
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Winter 2023
https://www.lri.fr/∼blsk/LambdaCalculus/

Chapter 1: lambda-calculus
1 A computational theory of function

Timeline

1870 Which ground for mathematics ? Sets or functions ?

1920 Moses Schön�nkel, Haskell Curry: combinatory logic. Basic blocks for building functions.

1936 Alonzo Church: �-calculus. Characterization of computable functions. Equivalent to Turing ma-
chines. Solves the Entscheidungsproblem.

1970+ �-calculus grows together with computer science. Functional programming. Proof assistants.

Functions
One concept, various notations.

Maths x ↦ x

f ↦ (x ↦ f (f (x)))

Caml fun x -> x
fun f -> (fun x -> f(f x))

Python lambda x: x
lambda f: (lambda x: f(f(x)))

�-calculus �x.x

�f .(�x.f (f x))

2 �-calcul: basic definitions

The �-calculus is de�ned by a set of terms, which represent programs or algorithms, and by conversion
rules, which describe how computation is performed.

Terms (expressions)
The �-calculus syntax consists of a notion of expression, or term. Terms are built using three con-

structs.

x variable, reference to a function parameter

t1t2 application of a term t1 to a term t2, t1 is to be seen as a function and t2 as its given argument.

�x.t function with a single parameter x , whose result is given by t

Functions are de�ned by their behaviour.

1

https://www.lri.fr/~blsk/LambdaCalculus/

Examples

• Identity
�x.x

takes a paremeter x and returns the value of x

• Constant functions generator
�c.(�x.c)

takes a parameter c and returns a constant function whose result is constantly c

• Distribution
�x.(�y.(�z.((x z) (y z))))

takes a parameter x and... let’s see later

• What ?
�x.(x x)

takes a parameter x and self-applies it?

Notations

• Instead of �x1.(… (�xn.t) …) we write

�x1… xn.t

• Instead of (… (t u1) … un) we write
t u1… un

or even t u⃗ with u⃗ = u1… un

For instance:
�c.(�x.c) �cx.c

�x.(�y.(�z.((x z) (y z)))) �xyz.xz(yz)

Curryfication and n-ary functions
There is no cartesian product in core �-calculus.

• A function (x, y)↦ t with two parameters is encoded as

�x.�y.t or �xy.t

• An application f (x, y) of a binary function to two parameters is encoded as

f x y

Functions are curry�ed (tribute to Haskell Curry).
This encoding allows partial applications.

Computing with the �-calculus
Smallest computing block: a function applied to an argument.

(�x.t) u → t{x ← u}

Result :

t where each occurrence of x is replaced by u t{x ← u}

2

Sample computation

(�xyz.xz (yz)) (�ab.a) t u

{x ← �ab.a}

→ (�yz.(�ab.a)z (yz)) t u

{y ← t}

→ (�z.(�ab.a)z (tz)) u

{z ← u}

→ (�ab.a)u (tu)

{a ← u}

→ (�b.u) (tu)

{b ← tu}

→ u

Exercise : reduction
Compute the result of

(�xy.yx) (�ab.b) (�s.stu)

Answer
(�xy.yx) (�ab.b) (�s.stu)

→ (�y.y (�ab.b)) (�s.stu)

→ (�s.stu) (�ab.b)

→ (�ab.b) t u

→ (�b.b) u

→ u

Exercise : combinatory logic
Combinatory logic (Schön�nkel, 1920 - Curry, 1930) uses the �ve symbols I , K , S, B, C (called “com-

binators”) and one reduction rule for each.

I x → x

K x y → x

S x y z → xz (yz)

B x y z → x (yz)

C x y z → xz y

Find �-terms equivalent to these combinators
Compute the results of the following expressions

1. S K K x

2. S (K S) K

Answer �-terms equivalent to combinators

• I = �x.x

• K = �xy.x

• S = �xyz.xz(yz)

• B = �xyz.x(yz)

• C = �xyz.xzy

Reductions

3

• S K K is equivalent to I
S K K x → Kx(Kx)

→ x

• S (K S) K is equivalent to B

S (K S) K x y z → (K S x) (K x) y z

→ S (K x) y z

→ (K x z) (y z)

→ x (y z)

Dubious replacements / variable capture
How should we resolve the following replacements?

