Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 3: simply-typed λ-calculus

1 Wrong programs

Wrong program in Python

```
p = (4, 2)
return p[1][0]
Runtime error
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'int' object has no attribute
'__getitem__
```

Wrong program in Caml

```
let p = (4, 2) in
fst(snd p)
```

Compile-time error
Error: This expression has type int but an expression was expected of type 'a * 'b

Wrong λ-term

$$
\begin{array}{ll}
\left(\lambda x . \pi_{1}\left(\pi_{2}(x)\right)\right)((\lambda y .\langle y,(\lambda z . z) 2\rangle) 4) \\
\rightarrow_{v} & \left(\lambda x \cdot \pi_{1}\left(\pi_{2}(x)\right)\right)\langle 4,(\lambda z . z) 2\rangle \\
\rightarrow_{v} & \left(\lambda x \cdot \pi_{1}\left(\pi_{2}(x)\right)\right)\langle 4,2\rangle \\
\rightarrow_{v} & \left.\pi_{1}\left(\pi_{2}(\langle 4,2\rangle)\right)\right) \\
\rightarrow_{v} & \pi_{1}(2)
\end{array}
$$

blocked term: not a value, yet not reducible

Motto

Connects a static analysis

- expressions have consistent types
with a semantic property
- the programs runs smoothly

2 Simple types

Typed syntax

Types

$\sigma, \tau \quad::=$	base types	
	$\mid \quad \sigma \rightarrow \tau$	function types

Terms

$t:$	$:=$	x	variable
		$\lambda x^{\sigma} . t$	typed abstraction
	$t_{1} t_{2}$	application	

Notation $\quad \tau_{n} \rightarrow\left(\tau_{n-1} \ldots\left(\tau_{1} \rightarrow \tau_{0}\right) \ldots\right) \quad$ is written $\quad \tau_{n} \rightarrow \tau_{n-1} \ldots \tau_{1} \rightarrow \tau_{0}$

Simple types, à la Church

Typing judgment

$$
\Gamma \vdash t: \sigma
$$

the term t is well typed with type σ in the environment Γ with Γ : a set of typed variables $\left\{x_{1}^{\sigma_{1}}, \ldots, x_{n}^{\sigma_{n}}\right\}$

$$
\frac{x^{\tau} \in \Gamma}{\Gamma \vdash x: \tau} \quad \frac{\Gamma, x^{\sigma} \vdash e: \tau}{\Gamma \vdash \lambda x^{\sigma} . e: \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash e_{1}: \sigma \rightarrow \tau \quad \Gamma \vdash e_{2}: \sigma}{\Gamma \vdash e_{1} e_{2}: \tau}
$$

Simple types, without annotations

Typing judgment

$$
\Gamma \vdash t: \sigma
$$

the term t is well typed with type σ in the environment Γ with Γ : a function from variables to types $\left\{x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\right\}$

$$
\frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \quad \frac{\Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash \lambda x . e: \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash e_{1}: \sigma \rightarrow \tau \quad \Gamma \vdash e_{2}: \sigma}{\Gamma \vdash e_{1} e_{2}: \tau}
$$

Exercise: examples and counter-examples

Give typing judgments for the following terms, or justify that this cannot be done

- $\lambda x \cdot x$
- $\lambda x y \cdot x$
- $\lambda x y z . x(y z)$
- $\lambda x . x x$

Extended types: integers

New type

$$
\begin{array}{ccc}
\sigma, \tau & ::= & \ldots \\
& \mid & \text { int }
\end{array}
$$

New typing rules

$$
\overline{\Gamma \vdash n: \mathrm{int}} \quad \frac{\Gamma \vdash t_{1}: \mathrm{int} \quad \Gamma \vdash t_{2}: \mathrm{int}}{\Gamma \vdash t_{1} \oplus t_{2}: \mathrm{int}}
$$

Extended types: booleans

New type

$$
\begin{array}{ccl}
\sigma, \tau & ::= & \ldots \\
& \mid & \text { bool }
\end{array}
$$

New typing rules

$$
\overline{\Gamma \vdash \mathrm{T}: \text { bool }} \quad \overline{\Gamma \vdash \mathrm{F}: \text { bool }}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash t: \text { int }}{\Gamma \vdash \operatorname{isZero}(t): \text { bool }} \\
\frac{\Gamma \vdash t_{1}: \text { bool } \quad \Gamma \vdash t_{2}: \tau \quad \Gamma \vdash t_{3}: \tau}{\Gamma \vdash \text { if } t_{1} \text { then } t_{2} \text { else } t_{3}: \tau}
\end{gathered}
$$

