
Cours 1c: Introduction a Gama

Alexis Drogoul (a, d), Benoit Gaudou (b), Patrick Taillandier (c)

Philippe Caillou (e), Arnaud Grignard (a), Nicolas Marilleau (a), An Duc Vo (a) 

(a) UMI 209 UMMISCO, IRD / UPMC

(b) UMR 5505 IRIT, CNRS / Université de Toulouse

(c) UMR 6266 IDEES, CNRS / Université de Rouen

(d) JEAI DREAM, IRD / Université de Can Tho

(e) LRI, INRIA TAO Project / Université d’Orsay

tiré de la GAMA Winter School Nov. 2012, Can Tho University / IRD



2

General introduction to 

GAMA

2



3

 Software platform dedicated to building 

spatially explicit agent-based simulations

• Generic : can be used for a wide range of 

applications

• Developed under GPL/LGPL license : free 

• Integrates a complete modeling language (GAML) 

and an integrated development environment: 

allows modelers (even non computer-scientists) to 

build models quickly and easily

• Developed in JAVA : easy to extend in order to 

take specific needs into account

• Integrates tools to analyze models: parameters 

space exploration and calibration of models

Introduction to GAMA 3



4

 Strengths of GAMA vs other Simulation 

Frameworks (Netlogo, Repast, Cormas, ...)

• Supports the development of quite complex 

models

• Seamless integration of geographic data and GIS 

tools with agent-based models

• Integrates a methodological approach to define 

multi-level models

• Integrates high-level tools: multi-criteria 

decision making tools, clustering functions, 

statistical operators…

• Easily extensible thanks to its open architecture, 

which relies on two legacy Java technologies : 

OSGI plugin framework and Java annotations

Introduction to GAMA 4



5

 Some examples

Introduction to GAMA 5



6

 Blog

http://gama-platform.blogspot.fr/

 Facebook 

http://www.facebook.com/GamaPlatform

 Web site of the project

http://code.google.com/p/gama-platform/

 Documentation

http://code.google.com/p/gama-platform/wiki/Documentation

 Mailing-lists 

• General mailing-list 

https://groups.google.com/forum/?fromgroups#!forum/gama-platform

• Developers mailing-list

https://groups.google.com/forum/?fromgroups#!forum/gama-dev



More information 6

http://gama-platform.blogspot.fr
http://www.facebook.com/GamaPlatform
http://code.google.com/p/gama-platform/
http://code.google.com/p/gama-platform/wiki/Documentation
https://groups.google.com/forum/?fromgroups#!forum/gama-platform
https://groups.google.com/forum/?fromgroups#!forum/gama-dev


7User interface of GAMA 7

Model Navigator
Model edition frame Model outline



8

Perspective switch 

button

Simulation perspectiveModeling perspective

8Modeling and simulation perspectives



9Launching an experiment

 In the modeling perspective, click on the desired experiment button 

(these buttons only appear when the experiments can be launched 

safely, i.e. the model does not contain any error)

9



10Simulation interface 10

Run/pause the current 

simulation

Launch a new simulation (with 

the current parameters values)
Step by step execution

Slows down the 

execution of the 

simulation

Parameters view (can be 

altered from there)

Zoom in, zoom out, fit the 

view, zoom on an agent



11

 Inspector: provides informations about a species or an agent

• Species inspector: provides informations about all the species present in a model

o Available in the Agents menu

Inspectors - 1 11



12

 Inspector: provides informations about a species or an agent

• Agent inspector: provides information about one specific agent. Also allows 

to change the values of its variables during the simulation.

o Available from the Agents menu, by right_clicking on a display, in the species 

inspector or when inspecting another agent (button          ) 

Inspectors - 2 12



13

• Agent inspector: provides information about one specific agent. Also allows 

to change the values of its variables during the simulation.

o Possibility to «highlight» the selected agent

Inspectors - 3

Button to choose the 

frame color

13



14

The bases of GAMA through 

the Schelling model example

14



15

• In 1969, Schelling introduced a model of 

segregation in which individuals of two 

different colors, positioned on a grid abstract 

representation of a district), choose where to 

live based on a preferred percentage of 

neighbors of the same color.

• Using coins on a board, he showed that a 

small preference for one's neighbors to be of 

the same color could lead to total segregation.

• It is a good example of a  generative model, 

where the emergence of a phenomenon here, 

segregation) is not directly predictible from the 

knowledge of individual

GAMA through an example: Introduction to Schelling’s 

model



16

In the simplest agent based model, agents 

(people) are randomly placed in a continuous 

space. Each agent has a color, a perception 

of its neighbors and a preference - i.e. a 

minimal desired percentage of neighbors of 

the same color.

