C o n Q u R - B i o

Consensus ranking with Query Reformulation for biological data

Bryan Brancotte¹, Bastien Rance², Alain Denise¹,³, Sarah Cohen-Boulakia¹

(1) Laboratoire de Recherche en Informatique (LRI) & INRIA, Université Paris-Sud, France
(2) Biomedical Informatics and Public Health Department, University Hospital Georges Pompidou, AP-HP, Paris, France & INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
(3) Institut de Génétique et de Microbiologie (IGM), CNRS UMR 8621 Université Paris-Sud - France

10th International Conference on Data Integration in the Life Sciences
July 18, 2014
An approach driven by use cases

Searching for relevant genes for a disease?
Connecting to the NCBI...
An approach driven by use cases

NCBI portal

Cervix cancer
→ 460 genes returned

Cervical cancer
→ 20 genes returned

Equivalent reformulations: cervix cancer vs cervical cancer
An approach driven by use cases

NCBI portal

ADHD → 109 genes returned
Attention deficit hyperactivity disorders → 144 genes

Only 74 genes in common!

Equivalent reformulations: cervix cancer vs cervical cancer

Abbreviations: Attention deficit hyperactivity disorders vs ADHD
An approach driven by use cases

NCBI portal

In US english
- tumor suppressor

In British english
- tumour suppressor

Is it impacting the results?

Equivalent reformulations:
- cervix cancer vs cervical cancer

Abbreviations:
- Attention deficit hyperactivity disorders vs ADHD

Lexical-based reformulations:
- tumor suppressor vs tumour suppressor
An approach driven by use cases

NCBI portal

Breast cancer tumor suppressor: → 681 genes
Breast cancer tumour suppressor: → 291 genes

Regional settings are also important

Equivalent reformulations: cervix cancer vs cervical cancer

Abbreviations: Attention deficit hyperactivity disorders vs ADHD

Lexical-based reformulations: tumor suppressor vs tumour suppressor
An approach driven by use cases

NCBI portal

When querying with "Lynch Syndrome" 6 new genes are returned compared to "colorectal cancer"

Equivalent reformulations: cervix cancer vs cervical cancer

Abbreviations: Attention deficit hyperactivity disorders vs ADHD

Lexical-based reformulations: tumor suppressor vs tumour suppressor

Narrower-term-based reformulations: The colorectal cancer versus a subtype: the Lynch Syndrome
An approach driven by use cases

Problems we aim to address

- Querying without considering reformulations implies getting incomplete sets of answers
- Querying many reformulations is a time consuming task for the user
- Querying many reformulations provides possible huge amounts of answers

Equivalent reformulations: cervix cancer vs cervical cancer

Abbreviations: Attention deficit hyperactivity disorders vs ADHD

Lexical-based reformulations: tumor suppressor vs tumour suppressor

Narrower-term-based reformulations: The colorectal cancer versus a subtype: the Lynch Syndrome
How to address all the problem induced by use cases?

How to obtain a relevant list of genes taking into account all reformulations?

We have automatized the extraction of:
- query reformulations from different biomedical terminologies (MeSH, OMIM, ICD10CM, ICD9CM, SNOMED CT)
- lists of genes sorted with the "relevance" criteria of the NCBI for each reformulation

We want to:
- take into account all the genes returned by each reformulation
- exploit the fact that some genes appear in the results of several reformulations while others don’t
- provide one single list of genes answering the user’s query ranked by relevance

⇒ The Median Ranking Problem can answer the needs!
From alternative rankings to one consensus ranking

Notions for the Median Ranking Problem

A ranking with ties is an ordering of buckets (set of elements) where two elements are ranked differently iff they are in different buckets and are tied otherwise.