Extended types: products

New type

$$
\begin{array}{rll}
\sigma, \tau & : & := \\
& \ldots \\
& & \tau_{1} \times \tau_{2}
\end{array}
$$

New typing rules

$$
\begin{gathered}
\frac{\Gamma \vdash t_{1}: \tau_{1} \quad \Gamma \vdash t_{2}: \tau_{2}}{\Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle: \tau_{1} \times \tau_{2}} \\
\frac{\Gamma \vdash t: \tau_{1} \times \tau_{2}}{\Gamma \vdash \pi_{1}(t): \tau_{1}} \\
\frac{\Gamma \vdash t: \tau_{1} \times \tau_{2}}{\Gamma \vdash \pi_{2}(t): \tau_{2}}
\end{gathered}
$$

Extended types: recursion

New typing rule

$$
\frac{\Gamma \vdash t:(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau)}{\Gamma \vdash \operatorname{Fix}(t): \sigma \rightarrow \tau}
$$

3 Type preservation

Type preservation: β-reduction

If $\quad \Gamma \vdash t: \tau \quad$ and $\quad t \rightarrow \beta t^{\prime} \quad$ then

$$
\Gamma \vdash t^{\prime}: \tau
$$

Proof by induction on $t \rightarrow{ }_{\beta} t^{\prime}$.

- Case $t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}$ with $t_{1} \rightarrow t_{1}^{\prime}$

By inversion of the hypothesis $\Gamma \vdash t_{1} t_{2}: \tau$ there is σ such that $\Gamma \vdash t_{1}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}: \sigma$
By induction hypothesis $\Gamma \vdash t_{1}^{\prime}: \sigma \rightarrow \tau$ and one can conclude with the typing rule for applications.

$$
\frac{\Gamma \vdash t_{1}^{\prime}: \sigma \rightarrow \tau \quad \Gamma \vdash t_{2}: \sigma}{\Gamma \vdash t_{1}^{\prime} t_{2}: \tau}
$$

- Case $t_{1} t_{2} \rightarrow t_{1} t_{2}^{\prime}$ with $t_{2} \rightarrow t_{2}^{\prime}$ similar
- Case $\lambda x . t_{0} \rightarrow \lambda x . t_{0}^{\prime}$ with $t_{0} \rightarrow t_{0}^{\prime}$ similar
- Case $\left(\lambda x . t_{1}\right) t_{2} \rightarrow t_{1}\left\{x \leftarrow t_{2}\right\}$

By inversion of the hypothesis $\Gamma \vdash\left(\lambda x . t_{1}\right) t_{2}: \tau$ there is σ such that $\Gamma \vdash \lambda x . t_{1}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}: \sigma$
and by inversion of $\Gamma \vdash \lambda x . t_{1}: \sigma \longrightarrow \tau$ we get $\Gamma, x: \sigma \vdash t_{1}: \tau$
Last step required: combine $\Gamma, x: \sigma \vdash t_{1}: \tau$ and $\Gamma \vdash t_{2}: \sigma$ to conclude something about the type of $t_{1}\left\{x \leftarrow t_{2}\right\}$
Lemma: substitution preserves types
If $\Gamma, x: \sigma \vdash t: \tau$ and $\Gamma \vdash u: \sigma$ then $\Gamma \vdash t\{x \leftarrow u\}: \tau$

Substitution and types

If $\Gamma, x: \sigma \vdash t: \tau$ and $\Gamma \vdash u: \sigma$ then

$$
\Gamma \vdash t\{x \leftarrow u\}: \tau
$$

Proof by induction on the derivation of $\Gamma, x: \sigma \vdash t: \tau$

- Case where t is a variable
- Case $\Gamma, x: \sigma \vdash x: \tau$ with $\sigma=\tau$

