Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Fall 2023 https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 2: reduction strategies

Reduction graph

There may be several possible reductions for a given term. The set of all possible reductions can be pictured as a graph

Questions:

- are some paths better than others?
- is there always a result in the end? is it unique?

1 Normalisation

Normal form

A *normal form* is a term that cannot be reduced anymore

Examples

Counter-examples

- x $(\lambda x.x) y$
- $\lambda x.xy$ $x((\lambda y.y)(\lambda z.zx))$
- $x (\lambda y.y) (\lambda z.zx)$

If $t \to^* t'$ and t' is normal, the term t' is said to be a normal form of t. This defines our informal notion of a *result* of a term

Terms without normal form

$$\Omega = (\lambda x.xx) (\lambda x.xx)$$

$$\rightarrow (xx) \{ x \leftarrow \lambda x.xx \}$$

$$= x \{ x \leftarrow \lambda x.xx \} x \{ x \leftarrow \lambda x.xx \}$$

$$= (\lambda x.xx) (\lambda x.xx)$$

$$= \Omega$$

Summary:

- reduction of Ω does not terminate
- Ω is a term withour "result"

What about this other example?

 $(\lambda x y. y) \Omega z$

Normalization properties

A term *t* is:

• strongly normalizing if every reduction sequence starting from t eventually reaches a normal form

$$(\lambda x y. y) ((\lambda z. z) (\lambda z. z))$$

• *weakly normalizing*, or *normalizable*, if there is at least one reduction sequence starting from *t* and reaching a normal form

$$(\lambda x y. y) ((\lambda z. zz) (\lambda z. zz))$$

Note: normalization (strong or weak), is an undecidable property (see chapter on λ -computability)

2 Reduction strategies

Reduction orders

Normal order: reduce the most external redex first

· apply functions without reducing the arguments

Applicative order: reduce the most internal redex first

• normalize the arguments before reducing the function application itself

For disjoint redexes: from left to right

Exercise: normal order vs. applicative order

Compare normal order reduction and applicative order reduction of the following terms:

- 1. $(\lambda x y.x) \ge \Omega$
- 2. $(\lambda x.xx) ((\lambda y.y) z)$
- 3. $(\lambda x.x(\lambda y.y)) (\lambda z.(\lambda a.aa)(z b))$

In each case: does another order allow shorter sequences? *Answer*

1. Normal order

$$\begin{array}{l} (\lambda x y.x) \ z \ \Omega \\ \rightarrow \ (\lambda y.z) \ \Omega \\ \rightarrow \ z \end{array}$$

Applicative order

$$(\lambda x y.x) z \Omega \rightarrow (\lambda y.z) \Omega \rightarrow (\lambda y.z) \Omega \rightarrow \dots$$

Normal order reduction is as short as possible

2. Normal order

$$\begin{array}{l} (\lambda x.xx) ((\lambda y.y) z) \\ \rightarrow & ((\lambda y.y) z) ((\lambda y.y) z) \\ \rightarrow & z ((\lambda y.y) z) \\ \rightarrow & zz \end{array}$$

Applicative order

$$\begin{array}{l} (\lambda x.xx) ((\lambda y.y) z) \\ \rightarrow \quad (\lambda x.xx) z \\ \rightarrow \quad zz \end{array}$$

Applicative order reduction is as short as possible

3. Normal order

$$(\lambda x. x(\lambda y. y)) (\lambda z. (\lambda a. aa) (z b))$$

$$\rightarrow (\lambda z. (\lambda a. aa)(z b)) (\lambda y. y)$$

$$\rightarrow (\lambda a. aa) ((\lambda y. y) b)$$

$$\rightarrow ((\lambda y. y) b) ((\lambda y. y) b)$$

$$\rightarrow b ((\lambda y. y) b)$$

$$\rightarrow bb$$

Applicative order

Shortest reduction

$$(\lambda x.x(\lambda y.y)) (\lambda z.(\lambda a.aa)(z \ b))$$

$$\rightarrow (\lambda x.x(\lambda y.y)) (\lambda z.(z \ b) (z \ b))$$

$$\rightarrow (\lambda z.(z \ b) (z \ b)) (\lambda y.y)$$

$$\rightarrow ((\lambda y.y) \ b) ((\lambda y.y) \ b)$$

$$\rightarrow bb$$
Shortest reduction

$$(\lambda x.x(\lambda y.y)) (\lambda z.(\lambda a.aa) (z \ b))$$

$$\rightarrow (\lambda z.(\lambda a.aa) (z \ b)) (\lambda y.y)$$

$$\rightarrow (\lambda a.aa) ((\lambda y.y) \ b)$$

$$\rightarrow bb$$

Normalizing strategy

Property of normal order reduction

• If a term t does have a normal form then *normal order* reduction reaches this normal form

