Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Winter 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 4: semantics of an imperative programming language

1 An imperative language: IMP

An imperative language: IMP
Core of an imperative language, with:

- arithmetic and boolean expressions
- mutable variables
- instructions (assignment, condition, loop)

Endorses the same rôle as PCF, for imperative programming

Aexp: arithmetic expressions

Integer constants: $n, m \quad \mathbb{N}$
Variables: X, Y V
Arithmetic expressions: $a \quad$ Aexp

a	$:$	$=$
	\mid	X
		X
	$a_{1}+a_{2}$	
	$a_{1}-a_{2}$	
	$a_{1} \times a_{2}$	

Bexp: boolean expressions
Boolean constants: T, F B
Boolean expressions: b Bexp

b : : =	T
\|	F
\|	$a_{1}=a_{2}$
\|	$a_{1} \leq a_{2}$
\|	$\neg b$
\|	$b_{1} \vee b_{2}$
\|	$b_{1} \wedge b_{2}$

Com: commands

Commands (instructions): c

c : : $=$	skip
\|	$X:=a$
\|	$c_{1} ; c_{2}$
1	if b then c_{1} else c_{2} while b do c

2 Big step operational semantics

Operational semantics

Effects of expressions and commands, depending on a state of the memory
States

$$
\Sigma=\mathcal{V} \rightarrow \mathbb{N}
$$

- functions from variables to numbers
- if $\sigma \in \Sigma$, then $\sigma(X)$ is the value of the variable X in the state σ

Note: variables only have numeric values here (no boolean variables)
Big step semantics: relation between

- expression or command
- state
- result

Semantics of arithmetic expressions

Evaluation relation

$$
\langle a, \sigma\rangle \Downarrow n
$$

Inference rules

\[

\]

Other binary operations similar
Note: the semantics being defined by a relation, some cases can be undefined Here, there are no σ, n such that $\langle 1-2, \sigma\rangle \Downarrow n$

Semantics of boolean expressions

Evaluation relation

$$
\langle b, \sigma\rangle \Downarrow b
$$

Inference rules

$$
\begin{gathered}
\overline{\langle\mathrm{T}, \sigma\rangle \Downarrow \mathrm{T}} \quad \overline{\langle\mathrm{~F}, \sigma\rangle \Downarrow \mathrm{F}} \\
\frac{\left\langle a_{1}, \sigma\right\rangle \Downarrow n_{1}}{\left\langle a_{1} \leq a_{2}, \sigma\right\rangle \Downarrow b} \begin{array}{l}
\left\langle a_{2}, \sigma\right\rangle \Downarrow n_{2} \\
\hline
\end{array}
\end{gathered}
$$

where b is T if n_{1} less than or equal to n_{2} and F otherwise

Semantics of instructions

The relation

$$
\langle c, \sigma\rangle \Downarrow \sigma^{\prime}
$$

means that

- in state σ, the command c terminates
- after the execution we reach the state c^{\prime}

At the beginning, we assume an initial state σ_{0} such that

$$
\forall X, \sigma_{0}(X)=0
$$

State evoluation

Execution

$$
\langle X:=X+1, \sigma\rangle \Downarrow \sigma^{\prime}
$$

σ^{\prime} is the state such that

- $\sigma^{\prime}(X)$ is $1+\sigma(X)$
- for all $Y \neq X, \sigma^{\prime}(Y)=\sigma(Y)$

Notation $\sigma\{X \leftarrow n\}$

$$
\begin{aligned}
\sigma\{X \leftarrow n\}(X) & =n \\
\sigma\{X \leftarrow n\}(Y) & =\sigma(Y) \quad \text { si } Y \neq X
\end{aligned}
$$

Then

$$
\langle X:=X+1, \sigma\rangle \Downarrow \sigma\left\{X \leftarrow \sigma(X)+_{\mathbb{N}} 1\right\}
$$

