Lambda-calculus and programming language semantics

Thibaut Balabonski @ UPSay Fall 2023

https://www.lri.fr/~blsk/LambdaCalculus/

Chapter 5: λ -computability

1 Basic data and operations

Functions

Identity function

$$I \equiv \lambda x.x$$

Function composition

$$g \circ f \equiv \lambda x.g(f(x))$$

Example

$$\begin{array}{rcl}
\mathbf{I} \circ \mathbf{I} & \equiv & \lambda x.\mathbf{I}(\mathbf{I}x) \\
& \equiv & \lambda x.(\lambda y.y) \ ((\lambda z.z) \ x) \\
& \longrightarrow_{\beta} & \lambda x.(\lambda z.z) \ x \\
& \longrightarrow_{\beta} & \lambda x.x
\end{array}$$

Booleans and conditionals

Boolean values

$$T = \lambda x y. x$$
$$F = \lambda x y. y$$

Conditional expression

if c then a else
$$b \equiv c a b$$

Example

if T then
$$a$$
 else b \equiv T a b \equiv $(\lambda x y. x) a b$ \rightarrow_{β} $(\lambda y. a) b$ \rightarrow_{β} a

Exercise: boolean operators

The following λ -term encodes a boolean operator. Which one?

 $\lambda ab.ab\mathsf{F}$

Write terms for the other common operators.

Pairs and projections

Pair

$$\langle a, b \rangle = \lambda s.s \ a \ b$$

Projections

$$\pi_1 = \lambda p.p (\lambda ab.a)$$
 $(\equiv \lambda p.p T)$
 $\pi_2 = \lambda p.p (\lambda ab.b)$ $(\equiv \lambda p.p F)$

Example

$$\begin{array}{rcl} \pi_2 \ \langle A,B \rangle & \equiv & (\lambda p.p \ (\lambda ab.b)) \ \langle A,B \rangle \\ \longrightarrow_{\beta} & \langle A,B \rangle \ \lambda ab.b \\ & \equiv & (\lambda s.s \ A \ B) \ \lambda ab.b) \\ \longrightarrow_{\beta} & (\lambda ab.b) \ A \ B \\ \longrightarrow_{\beta} & (\lambda b.b) \ B \\ \longrightarrow_{\beta} & B \end{array}$$

Algebraic data types and pattern matching

The principle used for representing booleans can be generalized for representing any finite set, by using more parameters (for instance: $\{\lambda abc.a, \lambda abc.b, \lambda abc.c\}$ for a set of three elements). The principle used for representing pairs can be generalized to arbitrary tuples, by using more arguments (for instance: $\lambda x.xabc$ for a triple (a, b, c)).

Combinations of these can be used to represent any algebraic data type: we have a finite set of constructors, each of which contains a (possibly empty) tuple of parameters.

For instance, here is a definition of binary trees in caml (with integers at the leaves)

```
type tree =
    | L of int
    | N of tree * tree
```

We can encode such a tree following these shapes:

L(k)
$$\mapsto \lambda ab.a [k]$$
 (k assumed non-negative)
N(t_1 , t_2) $\mapsto \lambda ab.b t_1 t_2$

Then pattern matching, as was the conditional, is just an application of the encoded term to the terms representing the various branches.

match
$$t$$
 with $| L(k) -> f$ $| N(x, y) -> g$

will be encoded as

$$t(\lambda k.f)(\lambda xy.g)$$

(where the term f may contain occurrences of the variable k, and the term g may contain occurrences of the variables x and y)

Integers

For each $n \in \mathbb{N}$ we define a λ -term [n]

$$\begin{bmatrix} 0 \end{bmatrix} \equiv \mathsf{I}$$
$$\begin{bmatrix} n+1 \end{bmatrix} \equiv \langle \mathsf{F}, [n] \rangle$$

Some basic operations

$$S = \lambda x.\langle F, x \rangle$$
 successor
 $P = \lambda x.xF$ predecessor
 $isZ = \lambda x.xT$ zero?

