Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 2: reduction strategies

Reduction graph

There may be several possible reductions for a given term.
The set of all possible reductions can be pictured as a graph

Questions:

- are some paths better than others?
- is there always a result in the end? is it unique?

1 Normalisation

Normal form

A normal form is a term that cannot be reduced anymore

Examples

- x
- $\lambda x . x y$
- $x(\lambda y . y)(\lambda z . z x)$

If $t \rightarrow^{*} t^{\prime}$ and t^{\prime} is normal, the term t^{\prime} is said to be a normal form of t This defines our informal notion of a result of a term

Terms without normal form

$$
\begin{aligned}
\Omega & =(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow(x x)\{x \leftarrow \lambda x \cdot x x\} \\
& =x\{x \leftarrow \lambda x \cdot x x\} x\{x \leftarrow \lambda x \cdot x x\} \\
& =(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& =\Omega
\end{aligned}
$$

Summary:

- reduction of Ω does not terminate
- Ω is a term withour "result"

What about this other example?

$$
(\lambda x y \cdot y) \Omega z
$$

Normalization properties

A term t is:

- strongly normalizing if every reduction sequence starting from t eventually reaches a normal form

$$
(\lambda x y . y)((\lambda z . z)(\lambda z . z))
$$

- weakly normalizing, or normalizable, if there is at least one reduction sequence starting from t and reaching a normal form

$$
(\lambda x y . y)((\lambda z . z z)(\lambda z . z z))
$$

Note: normalization (strong or weak), is an undecidable property (see chapter on λ-computability)

2 Reduction strategies

Reduction orders

Normal order: reduce the most external redex first

- apply functions without reducing the arguments

Applicative order: reduce the most internal redex first

- normalize the arguments before reducing the function application itself

For disjoint redexes: from left to right

Exercise: normal order vs. applicative order

Compare normal order reduction and applicative order reduction of the following terms:

1. $(\lambda x y \cdot x) z \Omega$
2. $(\lambda x \cdot x x)((\lambda y \cdot y) z)$
3. $(\lambda x \cdot x(\lambda y \cdot y))(\lambda z .(\lambda a . a a)(z b))$

In each case: does another order allow shorter sequences?
Answer

1. Normal order

$$
\begin{aligned}
& (\lambda x y \cdot x) z \Omega \\
& \rightarrow(\lambda y \cdot z) \Omega \\
& \rightarrow z
\end{aligned}
$$

Applicative order

$$
\begin{aligned}
& (\lambda x y . x) z \Omega \\
& \rightarrow \quad(\lambda y . z) \Omega \\
& \rightarrow \quad(\lambda y . z) \Omega \\
& \rightarrow \quad \ldots
\end{aligned}
$$

Normal order reduction is as short as possible
2. Normal order

$$
\begin{aligned}
& (\lambda x \cdot x x)((\lambda y \cdot y) z) \\
& \rightarrow \quad((\lambda y \cdot y) z)((\lambda y \cdot y) z) \\
& \rightarrow \quad z((\lambda y \cdot y) z) \\
& \rightarrow \quad z z
\end{aligned}
$$

Applicative order

$$
\begin{aligned}
& (\lambda x \cdot x x)((\lambda y \cdot y) z) \\
& \rightarrow \quad(\lambda x \cdot x x) z \\
& \rightarrow z z
\end{aligned}
$$

Applicative order reduction is as short as possible
3. Normal order

$$
\begin{aligned}
& (\lambda x \cdot x(\lambda y \cdot y))(\lambda z \cdot(\lambda a \cdot a a)(z b)) \\
& \rightarrow(\lambda z \cdot(\lambda a \cdot a a)(z b))(\lambda y \cdot y) \\
& \rightarrow(\lambda a \cdot a a)((\lambda y \cdot y) b) \\
& \rightarrow((\lambda y \cdot y) b)((\lambda y \cdot y) b) \\
& \rightarrow b((\lambda y \cdot y) b) \\
& \rightarrow \quad b b
\end{aligned}
$$