Rules for instructions

Empty command

$$
\overline{\langle\text { skip, } \sigma\rangle \Downarrow \sigma}
$$

Variable assignment

$$
\frac{\langle a, \sigma\rangle \Downarrow n}{\langle X:=a, \sigma\rangle \Downarrow \sigma\{X \longleftarrow n\}}
$$

Sequential composition

$$
\frac{\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime \prime} \quad\left\langle c_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}
$$

Conditional instruction

$$
\frac{\langle b, \sigma\rangle \Downarrow \mathrm{T} \quad\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}} \quad \frac{\langle b, \sigma\rangle \Downarrow \mathrm{F} \quad\left\langle c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}
$$

Rules for instructions: loop

When the condition is false, nothing happens

$$
\frac{\langle b, \sigma\rangle \Downarrow \mathrm{F}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma}
$$

When the condition is true, we execute the body of the loop, and then execute the whole loop again

$$
\frac{\langle b, \sigma\rangle \Downarrow \mathrm{T} \quad\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime} \quad\left\langle\text { while } b \text { do } c, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma^{\prime}}
$$

Derivation is possible when the execution is finite

3 Denotational semantics

Denotational semantics

We want to characterize the function realized by a program
We are interested in (computable) functions rather than algorithms
We consider as equivalent two programs defining the same mathematical function

Denotational semantics for IMP

Base functions

- $\mathcal{A} \llbracket a \rrbracket: \Sigma \rightarrow \mathbb{N}$
- $\mathcal{B} \llbracket b \rrbracket: \Sigma \rightarrow \mathbb{B}$
- $\mathcal{C} \llbracket c \rrbracket: \Sigma \rightharpoonup \Sigma$

In other words

- $\mathcal{A} \llbracket . \rrbracket: \operatorname{Aexp} \rightarrow \Sigma \rightarrow \mathbb{N}$
- $\mathcal{B} \llbracket . \rrbracket: ~ B \exp \rightarrow \Sigma \rightarrow \mathbb{B}$
- $\mathcal{C} \llbracket . \rrbracket: \operatorname{Com} \rightarrow \Sigma \longrightarrow \Sigma$

Denotation of Aexp's

$$
\begin{aligned}
\mathcal{A} \llbracket n \rrbracket_{\sigma} & =n \\
\mathcal{A} \llbracket X \rrbracket_{\sigma} & =\sigma(X) \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket_{\sigma} & =\mathcal{A} \llbracket a_{1} \rrbracket_{\sigma}{ }^{+} \mathbb{N} \mathcal{A} \llbracket a_{2} \rrbracket_{\sigma}
\end{aligned}
$$

In other words

$$
\begin{aligned}
\mathcal{A} \llbracket n \rrbracket & =\sigma \mapsto n \\
\mathcal{A} \llbracket X \rrbracket & =\sigma \mapsto \sigma(X) \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket & =\sigma \mapsto \mathcal{A} \llbracket a_{1} \rrbracket_{\sigma}+_{\mathbb{N}} \mathcal{A} \llbracket a_{2} \rrbracket_{\sigma}
\end{aligned}
$$

Denotation of Bexp's

$$
\begin{aligned}
\mathcal{B} \llbracket \mathrm{T} \rrbracket & =\sigma \mapsto \mathrm{T} \\
\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket & =\sigma \mapsto \mathcal{A} \llbracket a_{1} \rrbracket_{\sigma}=_{\mathrm{N}} \mathcal{A} \llbracket a_{2} \rrbracket_{\sigma} \\
\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket & =\sigma \mapsto \mathcal{B} \llbracket b_{1} \rrbracket_{\sigma} \wedge_{\mathrm{B}} \mathcal{B} \llbracket b_{2} \rrbracket_{\sigma}
\end{aligned}
$$