Exercise: integers

Summary of the definitions

Check the following equalities

$$\begin{array}{cccc} S\left[n\right] & =_{\beta} & \left[n+1\right] \\ P\left[n+1\right] & =_{\beta} & \left[n\right] \\ P\left[0\right] & =_{\beta} & F \\ \text{isZ}\left[0\right] & =_{\beta} & T \\ \text{isZ}\left[n+1\right] & =_{\beta} & F \end{array}$$

Define a term add such that

$$add [n] [m] = [n+m]$$

Addition

We would like to write a recursive function

add
$$n m = \text{if is } Z n \text{ then } m \text{ else add } (P n) (S m)$$

Problem: finding a λ -term add this way consists in solving an equation

2 Fixpoints

Fixpoints for numeric functions

A fixpoint of a function f is an x such that

$$f(x) = x$$

Finding such a fixpoint f means solving the equation x = f(x)

Numeric functions may have various numbers of fixpoints

$$\begin{array}{c|cccc}
x & \mapsto & x & \infty \\
x & \mapsto & x+1 & \text{none} \\
x & \mapsto & x^2 & \text{two (0 and 1)} \\
f : [0;1] & \to & [0;1] & \text{at least one if continuous}
\end{array}$$

Fixpoints for λ -calculus

In the λ -calculus, t is a fixpoint of f if

$$f t =_{\beta} t$$

Fixpoint theorem

Any λ -term f has a fixpoint

The fixpoint theorem guarantees that, in the λ -calculus, the equation $t = \beta f t$ has always a solution

Church's fixpoint combinator

A term that builds fixpoints

$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

First remark that

$$Y f = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))) f$$

$$\rightarrow_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

The term $(\lambda x.f(xx))(\lambda x.f(xx))$, written Fix_f below, is a fixpoint of f. Indeed,

$$\begin{aligned} \mathsf{Fix}_f & \equiv & (\lambda x. f(xx))(\lambda x. f(xx)) \\ & \longrightarrow_\beta & f\left((\lambda x. f(xx))(\lambda x. f(xx))\right) \\ & \equiv & f \; \mathsf{Fix}_f \end{aligned}$$

For any λ -term f, the term Y f builds a fixpoint of f.

Turing's fixpoint combinator

Another term that builds fixpoints, even more directly.

$$\Theta \equiv A A$$
 $A \equiv \lambda x y. y(xxy)$

Checking that $f(\Theta f) =_{\beta} \Theta f$

$$\Theta f = (\lambda x y. y(xxy)) A f
\longrightarrow_{\beta} (\lambda y. y(AAy)) f
\equiv (\lambda y. y(\Theta y)) f
\longrightarrow_{\beta} f(\Theta f)$$

For any λ -term f, the term Θ f is a fixpoint of f

Mutual recursion

Double fixpoint theorem

$$\forall f,g \quad \exists a,b \qquad a=_{\beta} f \ a \ b \quad \wedge \quad b=_{\beta} g \ a \ b$$

Proof: define

$$d = \Theta(\lambda x.\langle f(\pi_1 x)(\pi_2 x), g(\pi_1 x)(\pi_2 x)\rangle)$$

$$a = \pi_1 d$$

$$b = \pi_2 d$$

Then

$$d \longrightarrow^* \langle f(\pi_1 d) (\pi_2 d), g(\pi_1 d) (\pi_2 d) \rangle$$

$$a = \pi_1 d \longrightarrow^* f(\pi_1 d) (\pi_2 d) = f \ a \ b$$

$$b = \pi_2 d \longrightarrow^* g(\pi_1 d) (\pi_2 d) = g \ a \ b$$

This can be extended to a n-ary fixpoint, for any n.