Applicative order

$$
\begin{aligned}
& (\lambda x \cdot x(\lambda y \cdot y))(\lambda z \cdot(\lambda a \cdot a a)(z b)) \\
& \rightarrow(\lambda x \cdot x(\lambda y \cdot y))(\lambda z \cdot(z b)(z b)) \\
& \rightarrow(\lambda z \cdot(z b)(z b))(\lambda y \cdot y) \\
& \rightarrow((\lambda y \cdot y) b)((\lambda y \cdot y) b) \\
& \rightarrow b((\lambda y \cdot y) b) \\
& \rightarrow b b
\end{aligned}
$$

Shortest reduction

$$
\begin{aligned}
& (\lambda x \cdot x(\lambda y \cdot y))(\lambda z \cdot(\lambda a \cdot a a)(z b)) \\
& \rightarrow(\lambda z \cdot(\lambda a \cdot a a)(z b))(\lambda y \cdot y) \\
& \rightarrow(\lambda a \cdot a a)((\lambda y \cdot y) b) \\
& \rightarrow(\lambda a \cdot a a) b \\
& \rightarrow \quad b b
\end{aligned}
$$

Normalizing strategy

Property of normal order reduction

- If a term t does have a normal form then normal order reduction reaches this normal form (proof in another chapter)

Such a reducion strategy is said to be normalizing

3 Confluence

Confluences

Diamond property

Confluence

The λ-calculus does not have the diamond property

It is however confluent

Confluence of the λ-calculus

1. One can prove that the λ-calculus is locally confluent, which is:

2. Then one closes every opening diagram

by repeated application of local confluence.

Counter-example: local confluence does not imply confluence

This relation is locally confluent, but one cannot close the following diagram

Why repeated local confluence is not a proof

No guarantee that the opening subdiagrams
 and

are smaller than the first diagram!

Confluence of the λ-calculus, for real

Proof of Tait and Martin-Löf
Define a relation $\quad \rightrightarrows_{\beta} \quad$ which:

- is "between" \rightarrow_{β} and \rightarrow_{β}^{*}
- has the diamond property

Idea: reduce several redexes in parallel in such a way that, for instance:

$$
((\lambda y \cdot y) a)((\lambda y \cdot y) a) \quad \rightrightarrows_{\beta} \quad a a
$$

Proof of Tait and Martin-Löf: structure of the argument

- Since $\exists_{\beta} \quad$ has the diamond property, one deduces that \exists_{β}^{*} has the diamond property
- With $\rightarrow_{\beta} \subseteq \rightrightarrows_{\beta} \subseteq \rightarrow_{\beta}^{*}$, one deduces $\rightrightarrows_{\beta}^{*}=\rightarrow_{\beta}^{*}$
- therefore \rightarrow_{β}^{*} has the diamond property
- and \rightarrow_{β} is confluent

Defining $\rightrightarrows \beta$

Base case

$$
\overline{x \rightrightarrows_{\beta} x}
$$

Inductive cases
parallel reduction of subterms

$$
\frac{t \not \rightrightarrows_{\beta} t^{\prime}}{\lambda x . t \rightrightarrows \beta \lambda x . t^{\prime}} \quad \frac{t_{1} \rightrightarrows_{\beta} \quad t_{1}^{\prime} \quad t_{2} \rightrightarrows \beta \quad t_{2}^{\prime}}{t_{1} t_{2} \rightrightarrows \beta \quad t_{1}^{\prime} t_{2}^{\prime}}
$$

Redexes
parallel reduction of the β-redex and its subterms

$$
\frac{t \rightrightarrows_{\beta} t^{\prime} \quad u \rightrightarrows_{\beta} u^{\prime}}{(\lambda x . t) u \rightrightarrows_{\beta}} t^{\prime}\left\{x \leftarrow u^{\prime}\right\}
$$

Example of parallel reduction

Remark: one reduces only already-present redexes the resulting term may contain "new" redexes