(proof in another chapter)

Such a reducion strategy is said to be *normalizing*

Confluence 3

Confluences

Diamond property

The λ -calculus does not have the diamond property

It is however confluent

Confluence of the λ **-calculus**

1. One can prove that the λ -calculus is *locally confluent*, which is:

2. Then one closes every opening diagram

by repeated application of local confluence.

Counter-example: local confluence does not imply confluence

This relation is locally confluent, but one cannot close the following diagram

Why repeated local confluence is not a proof

No guarantee that the opening subdiagrams

are smaller than the first diagram!

Confluence of the λ -calculus, for real

Proof of Tait and Martin-Löf Define a relation $\rightrightarrows_{\beta}$ which:

- is "between" \rightarrow_{β} and \rightarrow^*_{β}
- has the diamond property

Idea: reduce several redexes in parallel in such a way that, for instance:

 $((\lambda y.y)a) ((\lambda y.y)a) \implies_{\beta} aa$

Proof of Tait and Martin-Löf: structure of the argument

- Since \Rightarrow_{β} has the diamond property, one deduces that \Rightarrow^*_{β} has the diamond property
- With $\rightarrow_{\beta} \subseteq \rightrightarrows_{\beta} \subseteq \rightarrow^*_{\beta}$, one deduces $\rightrightarrows^*_{\beta} = \rightarrow^*_{\beta}$
- therefore \rightarrow^*_{β} has the diamond property
- and \rightarrow_{β} is confluent

Defining $\rightrightarrows_{\beta}$

Base case

"identity" reduction for variables

parallel reduction of subterms

$$x \equiv_{\beta} x$$

Inductive cases

$$\frac{t \implies_{\beta} t'}{\lambda x.t \implies_{\beta} \lambda x.t'} \qquad \qquad \frac{t_1 \implies_{\beta} t_1' \quad t_2 \implies_{\beta} t_2'}{t_1 \ t_2 \implies_{\beta} t_1' \ t_2'}$$

Redexes

parallel reduction of the
$$eta$$
-redex and its subterms

$$\frac{t \rightrightarrows_{\beta} t' \quad u \rightrightarrows_{\beta} u'}{(\lambda x.t) \ u \rightrightarrows_{\beta} t' \{x \leftarrow u'\}}$$

Example of parallel reduction

$$\frac{z \rightrightarrows_{\beta} z}{(\lambda y.y) (\lambda z.z) \rightrightarrows_{\beta} \lambda z.z} \frac{x \rightrightarrows_{\beta} x}{((\lambda y.y) (\lambda z.z) \rightrightarrows_{\beta} \lambda z.z} \frac{x \rightrightarrows_{\beta} x}{((\lambda y.y) (\lambda z.z)) x \rightrightarrows_{\beta} (\lambda z.z) x} \frac{w \rightrightarrows_{\beta} w}{(\lambda w.w)a \rightrightarrows_{\beta} a}$$

Remark: one reduces only already-present redexes the resulting term may contain "new" redexes

