Intervals in m-Tamari and m-cambrian lattices

Clément Chenevière
Under the direction of Frédéric Chapoton and Christian Stump

Tamari lattices

A Dyck path of length (or size) n is a path on \mathbb{N}^{2} consisting of up steps (1,1) and down steps ($1,-1$), starting from $(0,0)$ and ending at $(2 n, 0)$.
We can define an order on Dyck paths of length n where covering relations consist of swapping a down step with the following excursion. We obtain the Tamari lattice of size n [Tamari, 1962], which we denote \mathcal{T}_{n}.

Example

A covering relation of Dyck paths in \mathcal{T}_{10}.

A triangulation of size n is the decomposition of a $(n+2)$-gon into n triangles by non-crossing diagonals. We get another description of \mathcal{T}_{n} by setting an order on triangulations of size n where covering relations are increasing flips of a diagonal.

Example

A covering relation of triangulations in \mathcal{T}_{10}.

Example

The Tamari lattice \mathcal{T}_{3} on triangulations.

m-Tamari lattices

An m-Dyck path of size n is a Dyck path of size $m n$ whose rises lengths are all multiples of m.

Example
A 3-Dyck path of length 4.
This leads to a first generalization of \mathcal{T}_{n} by considering the poset on m Dyck paths of length n whose covering relations are the same as before, which we call m-Tamari lattice and denote $\mathcal{T}_{n}^{(m)}$
Theorem [Bousquet-Mélou, Fusy, Préville-Ratelle, 2011]
The number of intervals, i.e. pairs of comparable elements, of $\mathcal{T}_{n}^{(m)}$ is

$$
\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} .
$$

We define the contacts of a $(m$-)Dyck path P as the vertices of P at height 0 and denote their number as $c(P)$ and the initial rise $r(P)$ of P as the number of up steps (divided by m) at the beginning of the path.
The contacts of an interval $[P, Q]$ are contacts of its lower path P and its initial rise is the one of its upper path Q.

Example

An interval of 2-Dyck paths of length 6 with 3 contacts and an initial rise of 2 .

m-cambrian lattices

An $(m+2)$-angulation of size n is the decomposition of an ($m n+2$)-gon into $(m+2)$-gons by non-crossing diagonals.

Example

A 4-angulation (or quadrangulation) of size 5 .
We can again define covering relations on ($m+2$)-angulations of size n as admissible flips of diagonals, which leads to a second generalization of \mathcal{T}_{n}, called the (linear) m-cambrian lattice (of type A), which we denote $\mathrm{Camb}_{n}{ }^{(m)}$.
The lattices $\mathcal{T}_{n}^{(m)}$ and Camb ${ }_{n}^{(m)}$ are in general not isomorphic but we conjecture that they have the same number of intervals [Stump et al., 2015].

Example

The 2-cambrian lattice for $n=3, \operatorname{Camb}_{3}^{(2)}$. Its Hasse diagram is not planar.

We can remark that the smallest element of $\mathrm{Camb}_{n}^{(m)}$ has all diagonals starting at vertex 0 , which we call initial diagonals and its biggest element has all diagonals ending at vertex $m(n-1)+2$, which we call final diagonals. The initial diagonals of an interval $[P, Q]$ are those of its lower element P and its final diagonals are those of its upper element Q. Let $i(P)$ and $f(Q)$ be their numbers.

Example
An interval of quadrangulations of size 6 with 2 initial diagonals and 1 final diagonal.

Generating series

Let t, x and y be three indeterminates and $\mathbb{Z}[x, y][[t]]$ be the ring of formal power series in t with coefficients in $\mathbb{Z}[x, y]$. Let Δ be the operator on $\mathbb{Z}[x, y][[t]$ defined by

$$
\Delta S(t ; x, y)=\frac{S(t ; x, y)-S(t ; 1, y)}{x-1}
$$

Theorem [Bousquet-Mélou, Fusy, Préville-Ratelle, 2011]
The equation

$$
F(t ; x, y)=x+x y t(F(t ; x, 1) \cdot \Delta)^{(m)}(F(t ; x, y))
$$

has a unique solution $F^{(m)}$ in $\mathbb{Z}[x, y][[t]]$.
Furthermore, we have

$$
F^{(m)}(t ; 1,1)=\sum_{n \in \mathbb{N}} \frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} t^{n}
$$

For $m \geqslant 1$, let $T^{(m)}(t ; x, y) \in \mathbb{Z}[x, y][[t]]$ be the generating function of m Tamari intervals, where t counts the length of the paths, and x and y keep tracks of the contacts and initial rise of the intervals, that is to say

$$
T^{(m)}(t ; x, y)=\sum_{[P, Q] \in \mathcal{T}_{n}^{(m)}} x^{c(P)} y^{r(Q)} t^{n} .
$$

In particular, $T^{(m)}(t ; 1,1)$ counts the number of intervals in $\mathcal{T}_{n}^{(m)}$

Theorem [Bousquet-Mélou, Fusy, Préville-Ratelle, 2011]

The generating function $T^{(m)}(t ; x, y)$ satisfies the equation

$$
F(t ; x, y)=x+x y t(F(t ; x, 1) \cdot \Delta)^{(m)}(F(t ; x, y)) .
$$

Thus, we have $T^{(m)}(t ; x, y)=F^{(m)}(t ; x, y)$.

Similarily, for $m \geqslant 1$, let $C^{(m)}(t ; x, y) \in \mathbb{Z}[x, y][[t]]$ be the generating function of m-cambrian intervals, where t counts the size of the angulations, and x and y keep tracks of the initial and final diagonals of the intervals, that is to say

$$
C^{(m)}(t ; x, y)=\sum_{[P, Q] \in \operatorname{Camb}_{n}^{(m)}} x^{i(P)} y^{f(Q)} t^{n}
$$

Conjecture [stump, Thomas, Williams, 2015

We have $C^{(m)}(t ; 1,1)=T^{(m)}(t ; 1,1)$.
Conjecture [c., 2021]
We have $x^{2} y C^{(m)}(t ; x, y)=T^{(m)}(t ; x, y)$.