(�x.(�x.x)) y → (�x.x){x ← y}

(�x.(�y.x)) y → (�y.x){x ← y}

Related: what is the live-range of a variable?

3 Formalization of �-terms

Set of terms
The set Λ of the �-terms is the smallest set that contains:

1. x for all variable x
2. �x.t if t ∈ Λ
3. t1 t2 if t1 ∈ Λ and t2 ∈ Λ

Same de�nition, stated as an algebraic grammar.

t ∶∶= x | �x.t | t1 t2

This de�nition is recursive, and allows recursive reasoning.

Term = tree
The expression

(�xy.xy(x(�z.z)) (�ab.ba)

denotes the tree

@

�x

�y

@

@

x y

@

x
�z

z

�a

�b

@

b a

4

Positions in a term
Position: word over the alphabet {0, 1, 2} denoting a path from the root.

"

1

10

100

1001

10011 10012

1002

10021 10022

100220

2

20

200

2001 2002

Set pos(t) of the positions of the term t

pos(x) = {"}

pos(�x.t) = {"} ∪ 0 ⋅ pos(t)
pos(t1 t2) = 1 ⋅ pos(t1) ∪ 2 ⋅ pos(t2)

Encoding in caml
An algebraic datatype for �-terms

type term =
| Var of string
| Abs of string * term
| App of term * term

Encoding of the term �ab.ba

Abs("a", Abs("b", App(Var "b", Var "a")))

Defining functions on lambda-terms
Recursive de�nition of f , with three cases:

• f (x) base

• f (�x.t) using f (t)

• f (t1 t2) using f (t1) and f (t2)

Examples
f@ : number of applications fv : number of variable occurrences

f@(x) = 0

f@(�x.t) = f@(t)

f@(t1 t2) = 1 + f@(t1) + f@(t2)

fv(x) = 1

fv(�x.t) = fv(t)

fv(t1 t2) = fv(t1) + fv(t2)

Defining a function in caml
Coding f@

let rec nb_app = function
| Var _ -> 0
| Abs(_, t) -> nb_app t
| App(t1, t2) -> 1 + nb_app t1 + nb_app t2

Coding fv

5

let rec nb_var = function
| Var _ -> 1
| Abs(_, t) -> nb_var t
| App(t1, t2) -> nb_var t1 + nb_var t2

Induction principle on lambda-terms
Goal: proving that a property P is true for all �-terms. Three steps:

• prove P (x) for any variable x

• prove P (�x.t) assuming that P (t) is true

• prove P (t1 t2) assuming that P (t1) and P (t2) are both true

Example of inductive reasoning
Goal: for any t ∈ Λ, fv(t) = 1 + f@(t)

• Proof of P (x). By de�nition, fv(x) = 1 and f@(x) = 0 Then fv(x) = 1 + f@(x)

• Proof of P (t)⇒ P (�x.t). Assume fv(t) = 1 + f@(t). Then

fv(�x.t) = fv(t) by de�nition of fv
= 1 + f@(t) by induction hypothesis
= 1 + f@(�x.t) by de�nition of f@

• Proof of P (t1) ∧ P (t2)⇒ P (t1 t2). Assume fv(t1) = 1 + f@(t1) and fv(t2) = 1 + f@(t2). Then

fv(t1 t2)

= fv(t1) + fv(t2) by de�nition of fv
= 1 + f@(t1) + 1 + f@(t2) by induction hypotheses
= 1 + (1 + f@(t1) + f@(t2))

= 1 + f@(t1 t2) by de�nition of f@

4 Variables and substitutions

A note on variables
The �-abstraction

�x.t

introduces a variable x locally in t We call it a bound variable
In other words:

• the name x is not known outside of t

• seen from the outside, the name x means nothing

• changing the name x does not a�ect the outside world

Free variables
Variables that can be seen from “outside”

fv(x) = {x}

fv(t1 t2) = fv(t1) ∪ fv(t2)
fv(�x.t) = fv(t) ⧵ {x}

Term with no free variables: closed term, or combinator
A name which appears both free and bound in a term:

x (�x.x)

6

Substitution
Replacing free occurrences of x in t by u.

t{x ← u}

De�nition: inductively on the structure of t .