Back on the addition

add
$$n m = \text{if isZ } n \text{ then } m \text{ else add } (P n) (S m)$$

add = $\lambda n m \text{.if isZ } n \text{ then } m \text{ else add } (P n) (S m)$
add = $(\lambda f n m \text{.if isZ } n \text{ then } m \text{ else } f (P n) (S m))$ add

We define add as a fixpoint with

add
$$\equiv \Theta(\lambda f n m. if is Z n then m else f(P n)(S m))$$

Exercise: Fibonacci sequence

Define a λ -term representing the Fibonacci function, defined by

$$f(0) = 0$$

 $f(1) = 1$
 $f(n+2) = f(n+1) + f(n)$

Exercise: paradoxical fixpoint?

We said that:

- $f: x \mapsto x + 1$ is function with zero fixpoint
- $F = \lambda x.S x$ is a λ -term, and therefore it has a fixpoint

How can these two facts both be true?

Exercise: Church integers (iterators)

Alternative representation for [n]

$$[n] = \lambda f x. f^n x$$

Idea: [n] takes as argument of function f and returns a function that iterates n times f Show that $\lambda nfx.f(nfx)$ represents the successor function Find terms representing addition, multiplication, and predecessor

Exercise: Curry's Y-combinator

Another fixpoint combinator

$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

Check that for any term *t* we have

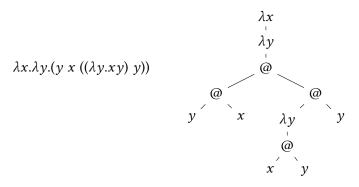
$$Y t =_{\beta} t (Y t)$$

Do we also have $Y t \rightarrow_{\beta}^{*} t (Y t)$?

3 Decidability

New version presented live, with λ -terms encoded by their AST.

de Bruijn notation: use numbers instead of variable names



Replace each variable occurrence with the number of λ between the occurrence and its binder

$$\lambda.\lambda.0$$
 1 (($\lambda.20$) 0)

What we gain: the need for variable renamings disappears. Also, the syntax of terms will be easier to represent as a λ -encoded data structure

Translations between named and nameless variables

For any named closed term t, write $[\![t]\!]$ its nameless version. Generalization to term with free variables: let ℓ be a list of variable names that contains all the free variables of t, define $[\![t]\!]_{\ell}$ the translation where each free variable x of t is associated to the index at which x appears in t.

(assume index_of is a function that returns the index at which the name x appears in the list ℓ).

Reverse: for any nameless closed term t, write |t| its named version. Generalization to term with free variables: let ℓ be a list of variable names that is long enough to account for every indices in t, define $|t|_{\ell}$ the translation where each free index of t is associated to the element at corresponding index of ℓ .

$$(|k|)_{\ell} = \text{nth}(k, \ell)$$

 $(|t u|)_{\ell} = (|t|)_{\ell} (|u|)_{\ell}$
 $(|\lambda.t|)_{\ell} = \lambda x.(|t|)_{x:\ell}$ for x a fresh variable name

(assume nth is a function that returns the element at index k in the list ℓ).

Encoding the abstract syntax of nameless λ -terms.

Nameless terms can be represented with the following three constructors.

```
type term =
    | Var of int
    | App of term * term
    | Abs of term
```

Representation of such a data structure using λ -terms:

```
 [k] = \lambda abc.a [k] 
 [t u] = \lambda abc.b [t] [u] 
 [\lambda.t] = \lambda abc.c [t]
```

(note: [k] on the left of the first equation is the encoding of a λ -term made of the de Bruijn index k, defined by the equation, whereas [k] on the right of the same equation is the encoding of the naturel number k, as proposed at the beginning of the chapter)

Encoding the abstract syntax of named λ -terms.

