Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay
Fall 2023
https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 5: A-computability

1 Basic data and operations

Functions
Identity function
Il = Ax.x

Function composition
gof = Axg(f(x)
Example
lol = AxI(lx)

= Ax(4y.y) (Az.2) x)
—p Ax.(Az.z) x

—p Ax.x
Booleans and conditionals
Boolean values
T = Axyx
F = Axy.y
Conditional expression
if cthenaelseb = cabd
Example
if Tthenaelseb = Tab
= (Axyx)ab
—p (Ay.a) b
—)ﬁ a

Exercise: boolean operators
The following A-term encodes a boolean operator. Which one?

Aab.abF

Write terms for the other common operators.

Pairs and projections

Pair
{a,by = Assab
Projections
m = Ap.p (Aab.a) (=AppT)
m = Ap.p (Aab.b) (=AppF)

https://www.lri.fr/~blsk/LambdaCalculus/

Example

m {A,By = (Ap.p (Aab.b)) (A, B)
—p {A,B) Aab.b
= (As.s A B) Aab.b)
—5 (Aab.b) AB
—p5 (Ab.D) B
—p B

Algebraic data types and pattern matching

The principle used for representing booleans can be generalized for representing any finite set, by
using more parameters (for instance: {Aabc.a, Aabc.b, Adabc.c} for a set of three elements). The principle
used for representing pairs can be generalized to arbitrary tuples, by using more arguments (for instance:
Ax.xabc for a triple (a, b, ¢)).

Combinations of these can be used to represent any algebraic data type: we have a finite set of
constructors, each of which contains a (possibly empty) tuple of parameters.

For instance, here is a definition of binary trees in caml (with integers at the leaves)

type tree =
| L of int
| N of tree * tree

We can encode such a tree following these shapes:

L(k) — Aab.a[k] (k assumed non-negative)
N(tl, tz) — Aab.b h b

Then pattern matching, as was the conditional, is just an application of the encoded term to the terms
representing the various branches.

match ¢ with
| L(k) -> f
| N(x, y) -> g

will be encoded as
t (A f) (Axy.g)

(where the term f may contain occurrences of the variable k, and the term g may contain occurrences
of the variables x and y)

Integers
For each n € IN we define a A-term [n]

[0] = I
[n+1] = <(F[n]

Some basic operations

S = Ax<{(F, x) successor
P = AxxF predecessor
isZ = Ax.xT zero?
Exercise: integers
Summary of the definitions
[0] = 1 S = Ax(F,x) {a,b) = Ac.cab
[n+1] = <F,[n]) P = Ax.xF T = Jlaba
isZ = AxxT F = Aabb

Check the following equalities

S[n] =p [n+1]
Pln+1] =5 [n]
P [0] =5 F
isZ[0] =5 T
isZ[n+1] = F
Define a term add such that
add [n][m] = [n+m]
Addition
We would like to write a recursive function
addnm = ifisZ nthen melse add (P n) (S m)

Problem: finding a A-term add this way consists in solving an equation

2 Fixpoints

Fixpoints for numeric functions
A fixpoint of a function f is an x such that

fx)=x

Finding such a fixpoint f means solving the equation x = f(x)
Numeric functions may have various numbers of fixpoints

X = X (o]
X +— x+1]| none

x = x? two (0 and 1)

f :[0;1] — [0;1] | at least one if continuous

Fixpoints for A-calculus
In the A-calculus, ¢ is a fixpoint of f if

fl‘ =p t
Fixpoint theorem

Any A-term f has a fixpoint

The fixpoint theorem guarantees that, in the A-calculus, the equation ¢ =4 f t has always a solution

Church’s fixpoint combinator
A term that builds fixpoints

Y = Af.(Ax.f(xx))(Ax.f(xx))

First remark that
Y o= fOxfe)ixf(oo) f
—p (Ax.f(xx))(Ax.f(xx))
The term (Ax.f(xx))(Ax.f(xx)), written Fix; below, is a fixpoint of f.
Indeed,
Fixp = (Ax.f(xx))(Ax.f(xx))
—p f ((Ax.f(xx)(Ax.f(xx)))
= fFixs
For any A-term f, the term Y f builds a fixpoint of f.