Then $x\{x \leftarrow u\}=u$ and $\Gamma \vdash u: \sigma=\tau$

- Case $\Gamma, x: \sigma \vdash y: \tau$ with $x \neq y$ and $\Gamma(y)=\tau$

Then $y\{x \leftarrow u\}=y$ and $\Gamma \vdash y: \tau$

- Case $\Gamma, x: \sigma \vdash t_{1} t_{2}: \tau$ with $\Gamma, x: \sigma \vdash t_{1}: \sigma \longrightarrow \tau$ and $\Gamma, x: \sigma \vdash t_{2}: \sigma$
and induction hypotheses $\Gamma \vdash t_{1}\{x \leftarrow u\}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}\{x \leftarrow u\}: \sigma$
We deduce $\Gamma \vdash\left(t_{1}\{x \leftarrow u\}\right)\left(t_{2}\{x \leftarrow u\}\right): \tau$, which allows us to conclude since $\left(t_{1}\{x \leftarrow\right.$ $u\})\left(t_{2}\{x \leftarrow u\}\right)=\left(t_{1} t_{2}\right)\{x \leftarrow u\}$
- Case $\Gamma, x: \sigma \vdash \lambda y^{\tau^{\prime}} . t: \tau^{\prime} \rightarrow \tau$ with $\Gamma, x: \sigma, y: \tau^{\prime} \vdash t: \tau$
and induction hypothesis $\Gamma, y: \tau^{\prime} \vdash t\{x \leftarrow u\}: \tau$
THen $\Gamma \vdash \lambda y^{\tau^{\prime}} .(t\{x \leftarrow u\}): \tau$
By α-renaming we assume $y \neq x$ and $y \notin \mathrm{fv}(u)$, therefore $\left(\lambda y^{\tau^{\prime}} . t\right)\{x \leftarrow u\}=\lambda y^{\tau^{\prime}} .(t\{x \leftarrow u\})$, and we conclude with the former judgment

Reduction preserves types

Consequences

- If a term has a type, it will keep it along β-reduction
- If a term has a type and a normal form, the normal form has the same type

4 Type safety

Safety

Evaluation of a term should never see an inconsistent operation

- reduction never blocked before reaching a value

Simple statement:
if t is not a value, then there is t^{\prime} such that $t \rightarrow t^{\prime}$

Type safety

Progress lemma
If $\vdash t: \tau$ and t is not a value then there is t^{\prime} such that $t \rightarrow t^{\prime}$
Using also the type preservation lemma we deduce $\vdash t^{\prime}: \tau$, and we can go on
Safety theorem
If $\vdash t: \tau$, then

- either there is $t \rightarrow t_{1} \rightarrow \ldots \rightarrow t_{n}$ with t_{n} a value
- or there is an infinite reduction sequence $t \rightarrow t_{1} \rightarrow t_{2} \rightarrow \ldots$

Progress lemma for λ-calculus + pairs (call by value)

The property
If $\vdash t: \tau$ then either t is a value or there is t^{\prime} with $t \rightarrow{ }_{v} t^{\prime}$
is proved by induction on the derivation of $\vdash t: \tau$

- Case $\Gamma \vdash x: \tau$ with $\Gamma(x)=\tau$

Impossible since we consider only the empty environment

- Case $\vdash \lambda x . t_{0}: \sigma \longrightarrow \tau$ with $x: \sigma \vdash t_{0}: \tau$

Then $t=\lambda x . t_{0}$ is a value

- Case $\vdash\left\langle t_{1}, t_{2}\right\rangle: \tau_{1} \times \tau_{2}$ with $\vdash t_{1}: \tau_{1}$ and $\vdash t_{1}: \tau_{2}$

By induction hypothesis on $\vdash t_{1}: \tau_{1}$ we have:

- either there is t_{1}^{\prime} with $t_{1} \rightarrow t_{1}^{\prime}$ and then $\left\langle t_{1}, t_{2}\right\rangle \rightarrow_{v}\left\langle t_{1}^{\prime}, t_{2}\right\rangle$
- or t_{1} is a value v_{1}

Then by induction hypothesis on $\vdash t_{2}: \tau_{2}$ we have:

* either there is t_{2}^{\prime} with $t_{2} \rightarrow t_{2}^{\prime}$ and then $\left\langle v_{1}, t_{2}\right\rangle \rightarrow v\left\langle v_{1}, t_{2}^{\prime}\right\rangle$
* or t_{2} is a value v_{2} and then $\left\langle v_{1}, v_{2}\right\rangle$ is a value
- Case $\vdash t_{1} t_{2}: \tau$ with $\vdash t_{1}: \sigma \longrightarrow \tau$ and $\vdash t_{2}: \sigma$