One obtains an encoding of usual, named λ -terms by composing the translation to nameless representation with the previous translation. Here is a set of combined equations:

```
[x]_{\ell} = \lambda abc.a \left[ index\_of(x, \ell) \right][t u]_{\ell} = \lambda abc.b \left[ t \right]_{\ell} \left[ u \right]_{\ell}[\lambda x.t]_{\ell} = \lambda abc.c \left[ t \right]_{x:\ell}
```

(again, [index_of(x, ℓ)] is the encoding of a natural number as defined at the beginning of the chapter)

Self-interpreter

Using the previous term representation, one can define an interpreter of the λ -calculus, in the λ -calculus. Such a function can be called a *self-interpreter*, and also corresponds to the concept of *universal machine* that you will hear of again in the computability course. This interpreter is a term e such that for any term t and any list ℓ we have

$$e[t]_{\ell} \ell =_{\beta} t$$

(this assumes that the list ℓ can also encoded as a λ -term, which is left as an exercise) For such an interpreter, we want the following equations:

```
e [x]_{\ell} \ell = e (\lambda abc.a [k]) \ell = \text{nth}(k, \ell)
e [t u]_{\ell} \ell = e (\lambda abc.bb [t]_{\ell} [u]_{\ell}) \ell = (e [t]_{\ell} \ell) (e [t]_{\ell} \ell)
e [\lambda x.t]_{\ell} \ell = e (\lambda abc.c [t]_{x:\ell}) \ell = \lambda x.(e [t]_{:\ell} x : \ell)
```

Thus we propose the following term:

$$e = Y (\lambda e.\lambda t.\lambda \ell. t (\lambda k. nth(k, \ell)) (\lambda t u.(e t \ell) (e u \ell)) (\lambda t.\lambda x. e t (x : \ell)))$$

Correctness of the self-interpreter

Assuming that lists of names ℓ can be encoded as λ -terms as well as the two functions index_of and nth, we prove that for any term t and any list ℓ containing (at least) the free variables of t:

$$e[t]_{\ell} \ell =_{\beta} t$$

Write e = Y e'. We have in one step

$$e = Y e' \rightarrow (\lambda x.e'(xx))(\lambda x.e'(xx)) = e''$$

where the obtained term e'' is the fixpoint of e' produced by Y. Since all encodings share a common structure, first remark that

$$e [t]_{\ell} \ell = Y e' [t]_{\ell} \ell$$

$$\rightarrow (\lambda x. e'(xx))(\lambda x. e'(xx)) [t]_{\ell} \ell$$

$$= e'' [t]_{\ell} \ell$$

$$\rightarrow e' e'' [t]_{\ell} \ell$$

$$\rightarrow^{3} [t]_{\ell} e_{1} e_{2} e_{3}$$

where

$$e_1 = \lambda k. \operatorname{nth}(k, \ell)$$

$$e_2 = \lambda t u. (e'' t \ell) (e'' u \ell)$$

$$e_3 = \lambda t. \lambda x. e'' t (x : \ell)$$

Now prove the result by induction on *t*:

• Case of a variable x (assumed in ℓ):

$$\begin{array}{lll} e \ [x]_{\ell} \ \ell & \longrightarrow & [x]_{\ell} \ e_1 \ e_2 \ e_3 \\ & = & (\lambda abc.a \ [\mathsf{index_of}(x,\ell)]) \ e_1 \ e_2 \ e_3 \\ & \longrightarrow^3 & e_1 \ [\mathsf{index_of}(x,\ell)] \\ & = & (\lambda k.\mathsf{nth}(k,\ell)) \ [\mathsf{index_of}(x,\ell)] \\ & = & \mathsf{nth}([\mathsf{index_of}(x,\ell)],\ell) \end{array}$$

The specifications of nth and index_of indeed require that $nth([index_of(x, \ell)], \ell)$ is equal to x (when x is in ℓ).

