Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 3: simply-typed λ -calculus

1 Wrong programs

Wrong program in Python

Wrong program in Caml

Wrong λ -term

```
(\lambda x.\pi_1(\pi_2(x))) ((\lambda y.\langle y, (\lambda z.z)2\rangle)4)
\rightarrow_v (\lambda x.\pi_1(\pi_2(x))) \langle 4, (\lambda z.z)2\rangle
\rightarrow_v (\lambda x.\pi_1(\pi_2(x))) \langle 4, 2\rangle
\rightarrow_v \pi_1(\pi_2(\langle 4, 2\rangle)))
\rightarrow_v \pi_1(2)
```

blocked term: not a value, yet not reducible

Motto

Well-typed programs do not go wrong

Connects a static analysis

- expressions have consistent types
 with a semantic property
- the programs runs smoothly

2 Simple types

Typed syntax

Types

$$\begin{array}{cccc} \sigma, \tau & ::= & o & & \text{base types} \\ & | & \sigma \longrightarrow \tau & & \text{function types} \end{array}$$

Terms

$$t ::= x$$
 variable
 $\begin{vmatrix} \lambda x^{\sigma}.t \\ t_1 t_2 \end{vmatrix}$ typed abstraction
application

Notation $\tau_n \to (\tau_{n-1} \dots (\tau_1 \to \tau_0) \dots)$ is written $\tau_n \to \tau_{n-1} \dots \tau_1 \to \tau_0$

Simple types, à la Church

Typing judgment

$$\Gamma \vdash t : \sigma$$

the term t is well typed with type σ in the environment Γ with Γ : a set of typed variables $\{x_1^{\sigma_1}, \dots, x_n^{\sigma_n}\}$

$$\frac{x^{\tau} \in \Gamma}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma, x^{\sigma} \vdash e : \tau}{\Gamma \vdash \lambda x^{\sigma}.e : \sigma \to \tau} \qquad \frac{\Gamma \vdash e_{1} : \sigma \to \tau \qquad \Gamma \vdash e_{2} : \sigma}{\Gamma \vdash e_{1} e_{2} : \tau}$$

Simple types, without annotations

Typing judgment

$$\Gamma \vdash t : \sigma$$

the term t is well typed with type σ in the environment Γ with Γ : a function from variables to types $\{x_1 : \sigma_1, ..., x_n : \sigma_n\}$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \lambda x. e : \sigma \rightarrow \tau} \qquad \frac{\Gamma \vdash e_1 : \sigma \rightarrow \tau \qquad \Gamma \vdash e_2 : \sigma}{\Gamma \vdash e_1 e_2 : \tau}$$

Exercise: examples and counter-examples

Give typing judgments for the following terms, or justify that this cannot be done

- $\lambda x.x$
- $\lambda x y.x$
- $\lambda x y z . x(yz)$
- $\lambda x.xx$

Extended types: integers

New type

$$\sigma, \tau$$
 ::= ... | int

New typing rules

$$\frac{\Gamma \vdash t_1 : \mathsf{int} \qquad \qquad \frac{\Gamma \vdash t_1 : \mathsf{int} \qquad \Gamma \vdash t_2 : \mathsf{int}}{\Gamma \vdash t_1 \oplus t_2 : \mathsf{int}}$$

Extended types: booleans

New type

$$\sigma, \tau$$
 ::= ... | bool

New typing rules

$$\frac{\Gamma \vdash \mathsf{T} : \mathsf{bool}}{\Gamma \vdash \mathsf{F} : \mathsf{bool}}$$

$$\frac{\Gamma \vdash t : \mathsf{int}}{\Gamma \vdash \mathsf{isZero}(t) : \mathsf{bool}}$$

$$\frac{\Gamma \vdash t_1 : \mathsf{bool} \qquad \Gamma \vdash t_2 : \tau \qquad \Gamma \vdash t_3 : \tau}{\Gamma \vdash \mathsf{if} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 : \tau}$$