Denotation of instructions

$$
\begin{aligned}
\mathcal{C} \llbracket \text { skip } \rrbracket & =\sigma \mapsto \sigma \\
\mathcal{C} \llbracket X:=a \rrbracket & =\sigma \mapsto \sigma\left\{X \leftarrow \mathcal{A} \llbracket a \rrbracket_{\sigma}\right\} \\
\mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket & =\mathcal{C} \llbracket c_{2} \rrbracket \circ \mathcal{C} \llbracket c_{1} \rrbracket \\
\mathcal{C} \llbracket \text { if } b \text { then } c_{1} \text { else } c_{2} \rrbracket_{\sigma} & = \begin{cases}\mathcal{C} \llbracket c_{1} \rrbracket_{\sigma} & \text { si } \mathcal{B} \llbracket b \rrbracket_{\sigma} \\
\mathcal{C} \llbracket c_{2} \rrbracket_{\sigma} & \text { si } \neg \mathcal{B} \llbracket b \rrbracket_{\sigma}\end{cases}
\end{aligned}
$$

Loop

We are looking for a denotation of

$$
\text { while } b \text { do } c \quad(=w)
$$

Remark: $\mathcal{C} \llbracket w \rrbracket$ and $\mathcal{C} \llbracket c \rrbracket$ are partial functions $\Sigma \rightharpoonup \Sigma$ satisfying

$$
\mathcal{C} \llbracket w \rrbracket_{\sigma}= \begin{cases}(\mathcal{C} \llbracket w \rrbracket \circ \mathcal{C} \llbracket c \rrbracket)(\sigma) & \text { if } \mathcal{B} \llbracket b \rrbracket_{\sigma} \\ \sigma & \text { if } \neg \mathcal{B} \llbracket b \rrbracket_{\sigma}\end{cases}
$$

We are looking for a fixpoint

4 Fixpoints

McCarthy's 91 function

Is this function actually defined?

```
let rec f x =
    if x > 100
    then x - 10
    else f(f(x+11))
```

- if $x>100$, the result is $x-10$
- if $x \leqslant 100$, is there any result?

A priori: partial function, $\mathbb{N} \rightharpoonup \mathbb{N}$

An order on functions

Definition order

$$
f \sqsubseteq g
$$

if

- if f defined on x then g defined on x
- for any x in the shared input domain, $f(x)=g(x)$

In other words:

$$
\left.g\right|_{\operatorname{dom}(f)}=f
$$

Directed set

Set $E \subseteq \mathbb{N} \rightharpoonup \mathbb{N}$ such that if it contains two functions f and g, then it also contains a function h which:

- is more defined than f and than g
- coïncides with f and g

In other words:

$$
\forall f, g \in E, \exists h \in E, f \sqsubseteq h \wedge g \sqsubseteq h
$$

Note: all functions in E are mutually consistent

Continuity

A majorant of E is an element m such that

$$
\forall x \in E, x \subseteq m
$$

The supremum of E is the smallest majorant, if it exists
Note: if E is a directed set, then $\sup (E)$ exists
A function $f: E \rightarrow E$ is continuous if it preserves supremums

$$
f(\sup (E))=\sup (f(E))
$$

Exercise: a continuous function is monotone

Fixpoint

Consider a directed set E

- any subset of E has a supremum
- $\sup (\varnothing)$ is the smallest element of E

Then any continuous function $f: E \rightarrow E$ admits the following has a fixpoint

$$
\sup \left\{f^{n}(\perp) \mid n \in \mathbb{N}\right\}
$$

Function 91 defined as a fixpoint

Consider the function $F:(\mathbb{N} \rightharpoonup \mathbb{N}) \rightarrow(\mathbb{N} \rightharpoonup \mathbb{N})$ defined by

$$
F(f) \quad=\quad x \mapsto \text { if } x>100 \text { then } x-10 \text { else } f(f(x+11))
$$

