ba$

Abs("a", Abs("b", App(Var "b", Var "a")))

Defining functions on lambda-terms

Recursive definition of f, with three cases:

• f(x) base

using f(t)

using $f(t_1)$ and $f(t_2)$

• $f(\lambda x.t)$

• $f(t_1 \ t_2)$

Examples

Defining a function in caml

Coding $f_{@}$

```
let rec nb_app = function
    | Var _ -> 0
    | Abs(_, t) -> nb_app t
    | App(t1, t2) -> 1 + nb_app t1 + nb_app t2
Coding fv
```

let rec nb_var = function
| Var _ -> 1
| Abs(_, t) -> nb_var t
| App(t1, t2) -> nb_var t1 + nb_var t2

Induction principle on lambda-terms

Goal: proving that a property *P* is true for all λ -terms. Three steps:

- prove P(x) for any variable x
- prove $P(\lambda x.t)$ assuming that P(t) is true
- prove $P(t_1 t_2)$ assuming that $P(t_1)$ and $P(t_2)$ are both true

Example of inductive reasoning

Goal: for any $t \in \Lambda$, $f_{\upsilon}(t) = 1 + f_{\textcircled{@}}(t)$

- Proof of P(x). By definition, $f_v(x) = 1$ and $f_{@}(x) = 0$ Then $f_v(x) = 1 + f_{@}(x)$
- Proof of $P(t) \Rightarrow P(\lambda x.t)$. Assume $f_v(t) = 1 + f_{@}(t)$. Then

$f_v(\lambda x.t)$	=	$f_v(t)$	by definition of f_v
	=	$1 + f_{@}(t)$	by induction hypothesis
	=	$1 + f_{@}(\lambda x.t)$	by definition of $f_{@}$

• Proof of $P(t_1) \wedge P(t_2) \Longrightarrow P(t_1, t_2)$. Assume $f_v(t_1) = 1 + f_{@}(t_1)$ and $f_v(t_2) = 1 + f_{@}(t_2)$. Then

$f_v(t_1 \ t_2)$	
$= f_{\upsilon}(t_1) + f_{\upsilon}(t_2)$	by definition of f_v
$= 1 + f_{@}(t_1) + 1 + f_{@}(t_2)$	by induction hypotheses
$= 1 + (1 + f_{@}(t_1) + f_{@}(t_2))$	
$= 1 + f_{\textcircled{@}}(t_1 \ t_2)$	by definition of $f_{@}$

4 Variables and substitutions

A note on variables

The λ -abstraction

 $\lambda x.t$

introduces a variable *x locally* in *t* We call it a *bound variable* In other words:

- the name *x* is not known outside of *t*
- seen from the outside, the name *x* means nothing
- changing the name *x* does not affect the outside world

Free variables

Variables that can be seen from "outside"

$$fv(x) = \{x\}$$

$$fv(t_1 t_2) = fv(t_1) \cup fv(t_2)$$

$$fv(\lambda x.t) = fv(t) \setminus \{x\}$$

Term with no free variables: *closed term*, or *combinator* A name which appears both free and bound in a term:

 $x (\lambda x.x)$

Substitution

Replacing *free* occurrences of x in t by u.

$$t\{x \leftarrow u\}$$

Definition: inductively on the structure of *t*.

$$y\{x \leftarrow u\} = \begin{cases} u & \text{if } x = y \\ y & \text{if } x \neq y \end{cases}$$
$$(t_1 \ t_2)\{x \leftarrow u\} = t_1\{x \leftarrow u\} \ t_2\{x \leftarrow u\}$$
$$(\lambda y.t)\{x \leftarrow u\} = \begin{cases} \lambda y.t & \text{if } x = y \\ \lambda y.t\{x \leftarrow u\} & \text{if } x \neq y \text{ and } y \notin fv(u) \\ \lambda z.t\{y \leftarrow z\}\{x \leftarrow u\} & \text{if } x \neq y \text{ and } y \in fv(u) \\ & z \text{ new variable} \end{cases}$$

Barendregt's convention

To avoid abuse of names, we consider only terms where

no variable name appears both free and bound in any given subterm

Don't write	Write instead
$\lambda x.(x \ (\lambda x.x))$	$\lambda x.(x (\lambda y.y))$