Extended types: products

New type

$$\sigma, \tau ::= \dots$$
 $| \tau_1 \times \tau_2 |$

New typing rules

$$\frac{\Gamma \vdash t_1 \,:\, \tau_1 \qquad \Gamma \vdash t_2 \,:\, \tau_2}{\Gamma \vdash \langle t_1, t_2 \rangle \,:\, \tau_1 \times \tau_2}$$

$$\frac{\Gamma \vdash t : \tau_1 \times \tau_2}{\Gamma \vdash \pi_1(t) : \tau_1} \qquad \frac{\Gamma \vdash t : \tau_1 \times \tau_2}{\Gamma \vdash \pi_2(t) : \tau_2}$$

Extended types: recursion

New typing rule

$$\frac{\Gamma \vdash t \,:\, (\sigma \to \tau) \to (\sigma \to \tau)}{\Gamma \vdash \mathsf{Fix}(t) \,:\, \sigma \to \tau}$$

3 Type preservation

Type preservation: β -reduction

If
$$\Gamma \vdash t : \tau$$
 and $t \rightarrow_{\beta} t'$ then

$$\Gamma \vdash t' : \tau$$

Proof by induction on $t \rightarrow_{\beta} t'$.

Case t₁t₂ → t¹₁t₂ with t₁ → t¹₁
By inversion of the hypothesis Γ ⊢ t₁t₂: τ there is σ such that Γ ⊢ t₁: σ → τ and Γ ⊢ t₂: σ
By induction hypothesis Γ ⊢ t¹₁: σ → τ and one can conclude with the typing rule for applications.

$$\frac{\Gamma \vdash t_1' : \sigma \to \tau \qquad \Gamma \vdash t_2 : \sigma}{\Gamma \vdash t_1' t_2 : \tau}$$

3

- Case $t_1t_2 \rightarrow t_1t_2'$ with $t_2 \rightarrow t_2'$ similar
- Case $\lambda x.t_0 \rightarrow \lambda x.t_0'$ with $t_0 \rightarrow t_0'$ similar
- Case $(\lambda x.t_1)t_2 \rightarrow t_1\{x \leftarrow t_2\}$

By inversion of the hypothesis $\Gamma \vdash (\lambda x.t_1)t_2 : \tau$ there is σ such that $\Gamma \vdash \lambda x.t_1 : \sigma \rightarrow \tau$ and $\Gamma \vdash t_2 : \sigma$

and by inversion of $\Gamma \vdash \lambda x.t_1 : \sigma \rightarrow \tau$ we get $\Gamma, x : \sigma \vdash t_1 : \tau$

Last step required: combine $\Gamma, x : \sigma \vdash t_1 : \tau$ and $\Gamma \vdash t_2 : \sigma$ to conclude something about the type of $t_1\{x \leftarrow t_2\}$

Lemma: substitution preserves types

If $\Gamma, x : \sigma \vdash t : \tau$ and $\Gamma \vdash u : \sigma$ then $\Gamma \vdash t\{x \leftarrow u\} : \tau$

Substitution and types

If $\Gamma, x : \sigma \vdash t : \tau$ and $\Gamma \vdash u : \sigma$ then

$$\Gamma \vdash t\{x \leftarrow u\} : \tau$$

Proof by induction on the derivation of Γ , $x : \sigma \vdash t : \tau$

- Case where *t* is a variable
 - Case $\Gamma, x : \sigma \vdash x : \tau$ with $\sigma = \tau$

Then $x\{x \leftarrow u\} = u$ and $\Gamma \vdash u : \sigma = \tau$

- Case Γ , $x : \sigma \vdash y : \tau$ with $x \neq y$ and $\Gamma(y) = \tau$

Then $y\{x \leftarrow u\} = y$ and $\Gamma \vdash y : \tau$

• Case $\Gamma, x : \sigma \vdash t_1 \ t_2 : \tau \ \text{with} \ \Gamma, x : \sigma \vdash t_1 : \sigma \to \tau \ \text{and} \ \Gamma, x : \sigma \vdash t_2 : \sigma$

and induction hypotheses $\Gamma \vdash t_1\{x \leftarrow u\} : \sigma \rightarrow \tau$ and $\Gamma \vdash t_2\{x \leftarrow u\} : \sigma$

We deduce $\Gamma \vdash (t_1\{x \leftarrow u\})$ $(t_2\{x \leftarrow u\})$: τ , which allows us to conclude since $(t_1\{x \leftarrow u\})$ $(t_2\{x \leftarrow u\})$ = $(t_1 \ t_2)\{x \leftarrow u\}$