y{x ← u} =

{

u if x = y
y if x ≠ y

(t1 t2){x ← u} = t1{x ← u} t2{x ← u}

(�y.t){x ← u} =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

�y.t if x = y
�y.t{x ← u} if x ≠ y and y ∉ fv(u)
�z.t{y ← z}{x ← u} if x ≠ y and y ∈ fv(u)

z new variable

Barendregt’s convention
To avoid abuse of names, we consider only terms where

no variable name appears both free and bound in any given subterm

Don’t write... Write... instead
�x.(x (�x.x)) �x.(x (�y.y))

Simpli�ed de�nition for the substitution, relying on the convention

y{x ← u} =

{

u si x = y
y si x ≠ y

(t1 t2){x ← u} = t1{x ← u} t2{x ← u}

(�y.t){x ← u} = �y.t{x ← u}

(Un)stability of Barendregt’s convention

(�x.xx) (�yz.yz)

→ (�yz.yz) (�yz.yz)

→ �z.((�yz.zy)z)

Preserving Barendregt’s convention over reduction requires changing some variable names during
computation

Bound variables renaming: �-conversion

�x.t =� �y.(t{x ← y}) if y ∉ fv(t)

The �-conversion does not change the meaning of a term:

• we can apply it whenever we need it

The �-conversion is a congruence:

t =� t
′

⟹ �x.t =� �x.t
′

t1 =� t
′

1
⟹ t1 t2 =� t

′

1
t2

t2 =� t
′

2
⟹ t1 t2 =� t1 t

′

2

• we can apply it wherever we need it

From now on we assume that any term we work with satis�es Barendregt’s convention.

7

Exercise : bound variables and renaming
Rename some variables of these terms suivants so that they obey Barendregt’s convention.

1. �x.(�x.xy)(�y.xy)

2. �xy.x(�y.(�y.y)yz)

Compute the result of
(�f .f f) (�ab.b a b)

Answer

1. �x.(�x.xy)(�y.xy) =� �x.(�z.zy)(�t.xt)

2. �xy.x(�y.(�y.y)yz) =� �xy.x(�a.(�b.b)az)

3.
(�f .f f) (�ab.b a b) →� (�ab.b a b) (�ab.b a b)

→� �ab.b (�ab.b a b) b

=� �b.b (�xy.y x y) b

Exercise : free variables and substitution
Prove that

fv(t{x ← u}) ⊆ (fv(t) ⧵ {x}) ∪ fv(u)

Are these two sets equal?
Answer Proof by induction on the structure of t

• Case where t is a variable

– case x : fv(x{x ← u}) = fv(u) ⊆ (fv(t) ⧵ {x}) ∪ fv(u)

– case y ≠ x : fv(y{x ← u}) = fv(y) = {y}, and {y} is indeed a subset of (fv(y) ⧵ {x}) ∪ fv(u) =
{y} ∪ fv(u)

• Case where t is an application t1 t2. Assume fv(t1{x ← u}) ⊆ (fv(t1) ⧵ {x}) ∪ fv(u) and
fv(t2{x ← u}) ⊆ (fv(t2) ⧵ {x}) ∪ fv(u) (it is our induction hypothesis). Then

fv((t1 t2){x ← u})

= fv((t1{x ← u}) (t2{x ← u})) by de�nition of substitution
= fv(t1{x ← u}) ∪ fv(t2{x ← u}) by de�nition of fv
⊆ (fv(t1) ⧵ {x}) ∪ fv(u) ∪ (fv(t2) ⧵ {x}) ∪ fv(u) by induction hypothesis
= (fv(t1) ⧵ {x}) ∪ (fv(t2) ⧵ {x}) ∪ fv(u)
= ((fv(t1) ∪ fv(t2)) ⧵ {x}) ∪ fv(u)
= (fv(t1 t2) ⧵ {x}) ∪ fv(u)

• Case where t is a �-abstraction �y.t0. Assume x ≠ y and y ∉ fv(u) (if not, �-rename it). Assume
fv(t0{x ← u}) ⊆ (fv(t0) ⧵ {x}) ∪ fv(u) (induction hypothesis). Then

fv((�y.t0){x ← u})

= fv(�y.(t0{x ← u})) since x ≠ y and y ∉ fv(u)
= fv(t0{x ← u}) ⧵ {y}

⊆ ((fv(t0) ⧵ {x}) ∪ fv(u)) ⧵ y induction hypothesis
= ((fv(t0) ⧵ {x} ⧵ {y}) ∪ (fv(u) ⧵ y)
= ((fv(t0) ⧵ {x} ⧵ {y}) ∪ fv(u) since y ∉ fv(u)
= ((fv(t0) ⧵ {y} ⧵ {x}) ∪ fv(u)
= (fv(�y.t0) ⧵ x) ∪ fv(u)

The sets are not equal: if x ∉ fv(t) then u disappears in t{x ← u}, together with its free variables.