Simplified definition for the substitution, relying on the convention

$$y\{x \leftarrow u\} = \begin{cases} u & \text{si } x = y \\ y & \text{si } x \neq y \end{cases}$$
$$(t_1 \ t_2)\{x \leftarrow u\} = t_1\{x \leftarrow u\} \ t_2\{x \leftarrow u\}$$
$$(\lambda y.t)\{x \leftarrow u\} = \lambda y.t\{x \leftarrow u\}$$

(Un)stability of Barendregt's convention

$$\begin{array}{l} (\lambda x.xx) \ (\lambda yz.yz) \\ \rightarrow \ (\lambda yz.yz) \ (\lambda yz.yz) \\ \rightarrow \ \lambda z.((\lambda yz.zy)z) \end{array}$$

Preserving Barendregt's convention over reduction requires changing some variable names during computation

Bound variables renaming: α -conversion

$$\lambda x.t =_{\alpha} \lambda y.(t\{x \leftarrow y\})$$
 if $y \notin fv(t)$

The α -conversion does not change the meaning of a term:

• we can apply it *whenever* we need it

The α -conversion is a *congruence*:

$$t =_{\alpha} t' \implies \lambda x.t =_{\alpha} \lambda x.t'$$

$$t_1 =_{\alpha} t'_1 \implies t_1 t_2 =_{\alpha} t'_1 t_2$$

$$t_2 =_{\alpha} t'_2 \implies t_1 t_2 =_{\alpha} t_1 t'_2$$

• we can apply it *wherever* we need it

From now on we assume that any term we work with satisfies Barendregt's convention.

Exercise : bound variables and renaming

Rename some variables of these terms suivants so that they obey Barendregt's convention.

1. $\lambda x.(\lambda x.xy)(\lambda y.xy)$

2. $\lambda x y. x(\lambda y. (\lambda y. y) yz)$

Compute the result of

$$(\lambda f.f f) (\lambda ab.b a b)$$

Answer

1. $\lambda x.(\lambda x.xy)(\lambda y.xy) =_{\alpha} \lambda x.(\lambda z.zy)(\lambda t.xt)$ 2. $\lambda xy.x(\lambda y.(\lambda y.y)yz) =_{\alpha} \lambda xy.x(\lambda a.(\lambda b.b)az)$ 3. $(\lambda f.f f) (\lambda ab.b a b) \longrightarrow_{\beta} (\lambda ab.b a b) (\lambda ab.b a b) b =_{\alpha} \lambda ab.b (\lambda ab.b a b) b =_{\alpha} \lambda b.b (\lambda xy.y x y) b$

Exercise : free variables and substitution

Prove that

$$\mathsf{fv}(t\{x \leftarrow u\}) \subseteq (\mathsf{fv}(t) \setminus \{x\}) \cup \mathsf{fv}(u)$$

Are these two sets equal?

Answer Proof by induction on the structure of t

- Case where *t* is a variable
 - case $x : fv(x \{x \leftarrow u\}) = fv(u) \subseteq (fv(t) \setminus \{x\}) \cup fv(u)$
 - case $y \neq x$: fv(y{ $x \leftarrow u$ }) = fv(y) = {y}, and {y} is indeed a subset of (fv(y) \ {x}) \cup fv(u) = {y} \cup fv(u)
- Case where *t* is an application t_1 t_2 . Assume $fv(t_1\{x \leftarrow u\}) \subseteq (fv(t_1) \setminus \{x\}) \cup fv(u)$ and $fv(t_2\{x \leftarrow u\}) \subseteq (fv(t_2) \setminus \{x\}) \cup fv(u)$ (it is our induction hypothesis). Then

 $fv((t_1 \ t_2)\{x \leftarrow u\})$ $= fv((t_1\{x \leftarrow u\}) \ (t_2\{x \leftarrow u\}))$ $= fv(t_1\{x \leftarrow u\}) \cup fv(t_2\{x \leftarrow u\})$ $\subseteq (fv(t_1) \setminus \{x\}) \cup fv(u) \cup (fv(t_2) \setminus \{x\}) \cup fv(u)$ $= (fv(t_1) \setminus \{x\}) \cup (fv(t_2) \setminus \{x\}) \cup fv(u)$ $= ((fv(t_1) \cup fv(t_2)) \setminus \{x\}) \cup fv(u)$ $= (fv(t_1) \cup fv(t_2)) \setminus \{x\}) \cup fv(u)$