• Case $\Gamma, x : \sigma \vdash \lambda y^{\tau'} \cdot t : \tau' \to \tau \text{ with } \Gamma, x : \sigma, y : \tau' \vdash t : \tau$

and induction hypothesis $\Gamma, \gamma : \tau' \vdash t\{x \leftarrow u\} : \tau$

THen
$$\Gamma \vdash \lambda y^{\tau'}.(t\{x \leftarrow u\}) : \tau$$

By α -renaming we assume $y \neq x$ and $y \notin \text{fv}(u)$, therefore $(\lambda y^{\tau'}.t)\{x \leftarrow u\} = \lambda y^{\tau'}.(t\{x \leftarrow u\})$, and we conclude with the former judgment

Reduction preserves types

Consequences

- If a term has a type, it will keep it along β -reduction
- If a term has a type and a normal form, the normal form has the same type

4 Type safety

Safety

Evaluation of a term should never see an inconsistent operation

• reduction never blocked before reaching a value

Simple statement:

if t is not a value, then there is t' such that $t \rightarrow t'$

Type safety

Progress lemma

If $\vdash t : \tau$ and t is not a value then there is t' such that $t \to t'$

Using also the type preservation lemma we deduce $\vdash t' : \tau$, and we can go on *Safety theorem*

If $\vdash t : \tau$, then

- either there is $t \to t_1 \to ... \to t_n$ with t_n a value
- or there is an infinite reduction sequence $t \to t_1 \to t_2 \to ...$

Progress lemma for λ -calculus + pairs (call by value)

The property

If $\vdash t : \tau$ then either t is a value or there is t' with $t \rightarrow_{\tau} t'$

is proved by induction on the derivation of $\vdash t : \tau$

- Case Γ ⊢ x : τ with Γ(x) = τ
 Impossible since we consider only the empty environment
- Case $\vdash \lambda x.t_0 : \sigma \to \tau$ with $x : \sigma \vdash t_0 : \tau$ Then $t = \lambda x.t_0$ is a value
- Case $\vdash \langle t_1, t_2 \rangle$: $\tau_1 \times \tau_2$ with $\vdash t_1$: τ_1 and $\vdash t_1$: τ_2 By induction hypothesis on $\vdash t_1$: τ_1 we have:
 - either there is t_1' with $t_1 \to t_1'$ and then $\langle t_1, t_2 \rangle \to_{\upsilon} \langle t_1', t_2 \rangle$
 - or t_1 is a value v_1

Then by induction hypothesis on $\vdash t_2 : \tau_2$ we have:

- * either there is t_2' with $t_2 \to t_2'$ and then $\langle v_1, t_2 \rangle \to_v \langle v_1, t_2' \rangle$
- * or t_2 is a value v_2 and then $\langle v_1, v_2 \rangle$ is a value
- Case $\vdash t_1 t_2 : \tau \text{ with } \vdash t_1 : \sigma \longrightarrow \tau \text{ and } \vdash t_2 : \sigma$

As in the previous case:

- either there is t'_1 with $t_1 \to t'_1$, and then $t_1 t_2 \to_v t'_1 t_2$
- or t_1 is a value v_1 , and in this case
 - * either there is t_2' with $t_2 \to t_2'$, and then $v_1 t_2 \to_v v_1 t_2'$
 - * or t_2 is a value v_2 Then we want to prove that v_1 v_2 reduces Classification lemma: if a is a value and $\Gamma \vdash t : \sigma \to \tau$ then a has the shape $\lambda x.a'$ By classification lemma, there are x, t_1' such that $v_1 = \lambda x.t_1'$ and therefore $(\lambda x.t_1')v_2 \to_v t_1'\{x \leftarrow v_2\}$
- Case $\vdash \pi_1(t_0) : \tau_1 \text{ with } \vdash t_0 : \tau_1 \times \tau_2$ By induction hypothesis we have:
 - either there is t_0' with $t_0 \to t_0'$, and then $\pi_1(t_0) \to_{v} \pi_1(t_0')$
 - or t_0 is a value v_0 , and we want to prove that $\pi_1(v_0)$ reduces Classification lemma: if a is a value and $\Gamma \vdash a : \tau_1 \times \tau_2$ then a has the shape $\langle a_1, a_2 \rangle$ By classification lemma there are v_1, v_2 such that $v_0 = \langle v_1, v_2 \rangle$ and therefore $\pi_1(\langle v_1, v_2 \rangle) \rightarrow_v v_1$
- Case $\vdash \pi_2(t_0) : \tau_2 \text{ with } \vdash t_0 : \tau_1 \times \tau_2 \text{ is similar}$