Turing’s fixpoint combinator
Another term that builds fixpoints, even more directly.

©® = AA
A = Axy.y(xxy)
Checking that f(©f) =5 ©f
Of = (Axyylxxy) Af
—p (Ay.y(AAy)) f
= (lyy(©y)) f
—p f(Of)

For any A-term f, the term O f is a fixpoint of f

Mutual recursion
Double fixpoint theorem

vVf,g 3a,b a=gfab A b=pggab

Proof: define

d = O xS (mx) (mx), g (mx) (mx)))
a = mn d
b = V%) d

Then
d —" {f (md) (md), g (md) (m2d))
a=md —" f(md)(md) = fab
b=md — g(imd)(md) = gab

This can be extended to a n-ary fixpoint, for any n.

Back on the addition

if isZ n then m else add (P n) (S m)

add nm

add = Anm.if isZ n then m else add (P n) (S m)
add = (Afnm.if isZ n then m else f (P n) (S m)) add

We define add as a fixpoint with

add

Exercise: Fibonacci sequence
Define a A-term representing the Fibonacci function, defined by

f0 =0
fa =1
f(n+2) = f(n+1)+f(n)

Exercise: paradoxical fixpoint?
We said that:

o f : x — x +1is function with zero fixpoint

o F = Ax.S x is a A-term, and therefore it has a fixpoint

How can these two facts both be true?

© (Afnm.if isZ n then m else f (P n) (S m))

Exercise: Church integers (iterators)
Alternative representation for [n]
[n] = Afx.f" x
Idea: [n] takes as argument of function f and returns a function that iterates n times f
Show that Anfx.f(nfx) represents the successor function
Find terms representing addition, multiplication, and predecessor

Exercise: Curry’s Y-combinator
Another fixpoint combinator

Y

Af (Ax.f(xx))(Ax.f(xx))

Check that for any term t we have
Yt =5 t(Yt)

Do we also have Y ¢t —% t(Yt) ?

3 Decidability

New version presented live, with A-terms encoded by their AST.

de Bruijn notation: use numbers instead of variable names

Ax
l‘y
Ax.Ay.(y x (Ay-xy)) @
@ - @
y x " SR
/@\
x Y

Replace each variable occurrence with the number of A between the occurrence and its binder

2.1.0 1 ((1.20) 0)

What we gain: the need for variable renamings disappears. Also, the syntax of terms will be easier to

represent as a A-encoded data structure

Translations between named and nameless variables

For any named closed term ¢, write [[¢] its nameless version. Generalization to term with free vari-
ables: let ¢ be a list of variable names that contains all the free variables of ¢, define [¢], the translation

where each free variable x of ¢ is associated to the index at which x appears in .

[x]. index_of(x, £)

[t ul, [t]e [ule
[[Ax.t]][= A.[[t]]x;[

(assume index_of is a function that returns the index at which the name x appears in the list ¢).
Reverse: for any nameless closed term ¢, write (t) its named version. Generalization to term with

free variables: let ¢ be a list of variable names that is long enough to account for every indices in ¢, define

()¢ the translation where each free index of ¢ is associated to the element at corresponding index of ¢.

(K)e = nth(k,)
(t u)e (t)e (ue

(At)y = Ax.(t)x:¢ for x a fresh variable name

(assume nth is a function that returns the element at index k in the list ¢).

Encoding the abstract syntax of nameless A-terms.
Nameless terms can be represented with the following three constructors.

type term =
| Var of int
| App of term * term
| Abs of term

Representation of such a data structure using A-terms:

(k] = Aabc.a[k]
[t u] Aabe.b [t] [u]
[A.t] Aabe.c [t]

(note: [k] on the left of the first equation is the encoding of a A-term made of the de Bruijn index k,
defined by the equation, whereas [k] on the right of the same equation is the encoding of the naturel
number k, as proposed at the beginning of the chapter)

Encoding the abstract syntax of named A-terms.
One obtains an encoding of usual, named A-terms by composing the translation to nameless repre-
sentation with the previous translation. Here is a set of combined equations:

[x]; = Aabc.a[index_of(x,)]
[tu]l, = Aabe.b[t]e [u]le
[Ax.t], = Aabc.c[t]y:r

(again, [index_of(x, ¢)] is the encoding of a natural number as defined at the beginning of the chapter)