As in the previous case:

- either there is t_{1}^{\prime} with $t_{1} \rightarrow t_{1}^{\prime}$, and then $t_{1} t_{2} \rightarrow_{v} t_{1}^{\prime} t_{2}$
- or t_{1} is a value v_{1}, and in this case
* either there is t_{2}^{\prime} with $t_{2} \rightarrow t_{2}^{\prime}$, and then $v_{1} t_{2} \rightarrow v v_{1} t_{2}^{\prime}$
* or t_{2} is a value v_{2} Then we want to prove that $v_{1} v_{2}$ reduces Classification lemma: if a is a value and $\Gamma \vdash t: \sigma \rightarrow \tau$ then a has the shape $\lambda x . a^{\prime}$ By classification lemma, there are x, t_{1}^{\prime} such that $v_{1}=\lambda x . t_{1}^{\prime}$ and therefore $\left(\lambda x . t_{1}^{\prime}\right) v_{2} \rightarrow v t_{1}^{\prime}\{x \leftarrow$ $\left.v_{2}\right\}$
- Case $\vdash \pi_{1}\left(t_{0}\right): \tau_{1}$ with $\vdash t_{0}: \tau_{1} \times \tau_{2}$ By induction hypothesis we have:
- either there is t_{0}^{\prime} with $t_{0} \rightarrow t_{0}^{\prime}$, and then $\pi_{1}\left(t_{0}\right) \rightarrow_{v} \pi_{1}\left(t_{0}^{\prime}\right)$
- or t_{0} is a value v_{0}, and we want to prove that $\pi_{1}\left(v_{0}\right)$ reduces

Classification lemma: if a is a value and $\Gamma \vdash a: \tau_{1} \times \tau_{2}$ then a has the shape $\left\langle a_{1}, a_{2}\right\rangle$
By classification lemma there are v_{1}, v_{2} such that $v_{0}=\left\langle v_{1}, v_{2}\right\rangle$ and therefore $\pi_{1}\left(\left\langle v_{1}, v_{2}\right\rangle\right) \rightarrow v$ v_{1}

- Case $\vdash \pi_{2}\left(t_{0}\right): \tau_{2}$ with $\vdash t_{0}: \tau_{1} \times \tau_{2}$ is similar

5 Curry-Howard correspondence

Programs $=$ proofs
trailer
types λ-calculus Natural deduction

$$
\begin{gathered}
\frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \\
\frac{\Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash \lambda x . e: \sigma \rightarrow \tau} \\
\frac{\Gamma \vdash e_{1}: \sigma \rightarrow \tau \quad \Gamma \vdash e_{2}: \sigma}{\Gamma \vdash e_{1} e_{2}: \tau}
\end{gathered}
$$

$$
\begin{array}{ll}
\tau \text { : type } & \tau: \text { formula } \\
\vdash: \text { typability } & \vdash: \text { provability }
\end{array}
$$

$$
\begin{gathered}
\frac{\tau \in \Gamma}{\Gamma \vdash \tau} \\
\frac{\Gamma, \sigma \vdash \tau}{\Gamma \vdash \sigma \Rightarrow \tau} \\
\frac{\Gamma \vdash \sigma \Rightarrow \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau}
\end{gathered}
$$

Many proof assistants are built upon this correspondence

6 Normalization

Normalization

Does reduction actually make something smaller?
Theorm

$$
\text { If } \Gamma \vdash t: \tau \text {, then } t \text { is strongly normalizing. }
$$

Normalization theorem: a syntactic proof?

If $\Gamma \vdash t: \tau$, then t is strongly normalizing.
Proof attempt using structural induction on t

- Case of a variable: x is strongly normalizable
- Case of an abstraction: if t_{0} is strongly normalizing, then so is $\lambda x \cdot t_{0}$
- Case of an application: if t_{1} and t_{2} are both strongly normalizing, then...

$$
t_{1} t_{2} \rightarrow_{\beta}^{*}\left(\lambda x . t_{1}^{\prime}\right) t_{2} \rightarrow_{\beta}^{*}\left(\lambda x . t_{1}^{\prime}\right) t_{2}^{\prime} \rightarrow_{\beta} t_{1}^{\prime}\left\{x \leftarrow t_{2}^{\prime}\right\} \rightarrow_{\beta} ? ? ?
$$

