
Lambda-calculus and programming language semantics
Thibaut Balabonski @ UPSay
Winter 2023
https://www.lri.fr/∼blsk/LambdaCalculus/

Chapter 4: semantics of an imperative
programming language
1 An imperative language: IMP

An imperative language: IMP
Core of an imperative language, with:

• arithmetic and boolean expressions

• mutable variables

• instructions (assignment, condition, loop)

Endorses the same rôle as PCF, for imperative programming

Aexp: arithmetic expressions
Integer constants: n, m ℕ
Variables: X , Y
Arithmetic expressions: a Aexp

a ∶∶= n
| X
| a1 + a2
| a1 − a2
| a1 × a2

Bexp: boolean expressions
Boolean constants: T, F B
Boolean expressions: b Bexp

b ∶∶= T
| F
| a1 = a2
| a1 ≤ a2
| ¬b
| b1 ∨ b2
| b1 ∧ b2

Com: commands
Commands (instructions): c Com

c ∶∶= skip
| X := a
| c1 ; c2
| if b then c1 else c2
| while b do c

1

https://www.lri.fr/~blsk/LambdaCalculus/

2 Big step operational semantics

Operational semantics
E�ects of expressions and commands, depending on a state of the memory
States Σ = → ℕ
• functions from variables to numbers

• if � ∈ Σ, then � (X) is the value of the variable X in the state �
Note: variables only have numeric values here (no boolean variables)

Big step semantics: relation between

• expression or command

• state

• result

Semantics of arithmetic expressions
Evaluation relation

⟨a, �⟩ ⇓ n
Inference rules

⟨n, �⟩ ⇓ n ⟨X, �⟩ ⇓ � (X)

⟨a1, �⟩ ⇓ n1 ⟨a2, �⟩ ⇓ n2 n1 +ℕ n2 = n
⟨a1 + a2, �⟩ ⇓ n

Other binary operations similar
Note: the semantics being de�ned by a relation, some cases can be unde�ned Here, there are no � , n such

that ⟨1 − 2, �⟩ ⇓ n

Semantics of boolean expressions
Evaluation relation

⟨b, �⟩ ⇓ b
Inference rules

⟨T, �⟩ ⇓ T ⟨F, �⟩ ⇓ F

⟨a1, �⟩ ⇓ n1 ⟨a2, �⟩ ⇓ n2
⟨a1 ≤ a2, �⟩ ⇓ b

where b is T if n1 less than or equal to n2 and F otherwise

Semantics of instructions
The relation

⟨c, �⟩ ⇓ � ′

means that

• in state � , the command c terminates

• a�er the execution we reach the state c′

At the beginning, we assume an initial state �0 such that

∀X, �0(X) = 0

2

State evoluation
Execution

⟨X := X + 1, �⟩ ⇓ � ′

� ′ is the state such that

• � ′(X) is 1 + � (X)

• for all Y ≠ X , � ′(Y) = � (Y)
Notation �{X ← n}

�{X ← n}(X) = n
�{X ← n}(Y) = � (Y) si Y ≠ X

Then
⟨X := X + 1, �⟩ ⇓ �{X ← � (X) +ℕ 1}

Rules for instructions
Empty command

⟨skip, �⟩ ⇓ �

Variable assignment

⟨a, �⟩ ⇓ n
⟨X := a, �⟩ ⇓ �{X ← n}

Sequential composition

⟨c1, �⟩ ⇓ � ′′ ⟨c2, � ′′⟩ ⇓ � ′
⟨c1 ; c2, �⟩ ⇓ � ′

Conditional instruction

⟨b, �⟩ ⇓ T ⟨c1, �⟩ ⇓ � ′
⟨if b then c1 else c2, �⟩ ⇓ � ′

⟨b, �⟩ ⇓ F ⟨c2, �⟩ ⇓ � ′
⟨if b then c1 else c2, �⟩ ⇓ � ′

Rules for instructions: loop
When the condition is false, nothing happens

⟨b, �⟩ ⇓ F

⟨while b do c, �⟩ ⇓ �

When the condition is true, we execute the body of the loop, and then execute the whole loop again

⟨b, �⟩ ⇓ T ⟨c, �⟩ ⇓ � ′′ ⟨while b do c, � ′′⟩ ⇓ � ′
⟨while b do c, �⟩ ⇓ � ′

Derivation is possible when the execution is �nite

3 Denotational semantics

Denotational semantics
We want to characterize the function realized by a program
We are interested in (computable) functions rather than algorithms
We consider as equivalent two programs de�ning the same mathematical function

3

Denotational semantics for IMP
Base functions

• JaK ∶ Σ→ ℕ

• JbK ∶ Σ→ B

• JcK ∶ Σ⇀ Σ

In other words

• J.K ∶ Aexp → Σ→ ℕ

• J.K ∶ Bexp → Σ→ B

• J.K ∶ Com → Σ⇀ Σ

Denotation of Aexp’s

JnK� = n
JX K� = � (X)