Only behavior of the agent: if the 

percentage of neighbors of the same color is 

inferior to the preference, then the agent 

randomly moves to another location of the 

space.
Neighborhood : 4 

neighbors of the same 

color, and 2 neighbors 

of a different color

Result after 

30 

simulation 

steps

GAMA through an example: Introduction to Schelling’s 

model
16



17Creating a new project 17



18

Creating a new model

Choose the project

Choose the name 

of the file

Click on Finish

Choose skeleton 



19

Objectives:
• Definition of the people species

• Creation of 500 people agents randomly 

located in the environment 

• Display of the agents

Key points:
• Introduction to the structures of GAMA 

models

• Definition of a species  

• Creation of agents

• Display of agents

Step 1: basic model



20

GAML
๏Complete modeling language: simple structures, but very rich in 

terms of operators 

๏Supported by an IDE (Integrated Development Environment):  ease 

the writing of models

Some basic rules :
๏A statement always ends with an “ ; ” or with a block.

๏A block is delimited by “{“ and “}” and contains a sequence of 

statements.

๏A statement is identified by a keyword, followed by a number of 

facets (its «parameters»)

GAML: “GAMA Modeling Language” 20



21

GAMA model structure

Four statements define the main sections:

• Global : variables, actions, dynamics and global 

initializations

• Environment : properties of the global 

environment 

• Entities : species of agents

• Experiment : execution context of simulations, 

defining for instance their inputs and outputs. 

Several experiments can be defined in a same 

model.

Two ways of writing comments in your model :

//… : inlined comments. Example : //This is a comment (always on one line)

/* … */ : block comments. Example : /* This is a block comment (possibly on several lines)  */



22

All the species inherit from predefined built-in 

variables:
•A name (name)

•A shape (shape)

•A location (location) : the centroid of its shape. 

Step 1: Species definition

• A species represents a «prototype» of agents: defines 

their common properties

• A species includes several sub-definitions

• The internal state of its agents (variables)

• Their behavior

• How they are displayed (aspects)

Name of the 

speciesentities {

species people {

} 

}

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

For our model:



23

Step 1: Species definition: aspect

 An aspect represents a possible way to display the 

agents of a species : 

aspect aspect_name {…}

 In the block of an aspect, it is possible to draw : a 

predefined shape (circle…), the shape of the agent, 

an image or text…

model CT_schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

entities {

species people {

aspect base {

draw circle(5) color: rgb("yellow");

}

}

}
The base aspect allows to display each people agent in 

the form of a yellow circle of radius 5 centered at the 

agent location

For our model:



24

Step 1: Global block: definition of the initialization 

sequence

 Actually the definition of the species of a specific agent 

(called world)

 Represents everything that is global to the model : 

dynamics, variables…

 Allows to init simulations (init block) : the world is always 

created and initialized first when a simulation is 

launched.

 The geometry (shape) of the world is a rectangle defined 

in the environment section.

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

world agent



25

global {

init {

create people number: 500;

}

}

Step 1: Global block: definition of the initialization 

sequence

For our model: creation of 500 agents of species people

Agent creation of the specified species

By default, agents when created are 

located randomly in the environment 

(except when a GIS file is used or they 

explicitely initialize their location)

 Creation of agents : statement create species_name +

• number : number of agents to create (int, 1 by default)

• from : GIS file to use to create the agents (string or file)

• returns: liste des agents créés (list)

One of the two

If nothing is specified, 

creation of an agent of 

the same species as the 

caller

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}



26

Step 1: Environment definition

 GAMA provides a continuous environment to each model

which is the geometry of the world agent

 Definition of the size of the environment 

o Using the width and height facets

o Using the bounds facet, with : 

 a point ({x,y}), 

 a shapefile (GIS) : envelope of all the data contained in the 

shapefile

 a raster file (asc) 

 a list of files (union of their envelopes)

 By default, the environment is a rectangle of 100 x 100

environment {}

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

For our model: use of the default environment



27

Step 1: Experiment

 An experiment block defines how a model can be simulated 

(executed).

 Several experiments can be defined for a model.

 They are defined using: 

experiment exp_name type: gui/batch {…}

• gui : experiment with a graphical interface, which displays its input 

parameters and outputs.

• batch : Allows to setup a serie of simulations (without graphical 

interface).