5 Curry-Howard correspondence

Programs = proofs trailer

types λ-calculus

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$$

$$\frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \lambda x.e : \sigma \to \tau}$$

$$\frac{\Gamma \vdash e_1 \,:\, \sigma \to \tau \qquad \Gamma \vdash e_2 \,:\, \sigma}{\Gamma \vdash e_1 \,e_2 \,:\, \tau}$$

Natural deduction

$$\frac{\tau \in \Gamma}{\Gamma \vdash \tau}$$

$$\frac{\Gamma, \sigma \vdash \tau}{\Gamma \vdash \sigma \Rightarrow \tau}$$

$$\frac{\Gamma \vdash \sigma \Rightarrow \tau \qquad \Gamma \vdash \sigma}{\Gamma \vdash \tau}$$

τ : type ⊢ : typability τ : formula \vdash : provability

Many proof assistants are built upon this correspondence

6 Normalization

Normalization

Does reduction actually make something smaller? Theorm

If $\Gamma \vdash t : \tau$, then t is strongly normalizing.

Normalization theorem: a syntactic proof?

If $\Gamma \vdash t : \tau$, then t is strongly normalizing. *Proof attempt using structural induction on t*

- Case of a variable: *x* is strongly normalizable
- Case of an abstraction: if t_0 is strongly normalizing, then so is $\lambda x.t_0$
- Case of an application: if t_1 and t_2 are both strongly normalizing, then...

$$t_1t_2 \rightarrow_{\beta}^* (\lambda x.t_1')t_2 \rightarrow_{\beta}^* (\lambda x.t_1')t_2' \rightarrow_{\beta} t_1'\{x \leftarrow t_2'\} \rightarrow_{\beta}???$$

Problem: $t_1'\{x \leftarrow t_2'\}$ is not a subterm of t, so we have no induction hypothesis available

Lemma

If t and u are well-typed and strongly normalizing, then $t\{x \leftarrow u\}$ is strongly normalizing

Exercise: preservation of normalization by reduction

If t is strongly normalizing and $t \rightarrow^* t'$ then t' is strongly normalizing

If *t* is normalizable and $t \rightarrow^* t'$ then t' is normalizable

If s and t are strongly normalizing and not st then there are x, s' such that $s \to^* \lambda x.s'$ and $s'\{x \leftarrow t\}$ is not strongly normalizing

Application lemma

Lemma

If s, t and \vec{u} are strongly normalizing but $st\vec{u}$ is not, then there are x, s' such that $s \to^* \lambda x.s'$ and $s'\{x \leftarrow t\}\vec{u}$ is not strongly normalizing

Rephrasing using contraposition If

- s, t and \vec{u} are strongly normalizing
- $s \rightarrow^* \lambda x.s'$
- $s'\{x \leftarrow t\}\vec{u}$ is strongly normalizing

then $st\vec{u}$ is strongly normalizing

Well-founded order

Order relation (E, \leq) : binary relation \leq on the set E that is:

• reflexive $\forall x \in E, \ x \le x$

• antisymmetric $\forall x, y \in E, \ x \le y \land y \le x \Longrightarrow x = y$

• transitive $\forall x, y, z \in E, \ x \le y \land y \le z \Longrightarrow x \le z$

Strict order

$$x < y \iff x \le y \land x \ne y$$

Well-founded order: no infinite strictly decreasing chain

$$x_0 > x_1 > x_2 > \dots$$

Alternative characterization: every non-empty subset of *E* has a minimal element

Well-founded induction

Context: well-founded order (E, \leq)

For any predicate P on E

$$(\forall x \in E, (\forall y \in E, y < x \Longrightarrow P(y)) \Longrightarrow P(x)) \Longrightarrow \forall x \in E, P(x)$$

Goal: proving a property of the shape $\forall x \in E, P(x)$

Let $x \in E$

- assume P(y) true for all y < x (induction hypotheses)
- show that P(x) holds

Question: where is the base case of this induction?