 $\exists \beta t$

Exercise: framing \exists_{β}

Prove that

Prove that

Prove that

 $\exists_{\beta} \subseteq \rightarrow_{\beta}^{*}$

 $\rightarrow_{\beta} \subseteq \rightrightarrows_{\beta}$

Answer

- $t \rightrightarrows_{\beta} t$ by induction on t.
 - Case of a variable *x*. Then by definition $x \rightrightarrows_{\beta} x$.
 - Case of an application t_1 t_2 . Induction hypotheses: $t_1 \rightrightarrows_{\beta} t_1$ and $t_2 \rightrightarrows_{\beta} t_2$. Then by application rule t_1 $t_2 \rightrightarrows_{\beta} t_1$ t_2 .
 - Case of an abstraction $\lambda x.t$. Induction hypothesis: $t \rightrightarrows_{\beta} t$. Then by abstraction rule $\lambda x.t \rightrightarrows_{\beta} \lambda x.t$.
- $\rightarrow_{\beta} \subseteq \rightrightarrows_{\beta}$ by induction on \rightarrow_{β} .
 - Case of β -reduction at the root $(\lambda x.t)$ $u \rightarrow_{\beta} t\{x \leftarrow u\}$. By previous result $t \rightrightarrows_{\beta} t$ and $u \rightrightarrows_{\beta} u$. Then by redex rule $(\lambda x.t)$ $u \rightrightarrows_{\beta} t\{x \leftarrow u\}$.
 - Case of reduction at the left of an application $t \ u \rightarrow_{\beta} t' \ u$ with $t \rightarrow_{\beta} t'$. Induction hypothesis: $t \rightrightarrows_{\beta} t'$. Moreover, by the previous result $u \rightrightarrows_{\beta} u$. Then by application rule $t \ u \rightrightarrows_{\beta} t' u$.
 - Cases of reduction at the right of an application or under an abstraction similar.

- $\rightrightarrows_{\beta} \subseteq \longrightarrow_{\beta}^{*}$ by induction on $\rightrightarrows_{\beta}$.
 - Variable rule: $x \rightrightarrows_{\beta} x$. In particular $x \rightarrow_{\beta}^{0} x$.
 - Abstraction rule: $\lambda x.t \Rightarrow_{\beta} \lambda x.t'$ with $t \Rightarrow_{\beta} t'$. Induction hypothesis: $t \rightarrow_{\beta}^{*} t'$. Then by recurrence on the length of the sequence $\lambda x.t \rightarrow_{\beta}^{*} \lambda x.t'$.
 - Application rule: $t_1 t_2 \Longrightarrow_{\beta} t'_1 t'_2$ with $t_1 \Longrightarrow_{\beta} t'_1$ and $t_2 \rightrightarrows_{\beta} t'_2$. Induction hypotheses: $t_1 \rightarrow^*_{\beta} t'_1$ and $t_2 \rightarrow^*_{\beta} t'_2$. Then $t_1 t_2 \rightarrow^*_{\beta} t'_1 t_2 \rightarrow^*_{\beta} t'_1 t'_2$.
 - Redex rule: $(\lambda x.t) \ u \rightrightarrows_{\beta} t' \{x \leftarrow u'\}$ with $t \rightrightarrows_{\beta} t'$ and $u \rightrightarrows_{\beta} u'$. Induction hypotheses: $t \rightarrow^*_{\beta} t'$ and $u \rightarrow^*_{\beta} u'$. Then $(\lambda x.t) \ u \rightarrow^*_{\beta} (\lambda x.t') \ u \rightarrow^*_{\beta} (\lambda x.t') \ u' \rightarrow_{\beta} t' \{x \leftarrow u'\}$.

Exercise: method of Tait and Martin-Löf

Prove that if \rightarrow has the diamond property, then its reflexive-transitive closure \rightarrow^* has the diamond property

Prove that if two relations \rightarrow and \rightrightarrows are such that

 $\rightarrow \ \subseteq \ \rightrightarrows \ \subseteq \ \rightarrow^*$

then their reflexive-transitive closures \rightrightarrows^* and \rightarrow^* are equal

Answer

- Assume → has the diamond property. If b ← a →ⁿ c then there is d such that d →ⁿ d ← c (proof by recurrence on the length n of the sequence on the right). Then, we prove that if b^k ← a →ⁿ c, then there is d such that d →ⁿ d^k ← c (recurrence on k). Then →^{*} has the diamond property.
- From $\rightarrow \subseteq \rightrightarrows \subseteq \rightarrow^*$ we deduce $\rightarrow^* \subseteq \rightrightarrows^* \subseteq \rightarrow^{**}$. Remark: $\rightarrow^{**} = \rightarrow^*$. Then $\rightarrow^* \subseteq \rightrightarrows^* \subseteq \rightarrow^*$, which means $\rightarrow^* = \rightrightarrows^*$.