F is continuous

- $f \mapsto(x \mapsto f(f(x+11)))$ continuous with respect to f
- $f \mapsto(x \mapsto$ if $b(x)$ then $G(f)(x)$ else $H(f)(x))$ continuous with respect to f if G and H are
F has a fixpoint $\operatorname{Fix}(F)$ such that $F(\operatorname{Fix}(F))=\operatorname{Fix}(F)$ This fixpoint of F can be defined starting from the partial function \perp which is undefined on every possible input

The denotation of while b do c defined as a fixpoint

For any functions $g: \Sigma \rightharpoonup \Sigma$ and $h: \Sigma \rightarrow \mathbb{B}$, consider the function $F_{g, h}:(\Sigma \rightharpoonup \Sigma) \longrightarrow(\Sigma \rightharpoonup \Sigma)$ defined by

$$
F_{g, h}(f)(\sigma)= \begin{cases}(f \circ g)(\sigma) & \text { if } h(\sigma) \\ \sigma & \text { if } \neg h(\sigma)\end{cases}
$$

$F_{g, h}$ is continuous for \sqsubseteq

$$
\sup _{f \in E}\left(F_{g, h}(f)\right)(\sigma)= \begin{cases}\left(\sup _{f \in E}(f) \circ g\right)(\sigma) & \text { if } h(\sigma) \\ \sigma & \text { otherwise }\end{cases}
$$

$F_{g, h}$ has a fixpoint $\operatorname{Fix}\left(F_{g, h}\right)$, which is a partial function $\Sigma \rightharpoonup \Sigma$

Analysis of $F_{g, h}$

Meaning of the iterates $F_{g, h}^{k}(\perp)$

- $F_{g, h}(\perp)$ is defined only on states σ such that $\neg h(\sigma)$, and then $F_{g, h}(\perp)(\sigma)=\sigma$
- $F_{g, h}^{n+1}(\perp)$ is defined on states σ such that
- $g^{i}(\sigma)$ is defined for all $i \leqslant n+1$
- $h\left(g^{i}(\sigma)\right)$ for $i \leqslant n$
- $\neg h\left(g^{n+1}(\sigma)\right)$
and then $F_{g, h}^{n+1}(\perp)(\sigma)=g^{n+1}(\sigma)$
The fixpoint of $F_{g, h}$ is thus defined for all σ such that there is n with
- $g^{i}(\sigma)$ defined and $h\left(g^{i}(\sigma)\right)$ for $i<n$
- $g^{n}(\sigma)$ defined and $\neg h\left(g^{n}(\sigma)\right)$

We thus define

$$
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket=\operatorname{Fix}\left(F_{\mathcal{C} \llbracket c \rrbracket, \mathcal{B} \llbracket b \rrbracket}\right)
$$

5 Soundness and completeness

Soundness of the operational semantics

Soundness: the values given by the operational semantics are correct with respect to the denotational semantics

Theorem

$$
\text { If }\langle c, \sigma\rangle \Downarrow \sigma^{\prime} \quad \text { then } \quad c \llbracket c \rrbracket_{\sigma}=\sigma^{\prime}
$$

Proof by induction on the derivation of $\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$, with lemmas on the semantics of the expressions

Completeness of the operational semantics

Completeness: the operational semantics allows the derivation of all the values specified by the denotational semantics

Theorem
If $\mathcal{C} \llbracket c \rrbracket_{\sigma} \quad$ is defined and is equal to σ^{\prime} the one can derive $\quad\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$
Proof by inducton on c, with lemmas on the semantics of expressions

6 Axiomatic semantics

Axiomatic semantics for IMP

Hoare triples

$$
\{A\} c\{B\}
$$

- A: precondition of c
- B: postcondition of partial correctness of c

Interpretation
If A is satisfied before execution of c and if the execution of c terminates, then B is satisfied after the execution of c