→ to compare rankings with ties we need a distance

The generalized Kendall–τ distance [Fag+04] denoted $K^{(p)}$
Counts the pairwise disagreements between two rankings with ties:
- counts 1 when two elements are inverted
- counts $p \in]0; 1]$ when two elements are tied in only one ranking

Example: $K^{(p)}(\{\{C\}, \{A\}, \{B\}\}, \{\{A\}, \{C, B\}\}) = 0_{A-B} + 1_{A-C} + p_{B-C}$

→ What is the median ranking problem?
Formally, the median ranking problem is to find, for a set of input rankings R, a median ranking c^* such that: $K^{(p)}(R, c^*) \leq K^{(p)}(R, r), \forall r \in R$.

$K^{(p)}$ is the generalized Kendall-τ distance [Fag+04]:
- counts 1 when two elements are inversed
- counts $p \in]0; 1]$ when two elements are tied in only one ranking

Example

Let us consider the set of input rankings $R = \{r_1, r_2, r_3\}$, the median under the generalized Kendall-τ distance is c

$$R = \begin{cases} r_1 = [{A}, {D}, {B}, {C}] \\ r_2 = [{B}, {A}, {D}, {C}] \\ r_3 = [{A}, {D}, {B}, {C}] \end{cases} \quad \begin{cases} c = [{A}, {D}, {B}, {C}] \\ K^{(p)}(R, c) = 1_{A-B \oplus r_2} + 1_{B-D \oplus r_2} + p_{A-D \oplus r_3} + p_{B-C \oplus r_2} = 2 + 2p \end{cases}$$

→ NP-Hard problem [Dwo+01], how to compute a solution?
→ Real case rankings are not over the same elements, how to deal with it?
From alternative rankings to one consensus ranking
Dealing with missing elements

When alternative rankings (results of reformulations) produce different elements, how to apply the distance and construct a complete ranking?

Solutions

1. Induced Kendall-\(\tau\) distance \([Dwo+01]\)
 Ignored disagreements related to missing elements
 \(\text{KO}\)

2. Projection process \([BBN13]\)
 Considers only elements appearing in all rankings (it **removes** the others)
 \(\text{KO}\)

3. Unification process \([CBDH11]\)
 Appends missing elements at the end in a **unification bucket**:
 \[
 \begin{align*}
 r_1 &= \{\{A\}, \{D\}\} \\
 r_2 &= \{\{B\}, \{A, D\}, \{C\}\}
 \end{align*}
 \]
 \[
 \Rightarrow
 \begin{align*}
 r'_1 &= \{\{A\}, \{D\}, \{B, C\}_u\} \\
 r'_2 &= \{\{B\}, \{A, D\}, \{C\}\}
 \end{align*}
 \]

 \(B\) and \(C\) are indeed **less relevant** than \(A\) and \(D\) in \(r_1\)
 \(B\) and \(C\) are **not equally relevant** in \(r_1\) and should not be considered so in \(r'_1\)!
Extending the generalized Kendall–τ distance to a pseudometrics $\mathcal{M}(r'_1, r'_2)$

Counts the pairwise disagreements between two rankings with ties:
- counts 1 when two elements are inversed
- counts 0 when two elements are tied in at least one unifying bucket
- counts $p \in]0; 1]$ when two elements are tied in only one ranking

Example

Let us consider the set of input rankings $R = \{r_1, r_2, r_3\}$, the median under the generalized Kendall-τ distance is c and the median under the pseudometrics is c'

$$R = \left\{ \begin{array}{l}
 r_1 = [\{A\}, \{D\}, \{B, C\}_u] \\
 r_2 = [\{B\}, \{A\}, \{D\}, \{C\}] \\
 r_3 = [\{A, D\}, \{B, C\}_u]
\end{array} \right\}
\begin{array}{l}
 c = [\{A\}, \{D\}, \{B, C\}] \\
 c' = [\{A\}, \{D\}, \{B\}, \{C\}]
\end{array}$$

$$\mathcal{M}(R, c) = 2 + p > \mathcal{M}(R, c') = 2$$

How can we actually compute a consensus?
Plethora of algorithms, but either they are too time consuming [Fag+04; Mei+07; ACN08; Ail10] or they do not provide results "good" enough [Bor81; FKS03; Ail10]. Only two algorithms [CBDH11; Fag+04] can handle the pseudometrics $M(r'_1, r'_2)$.