Self-interpreter
Using the previous term representation, one can define an interpreter of the A-calculus, in the A-
calculus. Such a function can be called a self-interpreter, and also corresponds to the concept of universal
machine that you will hear of again in the computability course. This interpreter is a term e such that
for any term ¢ and any list £ we have
(4 [t][t =B 3

(this assumes that the list £ can also encoded as a A-term, which is left as an exercise)
For such an interpreter, we want the following equations:

e[x], ¢ = e(Aabc.alk])t = nth(k, ¢)
eltult = e(labebb[t]e[ule)t = (e[tle) (e[t]e ?)
e[Ax.t]l; ¢ = e(Aabc.c[t]c:p) = Ax(e[t]l.gx :)

Thus we propose the following term:

e = Y (leAtAt. t (Ak.nth(k, £))
(Atu(et £) (e ut))
(AtAx.et(x : £)))

Correctness of the self-interpreter
Assuming that lists of names ¢ can be encoded as A-terms as well as the two functions index_of and
nth, we prove that for any term ¢ and any list ¢ containing (at least) the free variables of ¢ :

eltlet=pt
Write e = Y ¢/. We have in one step

e = Ye — (Ax.€(xx))(Ax.€/(xx)) = €’

where the obtained term e’ is the fixpoint of ¢’ produced by Y.
Since all encodings share a common structure, first remark that

e [t][4 = Y e [t][t

— (Ax.e/(xx))(Ax.€'(xx)) [t]e £
= [t ¢t

— e[t ¢t

3

[t]e €1 ez €3

where
e; = Ak.nth(k,¥¢)
e = Atu(e” t€) (e’ ut)
es = AtAx.e” t(x: ¢)

Now prove the result by induction on ¢:

« Case of a variable x (assumed in ¢):

elx]pt — [x]leeriees
= (Aabc.a[index_of(x, £)]) e e; e3
—3 ¢ [index_of(x,)]
= (Ak.nth(k, ¢)) [index_of(x, £)]
= nth([index_of(x, £)], £)

The specifications of nth and index_of indeed require that nth([index_of(x, £)], £) is equal to x
(when x is in £).

« Case of an application t u:

e[tul,t — [tu]re e es
= (Aabe.b [t]; [ulr) e1 €2 €3
—> e [t]e [ul,
= (Atu(e” t o) (" ut)) [t]e [ule
—2 (e [t) (¢” [u], ©)
= tu by induction hypotheses

« Case of an abstraction Ax.t:

e[Ax.t]; ¢ — [Ax.t]e el e e3
= (dabc.c[t]y:¢) €1 € €3
—3 e3 [tleie
= (AtAx.e” t(x : €)) [t]x:e
— Ax.e” [tle.r (x : 0) (note: x & fv([t]x.¢))
=5 Ax.t by induction hypothesis

Second fixpoint theorem

vfar flf]=pt

Proof of the second fixpoint theorem
First remark that one could write two terms A and N such that

Alt][u] =p [tu]
N[z =p [[t]]

(Ais simply Atu.Aabc.b t u, whereas N is defined as the fixpoint of a function defined by pattern matching
on the representation [¢] of f)

Then define

Then z is a fixpoint for f.

Scott’s undecidability theorem
Theorem

1. any two non-empty sets A, B ¢ A closed by S-equality are not effectively separable

2. no non-trivial set A ¢ A closed by f-equality can be effectively characterized

Definitions

E is closed by f-equality if vx,y e Ax€ EAnx =3y = y€E

o Eis non-trivial if there are x € Eand y ¢ E

+ Aand B are effectively separable if there is an effectively characterized set C suchthatt € A —

teCandteB — t¢C

forany t ¢ C

C is effectively characterized if there is a A-term f such that f t =g Tforany t € Cand f ¢t =4 F

(note: in the definition of “effectively characterized” it is of critical importance that the application of

the A-term f to any A-term ¢ is normalizable)

Proof of Scott’s theorem
Any two non-empty sets A, B < A closed by f-equality are not effectively separable

Assume there is a separating set C such that A < C and Bn C = @, characterized by a A-term f such

that
teC = f[t]l=T
tgC = f[t]=pF

Since A and B are not empty, we can find two terms a € A and b € B. Define

g = Ax.iff xthenaelse b

Then
teC = gltl=4b
tgC = gltl=pa

From the second fixpoint theorem, there is z such that g [z] = z

z€C = z=pg(z]=pb€B = z¢C
z2¢C = z=pg(z]=pa€cA = z€C

Contradiction!