• Case where *t* is a λ -abstraction $\lambda y.t_0$. Assume $x \neq y$ and $y \notin fv(u)$ (if not, α -rename it). Assume $fv(t_0 \{x \leftarrow u\}) \subseteq (fv(t_0) \setminus \{x\}) \cup fv(u)$ (induction hypothesis). Then

 $fv((\lambda y.t_0) \{x \leftarrow u\})$ $= fv(\lambda y.(t_0 \{x \leftarrow u\})) \qquad \text{since } x \neq y \text{ and } y \notin fv(u)$ $= fv(t_0 \{x \leftarrow u\}) \setminus \{y\}$ $\subseteq ((fv(t_0) \setminus \{x\}) \cup fv(u)) \setminus y \qquad \text{induction hypothesis}$ $= ((fv(t_0) \setminus \{x\} \setminus \{y\}) \cup (fv(u) \setminus y))$ $= ((fv(t_0) \setminus \{x\} \setminus \{y\}) \cup fv(u) \qquad \text{since } y \notin fv(u)$ $= ((fv(t_0) \setminus \{x\} \setminus \{y\}) \cup fv(u))$ $= (fv(\lambda y.t_0) \setminus x) \cup fv(u)$

The sets are not equal: if $x \notin fv(t)$ then *u* disappears in $t\{x \leftarrow u\}$, together with its free variables.

5 Formalisation of the reduction

β -reduction

Application of a function to an argument

 $(\lambda x.t) u$

The result if given by the function body, in which the formal parameter x is linked to the argument u.

$$(\lambda x.t) u \longrightarrow_{\beta} t\{x \leftarrow u\}$$

where $t{x \leftarrow u}$ denotes substitution *without capture*

β -reduction, pictured on trees

β -reduction, programmed in caml

Function for reducing a β -redex

```
let beta_reduction = function
    | App(Abs(x, t), u) -> subst t x u
    | _ -> failwith "not_a_beta-redex"
Auxiliary function: subst t x u computes t\{x \leftarrow u\}
```

Congruence

The β -reduction rule can be applied anywhere in a term. This can be formalized using inference rules.

$$\overline{(\lambda x.t) \ u \ \rightarrow_{\beta} \ t\{x \leftarrow u\}}$$

$$\frac{t \ \rightarrow_{\beta} \ t'}{t \ u \ \rightarrow_{\beta} \ t' \ u} \qquad \qquad \frac{u \ \rightarrow_{\beta} \ u'}{t \ u \ \rightarrow_{\beta} \ t \ u'}$$

$$\frac{t \ \rightarrow_{\beta} \ t'}{\lambda x.t \ \rightarrow_{\beta} \ \lambda x.t'}$$

Position of a reduction

Write

$$t \xrightarrow{p}_{\beta} t'$$

when *t* reduces to t' by contracting a redex at position p

$$\overline{(\lambda x.t) \ u \xrightarrow{\varepsilon}_{\beta} t \{x \leftarrow u\}}$$

$$\frac{t \xrightarrow{p}_{\beta} t'}{t \ u \xrightarrow{1:p}_{\beta} t' \ u} \qquad \frac{u \xrightarrow{p}_{\beta} u'}{t \ u \xrightarrow{2:p}_{\beta} t \ u'}$$

$$\frac{t \xrightarrow{p}_{\beta} t'}{\lambda x.t \xrightarrow{0:p}_{\beta} \lambda x.t'}$$

Justifying a reduction using a derivation tree

$$\frac{\overline{(\lambda y.zy) x} \xrightarrow{\varepsilon} zx}{x ((\lambda y.zy) x) \xrightarrow{2} x (zx)}$$

$$\frac{\overline{\lambda x.(x ((\lambda y.zy) x))} \xrightarrow{2} x (zx)}{\lambda x.(x ((\lambda y.zy) x))}$$

$$\frac{102}{(\lambda x.x ((\lambda y.zy) x)) z} \xrightarrow{102} (\lambda x.x (zx)) z$$