Problem: $t_{1}^{\prime}\left\{x \longleftarrow t_{2}^{\prime}\right\}$ is not a subterm of t, so we have no induction hypothesis available

Lemma

If t and u are well-typed and strongly normalizing, then $t\{x \leftarrow u\}$ is strongly normalizing

Exercise: preservation of normalization by reduction

If t is strongly normalizing and $t \rightarrow^{*} t^{\prime}$ then t^{\prime} is strongly normalizing
If t is normalizable and $t \rightarrow^{*} t^{\prime}$ then t^{\prime} is normalizable
If s and t are strongly normalizing and not $s t$ then there are x, s^{\prime} such that $s \rightarrow^{*} \lambda x . s^{\prime}$ and $s^{\prime}\{x \leftarrow t\}$ is not strongly normalizing

Application lemma

Lemma
If s, t and \vec{u} are strongly normalizing but $s t \vec{u}$ is not, then there are x, s^{\prime} such that $s \rightarrow^{*} \lambda x . s^{\prime}$ and $s^{\prime}\{x \leftarrow t\} \vec{u}$ is not strongly normalizing

Rephrasing using contraposition If

- s, t and \vec{u} are strongly normalizing
- $s \rightarrow^{*} \lambda x . s^{\prime}$
- $s^{\prime}\{x \leftarrow t\} \vec{u}$ is strongly normalizing
then $s t \vec{u}$ is strongly normalizing

Well-founded order

Order relation (E, \leq) : binary relation \leq on the set E that is:

- reflexive
$\forall x \in E, x \leq x$
- antisymmetric
$\forall x, y \in E, x \leq y \wedge y \leq x \Rightarrow x=y$
- transitive
$\forall x, y, z \in E, x \leq y \wedge y \leq z \Rightarrow x \leq z$
Strict order

$$
x<y \quad \Longleftrightarrow x \leq y \wedge x \neq y
$$

Well-founded order: no infinite strictly decreasing chain

$$
x_{0}>x_{1}>x_{2}>\ldots
$$

Alternative characterization: every non-empty subset of E has a minimal element

Well-founded induction

Context: well-founded order (E, \leq)
For any predicate P on E

$$
(\forall x \in E,(\forall y \in E, y<x \Rightarrow P(y)) \Rightarrow P(x)) \Rightarrow \forall x \in E, P(x)
$$

Goal: proving a property of the shape $\forall x \in E, P(x)$
Let $x \in E$

- assume $P(y)$ true for all $y<x$ (induction hypotheses)
- show that $P(x)$ holds

Question: where is the base case of this induction?

Lexicographic order

Lexicographic product of two orders $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$: order on $A \times B$ defined by the condition

$$
(a, b) \leq\left(a^{\prime}, b^{\prime}\right) \quad \Longleftrightarrow \quad a<_{A} a^{\prime} \vee\left(a=a^{\prime} \wedge b \leq_{B} b^{\prime}\right)
$$

Property
the lexicographic product of two well-founded orders is a well-founded order Consequence: induction on a lexicographic order is valid

Exercise: Ackermann function

The Ackermann function is described by the following equations

$$
\begin{aligned}
\operatorname{ack}(0, n) & =n+1 \\
\operatorname{ack}(m+1,0) & =\operatorname{ack}(m, 1) \\
\operatorname{ack}(m+1, n+1) & =\operatorname{ack}(m, \operatorname{ack}(m+1, n))
\end{aligned}
$$

Show that $\operatorname{ack}(m, n)$ is indeed defined for any $m, n \in \mathbb{N}$

Lemma: preservation of normalization by substitution

Lemma
If t and u are well-typed and strong normalizing then $t\{x \longleftarrow u\}$ is strongly normalizing
By induction on the lexicographic product

$$
(\mathrm{tl}(\operatorname{ty}(u)), \operatorname{ht}(t), \mathrm{tl}(t))
$$

where

- $\operatorname{ty}(u)$ is the type of u
- $\mathrm{tl}(a)$ is the size of a (numbers of nodes in the syntactic tree)
- ht (t) is the length of the longest reduction sequence starting from t