Lexicographic order

Lexicographic product of two orders (A, \leq_A) and (B, \leq_B) : order on $A \times B$ defined by the condition

$$(a,b) \le (a',b') \iff a <_A a' \lor (a = a' \land b \le_B b')$$

Property

the lexicographic product of two well-founded orders is a well-founded order

Consequence: induction on a lexicographic order is valid

Exercise: Ackermann function

The Ackermann function is described by the following equations

$$ack(0, n) = n + 1$$

 $ack(m + 1, 0) = ack(m, 1)$
 $ack(m + 1, n + 1) = ack(m, ack(m + 1, n))$

Show that ack(m, n) is indeed defined for any $m, n \in \mathbb{N}$

Lemma: preservation of normalization by substitution

Lemma

If t and u are well-typed and strong normalizing then $t\{x \leftarrow u\}$ is strongly normalizing By induction on the lexicographic product

where

- ty(u) is the type of u
- tl(a) is the size of a (numbers of nodes in the syntactic tree)
- ht(t) is the length of the longest reduction sequence starting from t

Proof

By case on the shape of *t*

- Case of a variable
 - Case t = x then $x\{x \leftarrow u\} = u$, strongly normalizing by hypothesis
 - Case t = y with $y \neq x$ then $y\{x \leftarrow u\} = y$, strongly normalizing
- Case of an abstraction: $t = \lambda x.t_0$

Then $ht(t_0) = ht(t)$ and $tl(t_0) < tl(t)$ and then $(tl(ty(u)), ht(t_0), tl(t_0)) < (tl(ty(u)), ht(t), tl(t))$

By induction hypothesis, $t_0\{x \leftarrow u\}$ is strongly normalizing

Thus $t\{x \leftarrow u\} = \lambda x.(t_0\{x \leftarrow u\})$ is strongly normalizing.

• Case of an application: $t = t_0 t_1 t_2 \dots t_n$ with t_0 not an application

Case on t_0

- Case $t_0 = y$ with $y \neq x$

Each reductions of t is in one of the t_i with $i \ge 1$ thus $ht(t_i) \le ht(t)$ for all $i \ge 1$, moreover $tl(t_i) < tl(t)$ for all $i \ge 1$.

Thus by induction hypothesis $t_i \{x \leftarrow u\}$ is strongly normalizing $i \ge 1$,

and $y t_1\{x \leftarrow u\} \dots t_n\{x \leftarrow u\}$ is strongly normalizing as well

Finally $t\{x \leftarrow u\}$ is strongly normalizing

- Case $t_0 = \lambda y.t_0'$

Then
$$t \to t' = t'_0 \{ y \leftarrow t_1 \} t_2 \dots t_n$$
 and $ht(t') < ht(t)$

Then by induction hypothesis $t'\{x \leftarrow u\}$ is strongly normalizing

We have

$$t'\{x \leftarrow u\}$$

$$= (t'_0\{y \leftarrow t_1\}t_2 \dots t_n)\{x \leftarrow u\}$$

$$= t'_0\{x \leftarrow u\}\{y \leftarrow t_1\{x \leftarrow u\}\}\ t_2\{x \leftarrow u\} \dots \ t_n\{x \leftarrow u\}$$

By induction hypothesis $t_i \{x \leftarrow u\}$ is strongly normalizing for any *i*

Thus by application lemma $t\{x \leftarrow u\}$ is strongly normalizing

- Case $t_0 = x$ We have to show that u $t_1\{x \leftarrow u\}$... $t_n\{x \leftarrow u\}$ If $u \rightarrow^* y$ then we conclude as above

Otherwise $u \rightarrow^* \lambda y. u_0$

By induction hypothesis $t_i \{x \leftarrow u\}$ is strongly normalizing for any $i \ge 1$

To apply the lemma, we have to show that $t' = u_0\{y \leftarrow t_1\{x \leftarrow u\}\}\ t_2\{x \leftarrow u\}\ ...\ t_n\{x \leftarrow u\}$ is strongly normalizing Show that $t' = u_0\{y \leftarrow t_1\{x \leftarrow u\}\}\ t_2\{x \leftarrow u\}\ ...\ t_n\{x \leftarrow u\}$ is strongly normalizing