• Case of an application *t u*:

$$\begin{array}{lll} e \ [t \ u]_{\ell} \ \ell & \longrightarrow & [t \ u]_{\ell} \ e_1 \ e_2 \ e_3 \\ & = & (\lambda abc.b \ [t]_{\ell} \ [u]_{\ell}) \ e_1 \ e_2 \ e_3 \\ & \longrightarrow^3 & e_2 \ [t]_{\ell} \ [u]_{\ell} \\ & = & (\lambda tu.(e'' \ t \ \ell) \ (e'' \ u \ \ell)) \ [t]_{\ell} \ [u]_{\ell} \\ & \longrightarrow^2 & (e'' \ [t]_{\ell} \ \ell) \ (e'' \ [u]_{\ell} \ \ell) \\ & =_{\beta} & t \ u & \text{by induction hypotheses} \end{array}$$

• Case of an abstraction $\lambda x.t$:

$$e [\lambda x.t]_{\ell} \ell \longrightarrow [\lambda x.t]_{\ell} e_1 e_2 e_3$$

$$= (\lambda abc.c [t]_{x:\ell}) e_1 e_2 e_3$$

$$\to^3 e_3 [t]_{x:\ell}$$

$$= (\lambda t.\lambda x.e'' t (x : \ell)) [t]_{x:\ell}$$

$$\to \lambda x.e'' [t]_{x:\ell} (x : \ell) \quad \text{(note: } x \notin \text{fv}([t]_{x:\ell})\text{)}$$

$$=_{\beta} \lambda x.t \quad \text{by induction hypothesis}$$

Second fixpoint theorem

$$\forall f \; \exists t \; f \; [t] =_{\beta} t$$

Proof of the second fixpoint theorem

First remark that one could write two terms A and N such that

$$\begin{array}{ccc}
A & [t] & [u] & =_{\beta} & [t & u] \\
N & [t] & =_{\beta} & [[t]]
\end{array}$$

(A is simply $\lambda t u.\lambda abc.b \ t \ u$, whereas N is defined as the fixpoint of a function defined by pattern matching on the representation [t] of t)

Then define

$$w = \lambda x. f (A x (N x))$$

 $z = w [w]$

Then z is a fixpoint for f.

$$z = w [w] =_{\beta} f (A [w] (N [w]))$$
$$=_{\beta} f (A [w] [[w]])$$
$$=_{\beta} f [w [w]] = f [z]$$

Scott's undecidability theorem

Theorem

- 1. any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not effectively separable
- 2. no non-trivial set $A \subseteq \Lambda$ closed by β -equality can be effectively characterized

Definitions

- *E* is closed by β -equality if $\forall x, y \in \Lambda \ x \in E \land x =_{\beta} y \implies y \in E$
- *E* is non-trivial if there are $x \in E$ and $y \notin E$
- *A* and *B* are effectively separable if there is an effectively characterized set *C* such that $t \in A \implies t \in C$ and $t \in B \implies t \notin C$
- C is effectively characterized if there is a λ -term f such that f $t =_{\beta} T$ for any $t \in C$ and f $t =_{\beta} F$ for any $t \notin C$

(note: in the definition of "effectively characterized" it is of critical importance that the application of the λ -term f to $any \lambda$ -term t is normalizable)

Proof of Scott's theorem

Any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not effectively separable

Assume there is a separating set C such that $A \subseteq C$ and $B \cap C = \emptyset$, characterized by a λ -term f such that

$$\begin{array}{ccc} t \in C & \Longrightarrow & f \ [t] =_{\beta} \mathsf{T} \\ t \not \in C & \Longrightarrow & f \ [t] =_{\beta} \mathsf{F} \end{array}$$

Since *A* and *B* are not empty, we can find two terms $a \in A$ and $b \in B$. Define

$$g = \lambda x$$
.if $f x$ then a else b

Then

$$\begin{array}{ccc} t \in C & \Longrightarrow & g[t] =_{\beta} b \\ t \notin C & \Longrightarrow & g[t] =_{\beta} a \end{array}$$

From the second fixpoint theorem, there is z such that g[z] = z

$$z \in C \implies z =_{\beta} g[z] =_{\beta} b \in B \implies z \notin C$$

 $z \notin C \implies z =_{\beta} g[z] =_{\beta} a \in A \implies z \in C$

Contradiction!