Undecidability of S-equality
No algorithm can decide whether two arbitrary A-terms are S-equal

Assume f is a A-term such that, for any a and b, f [a] [b] equals to [1] if a =4 b and to [0] otherwise
Define A = {x | x = a}

« by definition, A is closed by S-equality
« Ais not empty, since it contains a
« A\ Ais not empty, because:

— if a has a normal form, then Q ¢ A

— if a has no normal form, then Ax.x ¢ A

By Scott’s theorem, the set A is not recursive
On the other hand, f [a] computes the characteristic function of A Contradiction.

Exercise: halting problem for the A-calculus
No algorithm can decide whether an arbitrary A-term has a normal form

Undecidability of the optimal strategy
Strategy: function F : A — A such that

ViEA t—pF(t)

Optimal strategy: strategy that always picks a shortest path to the normal form (if there is a normal
form)

There is no computable optimal strategy

Undecidability of the optimal strategy: idea
Consider the set

t, = (Ax.xEx) (Ay.y[n](11))

of A-terms, where E enumerates A-terms with at most one free variable a
Assuming E is already in normal form, for each n we have to choose between:

« reducing t, —p (Ay.y[n](I)) E (Ay.y[n](11))
« reducing t, —p (Ax.xEx) (Ay.y[n]l)

However, the best choice differs depending on the normal form of E [n]

Optimal strategy: first case
If E [n] —4 Axyz.z in k steps then

(Ay.y[n]() E (Ay.y[n](11)) —p E [n] (1) (Ay.y[n](I1))
—% (Axyz.z) (1) (Ay.y[n](l))
Az.z

™™ *

_)
optimally in k + 3 steps and

(Ax.xEx) Ay y[nl) —5 (Ay.ylnll) E (Ay.y[nlD)

—p E[n] 1 (Ay.y[n])
(Axyz.2) | (Ay.y[n]l)
Az.z

optimally in k + 4 steps

Optimal strategy: second case
If E [n] —>ﬁ a in k steps then

E [n] (1) (Ay.y[n](I1)

(Ay.y[n](ID) E (Ay.y[n]()) —p
—p a(ll) (Ay.y[n](I))
—>% al (Ay.y[n]l)

optimally in k + 3 steps and

(Ax.xEx) (Ay.y[n]l) —5 (Ay.y[n]l) E (Ay.y[n]l)
—p E[n] 1 (Ay.y[n]))
—p al (Ay.y[n]l)

optimally in k + 2 steps

Optimal strategy: conclusion

th = (Ax.xEx) (Ay.y[n](1l))
If F is an optimal strategy, then
« if E [n] —% Axyz.z then F(t,) = (Ay.y[n](I1)) E (Ay.y[n](Il)), and
« if E [n] —pa then F(t,) = (Ax.xEx) (Ay.y[n]l)
An optimal strategy thus separates
{n| E[n] > Axyz.z} and {n|E[n] —p a}
However, these two sets are not recursively separable, since by Scott’s theorem
{t]t—p Axyz.z} and {t|t—pa}

are not recursively separable.

4 The A-calculus is a model of computable functions

Bonus section, encoding general recursive function into A-calculus.