Diamond property for parallel reduction

If $s \coloneqq t \Rightarrow r$ then there is u such that $s \Rightarrow u \coloneqq r$

By induction on the derivation of $t \rightrightarrows_{\beta} r$

- Case $x \rightrightarrows x$. Then s = x, and we define u = x
- Case $\lambda x.t_0 \Rightarrow \lambda x.r_0$ with $t_0 \Rightarrow r_0$. Then $s = \lambda x.s_0$ with $s_0 \rightleftharpoons t_0$.

By induction hypothesis there is u_0 such that $s_0 \Rightarrow u_0 \rightleftharpoons r_0$.

Therefore $\lambda x.s_0 \Rightarrow \lambda x.u_0 \rightleftharpoons \lambda x.r_0$

• Case $t_1t_2 \Rightarrow r_1r_2$ with $t_1 \Rightarrow r_1$ and $t_2 \Rightarrow r_2$. Two cases for $s \rightleftharpoons t_1t_2$.

- if $s = s_1 s_2$ with $s_1 \rightleftharpoons t_1$ and $s_2 \rightleftharpoons t_2$ by induction hypotheses there are u_1 and u_2 such that $s_1 \rightrightarrows u_1 \rightleftharpoons r_1$ and $s_2 \rightrightarrows u_2 \rightleftharpoons r_2$, therefore $s_1 s_2 \rightrightarrows u_1 u_2 \rightleftharpoons r_1 r_2$

- if $s = s_1 \{x \leftarrow s_2\}$ with $t_1 = \lambda x.t_1'$ and $s_1 \succeq t_1'$ et $s_2 \succeq t_2$,
 - then $r_1 = \lambda x. r'_1$ with $t'_1 \Rightarrow r'_1$ and by induction hypotheses there are u_1 and u_2 such that $s_1 \Rightarrow u_1 \rightleftharpoons r'_1$ et $s_2 \Rightarrow u_2 \rightleftharpoons r_2$,
 - therefore $u_1\{x \leftarrow u_2\} \rightleftharpoons (\lambda x.r'_1)r_2$
 - and we conclude if we can show that $s_1\{x \leftarrow s_2\} \Rightarrow u_1\{x \leftarrow u_2\}$ Lemma: if $a \Rightarrow_{\beta} a'$ and $b \Rightarrow_{\beta} b'$ then $a\{x \leftarrow b\} \Rightarrow_{\beta} a'\{x \leftarrow b'\}$

coming soon

- Case $(\lambda x.t_1)t_2 \Rightarrow r_1\{x \leftarrow r_2\}$ with $t_1 \Rightarrow r_1$ et $t_2 \Rightarrow r_2$. Two cases for $s \models (\lambda x.t_1)t_2$.
 - if $s = (\lambda x.s_1)s_2$ with $s_1 \rightleftharpoons t_1$ and $s_2 \rightleftharpoons t_2$ we conclude as above.

- if $s = s_1 \{x \leftarrow s_2\}$ with $s_1 \models t_1$ and $s_2 \models t_2$ then by induction hypotheses there are u_1 and u_2 such that $s_1 \Rightarrow u_1 \models r_1$ and $s_2 \Rightarrow u_2 \models r_2$, and we conclude if we can show that $s_1 \{x \leftarrow s_2\} \Rightarrow u_1 \{x \leftarrow u_2\} \models r_1 \{x \leftarrow r_2\}$ *Same lemma* **Lemma** $a \rightrightarrows_{\beta} a' \land b \rightrightarrows_{\beta} b' \implies a\{x \leftarrow b\} \rightrightarrows_{\beta} a'\{x \leftarrow b'\}$ By induction on the derivation of $a \rightrightarrows_{\beta} a'$

• Case $y \rightrightarrows y$.

Case on x and y.

- If x = y, then $x\{x \leftarrow b\} = b \implies b' = x\{x \leftarrow b'\}$ - If $x \neq y$, then $y\{x \leftarrow b\} = y \implies y = y\{x \leftarrow b'\}$
- Case $\lambda y.a_0 \Longrightarrow \lambda y.a_0'$ with $a_0 \Longrightarrow a_0'$.

