Counting linear intervals in the Tamari and Dyck lattices

Clément Chenevière

clement.cheneviere@math.unistra.fr
Université de Strasbourg, IRMA, Strasbourg, France

In a poset, when two elements P and Q are comparable, the interval $[P, Q]$ is the subset of elements R that satisfy $P \leqslant R \leqslant Q$. The simplest intervals are those which are totally ordered. They are called linear intervals. In this work, we are interested in the linear intervals in two classical posets on Catalan objects, namely the Tamari and the Dyck lattices. We prove that both lattices have the same number of linear intervals of any height and we count them.

The Tamari lattices

A planar rooted binary tree is a finite connected acyclic planar graph with n vertices of degree 3 , and other vertices of degree 1 , one of which is marked and called the root. We will simply call them trees.
The Tamari lattice Tam_{n} of size n is an order on trees of size n where covering relations consist of left rotations.

Example

A covering relation in the Tamari lattices.

We can graft a tree T^{\prime} on a chosen leaf of another tree T by deleting the root of T^{\prime} and identifying its root node r with the chosen leaf of T. We can graft an interval $I^{\prime}=\left[P^{\prime}, Q^{\prime}\right]$ on the k-th leaf of another interval $I=[P, Q]$ by grafting $P^{\prime}\left(\right.$ resp. $\left.Q^{\prime}\right)$ on the k-th leaf of $P($ resp. $Q)$ as bottom (resp. top) element.
We can also plug a tree T^{\prime} into a chosen edge of another tree T. To do so, we create a new node n on the selected edge of T, and we identify this node with the root of T^{\prime}.

Example

Grafting (left) and plugging (right) a tree on another one.

We define left comb ℓ_{n} and right comb r_{n} recursively as follows: $\ell_{1}=r_{1}=$: Y is the only tree of size 1 and for $n \geqslant 2, \ell_{n}$ (resp. r_{n}) is obtained by grafting ℓ_{n-1} (resp. r_{n-1}) on the left (resp. right) leaf of Y.
We define two particular intervals L_{n} and R_{n} in Tam_{n+1}, for $n \geqslant 2$. The interval R_{n} has r_{n+1} as bottom element and the grafting of r_{n} on the left leaf of Y as top element. The interval L_{n} is the mirrored version of R_{n}. The intervals L_{n} and R_{n} are linear of height n.

Example

The intervals R_{3} (with all 4 elements) and L_{4}.

Linear intervals in the Tamari lattices

The height of an interval $[P, Q]$ is the length k of a longest maximal chain $P=P_{0} \triangleleft \cdots \triangleleft P_{k}=Q$ from P to Q.
In any poset, an interval of height 0 is a trivial interval $[P, P]$ and an interval of height 1 is a covering relation $P \triangleleft Q$.
We define left and right intervals in the Tamari lattices Tam_{n} as follows: for $k \geqslant 2$, a left (resp. right) interval of height k is obtained by grafting the interval L_{k} (resp. R_{k}) on some leaf of a trivial interval, and then trivial intervals on its leaves. All left and right intervals are linear

Proposition

All linear intervals of height $k \geqslant 2$ in the Tamari lattices are either left or right intervals.

Corollary

There are no linear intervals of height $k \geqslant n$ in Tam_{n}

Example

A left interval of height 2 (top) and a right interval of height 3 (bottom).

Let $A(t)$ be the generating series of trees. For $k \geqslant 0$, let $S_{k}(t)$ be the generating series of linear intervals of height k in the Tamari lattices.
A linear interval of height 0 is a trivial interval $[P, P]$ for P a non trivial tree so $S_{0}=A-1$.
A linear interval of height 1 (resp. $k \geqslant 2$) can be understood as a tree with
a marked node s (resp. and a direction "left" or "right") and another tree
(resp. k other trees) plugged on the edges out of this node. So we have $S_{1}=\left(t A^{\prime}\right) t A$ and $S_{k}=2\left(t A^{\prime}\right)(t A)^{k}$ for $k \geqslant 2$.

Theorem

In the Tamari lattice Tam_{n} of size n, there are:

- $\frac{1}{n+1}\binom{2 n}{n}$ linear intervals of height 0 ,
- $\binom{2 n-1}{n-2}$ linear intervals of height 1 ,
- $2\binom{2 n-k}{n-k-1}$ linear intervals of height k, for $2 \leqslant k<n$.