Undecidability of β -equality

No algorithm can decide whether two arbitrary λ -terms are β -equal Assume f is a λ -term such that, for any a and b, f [a] [b] equals to [1] if $a =_{\beta} b$ and to [0] otherwise Define $A = \{x \mid x =_{\beta} a\}$

- by definition, A is closed by β -equality
- A is not empty, since it contains a
- $\Lambda \setminus A$ is not empty, because:
 - if *a* has a normal form, then $\Omega \notin A$
 - if *a* has no normal form, then $\lambda x.x \notin A$

By Scott's theorem, the set *A* is not recursive

On the other hand, f[a] computes the characteristic function of A Contradiction.

Exercise: halting problem for the λ -calculus

No algorithm can decide whether an arbitrary λ -term has a normal form

Undecidability of the optimal strategy

Strategy: function $F: \Lambda \to \Lambda$ such that

$$\forall t \in \Lambda \quad t \longrightarrow_{\beta} F(t)$$

Optimal strategy: strategy that always picks a shortest path to the normal form (if there is a normal form)

There is no computable optimal strategy

Undecidability of the optimal strategy: idea

Consider the set

$$t_n = (\lambda x. x E x) (\lambda y. y[n](II))$$

of λ -terms, where E enumerates λ -terms with at most one free variable a Assuming E is already in normal form, for each n we have to choose between:

- reducing $t_n \rightarrow_{\beta} (\lambda y.y[n](II)) \to (\lambda y.y[n](II))$
- reducing $t_n \rightarrow_{\beta} (\lambda x.x Ex) (\lambda y.y[n]I)$

However, the best choice differs depending on the normal form of E[n]

Optimal strategy: first case

If $E[n] \rightarrow_{\beta}^{*} \lambda xyz.z$ in k steps then

$$\begin{array}{cccc} (\lambda y.y[n](\mathrm{II})) \to (\lambda y.y[n](\mathrm{II})) & \longrightarrow_{\beta} & \mathrm{E} \ [n] \ (\mathrm{II}) \ (\lambda y.y[n](\mathrm{II})) \\ & \longrightarrow_{\beta}^{*} & (\lambda xyz.z) \ (\mathrm{II}) \ (\lambda y.y[n](\mathrm{II})) \\ & \longrightarrow_{\beta}^{2} & \lambda z.z \end{array}$$

optimally in k + 3 steps and

$$\begin{array}{cccc} (\lambda x.x \mathsf{E} x) \; (\lambda y.y[n] \mathsf{I}) & \longrightarrow_{\beta} & (\lambda y.y[n] \mathsf{I}) \; \mathsf{E} \; (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta} & \mathsf{E} \; [n] \; \mathsf{I} \; (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta}^{*} & (\lambda xyz.z) \; \mathsf{I} \; (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta}^{2} & \lambda z.z \end{array}$$

optimally in k + 4 steps

Optimal strategy: second case

If $E[n] \rightarrow_{\beta}^{*} a$ in k steps then

$$\begin{array}{cccc} (\lambda y.y[n](\mathrm{II})) \to (\lambda y.y[n](\mathrm{II})) & \longrightarrow_{\beta} & \to [n] \ (\mathrm{II}) \ (\lambda y.y[n](\mathrm{II})) \\ & \longrightarrow_{\beta}^{*} & a \ (\mathrm{II}) \ (\lambda y.y[n](\mathrm{II})) \\ & \longrightarrow_{\beta}^{2} & a \ \mathrm{II} \ (\lambda y.y[n]\mathrm{II}) \end{array}$$

optimally in k + 3 steps and

$$\begin{array}{cccc} (\lambda x.x \mathsf{E} x) \; (\lambda y.y[n] \mathsf{I}) & \longrightarrow_{\beta} & (\lambda y.y[n] \mathsf{I}) \; \mathsf{E} \; (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta} & \mathsf{E} \; [n] \; \mathsf{I} \; (\lambda y.y[n] \mathsf{I}) \\ & \longrightarrow_{\beta}^{*} & a \; \mathsf{I} \; (\lambda y.y[n] \mathsf{I}) \end{array}$$

optimally in k + 2 steps

Optimal strategy: conclusion

$$t_n = (\lambda x. x Ex) (\lambda y. y[n](II))$$

If F is an optimal strategy, then

- if E $[n] \rightarrow^*_{\beta} \lambda xyz.z$ then $F(t_n) = (\lambda y.y[n](II))$ E $(\lambda y.y[n](II))$, and
- if $E[n] \rightarrow_{\beta}^{*} a$ then $F(t_n) = (\lambda x. x Ex) (\lambda y. y[n]I)$