Trick: $t' = (z \ t_2\{x \leftarrow u\} \ ... \ t_n\{x \leftarrow u\})\{z \leftarrow u_0\{y \leftarrow t_1\{x \leftarrow u\}\}\}\$ Then we can conclude by induction hypothesis by just checking that:

- * $z \ t_2\{x \leftarrow u\} \ \dots \ t_n\{x \leftarrow u\}$ is strongly normalizing
- * $u_0\{y \leftarrow t_1\{x \leftarrow u\}\}$ is strongly normalizing
- * $\mathsf{ty}(u_0\{y \leftarrow t_1\{x \leftarrow u\}\}) < \mathsf{ty}(u)$
- * z $t_2\{x \leftarrow u\}$... $t_n\{x \leftarrow u\}$ is strongly normalizing since the $t_i\{x \leftarrow u\}$ are strongly normalizing
- * We have $\mathsf{ty}(u) = \mathsf{ty}(\lambda x. u_0) = \sigma \to \tau$ and $\mathsf{ty}(t_1\{x \leftarrow u\}) = \mathsf{ty}(t_1) = \sigma < \mathsf{ty}(u)$ Since u_0 and $t_1\{x \leftarrow u\}$ are strongly normalizing we deduce by induction hypothesis that $u_0\{y \leftarrow t_1\{x \leftarrow u\}\}$ is strongly normalizing
- * Moreover $\operatorname{ty}(u_0\{y \leftarrow t_1\{x \leftarrow u\}\}) = \operatorname{ty}(u_0) = \tau < \operatorname{ty}(u)$

Then we can apply induction hypothesis to prove that t' is strongly normalizing, and the lemma to deduce that t is strongly normalizing.

7 Denotational semantics

Semantic domains (λ -calculus with simple types)

Denotational semantics

• associate to each λ -term t a mathematical object s

where the nature of s depends on the type of t

We associate to each type τ a set of mathematical values D^{τ} called the *semantic domain* of τ

$$\begin{array}{lll} D^{\rm bool} &=& \mathbb{B} \\ D^{\rm int} &=& \mathbb{N} \\ D^{\sigma \to \tau} &=& (D^{\sigma} \to D^{\tau}) \end{array}$$

where $A \rightarrow B$ is the set of mathematical functions from A to B

Semantics of terms

Translation by induction on the structure of the term

where ρ is an *environment*: a function from λ -variables towards semantic values, with $\rho[x \leftarrow a]$ defined by

$$\rho[x \leftarrow a](x) = a$$
 $\rho[x \leftarrow a](y) = \rho(y) \quad \text{si } y \neq x$

Note: here x is a λ -variable and a is a mathematical variable

Examples

$$[\![\lambda x.x]\!]_{\rho} = a \mapsto [\![x]\!]_{\rho[x \leftarrow a]}$$

$$= a \mapsto (\rho[x \leftarrow a])(x)$$

$$= a \mapsto a$$

$$[\![\lambda x.\lambda y.x]\!]_{\rho} = a \mapsto [\![\lambda y.x]\!]_{\rho[x \leftarrow a]}$$

$$= a \mapsto (b \mapsto [\![x]\!]_{\rho[x \leftarrow a][y \leftarrow b]})$$

$$= a \mapsto (b \mapsto (\rho[x \leftarrow a][y \leftarrow b])(x))$$

$$= a \mapsto (b \mapsto a)$$

Reduction preserves the semantics

Theorem

If
$$t \to t'$$
, then $[t]_{\rho} = [t']_{\rho}$ for all ρ

the other direction is subtle

Proof: by induction on $t \to t'$

Extended denotational semantics

Most of the extensions can be added directly

What about fixpoints?

Scott domains trailer

Extended semantic domaines

- · with partially defined values
- with an order on the information level of a partially defined value *min: undefined, max: fully defined*
- · completes: any increasing sequence has a limit

Any function can be completed

Interesting functions: monotone and continuous

- more information on the argument gives more information on the result
- image of a limit = limit of the images

Then we find a semantical fixpoint to interpret any term

using Knaster-Tarski theorem