8

5 Formalisation of the reduction

�-reduction
Application of a function to an argument

(�x.t) u

The result if given by the function body, in which the formal parameter x is linked to the argument
u.

(�x.t) u →� t{x ← u}

where t{x ← u} denotes substitution without capture

�-reduction, pictured on trees

@

�x

�y

@

@

x y

@

x �z

z

�a

�b

@

b
a

⟶� �y

@

@

y

@

�z

z

�a

�b

@

b
a

�a

�b

@

b
a

�-reduction, programmed in caml
Function for reducing a �-redex

let beta_reduction = function
| App(Abs(x, t), u) -> subst t x u
| _ -> failwith "not␣a␣beta -redex"

Auxiliary function : subst t x u computes t{x ← u}

let rec subst t x u = match t with
| Var y -> if x = y then u else t
| App(t1, t2) -> App(subst t1 x u,

subst t2 x u)
| Abs(y, t) -> (* renaming ? *)

Congruence
The �-reduction rule can be applied anywhere in a term. This can be formalized using inference

rules.

(�x.t) u →� t{x ← u}

t →� t
′

t u →� t
′
u

u →� u
′

t u →� t u
′

t →� t
′

�x.t →� �x.t
′

9

Position of a reduction
Write

t

p

−→� t
′

when t reduces to t′ by contracting a redex at position p

(�x.t) u

"

−→� t{x ← u}

t

p

−→� t
′

t u

1⋅p

−−→� t
′
u

u

p

−→� u
′

t u

2⋅p

−−→� t u
′

t

p

−→� t
′

�x.t

0⋅p

−−→� �x.t
′

Justifying a reduction using a derivation tree

(�y.zy) x

"

−→ zx

x ((�y.zy) x)

2

−→ x (zx)

�x.(x ((�y.zy) x))

02

−−→ �x.(x (zx))

(�x.x ((�y.zy)x)) z

102

−−−→ (�x.x (zx)) z

Inductive reasoning on a reduction
Since the reduction relation t →� t

′ is de�ned by inference rules, there is an associated inductive
reasoning principle. On can prove that a property P is such that

∀t, t
′
, t →� t

′
⟹ P (t, t

′
)

by simply checking the following four points:

• P ((�x.t)u, t{x ← u}) for any x , t and u base case

• P (tu, t′u) for any t , t′ and u such that P (t, t′) inductive case

• P (tu, tu′) for any t , u and u′ such that P (u, u′) another inductive case

• P (�x.t, �x.t′) for any x , t and t′ such that P (t, t′) yet another inductive case

Notice that these four conditions are quite similar to the four inference rules

Inductive reasoning on reduction
Reduction does not generate free variables.

If t → t
′ , then fv(t′) ⊆ fv(t)

Proof by induction on the derivation of t → t
′.

• Case (�x.t) u → t{x ← u}. We already proved: fv(t{x ← u}) ⊆ (fv(t) ⧵ {x}) ∪ fv(u). Moreover,
we have

fv((�x.t) u) = fv(�x.t) ∪ fv(u)
= (fv(t) ⧵ {x}) ∪ fv(u)

10

• Case t u → t
′
u with t → t

′. Then

fv(t′ u) = fv(t′) ∪ fv(u) by de�nition
⊆ fv(t) ∪ fv(u) by induction hypothesis
= fv(t u) by de�nition

• Case t u′ → t u
′ with u → u

′ similar.

