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In a poset, when two elements P and Q are comparable, the interval [P,Q] is the subset of elements R that satisfy P ⩽ R ⩽ Q. The simplest intervals are those which are totally ordered. They are called linear intervals. In this work,
we are interested in the linear intervals in two classical posets on Catalan objects, namely the Tamari and the Dyck lattices. We prove that both lattices have the same number of linear intervals of any height and we count them.

The Tamari lattices
A planar rooted binary tree is a finite connected acyclic planar graph
with n vertices of degree 3, and other vertices of degree 1, one of which is
marked and called the root. We will simply call them trees.
The Tamari lattice Tamn of size n is an order on trees of size n where
covering relations consist of left rotations.
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Example
A covering relation in the Tamari lattices.

We can graft a tree T ′ on a chosen leaf of another tree T by deleting the
root of T ′ and identifying its root node r with the chosen leaf of T .
We can graft an interval I ′ = [P ′,Q′] on the k-th leaf of another interval
I = [P,Q] by grafting P ′ (resp. Q′) on the k-th leaf of P (resp. Q) as bottom
(resp. top) element.
We can also plug a tree T ′ into a chosen edge of another tree T . To do so,
we create a new node n on the selected edge of T , and we identify this node
with the root of T ′.
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Example
Grafting (left) and plugging (right) a tree on another one.

We define left comb ℓn and right comb rn recursively as follows:
ℓ1 = r1 =: Y is the only tree of size 1 and for n ⩾ 2, ℓn (resp. rn) is obtained
by grafting ℓn−1 (resp. rn−1) on the left (resp. right) leaf of Y.
We define two particular intervals Ln and Rn in Tamn+1, for n ⩾ 2. The
interval Rn has rn+1 as bottom element and the grafting of rn on the left
leaf of Y as top element. The interval Ln is the mirrored version of Rn.
The intervals Ln and Rn are linear of height n.
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Example
The intervals R3 (with all 4 elements) and L4.

Linear intervals in the Tamari lattices
The height of an interval [P,Q] is the length k of a longest maximal chain
P = P0 ◁ · · · ◁ Pk = Q from P to Q.
In any poset, an interval of height 0 is a trivial interval [P, P] and an inter-
val of height 1 is a covering relation P ◁ Q.
We define left and right intervals in the Tamari lattices Tamn as follows:
for k ⩾ 2, a left (resp. right) interval of height k is obtained by grafting
the interval Lk (resp. Rk) on some leaf of a trivial interval, and then trivial
intervals on its leaves. All left and right intervals are linear.

Proposition
All linear intervals of height k ⩾ 2 in the Tamari lattices are either
left or right intervals.

Corollary
There are no linear intervals of height k ⩾ n in Tamn.

B C D

A

1 C2

s
⩽

B C D

A

1 C2

s

B C D

A

1 C2 C3

s
⩽

B C D

A

1 C2 C3

s

Example
A left interval of height 2 (top) and a right interval of height 3 (bot-
tom).

Let A(t) be the generating series of trees. For k ⩾ 0, let Sk(t) be the gener-
ating series of linear intervals of height k in the Tamari lattices.
A linear interval of height 0 is a trivial interval [P, P] for P a non trivial tree
so S0 = A− 1.
A linear interval of height 1 (resp. k ⩾ 2) can be understood as a tree with
a marked node s (resp. and a direction "left" or "right") and another tree
(resp. k other trees) plugged on the edges out of this node. So we have
S1 = (tA′)tA and Sk = 2(tA′)(tA)k for k ⩾ 2.

Theorem
In the Tamari lattice Tamn of size n, there are:
▶

1
n + 1

(
2n
n

)
linear intervals of height 0,

▶
(
2n− 1
n− 2

)
linear intervals of height 1,

▶ 2
(

2n− k
n− k − 1

)
linear intervals of height k, for 2 ⩽ k < n.

Linear intervals in the Dyck lattices

A Dyck path of length (or size) n is a path on N2 consisting of up steps
(1, 1) and down steps (1,−1), starting from (0, 0) and ending at (2n, 0). We
define a valley as a down step followed by an up step and a peak as an up
step followed by a down step.
TheDyck latticeDyckn of size n is an order on Dyck paths of size nwhere
covering relations consist of changing a peak into a valley. A path P is less
than or equal to a path Q if and only if P is always below Q.
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Example
A covering relation in the Dyck lattice of size 11. In the bottom ele-
ment, the excursion following d is uPd.

Remark
We can define another order on Dyck paths where covering relations
consist of exchanging the down step of a valley with the excursion
that follows it. We get a poset that is isomorphic to the Tamari lattice.

We can also define left and right intervals in the Dyck lattice Dyckn. For
k ⩾ 2, a left (resp. right) interval of height k is an interval [P,Q] where Q
is obtained from P by changing dku into udk (resp duk into ukd).

Proposition
In the Dyck lattice, all left and right intervals are linear and all linear
intervals of height k ⩾ 2 are either left or right intervals.
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Example
A right interval of height 3 in the Dyck lattices.

For k ⩾ 0, let Tk(t) be the generating series of linear intervals of height k
in the Dyck lattices.

There is a bijection between Dyck paths and binary trees so A(t) is the
generating series of Dyck paths. As previously, we have T0 = A− 1.

A covering relation can be understood as a Dyck path with a marked down
step d, preceded by duP for bottom element and udP for top element, with
P any Dyck path. Hence, we have T1 = (tA′)tA.

For k ⩾ 2, a right interval of height k can be understood as a Dyck path
with a marked down step dk, before which we insert dukD1d...dDk for the
bottom element and ukdD1d...dDk for the top element, with k Dyck paths
D1, . . . ,Dk.
Similarily, a left interval of height k can be understood as a Dyck path with
a marked up step and a list of k Dyck paths D1, . . . ,Dk.
Thus, we have Tk = 2(tA′)(tA)k.

Theorem
For all n ⩾ 1 and k ⩾ 0, there are as many linear intervals of height k
in the Tamari lattice Tamn and in the Dyck lattice Dyckn.

Other prospects

We can define a family of posets Tamδ
n (where δ : {2, . . . , n} → {0, 1}) on

Dyck paths of size nwhich contains both the Tamari and the Dyck lattices.

Conjecture
For all n ⩾ 1 and k ⩾ 0, all posets Tamδ

n have the same number of
linear intervals of height k.

To further investigate this, we could look at theCambrian lattices of type
A and the posets of tilting modules that all generalize the Tamari lattice,
and we conjecture they all have the same number of linear intervals.
We could as well investigate if these techniques give some results in the
case of m-Tamari and m-Cambrian lattices, or in other types.
The poset of the weak order on the symmetric group seems to have nice
numbers of linear intervals as well as the Pallo’s comb poset.

In some posets, there are no linear intervals of height at least 2. It is in
fact equivalent to have no linear intervals of height 2. Such posets are said
to be 2-thick and for lattices of finite length, this is equivalent to be rela-
tively complemented.

In particular, theBoolean lattices, the set partitions lattices and the non
crossing partitions lattices with coarsening order (fusing blocks) only
have trivial intervals and covering relations as linear intervals.

Indeed, in the Boolean lattice all intervals of height 2 are isomorphic to the
Boolean lattice B2, which is not totally ordered.
In the set partition and the non crossing partition lattices, all intervals of
height 2 are isomorphic to the Boolean lattice B2 or to the set partition lat-
tice P2, which are not totally ordered.
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