Proof

By case on the shape of t

- Case of a variable
- Case $t=x$ then $x\{x \leftarrow u\}=u$, strongly normalizing by hypothesis
- Case $t=y$ with $y \neq x$ then $y\{x \leftarrow u\}=y$, strongly normalizing
- Case of an abstraction: $t=\lambda x . t_{0}$

Then $\operatorname{ht}\left(t_{0}\right)=\operatorname{ht}(t)$ and $\mathrm{tl}\left(t_{0}\right)<\mathrm{tl}(t)$ and then $\left(\mathrm{tl}(\operatorname{ty}(u)), \operatorname{ht}\left(t_{0}\right), \operatorname{tl}\left(t_{0}\right)\right)<(\mathrm{tl}(\operatorname{tg}(u)), \operatorname{ht}(t), \operatorname{tl}(t))$
By induction hypothesis, $t_{0}\{x \leftarrow u\}$ is strongly normalizing
Thus $t\{x \leftarrow u\}=\lambda x .\left(t_{0}\{x \leftarrow u\}\right)$ is strongly normalizing.

- Case of an application: $t=t_{0} t_{1} t_{2} \ldots t_{n}$ with t_{0} not an application Case on t_{0}
- Case $t_{0}=y$ with $y \neq x$

Each reductions of t is in one of the t_{i} with $i \geq 1$ thus $\operatorname{ht}\left(t_{i}\right) \leq \operatorname{ht}(t)$ for all $i \geq 1$, moreover $\mathrm{tl}\left(t_{i}\right)<\mathrm{tl}(t)$ for all $i \geq 1$.
Thus by induction hypothesis $t_{i}\{x \leftarrow u\}$ is strongly normalizing $i \geq 1$,
and $y t_{1}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}$ is strongly normalizing as well
Finally $t\{x \leftarrow u\}$ is strongly normalizing

- Case $t_{0}=\lambda y \cdot t_{0}^{\prime}$

Then $t \rightarrow t^{\prime}=t_{0}^{\prime}\left\{y \leftarrow t_{1}\right\} t_{2} \ldots t_{n}$ and $\operatorname{ht}\left(t^{\prime}\right)<\operatorname{ht}(t)$
Then by induction hypothesis $t^{\prime}\{x \leftarrow u\}$ is strongly normalizing
We have

$$
\begin{aligned}
& t^{\prime}\{x \leftarrow u\} \\
& =\left(t_{0}^{\prime}\left\{y \leftarrow t_{1}\right\} t_{2} \ldots t_{n}\right)\{x \leftarrow u\} \\
& =t_{0}^{\prime}\{x \leftarrow u\}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\} t_{2}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}
\end{aligned}
$$

By induction hypothesis $t_{i}\{x \leftarrow u\}$ is strongly normalizing for any i
Thus by application lemma $t\{x \leftarrow u\}$ is strongly normalizing

- Case $t_{0}=x$ We have to show that $u t_{1}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}$ If $u \rightarrow^{*} y$ then we conclude as above
Otherwise $u \rightarrow{ }^{*} \lambda y . u_{0}$
By induction hypothesis $t_{i}\{x \longleftarrow u\}$ is strongly normalizing for any $i \geq 1$
To apply the lemma, we have to show that $t^{\prime}=u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\} t_{2}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow$ $u\}$ is strongly normalizing Show that $t^{\prime}=u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\} t_{2}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}$ is strongly normalizing
Trick: $t^{\prime}=\left(z t_{2}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}\right)\left\{z \leftarrow u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\}\right\}$ Then we can conclude by induction hypothesis by just checking that:
* $z t_{2}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}$ is strongly normalizing
* $u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\}$ is strongly normalizing
* $\operatorname{ty}\left(u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\}\right)<\operatorname{ty}(u)$
* $z t_{2}\{x \leftarrow u\} \ldots t_{n}\{x \leftarrow u\}$ is strongly normalizing since the $t_{i}\{x \leftarrow u\}$ are strongly normalizing
* We have $\operatorname{ty}(u)=\operatorname{ty}\left(\lambda x . u_{0}\right)=\sigma \rightarrow \tau$ and $\operatorname{ty}\left(t_{1}\{x \leftarrow u\}\right)=\operatorname{ty}\left(t_{1}\right)=\sigma<\operatorname{ty}(u)$ Since u_{0} and $t_{1}\{x \leftarrow u\}$ are strongly normalizing we deduce by induction hypothesis that $u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\}$ is strongly normalizing
* Moreover $\operatorname{ty}\left(u_{0}\left\{y \leftarrow t_{1}\{x \leftarrow u\}\right\}\right)=\operatorname{ty}\left(u_{0}\right)=\tau<\operatorname{ty}(u)$

Then we can apply induction hypothesis to prove that t^{\prime} is strongly normalizing, and the lemma to deduce that t is strongly normalizing.