• Case �x.t → �x.t
′ with t → t

′. Then

fv(�x.t′) = fv(t′) ⧵ {x} by de�nition
⊆ fv(t) ⧵ {x} by induction hypothesis
= fv(�x.t) by de�nition

Reduction sequences

→� one step

→
∗

�
re�exive transitive closure: 0, 1 or many steps

↔� symmetric closure: one step, forward or backward

=� re�exive, symmetric, transitive closure (equivalence)

Additional (optional) rule : �
Depending on what we want to model, can be used in both directions:

• �-contraction
�x.(t x) →� t

• �-expansion
t →� �x.(t x)

Related to extensional equality (Leibniz equality)

Alternative formalization: reduction in contexts
Focus on the redex r reduced in a term t

t = [r] → [r ′] = t′

with r = (�x.u)v and r ′ = u{x ← v}

 is a context: a term with one hole

 ∶∶= □ | t | t | �x.

[u] is the result of �lling the hole of with the term u

Exercise: contexts and subterms
Here are some decompositions of �x.(x �y.xy) into a context and a term [u]

 □ �x.□ �x.(□ �y.xy) �x.(x □) ...

u �x.(x �y.xy) x �y.xy x �y.xy ...

What are the other possible decompositions?
We already showed that

(�x.x ((�y.zy)x)) z → (�x.x (zx)) z

What are the context and the redex associated to this reduction?

11

Answer Other decompositions of �x.(x �y.xy)

 �x.(x (�y.□)) �x.(x (�y.□ y)) �x.(x (�y.x □))

u xy x y

Decomposition of the reduction:
[(�y.zy)x] → [zx]

with = (�x.x □) z

Exercise: equivalence of the two formalizations (first way)
Prove that if

t →� t
′

then there are , x , u, v such that

t = [(�x.u)v] et t
′
= [u{x ← v}]

Answer Proof by induction on the derivation of t →� t
′.

• Base case t = (�x.u)v →� u{x ← v} = t
′. Straightforward conclusion with the context □

• Case t = t1t2 →� t
′

1
t2 = t

′ with t1 →� t
′

1
. Assume there are 1, x , u and v such that t1 = 1[(�x.u)v]

and t′
1
= 1[u{x ← v}] (induction hypothesis). Then conclude with = 1 t2

• Case t = t1t2 →� t1t
′

2
= t

′ with t2 →� t
′

2
similar, using context = t1 2

• Case t = �y.t0 →� �y.t
′

0
= t

′ with t0 →� t
′

0
similar, using context = �y.0

Pure �-calculus: summary
Minimalistic formalism

• Variables

• �-abstraction

• Application

• �-renaming

• �-reduction

Theoretically, we do not need anything else! see chapter on �-computability

6 Extended �-calculi

PCF: Programming with Computable Functions
The �-calculus can be extended with various programming features we want to study. Pick your

favorite:

• integer arithmetic

• booleans and conditionals

• data structures

• recursive functions

• ...

PCF is a standard package of such extensions

12

Extending the �-calculus
Ingredients

• new syntax

• reduction rules

• extended de�nitions (e.g. substitution)

• extended proofs

Integer arithmetic
New shapes of terms

t ∶∶= ...

| n integer
| t1 op t2 binary operation ⊕, ⊖, ...

New base reduction rules

n1 ⊕ n2 → n with n = n1 + n2

New congruence rules

t1 → t
′

1

t1 ⊕ t2 → t
′

1
⊕ t2

t2 → t
′

2

t1 ⊕ t2 → t1 ⊕ t
′

2

Extended de�nitions

fv(t1 op t2) = fv(t1) ∪ fv(t2)
(t1 op t2){x ← u} = (t1{x ← u}) op (t2{x ← u})

Booleans and conditionals
New shapes of terms

t ∶∶= ...

| T true
| F false
| isZero(t) test
| if t1 then t2 else t3 conditional expression

New base rules
isZero(0) → T
isZero(n) → F n ≠ 0

if T then t1 else t2 → t1

if F then t1 else t2 → t2

+ new congruence rules

Pairs
New shapes of terms

t ∶∶= ...

| ⟨t1, t2⟩ pair
| �1(t) le� projection
| �2(t) right projection

New base rules
�1(⟨t1, t2⟩) → t1

�2(⟨t1, t2⟩) → t2

+ new congruence rules

13

Linked lists
New shapes of terms

t ∶∶= ...

| Nil empty list
| t1::t2 combine an element (head) and a list (tail)
| isNil(t) test
| hd(t) head element
| tl(t) tail of the list

New base rules
isNil(Nil) → T

isNil(t1::t2) → F
hd(t1::t2) → t1

tl(t1::t2) → t2

+ congruence rules

Recursion
New shapes of terms

t ∶∶= ...

| Fix(t) �xed point

New base rules
Fix(t) → t (Fix(t))

+ congruence rules

Exercise : extended reduction
Compute the value of the expression

Fix(�f s.if isNil(s) then 0 else 1 ⊕ (f (tl(s)))) (2::4::8::Nil)

Answer. Write F = �f s.if isNil(s) then 0 else 1 ⊕ (f (tl(s))).