Exercise: framing $\quad \rightrightarrows \beta$

Prove that

$$
t \quad \rightrightarrows \beta \quad t
$$

Prove that

$$
\rightarrow_{\beta} \subseteq \quad \rightrightarrows \beta
$$

Prove that

$$
\rightrightarrows \beta \quad \subseteq \quad \rightarrow{ }_{\beta}^{*}
$$

Answer

- $t \rightrightarrows \beta$ by induction on t.
- Case of a variable x. Then by definition $x \rightrightarrows_{\beta} x$.
- Case of an application $t_{1} t_{2}$. Induction hypotheses: $t_{1} \rightrightarrows \beta t_{1}$ and $t_{2} \rightrightarrows \beta t_{2}$. Then by application rule $t_{1} t_{2} \exists_{\beta} t_{1} t_{2}$.
- Case of an abstraction λx.t. Induction hypothesis: $t \rightrightarrows \beta t$. Then by abstraction rule $\lambda x . t \rightrightarrows \beta$ $\lambda x . t$.
- $\rightarrow_{\beta} \subseteq \rightrightarrows_{\beta}$ by induction on \rightarrow_{β}.
- Case of β-reduction at the root $(\lambda x . t) u \rightarrow_{\beta} t\{x \leftarrow u\}$. By previous result $t \rightrightarrows_{\beta} t$ and $u \rightrightarrows_{\beta} u$. Then by redex rule $(\lambda x . t) u \rightrightarrows_{\beta} t\{x \leftarrow u\}$.
- Case of reduction at the left of an application $t u \rightarrow_{\beta} t^{\prime} u$ with $t \rightarrow_{\beta} t^{\prime}$. Induction hypothesis: $t \rightrightarrows \beta t^{\prime}$. Moreover, by the previous result $u \rightrightarrows \beta u$. Then by application rule $t u \not \rightrightarrows_{\beta} t^{\prime} u$.
- Cases of reduction at the right of an application or under an abstraction similar.
- $\rightrightarrows_{\beta} \subseteq \longrightarrow_{\beta}^{*}$ by induction on $\rightrightarrows_{\beta}$.
- Variable rule: $x \rightrightarrows_{\beta} x$. In particular $x \rightarrow_{\beta}^{0} x$.
- Abstraction rule: λx.t $\rightrightarrows_{\beta} \lambda x . t^{\prime}$ with $t \rightrightarrows_{\beta} t^{\prime}$. Induction hypothesis: $t \rightarrow_{\beta}^{*} t^{\prime}$. Then by recurrence on the length of the sequence $\lambda x . t \rightarrow{ }_{\beta}^{*} \lambda x . t^{\prime}$.
- Application rule: $t_{1} t_{2} \rightrightarrows_{\beta} t_{1}^{\prime} t_{2}^{\prime}$ with $t_{1} \rightrightarrows_{\beta} t_{1}^{\prime}$ and $t_{2} \rightrightarrows_{\beta} t_{2}^{\prime}$. Induction hypotheses: $t_{1} \rightarrow_{\beta}^{*} t_{1}^{\prime}$ and $t_{2} \rightarrow{ }_{\beta}^{*} t_{2}^{\prime}$. Then $t_{1} t_{2} \rightarrow{ }_{\beta}^{*} t_{1}^{\prime} t_{2} \rightarrow{ }_{\beta}^{*} t_{1}^{\prime} t_{2}^{\prime}$.
- Redex rule: $(\lambda x . t) u \not \rightrightarrows_{\beta} t^{\prime}\left\{x \leftarrow u^{\prime}\right\}$ with $t \rightrightarrows_{\beta} t^{\prime}$ and $u \rightrightarrows \beta u^{\prime}$. Induction hypotheses: $t \rightarrow{ }_{\beta}^{*} t^{\prime}$ and $u \rightarrow_{\beta}^{*} u^{\prime}$. Then $(\lambda x . t) u \rightarrow_{\beta}^{*}\left(\lambda x . t^{\prime}\right) u \rightarrow_{\beta}^{*}\left(\lambda x . t^{\prime}\right) u^{\prime} \rightarrow_{\beta} t^{\prime}\left\{x \leftarrow u^{\prime}\right\}$.

Exercise: method of Tait and Martin-Löf

Prove that if \rightarrow has the diamond property, then its reflexive-transitive closure \rightarrow^{*} has the diamond property

Prove that if two relations \rightarrow and \rightrightarrows are such that
then their reflexive-transitive closures \rightrightarrows^{*} and \rightarrow^{*} are equal
Answer

- Assume \rightarrow has the diamond property. If $b \leftarrow a \rightarrow^{n} c$ then there is d such that $d \rightarrow^{n} d \leftarrow c$ (proof by recurrence on the length n of the sequence on the right). Then, we prove that if $b^{k} \leftarrow a \rightarrow^{n} c$, then there is d such that $d \rightarrow^{n} d^{k} \leftarrow c$ (recurrence on k). Then \rightarrow^{*} has the diamond property.
- From $\longrightarrow \subseteq \rightrightarrows \subseteq \longrightarrow^{*}$ we deduce $\rightarrow^{*} \subseteq \rightrightarrows{ }^{*} \subseteq \longrightarrow^{* *}$. Remark: $\rightarrow^{* *}=\rightarrow^{*}$. Then $\rightarrow^{*} \subseteq \rightrightarrows{ }^{*} \subseteq \longrightarrow^{*}$, which means $\rightarrow{ }^{*}=\rightrightarrows^{*}$.