Then $(\lambda y.a_0)\{x \leftarrow b\} = \lambda y.(a_0\{x \leftarrow b\})$ and by induction hypothesis $a_0\{x \leftarrow b\} \Rightarrow a'_0\{x \leftarrow b'\}$.

Therefore
$$\lambda y.(a_0\{x \leftarrow b\}) \Rightarrow \lambda y.(a'_0\{x \leftarrow b'\}) = (\lambda x.a'_0)\{x \leftarrow b'\}$$

- Case a₁a₂ ⇒ a'₁a'₂ with a₁ ⇒ a'₁ et a₂ ⇒ a'₂. Then (a₁a₂){x ← b} = (a₁{x ← b})(a₂{x ← b}) and (a'₁a'₂){x ← b'} = (a'₁{x ← b'})(a'₂{x ← b'}) b'}) and by induction hypotheses a₁{x ← b} ⇒ a'₁{x ← b'} and a₂{x ← b} ⇒ a'₂{x ← b'}. Therefore (a₁a₂){x ← b} ⇒ (a'₁a'₂){x ← b'}
 Case (λy.a₁)a₂ ⇒ a'₁{y ← a'₂} with a₁ ⇒ a'₁ and a₂ ⇒ a'₂.
- Case $(\lambda y.a_1)a_2 \Rightarrow a'_1\{y \leftarrow a'_2\}$ with $a_1 \Rightarrow a'_1$ and $a_2 \Rightarrow a'_2$. Then $((\lambda y.a_1)a_2)\{x \leftarrow b\} = (\lambda y.a_1\{x \leftarrow b\})(a_2\{x \leftarrow b\})$. By induction hypotheses we have $a_1\{x \leftarrow b\} \Rightarrow_{\beta} a'_1\{x \leftarrow b'\}$ and $a_2\{x \leftarrow b\} \Rightarrow_{\beta} a'_2\{x \leftarrow b'\}$. Therefore $(\lambda y.a_1\{x \leftarrow b\})(a_2\{x \leftarrow b\}) \Rightarrow (a'_1\{x \leftarrow b'\})\{y \leftarrow a'_2\{x \leftarrow b'\}\}$. With α -renaming we can choose $y \neq x$ and $y \notin fv(b')$, therefore by substitution lemma $(a'_1\{x \leftarrow b'\})\{y \leftarrow a'_2\{x \leftarrow b'\}\} = (a'_1\{y \leftarrow a'_2\})\{x \leftarrow b'\}$.

Substitution lemma

If $x \neq y$ and $x \notin fv(v)$ then

$$t\{x \leftarrow u\}\{y \leftarrow v\} = t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$$

Proof by induction on t

- · Case of a variable.
 - Case t = x. Then $x\{x \leftarrow u\}\{y \leftarrow v\} = u\{y \leftarrow v\}$ and $x\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = x\{x \leftarrow u\{y \leftarrow v\}\} = u\{y \leftarrow v\}$
 - Case t = y. Then $y\{x \leftarrow u\}\{y \leftarrow v\} = y\{y \leftarrow v\} = v$ and $y\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = v\{x \leftarrow u\{y \leftarrow v\}\} = v$
 - Case t = z, otherwise. Then $z\{x \leftarrow u\}\{y \leftarrow v\} = z$ and $s\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} = z$
- Case of an application t_1 t_2 . Assume $t_1\{x \leftarrow u\}\{y \leftarrow v\} = t_1\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ and $t_2\{x \leftarrow u\}\{y \leftarrow v\} = t_2\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ Then

$$\begin{array}{l} (t_1 \ t_2)\{x \leftarrow u\}\{y \leftarrow v\} \\ = \ (t_1\{x \leftarrow u\} \ t_2\{x \leftarrow u\})\{y \leftarrow v\} \\ = \ t_1\{x \leftarrow u\}\{y \leftarrow v\} \ t_2\{x \leftarrow u\}\{y \leftarrow v\} \\ = \ t_1\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} \ t_2\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} \\ = \ (t_1\{y \leftarrow v\} \ t_2\{y \leftarrow v\})\{x \leftarrow u\{y \leftarrow v\}\} \\ = \ (t_1 \ t_2)\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} \end{array}$$