Ja1 + a2K� = Ja1K� +ℕ Ja2K�
In other words

JnK = � ↦ n
JX K = � ↦ � (X)

Ja1 + a2K = � ↦ Ja1K� +ℕ Ja2K�

Denotation of Bexp’s

JTK = � ↦ T
Ja1 = a2K = � ↦ Ja1K� =ℕ Ja2K�
Jb1 ∧ b2K = � ↦ Jb1K� ∧B Jb2K�

Denotation of instructions

JskipK = � ↦ �
JX := aK = � ↦ �{X ← JaK�}
Jc1 ; c2K = Jc2K ◦ Jc1K

Jif b then c1 else c2K� =
{

Jc1K� si JbK�
Jc2K� si ¬JbK�

Loop
We are looking for a denotation of

while b do c (= w)

Remark: JwK and JcK are partial functions Σ⇀ Σ satisfying

JwK� =
{
(JwK ◦ JcK)(�) if JbK�
� if ¬JbK�

We are looking for a �xpoint

4

4 Fixpoints

McCarthy’s 91 function
Is this function actually de�ned?

let rec f x =
if x > 100
then x - 10
else f(f(x+11))

• if x > 100, the result is x − 10

• if x 6 100, is there any result?

A priori: partial function,ℕ ⇀ ℕ

An order on functions
De�nition order

f ⊑ g
if

• if f de�ned on x then g de�ned on x

• for any x in the shared input domain, f (x) = g(x)

In other words:
g|dom(f) = f

Directed set
Set E ⊆ ℕ ⇀ ℕ such that if it contains two functions f and g, then it also contains a function ℎ

which:

• is more de�ned than f and than g

• coı̈ncides with f and g

In other words:
∀f , g ∈ E, ∃ℎ ∈ E, f ⊑ ℎ ∧ g ⊑ ℎ

Note: all functions in E are mutually consistent

Continuity
A majorant of E is an element m such that

∀x ∈ E, x ⊑ m

The supremum of E is the smallest majorant, if it exists sup(E)
Note: if E is a directed set, then sup(E) exists
A function f ∶ E → E is continuous if it preserves supremums

f (sup(E)) = sup(f (E))

Exercise: a continuous function is monotone

5

Fixpoint
Consider a directed set E
• any subset of E has a supremum

• sup(∅) is the smallest element of E ⊥
Then any continuous function f ∶ E → E admits the following has a �xpoint

sup{f n(⊥) ∣ n ∈ ℕ}

Function 91 defined as a fixpoint
Consider the function F ∶ (ℕ ⇀ ℕ)→ (ℕ ⇀ ℕ) de�ned by

F (f) = x ↦ if x > 100 then x − 10 else f (f (x + 11))

F is continuous

• f ↦ (x ↦ f (f (x + 11))) continuous with respect to f

• f ↦ (x ↦ if b(x) then G(f)(x) else H (f)(x)) continuous with respect to f if G and H are

F has a �xpoint Fix(F) such that F (Fix(F)) = Fix(F) This �xpoint of F can be de�ned starting from
the partial function ⊥ which is unde�ned on every possible input

The denotation of while b do c defined as a fixpoint
For any functions g ∶ Σ ⇀ Σ and ℎ ∶ Σ → B, consider the function Fg,ℎ ∶ (Σ ⇀ Σ) → (Σ ⇀ Σ)

de�ned by

Fg,ℎ(f)(�) =
{
(f ◦ g)(�) if ℎ(�)
� if ¬ℎ(�)

Fg,ℎ is continuous for ⊑

sup
f ∈E

(Fg,ℎ(f))(�) =
{
(supf ∈E(f) ◦ g)(�) if ℎ(�)
� otherwise

Fg,ℎ has a �xpoint Fix(Fg,ℎ), which is a partial function Σ⇀ Σ

Analysis of Fg,ℎ
Meaning of the iterates F kg,ℎ(⊥)
• Fg,ℎ(⊥) is de�ned only on states � such that ¬ℎ(�), and then Fg,ℎ(⊥)(�) = �

• F n+1g,ℎ (⊥) is de�ned on states � such that

– gi(�) is de�ned for all i 6 n + 1
– ℎ(gi(�)) for i 6 n
– ¬ℎ(gn+1(�))

and then F n+1g,ℎ (⊥)(�) = gn+1(�)
The �xpoint of Fg,ℎ is thus de�ned for all � such that there is n with

• gi(�) de�ned and ℎ(gi(�)) for i < n

• gn(�) de�ned and ¬ℎ(gn(�))
We thus de�ne

Jwhile b do cK = Fix(FJcK,JbK)

6

5 Soundness and completeness

Soundness of the operational semantics
Soundness: the values given by the operational semantics are correct with respect to the denotational

semantics
Theorem

If ⟨c, �⟩ ⇓ � ′ then JcK� = � ′

Proof by induction on the derivation of ⟨c, �⟩ ⇓ � ′, with lemmas on the semantics of the expressions