Diamond property for parallel reduction

If $\quad s \leftleftarrows t \rightrightarrows r \quad$ then there is u such that $\quad s \rightrightarrows u \leftleftarrows r$ By induction on the derivation of $\quad t \rightrightarrows \beta r$

- Case $x \rightrightarrows x$. Then $s=x$, and we define $u=x$
- Case $\lambda x . t_{0} \rightrightarrows \lambda x . r_{0}$ with $t_{0} \rightrightarrows r_{0}$. Then $s=\lambda x . s_{0}$ with $s_{0} \leftleftarrows t_{0}$.

By induction hypothesis there is u_{0} such that $s_{0} \rightrightarrows u_{0} \leftleftarrows r_{0}$.
Therefore $\quad \lambda x . s_{0} \rightrightarrows \lambda x . u_{0} \leftleftarrows \lambda x . r_{0}$

- Case $t_{1} t_{2} \rightrightarrows r_{1} r_{2}$ with $t_{1} \rightrightarrows r_{1}$ and $t_{2} \rightrightarrows r_{2}$. Two cases for $s \leftleftarrows t_{1} t_{2}$.
- if $s=s_{1} s_{2}$ with $s_{1} \leftleftarrows t_{1}$ and $s_{2} \leftleftarrows t_{2}$
by induction hypotheses there are u_{1} and u_{2} such that $s_{1} \rightrightarrows u_{1} \leftleftarrows r_{1}$ and $s_{2} \rightrightarrows u_{2} \leftleftarrows r_{2}$,
therefore $\quad s_{1} s_{2} \rightrightarrows u_{1} u_{2} \leftleftarrows r_{1} r_{2}$
- if $s=s_{1}\left\{x \leftarrow s_{2}\right\}$ with $t_{1}=\lambda x . t_{1}^{\prime}$ and $s_{1} \leftleftarrows t_{1}^{\prime}$ et $s_{2} \leftleftarrows t_{2}$,
then $r_{1}=\lambda x . r_{1}^{\prime}$ with $t_{1}^{\prime} \rightrightarrows r_{1}^{\prime}$ and by induction hypotheses there are u_{1} and u_{2} such that $s_{1} \rightrightarrows u_{1} \leftleftarrows r_{1}^{\prime}$ et $s_{2} \rightrightarrows u_{2} \leftleftarrows r_{2}$,
therefore $\quad u_{1}\left\{x \leftarrow u_{2}\right\} \leftleftarrows\left(\lambda x . r_{1}^{\prime}\right) r_{2}$
and we conclude if we can show that $s_{1}\left\{x \leftarrow s_{2}\right\} \rightrightarrows u_{1}\left\{x \leftarrow u_{2}\right\}$
Lemma: if $a \rightrightarrows_{\beta} a^{\prime}$ and $b \rightrightarrows_{\beta} b^{\prime}$ then $a\{x \leftarrow b\} \rightrightarrows_{\beta} a^{\prime}\left\{x \leftarrow b^{\prime}\right\}$
coming soon
- Case $\left(\lambda x . t_{1}\right) t_{2} \rightrightarrows r_{1}\left\{x \leftarrow r_{2}\right\}$ with $t_{1} \rightrightarrows r_{1}$ et $t_{2} \rightrightarrows r_{2}$. Two cases for $s \leftleftarrows\left(\lambda x . t_{1}\right) t_{2}$.
- if $s=\left(\lambda x . s_{1}\right) s_{2}$ with $s_{1} \leftleftarrows t_{1}$ and $s_{2} \leftleftarrows t_{2}$ we conclude as above.
- if $s=s_{1}\left\{x \leftarrow s_{2}\right\}$ with $s_{1} \leftleftarrows t_{1}$ and $s_{2} \leftleftarrows t_{2}$
then by induction hypotheses there are u_{1} and u_{2} such that $s_{1} \rightrightarrows u_{1} \leftleftarrows r_{1}$ and $s_{2} \rightrightarrows u_{2} \leftleftarrows r_{2}$, and we conclude if we can show that $s_{1}\left\{x \leftarrow s_{2}\right\} \rightrightarrows u_{1}\left\{x \leftarrow u_{2}\right\} \leftleftarrows r_{1}\left\{x \leftarrow r_{2}\right\}$