More details on the batch mode 

will be given later in the tutorial



28Step 1: Outputs of an experiment

 output blocks are defined in an experiment and define how to visualize a 

simulation (with one or more display blocks that define separate windows)

๏ Each display can be refreshed independently by defining the facet refresh_every: nb 

(int) (the display will be refreshed every nb steps of the simulation)

๏ Each display can include different layers (like in a GIS) :

‣ Agents species : species  my_species aspect: my_aspect

‣ Images: image layer_name file: image_file;

‣ Texts : texte layer_name value: my_text;

‣ Charts : see later.

‣ ...

Warning: in a display, 

the drawing of layers 

follows the order used 

in its definition.

display1

display2

display3

experiment schelling type: gui {    

output {

display display_people {

species people aspect: base;

}  

}

}

For our model: Definition of one display

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

28



29

Step 1: End



30

Step 2: Creation of the two groups

Objectives:
• Addition of a parameter to change the 

initial number of agents

• Addition of an attribute to the people 

species to deal with various colors (and 

thus groups)

Key points:
• Introduction of parameters

• Introduction of operators

• Introduction of species attributes



31

Step 2: Introduction of parameters

 To introduce a parameter in a GAMA model, we should 

follow 2 steps:

• Introduce a global variable (in the global block)

• Introduce a parameter statement (in the experiment 

block)



32

Step 2: Introduction of parameters – introduction of global 

variables

Global variable with an initial value

global {

int nb_people <- 500 min: 10 max: 1000;

...

}

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

For our model: Definition of the nb_people global variable

Variable definition : type of the variable or const + name

• For constants, a mandatory facet:

o type: int (integer), float (floating point number), string, bool (boolean, true or 

false), point (coordinates), list, pair, map, file, matrix, espèce d’agents, rgb (color), 

graph, path…

• Optional facets:

o <- (initial value), update (value recomputed at each step of the simulation), 

function:{..} (value computed each time the variable is used), min, max

32



33

Step 2: Introduction of parameters – parameter 

statement

❖ Parameter definition

parameter + text + var: + name_variable [+ optional facets]

• text : will be displayed in the GUI to represent the parameter

• name_variable : the variable that will be modified by the user

• Optional facets include : category (parameters are organized into 
categories in the graphical interface)

Definition of the new parameter 

experiment schelling type: gui {

parameter "Number of inhabitants"

var: nb_people category: "people";

...

}

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

For our model: Definition of the nb_people parameter

33



34

❖It is possible to directly use global variables in the 

model

Step 2: Introduction of parameters – use of global variables 

(parameters) 

global {

int nb_people <- 500 min: 10 max: 1000;

init {

create people number: nb_people;

}

}

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

For our model: Use of the nb_people parameter to define the number of 

people agents to create

Use of the nb_people global variable

34



35

entities {

species people {

rgb agent_color <- flip(0.5) ? rgb("red") : rgb("yellow");

aspect base {

draw circle size: 5 color: agent_color;

}

}

}

We add a new attribute to people species: agent_color

• it is a color (type: rgb) 

• initialized with the color red (if flip(0.5) = true), with the yellow color 
otherwise 

• We use it in the aspect (color of the circle)

Step 2: customize aspect

Flip(proba) : 

returns true with the probability proba

(cond ? Value1 : value2) : returns 

value1 if cond is true returns value2 

otherwise

model CT_schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

Use of the agent_color 

attribute

35



36

Step 2: End 36



37

Step 3: Dynamics of the model 

 Objective:

• Computation of the state of the 

agent: happy of not ?

• If the agent is not happy, it will 

move 

 Key points:

• Definition of the agent behaviors



38

entities {

species people {

rgb agent_color <- flip(0.5) ? rgb("red") : rgb("yellow");  

float preference <- 0.5;

bool not_happy <- true;

...

}

 We introduce two new attributes to people species.

• preference : the rate of similar agents below which it will not be happy 

anymore. 

• not_happy : is the people happy or not?

Step 3: new attributes for people species

type: bool (for boolean) = only true or false
model CT_schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

type: float 

38

GAMA includes a powerful casting conversion 

system : type_name(val) (or val as type_name ) 

allows to convert val in the new type type_name.