Rules for partial correctness

$$
\begin{aligned}
& \overline{\vdash\{A\} \text { skip }\{A\}} \quad \overline{\vdash\{B\{X \leftarrow a\}\} X:=a\{B\}} \quad \frac{\vdash\{A\} c_{1}\{C\} \quad \vdash\{C\} c_{2}\{B\}}{\vdash\{A\} c_{1} ; c_{2}\{B\}} \\
& \frac{\vdash\{b \wedge A\} c_{1}\{B\} \quad \vdash\{(\neg b) \wedge A\} c_{2}\{B\}}{\vdash\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}} \quad \frac{\vdash\{b \wedge I\} c\{I\}}{\vdash\{I\} \text { while } b \text { do } c\{(\neg b) \wedge I\}} \\
& \begin{array}{c}
A \Longrightarrow A^{\prime} \quad \vdash\left\{A^{\prime}\right\} c\left\{B^{\prime}\right\} \quad B^{\prime} \Longrightarrow B \\
\vdash\{A\} c\{B\}
\end{array}
\end{aligned}
$$

Meaning of an assertion

Notation

- $\sigma \vDash A: A$ is satisfied by the state σ

The triple $\{A\} c\{B\}$ then means

$$
\forall \sigma \in \Sigma,\left(\sigma \models A \wedge C \llbracket c \rrbracket_{\sigma} \text { défini }\right) \Longrightarrow \mathcal{C} \llbracket c \rrbracket_{\sigma} \vDash B
$$

Simplification: $\mathcal{C} \llbracket c \rrbracket$ is extended as a total function returning the value \perp where it should not be defined. We define $\perp \vDash A$ for all assertion A. Then $\{A\} c\{B\}$ means

$$
\forall \sigma \in \Sigma, \sigma \models A \Longrightarrow \mathcal{C} \llbracket c \rrbracket_{\sigma} \vDash B
$$

Definition of $\sigma \vDash A$: a semantics for assertions

To keep the formalism compact, we use as assertions the boolean expressions of IMP

$$
\begin{array}{ll}
\perp \models A & \\
\sigma \models \mathrm{~T} & \\
\sigma \models a_{1}=a_{2} & \\
\text { if } \mathcal{A} \llbracket a_{1} \rrbracket_{\sigma}=_{\mathbb{N}} \mathcal{A} \llbracket a_{2} \rrbracket_{\sigma} \\
\sigma \models A \wedge B & \text { if } \sigma \models A \text { and } \sigma \models B \\
\sigma \models \neg A & \\
\text { if } \sigma \nLeftarrow A
\end{array}
$$

Extended assertions

We could add: quantifications and logical variables

- extend Aexp with special variables i
- extend Bexp with the assertions $\forall i . A$ and $\exists i . A$
- parameterize the semantics by a valuation $\rho: \mathcal{I} \rightarrow \mathbb{N}$

$$
\begin{array}{cc}
\mathcal{A} \llbracket i \rrbracket_{\rho, \sigma}=\rho(i) \\
\sigma \models_{\rho} \forall i . A & \text { if } \sigma \models_{\rho\{i \leftarrow n\}} A \text { for all } n \in \mathbb{N} \\
\sigma \models_{\rho} \exists i . A & \text { if } \sigma \models_{\rho\{i \leftarrow n\}} A \text { for at least one } n \in \mathbb{N}
\end{array}
$$

Properties of the semantics of assertions

Some results

- $\mathcal{B} \llbracket b \rrbracket_{\sigma}=\mathrm{T}$ if and only if $\sigma \models_{\rho} b$
- $\mathcal{B} \llbracket b \rrbracket_{\sigma}=\mathrm{F}$ if and only if $\sigma \not \vDash_{\rho} b$
- $\mathcal{A} \llbracket a \rrbracket_{\rho\{i \leftarrow n\}, \sigma}=\mathcal{A} \llbracket a\{i \leftarrow n\} \rrbracket_{\rho, \sigma}$
(by induction)