Same lemma

Lemma $\quad a \rightrightarrows_{\beta} a^{\prime} \wedge b \rightrightarrows_{\beta} b^{\prime} \quad \Longrightarrow \quad a\{x \leftarrow b\} \rightrightarrows_{\beta} a^{\prime}\left\{x \leftarrow b^{\prime}\right\}$
By induction on the derivation of $a \exists_{\beta} a^{\prime}$

- Case $y \rightrightarrows y$.

Case on x and y.

$$
\begin{array}{ll}
\text { - If } x=y \text {, then } & x\{x \leftarrow b\}=b \rightrightarrows b^{\prime}=x\left\{x \leftarrow b^{\prime}\right\} \\
\text { - If } x \neq y \text {, then } & y\{x \leftarrow b\}=y \rightrightarrows y=y\left\{x \leftarrow b^{\prime}\right\}
\end{array}
$$

- Case $\lambda y \cdot a_{0} \rightrightarrows \lambda y \cdot a_{0}^{\prime}$ with $a_{0} \rightrightarrows a_{0}^{\prime}$.

Then $\left(\lambda y \cdot a_{0}\right)\{x \leftarrow b\}=\lambda y .\left(a_{0}\{x \leftarrow b\}\right)$ and by induction hypothesis $a_{0}\{x \leftarrow b\} \rightrightarrows a_{0}^{\prime}\{x \leftarrow$ $\left.b^{\prime}\right\}$.
Therefore $\lambda y \cdot\left(a_{0}\{x \leftarrow b\}\right) \rightrightarrows \lambda y \cdot\left(a_{0}^{\prime}\left\{x \leftarrow b^{\prime}\right\}\right)=\left(\lambda x \cdot a_{0}^{\prime}\right)\left\{x \leftarrow b^{\prime}\right\}$

- Case $a_{1} a_{2} \rightrightarrows a_{1}^{\prime} a_{2}^{\prime}$ with $a_{1} \rightrightarrows a_{1}^{\prime}$ et $a_{2} \rightrightarrows a_{2}^{\prime}$.

Then $\left(a_{1} a_{2}\right)\{x \leftarrow b\}=\left(a_{1}\{x \leftarrow b\}\right)\left(a_{2}\{x \leftarrow b\}\right)$ and $\quad\left(a_{1}^{\prime} a_{2}^{\prime}\right)\left\{x \leftarrow b^{\prime}\right\}=\left(a_{1}^{\prime}\left\{x \leftarrow b^{\prime}\right\}\right)\left(a_{2}^{\prime}\{x \leftarrow\right.$ $\left.b^{\prime}\right\}$)
and by induction hypotheses $a_{1}\{x \leftarrow b\} \rightrightarrows a_{1}^{\prime}\left\{x \leftarrow b^{\prime}\right\}$ and $a_{2}\{x \leftarrow b\} \rightrightarrows a_{2}^{\prime}\left\{x \leftarrow b^{\prime}\right\}$.
Therefore $\left(a_{1} a_{2}\right)\{x \leftarrow b\} \rightrightarrows\left(a_{1}^{\prime} a_{2}^{\prime}\right)\left\{x \leftarrow b^{\prime}\right\}$

- Case $\left(\lambda y \cdot a_{1}\right) a_{2} \rightrightarrows a_{1}^{\prime}\left\{y \leftarrow a_{2}^{\prime}\right\}$ with $a_{1} \rightrightarrows a_{1}^{\prime}$ and $a_{2} \rightrightarrows a_{2}^{\prime}$.