Linear intervals in the Dyck lattices

A Dyck path of length (or size) n is a path on \mathbb{N}^{2} consisting of up steps $(1,1)$ and down steps $(1,-1)$, starting from $(0,0)$ and ending at $(2 n, 0)$. We define a valley as a down step followed by an up step and a peak as an up step followed by a down step.
The Dyck lattice Dyck n of size n is an order on Dyck paths of size n where covering relations consist of changing a peak into a valley. A path P is less than or equal to a path Q if and only if P is always below Q

Example

A covering relation in the Dyck lattice of size 11. In the bottom element, the excursion following d is $u P d$.

Remark

We can define another order on Dyck paths where covering relations consist of exchanging the down step of a valley with the excursion that follows it. We get a poset that is isomorphic to the Tamari lattice.
We can also define left and right intervals in the Dyck lattice Dyck ${ }_{n}$. For $k \geqslant 2$, a left (resp. right) interval of height k is an interval $[P, Q]$ where Q is obtained from P by changing $d^{k} u$ into $u d^{k}$ (resp $d u^{k}$ into $u^{k} d$).

Proposition

In the Dyck lattice, all left and right intervals are linear and all linear intervals of height $k \geqslant 2$ are either left or right intervals.

A right interval of height 3 in the Dyck lattices.

For $k \geqslant 0$, let $T_{k}(t)$ be the generating series of linear intervals of height k in the Dyck lattices.
There is a bijection between Dyck paths and binary trees so $A(t)$ is the generating series of Dyck paths. As previously, we have $T_{0}=A-1$.
A covering relation can be understood as a Dyck path with a marked down step d, preceded by $d u P$ for bottom element and $u d P$ for top element, with P any Dyck path. Hence, we have $T_{1}=\left(t A^{\prime}\right) t A$.
For $k \geqslant 2$, a right interval of height k can be understood as a Dyck path with a marked down step d_{k}, before which we insert $d u^{k} D_{1} d \ldots d D_{k}$ for the bottom element and $u^{k} d D_{1} d \ldots d D_{k}$ for the top element, with k Dyck paths D_{1}, \ldots, D_{k}.
Similarily, a left interval of height k can be understood as a Dyck path with a marked up step and a list of k Dyck paths D_{1}, \ldots, D_{k}.
Thus, we have $T_{k}=2\left(t A^{\prime}\right)(t A)^{k}$.

Theorem !
For all $n \geqslant 1$ and $k \geqslant 0$, there are as many linear intervals of height k in the Tamari lattice Tam n and in the Dyck lattice Dyck n.

Other prospects

We can define a family of posets $\operatorname{Tam}_{n}^{\delta}$ (where $\delta:\{2, \ldots, n\} \rightarrow\{0,1\}$) on Dyck paths of size n which contains both the Tamari and the Dyck lattices. Conjecture
For all $n \geqslant 1$ and $k \geqslant 0$, all posets $\operatorname{Tam}_{n}^{\delta}$ have the same number of linear intervals of height k.
To further investigate this, we could look at the Cambrian lattices of type A and the posets of tilting modules that all generalize the Tamari lattice, and we conjecture they all have the same number of linear intervals.
We could as well investigate if these techniques give some results in the case of m-Tamari and m-Cambrian lattices, or in other types.
The poset of the weak order on the symmetric group seems to have nice The poset of the weak order on the symmetric group seems to
numbers of linear intervals as well as the Pallo's comb poset.

In some posets, there are no linear intervals of height at least 2. It is in fact equivalent to have no linear intervals of height 2 . Such posets are said to be 2 -thick and for lattices of finite length, this is equivalent to be relatively complemented.
In particular, the Boolean lattices, the set partitions lattices and the non crossing partitions lattices with coarsening order (fusing blocks) only have trivial intervals and covering relations as linear intervals.

Indeed, in the Boolean lattice all intervals of height 2 are isomorphic to the Boolean lattice B_{2}, which is not totally ordered.
In the set partition and the non crossing partition lattices, all intervals of height 2 are isomorphic to the Boolean lattice B_{2} or to the set partition lattice P_{2}, which are not totally ordered.
[1] O. Bernardi and N. Bonichon. Intervals in Catalan lattices and realizers of triangulations. 7. Combin. Theory Ser. A, 116(1):55-75, 2009.
[2] A. Björner. On complements in lattices of finite length. Discrete Math., 36(3):325-326, 1981.
[3] F. Chapoton. Sur le nombre d'intervalles dans les treillis de Tamari. Sém. Lothar. Combin., 55:Art. B55f, 18, 2005/07.
[4] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
[5] D. Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (3), 10:131-146, 1962.