Inductive reasoning on a reduction

Since the reduction relation $t \rightarrow_{\beta} t'$ is defined by inference rules, there is an associated inductive reasoning principle. On can prove that a property *P* is such that

$$\forall t, t', \quad t \to_{\beta} t' \implies P(t, t')$$

by simply checking the following four points:

• $P((\lambda x.t)u, t\{x \leftarrow u\})$ for any x, t and u	base case
• $P(tu, t'u)$ for any t, t' and u such that $P(t, t')$	inductive case
• $P(tu, tu')$ for any t, u and u' such that $P(u, u')$	another inductive case
• $P(\lambda x.t, \lambda x.t')$ for any x, t and t' such that $P(t, t')$	yet another inductive case

Notice that these four conditions are quite similar to the four inference rules

Inductive reasoning on reduction

Reduction does not generate free variables.

If
$$t \to t'$$
, then $fv(t') \subseteq fv(t)$

Proof by induction on the derivation of $t \rightarrow t'$.

• Case $(\lambda x.t) \ u \to t\{x \leftarrow u\}$. We already proved: $fv(t\{x \leftarrow u\}) \subseteq (fv(t) \setminus \{x\}) \cup fv(u)$. Moreover, we have $fv((\lambda x.t) \ u) = fv(\lambda x.t) \cup fv(u)$

$$u((\lambda x.t) u) = fv(\lambda x.t) \cup fv(u)$$

= (fv(t) \ {x}) \ fv(u)

• Case $t \ u \to t' \ u$ with $t \to t'$. Then

fv(t' u)	=	$fv(t') \cup fv(u)$	by definition
	⊆	$fv(t) \cup fv(u)$	by induction hypothesis
	=	$fv(t \ u)$	by definition

- Case $t \ u' \to t \ u'$ with $u \to u'$ similar.
- Case $\lambda x.t \rightarrow \lambda x.t'$ with $t \rightarrow t'$. Then

$$fv(\lambda x.t') = fv(t') \setminus \{x\}$$
 by definition

$$\subseteq fv(t) \setminus \{x\}$$
 by induction hypothesis

$$= fv(\lambda x.t)$$
 by definition

Reduction sequences

- \rightarrow_{β} one step
- \rightarrow^*_{β} reflexive transitive closure: 0, 1 or many steps
- \leftrightarrow_{β} symmetric closure: one step, forward or backward
 - $=_{\beta}$ reflexive, symmetric, transitive closure (equivalence)

Additional (optional) rule : η

Depending on what we want to model, can be used in both directions:

• η -contraction

 $\lambda x.(t x) \rightarrow_{\eta} t$

• η-expansion

$$t \rightarrow_{\eta} \lambda x.(t x)$$

Related to extensional equality (Leibniz equality)

Alternative formalization: reduction in contexts

Focus on the redex r reduced in a term t

$$t = C[r] \longrightarrow C[r'] = t'$$

with $r = (\lambda x. u)v$ and $r' = u\{x \leftarrow v\}$

C is a *context*: a term with *one* hole

$$C ::= \Box \mid C t \mid t C \mid \lambda x.C$$

C[u] is the result of filling the hole of C with the term u

Exercise: contexts and subterms

Here are some decompositions of $\lambda x.(x \ \lambda y.xy)$ into a context and a term C[u]

What are the other possible decompositions?

We already showed that

$$(\lambda x.x ((\lambda y.zy)x)) z \rightarrow (\lambda x.x (zx)) z$$

What are the context and the redex associated to this reduction?

Answer Other decompositions of $\lambda x.(x \ \lambda y.xy)$

$$\begin{array}{c|c} C & \lambda x.(x \ (\lambda y. \Box)) & \lambda x.(x \ (\lambda y. \Box \ y)) & \lambda x.(x \ (\lambda y. x \ \Box)) \\ \hline u & xy & x & y \end{array}$$

Decomposition of the reduction:

 $C[(\lambda y.zy)x] \rightarrow C[zx]$

with $C = (\lambda x.x \Box) z$

Exercise: equivalence of the two formalizations (first way)

Prove that if

 $t \rightarrow_{\beta} t'$

then there are C, x, u, v such that

$$t = C[(\lambda x.u)v]$$
 et $t' = C[u\{x \leftarrow v\}]$

Answer Proof by induction on the derivation of $t \rightarrow_{\beta} t'$.