Then $\left(\left(\lambda y \cdot a_{1}\right) a_{2}\right)\{x \leftarrow b\}=\left(\lambda y \cdot a_{1}\{x \leftarrow b\}\right)\left(a_{2}\{x \leftarrow b\}\right)$.
By induction hypotheses we have $a_{1}\{x \leftarrow b\} \nexists_{\beta} a_{1}^{\prime}\left\{x \leftarrow b^{\prime}\right\}$ and $a_{2}\{x \leftarrow b\} \rightrightarrows_{\beta} a_{2}^{\prime}\left\{x \leftarrow b^{\prime}\right\}$.
Therefore $\left(\lambda y \cdot a_{1}\{x \leftarrow b\}\right)\left(a_{2}\{x \leftarrow b\}\right) \quad \rightrightarrows\left(a_{1}^{\prime}\left\{x \leftarrow b^{\prime}\right\}\right)\left\{y \leftarrow a_{2}^{\prime}\left\{x \leftarrow b^{\prime}\right\}\right\}$.
With α-renaming we can choose $y \neq x$ and $y \notin \mathrm{fv}\left(b^{\prime}\right)$, therefore by substitution lemma ($a_{1}^{\prime}\{x \leftarrow$ $\left.\left.b^{\prime}\right\}\right)\left\{y \leftarrow a_{2}^{\prime}\left\{x \leftarrow b^{\prime}\right\}\right\}=\left(a_{1}^{\prime}\left\{y \leftarrow a_{2}^{\prime}\right\}\right)\left\{x \leftarrow b^{\prime}\right\}$.

Substitution lemma

If $\quad x \neq y \quad$ and $\quad x \notin \mathrm{fv}(v)$ then

$$
t\{x \leftarrow u\}\{y \leftarrow v\} \quad=\quad t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}
$$

Proof by induction on t

- Case of a variable.
- Case $t=x$. Then $x\{x \leftarrow u\}\{y \leftarrow v\}=u\{y \leftarrow v\}$ and $x\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}=$ $x\{x \leftarrow u\{y \leftarrow v\}\}=u\{y \leftarrow v\}$
- Case $t=y$. Then $y\{x \leftarrow u\}\{y \leftarrow v\}=y\{y \leftarrow v\}=v$ and $y\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}=$ $v\{x \leftarrow u\{y \leftarrow v\}\}=v$
- Case $t=z$, otherwise. Then $z\{x \leftarrow u\}\{y \leftarrow v\}=z$ and $s\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}=z$
- Case of an application $t_{1} t_{2}$. Assume $t_{1}\{x \leftarrow u\}\{y \leftarrow v\}=t_{1}\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ and $t_{2}\{x \leftarrow u\}\{y \leftarrow v\}=t_{2}\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ Then

$$
\begin{aligned}
& \left(t_{1} t_{2}\right)\{x \leftarrow u\}\{y \leftarrow v\} \\
& =\left(t_{1}\{x \leftarrow u\} t_{2}\{x \leftarrow u\}\right)\{y \leftarrow v\} \\
& =t_{1}\{x \leftarrow u\}\{y \leftarrow v\} t_{2}\{x \leftarrow u\}\{y \leftarrow v\} \\
& =t_{1}\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} t_{2}\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\} \\
& =\left(t_{1}\{y \leftarrow v\} t_{2}\{y \leftarrow v\}\right)\{x \leftarrow u\{y \leftarrow v\}\} \\
& =\left(t_{1} t_{2}\right)\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}
\end{aligned}
$$

- Case of an abstraction λ z.t. Assume $t\{x \leftarrow u\}\{y \leftarrow v\}=t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}$ and by Barendregt convention $z \neq x$ and $z \neq y$ and $z \notin \mathrm{fv}(u)$ and $z \notin \mathrm{fv}(v)$ (and $z \notin \mathrm{fv}(u\{y \leftarrow v\}))$ Then

$$
\begin{aligned}
& (\lambda z . t)\{x \leftarrow u\}\{y \leftarrow v\} \\
& =(\lambda z .(t\{x \leftarrow u\})\{y \leftarrow v\} \\
& =\lambda z .(t\{x \leftarrow u\}\{y \leftarrow v\}) \\
& =\lambda z .(t\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}) \\
& =(\lambda z .(t\{y \leftarrow v\})\{x \leftarrow u\{y \leftarrow v\}\} \\
& =(\lambda z . t)\{y \leftarrow v\}\{x \leftarrow u\{y \leftarrow v\}\}
\end{aligned}
$$