• Case of an abstraction $\lambda z.t.$ Assume $t\{x \leftarrow u\}\{y \leftarrow v\} = t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ and by Barendregt convention $z \neq x$ and $z \neq y$ and $z \notin fv(u)$ and $z \notin fv(v)$ (and $z \notin fv(u\{y \leftarrow v\})$) Then

$$\begin{aligned} &(\lambda z.t) \{x \leftarrow u\} \{y \leftarrow v\} \\ &= (\lambda z.(t\{x \leftarrow u\})) \{y \leftarrow v\} \\ &= \lambda z.(t\{x \leftarrow u\} \{y \leftarrow v\}) \\ &= \lambda z.(t\{y \leftarrow v\} \{x \leftarrow u\{y \leftarrow v\}\}) \\ &= (\lambda z.(t\{y \leftarrow v\})) \{x \leftarrow u\{y \leftarrow v\}\} \\ &= (\lambda z.t) \{y \leftarrow v\} \{x \leftarrow u\{y \leftarrow v\}\} \end{aligned}$$

Corollary: Church-Rosser theorem

If

 $t_1 =_{\beta} t_2$

then there is u such that

$$t_1 \longrightarrow^*_{\beta} u$$
 et $t_2 \longrightarrow^*_{\beta} u$

Consequences

- if t has a normal form n, then $t \rightarrow^* n$
- any λ -term can has only one normal form
- if two normal forms *n* and *m* are syntactically different, then $n \neq_{\beta} m$

4 Confluence: another proof

Strip lemma

Property of the λ -calculus:

Idea: identify the redex *R* that is reduced by the step $t \rightarrow t_1$. Then track what remains of *R* in t_2 , and reduce every occurrence. (proof later in the chapter)

The strip lemma implies confluence

If $t_1 \rightarrow^* t_n$ and $t_1 \rightarrow^* u_1$, then there exists u_n such that $t_n \rightarrow^* u_n$ and $u_1 \rightarrow^* u_n$.

Proof by recurrence on the length of the reduction sequence $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow ... \rightarrow t_n$. Each step uses the strip lemma to make one "strip" in the following diagram.

Residuals

Consider a β -reduction step $t \xrightarrow{p} t'$ of a redex $(\lambda x.u)v$ at position p in t. Positions of t can be tracked in t'. Let q be a position in t, and define D(q) the set of *descendant positions* of q in t'.

• Positions outside of $(\lambda x.u)v$ still exist, unmodified, in t'.

$$D(q) = \{q\}$$
 if *p* is not a prefix of *q*

- The positions *p* of the redex $(\lambda x.u)v$ and *p*.1 of the abstraction $\lambda x.u$ have no descendants.
- Every part of *u* still exist in *u*{*x* ← *v*}. The positions however are slightly modified between *t* and *t'* since an application and an abstraction disappeared.

$$D(p.1.0.q) = \{p.q\}$$

(We could argue on what happens to the occurrences of x. Here we choose to keep them in the descendant relation.)

Every part of v exist in u{x ← v} in each substituted occurrence of v (whose number can be arbitrary). The new position of each occurrence of v in u{x ← v} corresponds to the position of an occurrence of x in u.

 $D(p.2.q) = \{p.p_x.q \mid p_x \text{ position of an occurrence of } x \text{ in } u\}$

A redex *R'* at position *q'* in *t'* is a *residual* of a redex *R* at position *q* in *t* after $t \xrightarrow{p} t'$ if $q' \in D(q)$.

Marked *λ***-terms**

A simple solution to track the residuals of a set of redexes in a given source term is to add some "marks" in our λ -terms. For this we introduce an extension $\underline{\Lambda}$ of the syntax, where λ -abstractions can be underlined. This extended grammar is:

t	: :=	x	variable
		t t	application
		$\lambda x.t$	ordinary abstraction
		$\underline{\lambda}x.t$	marked abstraction

The β -reduction rule applies for both ordinary λ 's and marked $\underline{\lambda}$'s.

$$(\lambda x.t) \ u \ \longrightarrow_{\beta} \ t\{x \leftarrow u\} (\underline{\lambda} x.t) \ u \ \longrightarrow_{\beta} \ t\{x \leftarrow u\}$$

Free variables, variable renaming and substitution are also extended to treat marked $\underline{\lambda}$'s as ordinary λ 's.