Completeness of the operational semantics
Completeness: the operational semantics allows the derivation of all the values speci�ed by the

denotational semantics
Theorem

If JcK� is de�ned and is equal to � ′ the one can derive ⟨c, �⟩ ⇓ � ′

Proof by inducton on c, with lemmas on the semantics of expressions

6 Axiomatic semantics

Axiomatic semantics for IMP
Hoare triples

{A} c {B}
• A: precondition of c
• B: postcondition of partial correctness of c
Interpretation

If A is satis�ed before execution of c and if the execution of c terminates, then B is satis�ed a�er the
execution of c

Rules for partial correctness

⊢ {A} skip {A} ⊢ {B{X ← a}} X := a {B}
⊢ {A} c1 {C} ⊢ {C} c2 {B}

⊢ {A} c1 ; c2 {B}

⊢ {b ∧ A} c1 {B} ⊢ {(¬b) ∧ A} c2 {B}
⊢ {A} if b then c1 else c2 {B}

⊢ {b ∧ I} c {I}
⊢ {I} while b do c {(¬b) ∧ I}

A ⟹ A′ ⊢ {A′} c {B′} B′ ⟹ B
⊢ {A} c {B}

Meaning of an assertion
Notation

• � ⊨ A : A is satis�ed by the state �
The triple {A} c {B} then means

∀� ∈ Σ, (� ⊨ A ∧ JcK� dé�ni) ⟹ JcK� ⊨ B
Simpli�cation: JcK is extended as a total function returning the value ⊥ where it should not be

de�ned. We de�ne ⊥ ⊨ A for all assertion A. Then {A} c {B} means

∀� ∈ Σ, � ⊨ A ⟹ JcK� ⊨ B

7

Definition of � ⊨ A: a semantics for assertions
To keep the formalism compact, we use as assertions the boolean expressions of IMP

⊥ ⊨ A
� ⊨ T
� ⊨ a1 = a2 if Ja1K� =ℕ Ja2K�
� ⊨ A ∧ B if � ⊨ A and � ⊨ B
� ⊨ ¬A if � ⊭ A

Extended assertions
We could add: quanti�cations and logical variables

• extend Aexp with special variables i

• extend Bexp with the assertions ∀i.A and ∃i.A

• parameterize the semantics by a valuation � ∶ → ℕ

JiK�,� = �(i)

� ⊨� ∀i.A if � ⊨�{i←n} A for all n ∈ ℕ
� ⊨� ∃i.A if � ⊨�{i←n} A for at least one n ∈ ℕ

Properties of the semantics of assertions
Some results

• JbK� = T if and only if � ⊨� b

• JbK� = F if and only if � ⊭� b

• JaK�{i←n},� = Ja{i ← n}K�,�
(by induction)

Validity of a Hoare triple

⊨ {A} c {B}

if and only if for any valuation � and any state �

� ⊨� A ⟹ JcK� ⊨� B

7 Soundness of the axiomatic semantics

Soundness of the axiomatic semantics
Theorem

If ⊢ {A} c {B} then ⊨ {A} c {B}

By induction on the derivation of ⊢ {A} c {B}

8

Substitution lemmas
Arithmetic expressions

Ja1{X ← a2}K�,� = Ja1K�,�{X←Ja2K�,�}

Boolean expressions
� ⊨� B{X ← a} ⟺ �{X ← JaK�} ⊨� B

Proof of soundness ⊢ {A} c {B} ⟹ ⊨ {A} c {B}
By induction on the derivation of ⊢ {A} c {B}

• Case ⊢ {A} skip {A} Since JskipK� = � we have � ⊨� A ⟹ JskipK� ⊨� A and then
⊨ {A} skip {A}

• Case ⊢ {B{X ← a}} X := a {B} By substitution lemma we have � ⊨� B{X ← a} if and only if
�{X ← JaK�} ⊨� B Since �{X ← JaK�} = JX := aK� we deduce � ⊨� B{X ← a} ⟹
JX := aK� ⊨� B and therefore ⊨ {B{X ← a}} X := a {B}

• sequence

• conditional

• consequence

• Case ⊢ {I} while b do c′ {I ∧ (¬b)} with ⊢ {b ∧ I} c′ {I} Induction hypothesis: ⊨ {b ∧ I} c′ {I}
We show the following by recurrence over n:

P (n) = ∀� ∈ Σ, � ⊨� I ⟹ F nJc′K,JbK(⊥)(�) ⊨� I ∧ (¬b)

We deduce � ⊨� I ⟹ Jwhile b do c′K ⊨� I ∧ (¬b) and ⊨ {I} while b do c′ {I ∧ (¬b)}

Completeness of the axiomatic semantics
Theorem

If ⊨ {A} c {B} then ⊢ {A} c {B}

The proof is based on the algorithm computing the weakest preconditions!

9

	An imperative language: IMP
	Big step operational semantics
	Denotational semantics
	Fixpoints
	Soundness and completeness
	Axiomatic semantics
	Soundness of the axiomatic semantics