Corollary: Church-Rosser theorem

If

$$
t_{1} \quad=\beta \quad t_{2}
$$

then there is u such that

$$
t_{1} \quad \rightarrow_{\beta}^{*} \quad u \quad \text { et } \quad t_{2} \quad \rightarrow_{\beta}^{*} \quad u
$$

Consequences

- if t has a normal form n, then $t \rightarrow{ }^{*} n$
- any λ-term can has only one normal form
- if two normal forms n and m are syntactically different, then $n \neq \beta m$

4 Confluence: another proof

Strip lemma

Property of the λ-calculus:

Idea: identify the redex R that is reduced by the step $t \rightarrow t_{1}$. Then track what remains of R in t_{2}, and reduce every occurrence. (proof later in the chapter)

The strip lemma implies confluence

If $t_{1} \rightarrow{ }^{*} t_{n}$ and $t_{1} \rightarrow{ }^{*} u_{1}$, then there exists u_{n} such that $t_{n} \rightarrow{ }^{*} u_{n}$ and $u_{1} \rightarrow{ }^{*} u_{n}$.
Proof by recurrence on the length of the reduction sequence $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \ldots \rightarrow t_{n}$. Each step uses the strip lemma to make one "strip" in the following diagram.

Residuals

Consider a β-reduction step $t \xrightarrow{p} t^{\prime}$ of a redex $(\lambda x . u) v$ at position p in t. Positions of t can be tracked in t^{\prime}. Let q be a position in t, and define $D(q)$ the set of descendant positions of q in t^{\prime}.

- Positions outside of $(\lambda x . u) v$ still exist, unmodified, in t^{\prime}.

$$
D(q)=\{q\} \quad \text { if } p \text { is not a prefix of } q
$$

- The positions p of the redex $(\lambda x . u) v$ and $p .1$ of the abstraction $\lambda x . u$ have no descendants.
- Every part of u still exist in $u\{x \leftarrow v\}$. The positions however are slightly modified between t and t^{\prime} since an application and an abstraction disappeared.

$$
D(p \cdot 1.0 . q)=\{p . q\}
$$

(We could argue on what happens to the occurrences of x. Here we choose to keep them in the descendant relation.)

- Every part of v exist in $u\{x \leftarrow v\}$ in each substituted occurrence of v (whose number can be arbitrary). The new position of each occurrence of v in $u\{x \leftarrow v\}$ corresponds to the position of an occurrence of x in u.

$$
D(p \cdot 2 . q)=\left\{p \cdot p_{x} \cdot q \mid p_{x} \text { position of an occurrence of } x \text { in } u\right\}
$$

A redex R^{\prime} at position q^{\prime} in t^{\prime} is a residual of a redex R at position q in t after $t \xrightarrow{p} t^{\prime}$ if $q^{\prime} \in D(q)$.

Marked λ-terms

A simple solution to track the residuals of a set of redexes in a given source term is to add some "marks" in our λ-terms. For this we introduce an extension $\underline{\Lambda}$ of the syntax, where λ-abstractions can be underlined. This extended grammar is:

t	$:$	$:=$	x
	$t t$	variable	
		$\lambda x . t$	application
		ordinary abstraction	
		$\lambda x . t$	marked abstraction

The β-reduction rule applies for both ordinary λ 's and marked $\underline{\lambda}$'s.

$$
\begin{array}{lll}
(\lambda x . t) u & \rightarrow_{\beta} & t\{x \leftarrow u\} \\
(\underline{\lambda x} . t) u & \rightarrow_{\beta} & t\{x \leftarrow u\}
\end{array}
$$

Free variables, variable renaming and substitution are also extended to treat marked $\underline{\lambda}$'s as ordinary λ^{\prime} 's.