Validity of a Hoare triple

$$
\vDash\{A\} c\{B\}
$$

if and only if for any valuation ρ and any state σ

$$
\sigma \models_{\rho} A \Longrightarrow C \llbracket c \rrbracket_{\sigma} \models_{\rho} B
$$

7 Soundness of the axiomatic semantics

Soundness of the axiomatic semantics

Theorem

$$
\text { If } \vdash\{A\} c\{B\} \quad \text { then } \vDash\{A\} c\{B\}
$$

By induction on the derivation of $\vdash\{A\} c\{B\}$

Substitution lemmas

Arithmetic expressions

$$
\left.\mathcal{A} \llbracket a_{1}\left\{X \leftarrow a_{2}\right\} \rrbracket_{\rho, \sigma}=\mathcal{A} \llbracket a_{1} \rrbracket_{\rho, \sigma\left\{X \leftarrow \mathcal{A} \llbracket a_{2} \rrbracket\right.} \rrbracket_{\rho, \sigma}\right\}
$$

Boolean expressions

$$
\sigma \models_{\rho} B\{X \leftarrow a\} \Longleftrightarrow \sigma\left\{X \leftarrow \mathcal{A} \llbracket a \rrbracket_{\sigma}\right\} \models_{\rho} B
$$

Proof of soundness $\vdash\{A\} c\{B\} \Longrightarrow \vDash\{A\} c\{B\}$
By induction on the derivation of $\vdash\{A\} c\{B\}$

- Case $\vdash\{A\}$ skip $\{A\}$ Since $\mathcal{C} \llbracket$ skip $\rrbracket_{\sigma}=\sigma$ we have $\sigma \vDash_{\rho} A \Longrightarrow \mathcal{C} \llbracket$ skip $\rrbracket_{\sigma} \vDash_{\rho} A$ and then $\vDash\{A\} \operatorname{skip}\{A\}$
- Case $\vdash\{B\{X \leftarrow a\}\} X:=a\{B\}$ By substitution lemma we have $\sigma \vDash_{\rho} B\{X \leftarrow a\}$ if and only if $\sigma\left\{X \leftarrow \mathcal{A} \llbracket a \rrbracket_{\sigma}\right\} \vDash_{\rho} B$ Since $\sigma\left\{X \leftarrow \mathcal{A} \llbracket a \rrbracket_{\sigma}\right\}=\mathcal{C} \llbracket X:=a \rrbracket_{\sigma}$ we deduce $\sigma \vDash_{\rho} B\{X \leftarrow a\} \Longrightarrow$ $\mathcal{C} \llbracket X:=a \rrbracket_{\sigma} \vDash_{\rho} B$ and therefore $\vDash\{B\{X \leftarrow a\}\} X:=a\{B\}$
- sequence
- conditional
- consequence
- Case $\vdash\{I\}$ while b do $c^{\prime}\{I \wedge(\neg b)\}$ with $\vdash\{b \wedge I\} c^{\prime}\{I\}$ Induction hypothesis: $\vDash\{b \wedge I\} c^{\prime}\{I\}$ We show the following by recurrence over n :

$$
P(n) \quad=\quad \forall \sigma \in \Sigma, \sigma \vDash_{\rho} I \Longrightarrow F_{C \llbracket c^{\prime} \rrbracket, B \llbracket b \rrbracket}^{n}(\perp)(\sigma) \models_{\rho} I \wedge(\neg b)
$$

We deduce $\sigma \models_{\rho} I \Longrightarrow \mathcal{C} \llbracket$ while b do $c^{\prime} \rrbracket \models_{\rho} I \wedge(\neg b)$ and $\vDash\{I\}$ while b do $c^{\prime}\{I \wedge(\neg b)\}$

Completeness of the axiomatic semantics

Theorem

$$
\text { If } \vDash\{A\} c\{B\} \quad \text { then } \vdash\{A\} c\{B\}
$$

The proof is based on the algorithm computing the weakest preconditions!