Main algorithm used: a greedy local search algorithm, BioConsert [CBDH11]: Starting with each input rankings and considering two edit operations (moving an element to a new bucket or an existing bucket), it applies operators as long as it reduces the distance between the current consensus obtained and the input rankings.

$$\begin{align*} &\{A\},\{B\},\{C,D\} \quad \longrightarrow \quad \{A\},\{D\},\{B\},\{C\} \quad \longrightarrow \quad \{A\},\{D\},\{B,C\} \end{align*}$$

Figure: edit operations in BioConsert

Tuning BioConsert: Starting from the best solution provided by BordaCount [Bor81], MEDRank [FKS03], and Ailon’s 2-approximation [Ail10] Up to a hundred times faster!
Architecture of ConQuR-Bio:

- **Green area**: identification of terms in the query and reformulations.
- **Blue area**: querying the NCBI to obtain lists of genes for each reformulation.
- **Red area**: computing a consensus.
Online at http://conqu-r-bio.lri.fr/
Online at http://conqurbio.lri.fr/
Bibliometrics indicators

Focusing on the top 20 genes. For each gene we consider publications co-citing the gene name and the query, and compare to the top 20 genes returned by the NCBI portal.

Using the number of publications

Summing the number of publications co-citing the gene name and the query. With ConQuR-Bio: 56% more publications associated than with the NCBI.

Using publication "freshness"

Averaging the number of days since the last publication co-citing the gene name and the query. With ConQuR-Bio: 25% less days than with the results provided by the NCBI.
Gold-standards

Clinicians of the Institut Curie (France) and the Children's Hospital of Philadelphia (PA, USA) provided gold-standards, list of expected genes, for 9 different diseases: 7 cancers (bladder, breast, cervical, colorectal, neuroblastoma, prostate, retinoblastoma), one heart disease (the Long QT Syndrome), and one psychiatric disorder (the attention deficit (with) hyperactivity disorder). Diseases are often combined with terms tumor suppressor and oncogene.

Measure: the AUC

The Area Under the ROC Curve [Bra97] is closely related to precision and recall measures, and allows to highlight the presence of elements of the gold standard in the top results. It provides a number in [0, 1], 1 being the highest score.

Examples with two expected results (●●)

AUC(●●●●●) = 0.50
AUC(●●●●●) = 0.66
AUC(●●●●●) = 0.66
AUC(●●●●●) = 0.83
Results: using expertise of clinician collaborators

Figure: AUC for the 20 first genes returned by ConQuR-Bio and the NCBI WebSearch for single-term queries.

Average AUC increased of 58%
Results: using expertise of clinician collaborators

Figure: AUC for the 20 first genes returned by ConQuR-Bio and the NCBI WebSearch for lexical variation around *cervix cancer tumor suppressor*.

AUC of ConQuR-Bio results are **stable** and **superior** to the AUC of NCBI results.
Results: using expertise of clinician collaborators

Figure: AUC for the 20 first genes returned by ConQuR-Bio and the NCBI WebSearch for (a) Single-term queries, (b) lexical variation around cervix cancer tumor suppressor, and (c) the remaining query for which we have gold standards.

Average AUC of ConQuR-Bio results are increased of 44%
Conclusion

ConQuR-Bio...

- exploits biomedical terminologies to reformulate the user query
- proposes a consensus emphasizing agreements between reformulations results
 - introducing a new pseudometrics answering problematics brought by the data
 - leveraging state-of-the-art algorithms to efficiently propose a relevant consensus
- increases the results AUC of +44% compared to the NCBI
- follows an on-the-fly approach
- is free to use at http://conqur-bio.lri.fr

Ongoing work

- Consider fine grain recognition of terms in users queries.
- Extend to larger and customizable amounts of biomedical terminologies.