An optimal strategy thus separates

$$\{n \mid \mathsf{E}[n] \to_{\beta}^* \lambda xyz.z\}$$
 and $\{n \mid \mathsf{E}[n] \to_{\beta}^* a\}$

However, these two sets are not recursively separable, since by Scott's theorem

$$\{t \mid t \to_{\beta}^* \lambda xyz.z\}$$
 and $\{t \mid t \to_{\beta}^* a\}$

are not recursively separable.

4 The λ -calculus is a model of computable functions

Bonus section, encoding general recursive function into λ -calculus.

Definability

A mathematical function $\varphi: \mathbb{N}^p \to \mathbb{N}$ is λ -definable if there is a λ -term $f \in \Lambda$ such that

$$\forall n_1, \dots, n_p \in \mathbb{N}, \quad f[n_1] \dots [n_p] =_{\beta} [\varphi(n_1, \dots, n_p)]$$

By Church-Rosser property, we could also have given the condition

$$\forall n_1,\ldots,n_p \in \mathbb{N}, \quad f[n_1]\ldots[n_p] \longrightarrow_{\beta}^* [\varphi(n_1,\ldots,n_p)]$$

Property: the λ -definable functions are exactly the recursive functions

Initial recursiuve functions

Zero
$$Z(n) = 0$$

•
$$Z = \lambda x.[0]$$

Successor S(n) = n + 1

•
$$S = \lambda x. \langle F, x \rangle$$

Projection $U_i^p(n_0,...,n_p) = n_i$ with $0 \le i \le p$

•
$$\bigcup_{i}^{p} = \lambda x_0 \dots x_p.x_i$$

Composition of recursive functions

If F, G_1 , ..., G_m are recursive then the function H defined by

$$H(\vec{n}) = F(G_1(\vec{n}), \dots, G_m(\vec{n}))$$

is recursive

Assume F, G_1 , ..., G_m are defined by f, g_1 , ..., g_m then H can be defined by

$$h = \lambda \vec{x} \cdot F(G_1 \vec{x}) \dots (G_m \vec{x})$$

Primitive recursion

If *F* and *G* are recursive then the function *H* defined by

$$H(0, \vec{n}) = F(\vec{n})$$

 $H(k+1, \vec{n}) = G(H(k, \vec{n}), k, \vec{n})$

is recursive

Assume F and G are defined by f and g, we are looking for an h such that

$$h = \lambda x \vec{y}$$
.if is Z x then $f \vec{y}$ else $g(h(Px) \vec{y})(Px) \vec{y}$

Fixpoint theorem: such a term h exists

Minimisation

If *F* is recursive and is such that

$$\forall \vec{n} \ \exists m \ F(\vec{n}, m) = 0$$

then the function M defined by

$$M(\vec{n})$$
 = the smallest $m \in \mathbb{N}$ such that $F(\vec{n}, m) = 0$

is recursive

Assume F is defined by f, then define

$$m = \lambda \vec{x}.(\Theta(\lambda hy.if isZ(f\vec{x}y) then y else h(Sy))[0])$$

Summary

We encoded in the λ -calculus:

- the initial functions Z, S and U_i^p
- function composition
- primitive recursion
- minimisation

Therefore, any recursive function is λ -definable *The* λ -calculus is *Turing-complete*