Definability
A mathematical function ¢ : N? — N is A-definable if there is a A-term f € A such that

vny,...,np €N, flm]...[np] =5 [@(n1, ..., np)]

By Church-Rosser property, we could also have given the condition

Vny,...,np €N, flm]...[np] —p [@(n1,..., np)]

Property: the A-definable functions are exactly the recursive functions
Initial recursiuve functions

Zero Z(n) = 0

o Z = Ax.[0]

Successor S(n) = n+ 1

e S=Ax(F,x)

Projection Uip(no, wotp)=nwith0 <i<<p

. Uf = AXg ... Xp.X;

10

Composition of recursive functions
If F, Gy, ..., G, are recursive then the function H defined by

H(ri) = F(Gy(1i), ..., Gn(1))

is recursive
Assume F, Gy, ..., Gy, are defined by f, g1, ..., g then H can be defined by

h=AZF (G %) ...(Gp %)

Primitive recursion
If F and G are recursive then the function H defined by

F(n)
G(H(k, 7i), k, 7)

H(0, 1)
H(k +1,n)

is recursive
Assume F and G are defined by f and g, we are looking for an h such that

h = Axy.fisZ x then f yelse g (h (Px) y) (Px) y
Fixpoint theorem: such a term h exists
Minimisation
If F is recursive and is such that
vnam F(n,m) =0

then the function M defined by
M(n) = the smallest m € N such that F(71, m) = 0

is recursive
Assume F is defined by f, then define

m = AX.(® (Ahy.if isZ (fxy) then y else h(Sy)) [0])

Summary
We encoded in the A-calculus:

« the initial functions Z, S and U
« function composition
« primitive recursion
« minimisation
Therefore, any recursive function is A-definable
The A-calculus is Turing-complete
5 Decidability, traditional presentation

The historical path, encoding A-terms as numbers.

11

Encoding A-terms using numbers
Assume a (computable and) injective function ¢ : IN> — IN, for instance ¢(x, y) = 2°(2y + 1) - 1
Assign numbers to all variables: {xg, x1, x3, ...}
We deduce a function # : A — N assigning a unique number to each A-term

tx; = (0,
#(t u) o(1, o(#t, #u))
#(Ax;.1) @(2, (i, #1))

~.
~

Encoding of a A-term t: the A-term ¢’ representing the number n representing the encoded A-term ¢
[t] = [#t]
Remark: this is a new encoding, thus all encoding-dependent theorems have to be proved again.
Enumeration theorem (admitted)
There is a A-term E such that for any closed A-term ¢, E [¢] -yt

This is the equivalent of the self-interpreter in the previous presentation. The proof however is far more
technical.

Proof of the second fixpoint theorem
The functions @4 and ¢y defined by

a(#t, #u) #(t u)
on(#t) #[t]

are recursive. They are thus defined by A-terms A and N such that

Al W] = [t]
N[=5 [07]]

Define

Ax.f (A x (N x))

Then z is a fixpoint for f.

Scott’s undecidability theorem (stated using general vocabulary of recursive functions)
Theorem

1. any two non-empty sets A, B ¢ A closed by f-equality are not recursively separable

2. any non-trivial set A ¢ A closed by f-equality is not recursive

Definitions

E is closed by f-equality if vx,y e Ax € EAx =3y = y€E
o Eis non-trivial if there are x € Eand y ¢ E
« A and B are recursively separable if there is a recursive set C suchthat Ac Cand BnC =@

« C is recursive if its characteristic function is recursive

12

Proof of Scott’s theorem
Any two non-empty sets A, B < A closed by p-equality are not recursively separable
Assume there is a recursive set C such that A ¢ C and Bn C = @ Its characteristic function is realized
by a A-term f such that
teC = f[t]=5[1]
t¢C = f[t]=4[0]

Since A and B are not empty, we can find two terms a € A and b € B. Define
g = Ax.ifisZ (f x)then aelse b

Then
teC = gltl=5b
tgC = g[t]=ﬂa

From the second fixpoint theorem, there is z such that g [z] = z

z€C = z=pg(z]=pb€eB = z¢C
z¢C = z=pg(z]=pa€A = z€C

Contradiction!

Undecidability results...
are proved exactly as in the previous section, now that Scott’s theorem is established for this other
representation of A-terms.

Homework

1. Prove that there exists no A-term h such that h [¢] = T for any t € A with a normal form and
h [t] = F for any t € A with no normal form.

2. Using the encoding of algebraic datatypes, and one of the already defined encodings of numbers,
propose an encoding of lists, and of the nth function.

3. In your encoding, prove that nth k £ = nth (k+ 1) (¢ : ¢).

13

	Basic data and operations
	Fixpoints
	Decidability
	The -calculus is a model of computable functions
	Decidability, traditional presentation