For instance : rgb("red") returns the red color 

(casting of the string ‘red’ into a value of type rgb)



39

 Use of agent variables (attributes)

• It is possible to access a variable by: my_agent.my_variable

• The set instruction allows to modify the value of a variable

o set ma_variable <- nouvelle_valeur;

set location <- any_location_in (world.shape);

Allows to modify the 

value of the agent 

current location by a 

location randomly 

drawn in the geometry 

of the world agent

Step 3: use of agent attributes

For example: Definition of a move action 

world is the 

embedding world 

agent 

Built-in attribute of every 

agent (geometry of the 

agent)

Built-in attribute of every 

agent: coordinate of the 

agents {x,y}

Operator: Returns a 

random point of the 

geometry

39



40

 An action is a capability available to the agents of a species (what they can do)

 It is a block of statements that can be used and reused whenever needed

 An action can accept arguments (statement arg nom_arg type: type)

 An action can return a result (statement return)

Definition of 

arguments (optional)

Returns a result 

(optional)

40Step 3: Defining a new action

For our model: Definition of a move action 

entities {

species people {

...

action move {

set location <- any_location_in (world.shape);

}

}

}

model CT_schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}



41

 There are two ways to call an action: using a statement or as part of an expression

• do action_name arg1: v1 arg2: v2;

• set my_var <- self action_name [arg1::v1, arg2::v2];
When a value is 

returned

Denotes the agent that will 

execute the action (the action 

must be defined in its 

species)

Use of a map to 

pass arguments

Action name Argument name

Action name First argument name

Second argument name

41Step 3: Calling an action



42

 A reflex is a block of statements (that can be defined in global or any species) that 

will be automatically executed at each time step of the simulation if its condition is 

true.

 reflex reflex_name when: condition {…}

 The when facet is optional: when it is ommitted, the reflex is activated at each time 

step.

Reserved keyword 

indicating the value of the 

current time step

This reflex will only be 

activated during the fifth 

step of the simulation

42Step 3: Definition of a reflex



43

be

1st behavior: the agent compute its 

happiness:
• He will get the list of his neighbors:

• He will count the number of neighbors with the same color

• He will count the total number of neighbors

• He will compare with his preference rate to determine whether he is 

happy

New statements
• let new_var type: type <- value;

Create a new local variable of given type and affect value; A local 

variable is a variable that has an existence only in a statement block: as 

soon as the end of the block, the variable is deleted from the computer 

memory

Step 3: species - behavior definitions 



44

entities {

species people {

...

reflex update_state {

let neighbours type: list of: people <- people at_distance 10;      

let nb_same_color type: float <-

neighbours count (each.agent_color = agent_color);

let nb_total type: float <- length(neighbours);

set not_happy <- nb_same_color / nb_total < preference;

}

...

}

}

be

1st behavior: the agent computes its 

happiness:

Step 3: species - behavior definitions 

Returns the list of people agents  at 

a distance of 10 from the agent 

calling it

d = 10

model CT_schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

list count (cond)

Count the 

number of item of 

the list satisfying 

the condition

length(list)

returns the number 

of element of the list

44



45

 GAMA offers numerous operators to manipulate lists and containers

• Unary operators : min, max, sum…

• Binary operators : 

• where : returns a sub-list where all the elements verify the condition 

defined in the right operand. 

• first_with : returns the first element of the list that verifies the condition 

defined in the right operand. 

• …

 In the case of binary operators, each element can be accessed with the keyword 

each

[5, 20]

5

45Manipulating lists



46

entities {

species people {

...

reflex movement when: not_happy {

do move;

}

}

}

be

2nd behavior: if he is not happy, he will move

Step 3: species - behavior definitions 

calling of the move action

model CT_schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

46



47

Step 3: End 47



48

Step 4: monitor and inspect agents

Objective:

• Adding of a monitor to follow the 

evolution of the number of happy 

agents

Key points:

• Monitor definition



49

Step 4: Monitor

Allows to follow the value of a GAML 

expression:  

monitor name value: expression;

value: mandatory, expression computed

experiment schelling type: gui {

...

output {

...

monitor 'number_happy'

value: length(list(people) where (each.not_happy = false));  

}

}

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}

For our model: Definition of a monitor to follow the number of happy people agents



50

Model 4: End



51

Model 5: Addition of a chart

Objective:

• Addition of a new display to visualize:

o A serie representing the number 

of happy people

Key points:

• Definition of charts

51



52

 GAMA can display various chart types:

• Time series

• Pie charts

• Histograms 

52Definition of charts



53

experiment schelling type: gui {

...

output {

... 

display display_charts {

chart "nb_happy" type: series background: rgb("white") {

data "nb_happy" color: rgb("red") 

value: list(people) count (! each.not_happy);

}

}   

}

}

 Definition of a new display with one series chart

Model 5: Experiment – new chart display

For our model: Definition of a chart to follow 

the evolution of several variables

model CT_Schelling

global {

}

environment {

}

entities {

}

experiment schelling type: gui {

}



54

Model 5: end