$$fv(x) = \{x\}$$

$$fv(t u) = fv(t) \cup fv(u)$$

$$fv(\lambda x.t) = fv(t) \setminus \{x\}$$

$$fv(\lambda x.t) = fv(t) \setminus \{x\}$$

$$x\{x \leftarrow v\} = v$$

$$y\{x \leftarrow v\} = y \qquad \text{if } y \neq x$$

$$(t u)\{x \leftarrow v\} = t\{x \leftarrow v\} u\{x \leftarrow v\}$$

$$(\lambda y.t)\{x \leftarrow v\} = \lambda y.(t\{x \leftarrow v\}) \qquad \text{if } y \neq x \text{ and } y \notin fv(v)$$

$$(\lambda y.t)\{x \leftarrow v\} = \lambda y.(t\{x \leftarrow v\}) \qquad \text{if } y \notin x \text{ and } y \notin fv(v)$$

$$\lambda x.t =_{\alpha} \lambda y.(t\{x \leftarrow y\}) \qquad \text{if } y \notin fv(t)$$

$$\lambda x.t =_{\alpha} \lambda y.(t\{x \leftarrow y\}) \qquad \text{if } y \notin fv(t)$$

Removing marks

Let $t \in \underline{\Lambda}$ be a marked term. Define |t| the ordinary λ -term obtained by removing all the marks in t.

$$|x| = x$$

$$|t u| = |t| |u|$$

$$|\lambda x.t| = \lambda x.|t|$$

$$|\underline{\lambda}x.t| = \lambda x.|t|$$

We can trivially check that the marks do not interfere with reduction.

Lemma 1.

For any
$$t, t' \in \underline{\Lambda}$$
, $t \to t'$ iff $|t| \to |t'|$

Diagrammatically:

(solid arrows are assumptions, dashed arrow are deduced)

Reducing marked redexes

Let $t \in \underline{\Lambda}$ be a marked term. Define $\varphi(t)$ the term obtained by reducing all marked redexes in t (and removing any remaining mark).

$$\varphi((\underline{\lambda}x.t) \ u) = (\varphi(t)) \{ x \leftarrow \varphi(u) \}$$

$$\varphi(x) = x$$

$$\varphi(t \ u) = \varphi(t) \ \varphi(u) \qquad \text{if } t \text{ does not start with } \underline{\lambda}$$

$$\varphi(\lambda x.t) = \lambda x.\varphi(t)$$

$$\varphi(\underline{\lambda}x.t) = \lambda x.\varphi(t)$$

Lemma 2. Commutation of φ and substitution.

For any $t, u \in \underline{\Lambda}$, $\varphi(t\{x \leftarrow u\}) = \varphi(t)\{x \leftarrow \varphi(u)\}$

Proof by induction on *t*.

Lemma 3. Commutation of φ and β -reduction.

For any
$$t, t' \in \underline{\Lambda}$$
, if $t \to t'$ then $\varphi(t) \to \varphi(t')$

Diagrammatically:

Proof by induction on the derivation of $t \rightarrow t'$, using lemma 2.

Lemma 4. The simultaneous reduction performed by φ can be realized with ordinary β -reduction.

For any
$$t \in \underline{\Lambda}$$
, $|t| \rightarrow^*_{\beta} \varphi(t)$

Diagrammatically:

(Proving this lemma is homework!)

Proof of the strip lemma

Consider the reduction $t_1 \rightarrow_{\beta} u_1$ of a single β -redex $R = (\lambda x.a) b$, and a sequence $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \dots \rightarrow t_n$. Let t'_1 be the term obtained from t_1 by marking the λ in R. First remark that $\varphi(t'_1)$ is precisely the term u_1 obtained by reducing R in t_1 .

Since marks do not interfere with reduction (n - 1 applications of lemma 1), we can reproduce the sequence $t_1 \rightarrow^* t_n$ starting from t'_1 .

Then by lemma 3 (applied n - 1 times), we build a sequence starting from u_1 .

Finally, by lemma 4 on the last triangle formed with the terms t_n , t'_n , u_n , we deduce a reduction sequence from $t_n = |t'_n|$ to $u_n = \varphi(t'_n)$.