- Base case $t = (\lambda x.u)v \rightarrow_{\beta} u\{x \leftarrow v\} = t'$. Straightforward conclusion with the context \Box
- Case $t = t_1 t_2 \rightarrow_{\beta} t'_1 t_2 = t'$ with $t_1 \rightarrow_{\beta} t'_1$. Assume there are C_1, x, u and v such that $t_1 = C_1[(\lambda x.u)v]$ and $t'_1 = C_1[u\{x \leftarrow v\}]$ (induction hypothesis). Then conclude with $C = C_1 t_2$
- Case $t = t_1 t_2 \rightarrow_{\beta} t_1 t'_2 = t'$ with $t_2 \rightarrow_{\beta} t'_2$ similar, using context $C = t_1 C_2$
- Case $t = \lambda y \cdot t_0 \rightarrow_{\beta} \lambda y \cdot t'_0 = t'$ with $t_0 \rightarrow_{\beta} t'_0$ similar, using context $C = \lambda y \cdot C_0$

Pure λ -calculus: summary

Minimalistic formalism

- Variables
- λ -abstraction
- Application
- α -renaming
- β -reduction

Theoretically, we do not need anything else! *see chapter on* λ *-computability*

6 Extended λ -calculi

PCF: Programming with Computable Functions

The λ -calculus can be extended with various programming features we want to study. Pick your favorite:

- integer arithmetic
- booleans and conditionals
- data structures
- recursive functions
- ...

PCF is a standard package of such extensions

Extending the λ -calculus

Ingredients

- new syntax
- reduction rules
- extended definitions (e.g. substitution)
- extended proofs

Integer arithmetic

New shapes of terms

New base reduction rules

 $n_1 \oplus n_2 \longrightarrow n$ with $n = n_1 + n_2$

New congruence rules

$$\frac{t_1 \longrightarrow t'_1}{t_1 \oplus t_2 \longrightarrow t'_1 \oplus t_2} \qquad \qquad \frac{t_2 \longrightarrow t'_2}{t_1 \oplus t_2 \longrightarrow t_1 \oplus t'_2}$$

Extended definitions

$$\begin{aligned} & \text{fv}(t_1 \text{ op } t_2) = \text{fv}(t_1) \cup \text{fv}(t_2) \\ & (t_1 \text{ op } t_2)\{x \leftarrow u\} = (t_1\{x \leftarrow u\}) \text{ op } (t_2\{x \leftarrow u\}) \end{aligned}$$

Booleans and conditionals

t

New shapes of terms

: :=	•••	
	Т	true
	F	false
	isZero(t)	test
	if t_1 then t_2 else t_3	conditional expression

New base rules

isZero(0)	\rightarrow	Т	
isZero(<i>n</i>)			$n \neq 0$
if T then t_1 else t_2			
if F then t_1 else t_2	\rightarrow	t_2	

+ new congruence rules

Pairs

New shapes of terms

-	t : : =	
	$\langle t_1, t_2 \rangle$	pair
	$\pi_1(t)$	left projection
	$\pi_2(t)$	right projection
New base rules		
	$\pi_1(\langle t_1, t_2 \rangle) \longrightarrow$	
	$\pi_2(\langle t_1, t_2 \rangle) \longrightarrow$	t_2

+ new congruence rules

Linked lists

New shapes of terms

t

::=		
	Nil	empty list
	$t_1::t_2$	combine an element (head) and a list (tail)
	isNil(<i>t</i>)	test
	hd(t)	head element
	tl(t)	tail of the list

New base rules

isNil(Nil)	\rightarrow	Т
$isNil(t_1::t_2)$	\rightarrow	F
$hd(t_1::t_2)$	\rightarrow	t_1
$tl(t_1::t_2)$	\rightarrow	t_2

+ congruence rules

Recursion

New shapes of terms

 $\begin{array}{rcl}t & ::= & \dots \\ & & & | & \operatorname{Fix}(t) & & \operatorname{fixed point} \end{array}$

New base rules

 $Fix(t) \rightarrow t (Fix(t))$

+ congruence rules

Exercise : extended reduction

Compute the value of the expression

Fix($\lambda f s.if$ isNil(s) then 0 else 1 \oplus (f(tl(s)))) (2::4::8::Nil)

Answer. Write $F = \lambda f s.if isNil(s)$ then 0 else $1 \oplus (f(tl(s)))$.