Fix(F) (2::4::8::Nil)
→ F (Fix(F)) (2::4::8::Nil)
→ (�s.if isNil(s) then 0 else 1 ⊕ (Fix(F))(tl(s))) (2::4::8::Nil)
→ if isNil(2::4::8::Nil) then 0 else 1 ⊕ (Fix(F))(tl(2::4::8::Nil))
→ if F then 0 else 1 ⊕ (Fix(F))(tl(2::4::8::Nil))
→ 1 ⊕ (Fix(F))(tl(2::4::8::Nil))
→ 1 ⊕ (Fix(F))(4::8::Nil)
...

→ 1 ⊕ 1 ⊕ 1 ⊕ (Fix(F) Nil)
→ 1 ⊕ 1 ⊕ 1 ⊕ (F (Fix(F)) Nil)
→ 1 ⊕ 1 ⊕ 1 ⊕ ((�s.if isNil(s) then 0 else 1 ⊕ (Fix(F))(tl(s))) Nil)
→ 1 ⊕ 1 ⊕ 1 ⊕ (if isNil(Nil) then 0 else 1 ⊕ (Fix(F))(tl(Nil)))
→ 1 ⊕ 1 ⊕ 1 ⊕ 0

→ 1 ⊕ 1 ⊕ 1

→ 1 ⊕ 2

→ 3

14

7 de Bruijn notation

Use numbers instead of variable names

�x.�y.(y x ((�y.xy) y))

�x

�y

@

@

y x

@

�y

@

x y

y

Replace each variable occurrence with the number of � between the occurrence and its binder

�.�.0 1 ((�.20) 0)

What we gain: the need for variable renamings disappears

de Bruijn, in caml
�-terms with de Bruijn indices

type term =
| Var of int
| App of term * term
| Abs of term

Encoding of the term �.�.0 1 ((�.20) 0)

Abs(Abs(App(App(Var 0, Var 1),
App(Abs(App(Var 2, Var 0)),

Var 0))))

Substitutions and indices
�-reduction

• substitution of 0 (occurrences bound by the � in the redex)

(�.0 (�.0 1)) t →� t (�.0 t)

• other indices under the �-abstraction of the redex should be adjusted (-1)

(�.0 1 (�.0 1)) t ̸→� t 1 (�.0 t)

il faut les décrementer

• indices in the substituted argument should also be adjusted each time we cross a � (+1)

(�.0 1 (�.0 1)) 0 ̸→� 0 1 (�.0 0)

15

Substitution, in caml
Substitution of the index i

let rec subst t i u = match t with
| Var j -> if i=j then u

else if i<j then Var (j-1)
else t

| App(t1,t2) -> App(subst t1 i u,
subst t2 i u)

| Abs t -> let u' = shift 0 u in
Abs (subst t (i+1) u')

Auxiliary function: shi� indices greater of equal to k

let rec shift k u = match u with
| Var j -> if k<=j

then Var (j+1)
else u

| App(t1, t2) -> App(shift k t1,
shift k t2)

| Abs t -> Abs (shift (k+1) t)

Exercise: de Bruijn notation
Write the following terms using de Bruijn indices

1. �x.(�x.xy)(�y.xy)

2. �xy.x(�y.(�y.y)yz)

Write the following term using de Bruijn indices, then reduce it

(�f .f f) (�ab.b a b)

Answer

1. �.(�.02)(�.10)

2. �.�.1(�.(�.0)03

3.
(�.00) (�.�.010) → (�.�.010) (�.�.010)

→ �.0(�.�.010)0

Homework – write it down and send it to me before next course
Prove that if x ≠ y and x ∉ fv(v) then

t{x ← u}{y ← v} = t{y ← v}{x ← u{y ← v}}

16

	A computational theory of function
	-calcul: basic definitions
	Formalization of -terms
	Variables and substitutions
	Formalisation of the reduction
	Extended -calculi
	Notation de de Bruijn