$$
\begin{aligned}
\mathrm{fv}(x) & =\{x\} & & \\
\mathrm{fv}(t u) & =\mathrm{fv}(t) \cup \mathrm{fv}(u) & & \\
\mathrm{fv}(\lambda x . t) & =\mathrm{fv}(t) \backslash\{x\} & & \\
\mathrm{fv}(\underline{\lambda} x . t) & =\mathrm{fv}(t) \backslash\{x\} & & \\
x\{x \leftarrow v\} & =v & & \text { if } y \neq x \\
y\{x \leftarrow v\} & =y & & \\
(t u)\{x \leftarrow v\} & =t\{x \leftarrow v\} u\{x \leftarrow v\} & & \text { if } y \neq x \text { and } y \notin \mathrm{fv}(v) \\
(\lambda y . t)\{x \leftarrow v\} & =\lambda y \cdot(t\{x \leftarrow v\}) & & \text { if } y \neq x \text { and } y \notin \mathrm{fv}(v) \\
(\underline{\lambda y . t)}\{x \leftarrow v\} & =\underline{\lambda y} \cdot(t\{x \leftarrow v\}) & & \text { if } y \notin \mathrm{fv}(t) \\
& & & \\
\lambda x . t & =\alpha y \cdot(t\{x \leftarrow y\}) & & \text { if } y \notin \mathrm{fv}(t)
\end{aligned}
$$

Removing marks

Let $t \in \underline{\Lambda}$ be a marked term. Define $|t|$ the ordinary λ-term obtained by removing all the marks in t.

$$
\begin{aligned}
|x| & =x \\
|t u| & =|t||u| \\
|\lambda x . t| & =\lambda x .|t| \\
|\underline{\lambda x} . t| & =\lambda x .|t|
\end{aligned}
$$

We can trivially check that the marks do not interfere with reduction.

Lemma 1.

$$
\text { For any } t, t^{\prime} \in \underline{\Lambda}, \quad t \rightarrow t^{\prime} \quad \text { iff } \quad|t| \rightarrow\left|t^{\prime}\right|
$$

Diagrammatically:

(solid arrows are assumptions, dashed arrow are deduced)

Reducing marked redexes

Let $t \in \underline{\Lambda}$ be a marked term. Define $\varphi(t)$ the term obtained by reducing all marked redexes in t (and removing any remaining mark).

$$
\begin{array}{rlr}
\varphi((\underline{\lambda} x . t) u) & =(\varphi(t))\{x \leftarrow \varphi(u)\} & \\
\varphi(x) & =x & \\
\varphi(t u) & =\varphi(t) \varphi(u) & \text { if } t \text { does not start with } \underline{\lambda} \\
\varphi(\lambda x . t) & =\lambda x . \varphi(t) & \\
\varphi(\underline{\lambda} x . t) & =\lambda x . \varphi(t) &
\end{array}
$$

Lemma 2. Commutation of φ and substitution.

$$
\text { For any } t, u \in \underline{\Lambda}, \quad \varphi(t\{x \leftarrow u\})=\varphi(t)\{x \leftarrow \varphi(u)\}
$$

Proof by induction on t.
Lemma 3. Commutation of φ and β-reduction.

$$
\text { For any } t, t^{\prime} \in \underline{\Lambda} \text {, if } \quad t \rightarrow t^{\prime} \quad \text { then } \quad \varphi(t) \rightarrow \varphi\left(t^{\prime}\right)
$$

Diagrammatically:

Proof by induction on the derivation of $t \rightarrow t^{\prime}$, using lemma 2 .
Lemma 4. The simultaneous reduction performed by φ can be realized with ordinary β-reduction.

$$
\text { For any } t \in \underline{\Lambda}, \quad|t| \rightarrow_{\beta}^{*} \varphi(t)
$$

Diagrammatically:

(Proving this lemma is homework!)

Proof of the strip lemma

Consider the reduction $t_{1} \rightarrow_{\beta} u_{1}$ of a single β-redex $R=(\lambda x . a) b$, and a sequence $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow$ $\ldots \rightarrow t_{n}$. Let t_{1}^{\prime} be the term obtained from t_{1} by marking the λ in R. First remark that $\varphi\left(t_{1}^{\prime}\right)$ is precisly the term u_{1} obtained by reducing R in t_{1}.

Since marks do not interfere with reduction ($n-1$ applications of lemma 1), we can reproduce the sequence $t_{1} \rightarrow{ }^{\star} t_{n}$ starting from t_{1}^{\prime}.

Then by lemma 3 (applied $n-1$ times), we build a sequence starting from u_{1}.

Finally, by lemma 4 on the last triangle formed with the terms $t_{n}, t_{n}^{\prime}, u_{n}$, we deduce a reduction sequence from $t_{n}=\left|t_{n}^{\prime}\right|$ to $u_{n}=\varphi\left(t_{n}^{\prime}\right)$.