5 Decidability, traditional presentation

The historical path, encoding λ *-terms as numbers.*

Encoding λ -terms using numbers

Assume a (computable and) injective function $\varphi: \mathbb{N}^2 \to \mathbb{N}$, for instance $\varphi(x, y) = 2^x(2y + 1) - 1$ Assign numbers to all variables: $\{x_0, x_1, x_2, ...\}$

We deduce a function $*: \Lambda \to \mathbb{N}$ assigning a unique number to each λ -term

$$\begin{array}{rcl} \sharp x_i &=& \varphi(0,\ i) \\ \sharp (t\ u) &=& \varphi(1,\ \varphi(\sharp t,\ \sharp u)) \\ \sharp (\lambda x_i.t) &=& \varphi(2,\ \varphi(i,\ \sharp t)) \end{array}$$

Encoding of a λ -term t: the λ -term t' representing the number n representing the encoded λ -term t

$$[t] \equiv [\sharp t]$$

Remark: this is a new encoding, thus all encoding-dependent theorems have to be proved again.

Enumeration theorem (admitted)

There is a *λ*-term E such that for any closed *λ*-term t, E $[t] \rightarrow_{\beta}^{*} t$

This is the equivalent of the self-interpreter in the previous presentation. The proof however is far more technical.

Proof of the second fixpoint theorem

The functions φ_A and φ_N defined by

$$\varphi_A(\sharp t, \sharp u) = \sharp (t \ u)$$

$$\varphi_N(\sharp t) = \sharp [t]$$

are recursive. They are thus defined by λ -terms A and N such that

$$A [t] [u] =_{\beta} [t u]$$

$$N [t] =_{\beta} [[t]]$$

Define

$$w \equiv \lambda x.f (A x (N x))$$

 $z \equiv w [w]$

Then z is a fixpoint for f.

$$z = w [w] =_{\beta} f (A [w] (N [w]))$$
$$=_{\beta} f (A [w] [[w]])$$
$$=_{\beta} f [w [w]] \equiv f [z]$$

Scott's undecidability theorem (stated using general vocabulary of recursive functions)

Theorem

- 1. any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not recursively separable
- 2. any non-trivial set $A \subseteq \Lambda$ closed by β -equality is not recursive

Definitions

- *E* is closed by β -equality if $\forall x, y \in \Lambda \ x \in E \land x =_{\beta} y \implies y \in E$
- *E* is non-trivial if there are $x \in E$ and $y \notin E$
- A and B are recursively separable if there is a recursive set C such that $A \subseteq C$ and $B \cap C = \emptyset$
- *C* is recursive if its characteristic function is recursive

Proof of Scott's theorem

Any two non-empty sets $A, B \subseteq \Lambda$ closed by β -equality are not recursively separable

Assume there is a recursive set C such that $A \subseteq C$ and $B \cap C = \emptyset$ Its characteristic function is realized by a λ -term f such that

$$\begin{array}{ccc} t \in C & \Longrightarrow & f\left[t\right] =_{\beta} [1] \\ t \notin C & \Longrightarrow & f\left[t\right] =_{\beta} [0] \end{array}$$

Since *A* and *B* are not empty, we can find two terms $a \in A$ and $b \in B$. Define

$$g = \lambda x.if isZ (f x) then a else b$$

Then

$$\begin{array}{ccc} t \in C & \Longrightarrow & g[t] =_{\beta} b \\ t \notin C & \Longrightarrow & g[t] =_{\beta} a \end{array}$$

From the second fixpoint theorem, there is z such that g[z] = z

Contradiction!

Undecidability results...

are proved exactly as in the previous section, now that Scott's theorem is established for this other representation of λ -terms.

Homework

- 1. Prove that there exists no λ -term h such that h[t] = T for any $t \in \Lambda$ with a normal form and h[t] = F for any $t \in \Lambda$ with no normal form.
- 2. Using the encoding of algebraic datatypes, and one of the already defined encodings of numbers, propose an encoding of lists, and of the nth function.
- 3. In your encoding, prove that nth $k \ell = \text{nth } (k + 1) (t : \ell)$.