7 Denotational semantics

Semantic domains (λ-calculus with simple types)

Denotational semantics

- associate to each λ-term t a mathematical object s
where the nature of s depends on the type of t
We associate to each type τ a set of mathematical values D^{τ} called the semantic domain of τ

$$
\begin{aligned}
D^{\text {bool }} & =\mathbb{B} \\
D^{\text {int }} & =\mathbb{N} \\
D^{\sigma \rightarrow \tau} & =\left(D^{\sigma} \rightarrow D^{\tau}\right)
\end{aligned}
$$

where $A \rightarrow B$ is the set of mathematical functions from A to B

Semantics of terms

Translation by induction on the structure of the term

$$
\begin{aligned}
\llbracket x \rrbracket_{\rho} & =\rho(x) \\
\llbracket \lambda x . t_{0} \rrbracket_{\rho} & =a \mapsto \llbracket t_{0} \rrbracket_{\rho[x \leftarrow a]} \\
\llbracket t_{1} t_{2} \rrbracket_{\rho} & =\llbracket t_{1} \rrbracket_{\rho} \llbracket t_{2} \rrbracket_{\rho}
\end{aligned}
$$

where ρ is an environment: a function from λ-variables towards semantic values, with $\rho[x \leftarrow a]$ defined by

$$
\begin{aligned}
\rho[x \leftarrow a](x) & =a \\
\rho[x \leftarrow a](y) & =\rho(y) \quad \text { si } y \neq x
\end{aligned}
$$

Note: here x is a λ-variable and a is a mathematical variable

Examples

$$
\begin{aligned}
\llbracket \lambda x \cdot x \rrbracket_{\rho} & =a \mapsto \llbracket x \rrbracket_{\rho[x \leftarrow a]} \\
& =a \mapsto(\rho[x \leftarrow a])(x) \\
& =a \mapsto a \\
\llbracket \lambda x . \lambda y \cdot x \rrbracket_{\rho} & =a \mapsto \llbracket \lambda y \cdot x \rrbracket_{\rho[x \leftarrow a]} \\
& =a \mapsto\left(b \mapsto \llbracket x \rrbracket_{\rho[x \leftarrow a][y \leftarrow b]}\right) \\
& =a \mapsto(b \mapsto(\rho[x \leftarrow a][y \leftarrow b])(x)) \\
& =a \mapsto(b \mapsto a)
\end{aligned}
$$

Reduction preserves the semantics

Theorem

$$
\text { If } t \rightarrow t^{\prime} \text {, then } \llbracket t \rrbracket_{\rho}=\llbracket t^{\prime} \rrbracket_{\rho} \text { for all } \rho
$$

Proof: by induction on $t \rightarrow t^{\prime}$

Extended denotational semantics

Most of the extensions can be added directly

$$
\begin{aligned}
\llbracket \mathrm{T} \rrbracket_{\rho} & =\text { vrai } \\
\llbracket \mathrm{F} \rrbracket_{\rho} & =\text { faux } \\
\llbracket n \rrbracket_{\rho} & =n \\
\llbracket t_{1} \oplus t_{2} \rrbracket_{\rho} & =\llbracket t_{1} \rrbracket_{\rho}+\llbracket t_{2} \rrbracket_{\rho} \\
\llbracket \text { isZero }(t) \rrbracket_{\rho} & = \begin{cases}\text { vrai } & \text { si } \llbracket t \rrbracket_{\rho}=0 \\
\text { faux } & \text { si } \llbracket t \rrbracket_{\rho} \neq 0\end{cases}
\end{aligned}
$$

What about fixpoints?

Scott domains

trailer
Extended semantic domaines

- with partially defined values
- with an order on the information level of a partially defined value min: undefined, max: fully defined
- completes: any increasing sequence has a limit

Any function can be completed
Interesting functions: monotone and continuous

- more information on the argument gives more information on the result
- image of a limit = limit of the images

Then we find a semantical fixpoint to interpret any term