Fix(F) (2::4::8::Nil)

- \rightarrow F (Fix(F)) (2::4::8::Nil)
- \rightarrow (λ s.if isNil(s) then 0 else 1 \oplus (Fix(F))(tl(s))) (2::4::8::Nil)
- \rightarrow if isNil(2::4::8::Nil) then 0 else 1 \oplus (Fix(*F*))(tl(2::4::8::Nil))
- \rightarrow if F then 0 else 1 \oplus (Fix(F))(tl(2::4::8::Nil))
- \rightarrow 1 \oplus (Fix(F))(tl(2::4::8::Nil))
- \rightarrow 1 \oplus (Fix(F))(4::8::Nil)
- •••
- \rightarrow 1 \oplus 1 \oplus 1 \oplus (Fix(F) Nil)
- \rightarrow 1 \oplus 1 \oplus 1 \oplus (*F* (Fix(*F*)) Nil)
- \rightarrow 1 \oplus 1 \oplus 1 \oplus ((λ s.if isNil(s) then 0 else 1 \oplus (Fix(F))(tl(s))) Nil)
- \rightarrow 1 \oplus 1 \oplus 1 \oplus (if isNil(Nil) then 0 else 1 \oplus (Fix(F))(tl(Nil)))
- \rightarrow 1 \oplus 1 \oplus 1 \oplus 0
- \rightarrow 1 \oplus 1 \oplus 1
- \rightarrow 1 \oplus 2
- \rightarrow 3

7 de Bruijn notation

Use numbers instead of variable names

Replace each variable occurrence with the number of λ between the occurrence and its binder

 λ . λ .0 1 ((λ .20) 0)

What we gain: the need for variable renamings disappears

```
de Bruijn, in caml
```

 λ -terms with de Bruijn indices

type term =
 | Var of int
 | App of term * term
 | Abs of term

Encoding of the term λ . λ .0 1 ((λ .20) 0)

Abs(Abs(App(App(Var 0, Var 1), App(Abs(App(Var 2, Var 0)), Var 0)))

Substitutions and indices

 β -reduction

• substitution of 0 (occurrences bound by the λ in the redex)

 $(\lambda.0 \ (\lambda.0 \ 1)) \ t \longrightarrow_{\beta} t \ (\lambda.0 \ t)$

• other indices under the λ -abstraction of the redex should be adjusted (-1)

 $(\lambda.0 \ 1 \ (\lambda.0 \ 1)) \ t \quad \nleftrightarrow_{\beta} \quad t \ 1 \ (\lambda.0 \ t)$

il faut les décrementer

• indices in the substituted argument should also be adjusted each time we cross a λ (+1)

 $(\lambda.0 \ 1 \ (\lambda.0 \ 1)) \ 0 \quad \nleftrightarrow_{\beta} \quad 0 \ 1 \ (\lambda.0 \ 0)$

Substitution, in caml

Substitution of the index *i*

```
let rec subst t i u = match t with
| Var j -> if i=j then u
        else if i<j then Var (j-1)
        else t
| App(t1,t2) -> App(subst t1 i u,
            subst t2 i u)
| Abs t -> let u' = shift 0 u in
            Abs (subst t (i+1) u')
```

Auxiliary function: shift indices greater of equal to k

Exercise: de Bruijn notation

Write the following terms using de Bruijn indices

λ*x*.(λ*x*.*xy*)(λ*y*.*xy*)
 λ*xy*.*x*(λ*y*.(λ*y*.*y*)*yz*)

Write the following term using de Bruijn indices, then reduce it

 $(\lambda f.f f) (\lambda ab.b a b)$

Answer

λ.(λ.02)(λ.10)
 λ.λ.1(λ.(λ.0)03

3.

$$\begin{array}{rcl} (\lambda.00) & (\lambda.\lambda.010) & \longrightarrow & (\lambda.\lambda.010) & (\lambda.\lambda.010) \\ & & & & \lambda.0(\lambda.\lambda.010)0 \end{array}$$

Homework - write it down and send it to me before next course

Prove that if $x \neq y$ and $x \notin fv(v)$ then

$$t\{x \leftarrow u\}\{y \leftarrow v\} = t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$$