
RC23025 (W0312-022) December 3, 2003
Computer Science

IBM Research Report

Design and Analysis of the BlueGene/L Torus
Interconnection Network

M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger,
S. Singh, B. Steinmacher-Burow, T. Takken, P. Vranas

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Design and Analysis of the BlueGene/L Torus Interconnection Network

M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger,
S. Singh, B. Steinmacher-Burrow, T. Takken, P. Vranas

IBM T.J. Watson Research Center
Yorktown Heights, New York

Abstract

BlueGene/L (BG/L) is a 64K (65,536) node scientific and
engineering supercomputer that IBM is developing with
partial funding from the United States Department of
Energy. This paper describes one of the primary BG/L
interconnection networks, a three dimensional torus. We
describe a parallel performance simulator that was used
extensively to help architect and design the torus network
and present sample simulator performance studies that
contributed to design decisions. In addition to such studies,
the simulator was also used during the logic verification
phase of BG/L for performance verification, and its use
there uncovered a bug in the VHDL implementation of one
of the arbiters.

1. Introduction

BlueGene/L (BG/L) is a scientific and engineering,
message-passing, supercomputer that IBM is developing
with partial funding from the U.S. Department of Energy
Lawrence Livermore National Laboratory. A 64K node
system is scheduled to be delivered to Livermore, while a
20K node system will be installed at the IBM T.J. Watson
Research Center for use in life sciences computing,
primarily protein folding. A more complete overview of
BG/L may be found in [1], but we briefly describe the
primary features of the machine.

BG/L is built using system-on-a-chip technology in which
all functions of a node (except for main memory) are
integrated onto a single ASIC. This ASIC includes two 32-
bit Power PC cores (the 440); the 440 was developed for
embedded applications. Associated with each core is a 64-
bit “double” floating-point unit (FPU) that can operate in
SIMD mode. Each (single) FPU can execute up to two
multiply-adds per cycle, meaning that the peak
performance of the chip is 8 floating-point operations per
cycle. Each 440 has its own instruction and data caches
(each 32KB), a small L2 cache that primarily serves as a
pre-fetch buffer, a 4MB shared L3 cache built from
embedded DRAM, and a DDR memory controller. In
addition, the logic for five different networks is integrated
onto the ASIC. These networks include a JTAG control
and monitoring network, a Gbit Ethernet macro, a global
barrier and alert network, a “tree” network for broadcasts
and combining operations such as those used in the MPI
collective communications library, and a three dimensional
torus network for point-point communications between
nodes. This paper will focus on the torus network.

The ASIC can be used as either an I/O node or as a
Compute node. I/O nodes have their Ethernet macro
connected to an external switch enabling connectivity to
hosts, however they do not use the torus network. Compute
nodes do not connect their Ethernet, and talk to the I/O
nodes over the tree network. The Livermore machine will

have 64 Compute nodes for each I/O node. I/O nodes will
have at least 512MB and Compute nodes will have at least
256 MB of memory, depending on the cost of memory at
the time of delivery.

Because of the high level of integration and relatively low
target clock speed (700 MHz target), the system is designed
to deliver unprecedented aggregate performance at both
low cost and low power consumption. At this clock rate,
each node has a peak of 5.6 GFlops, while the 64K node
system has a peak of 367 Tera Flops. Each ASIC will
consume only 12 watts of power. Because of the low
power, a very high density of packaging can be achieved.
Two compute ASICs and their associated memory are
packaged onto a compute card, 16 compute cards are
mounted on a node card, and 16 node cards are packaged in
a 512 node midplane. Two midplanes are packaged in a
1024 node rack, which is about the size of a large
refrigerator.

Because the 440 core does not contain shared memory
support, the L1 caches of the two cores on the same ASIC
are not coherent. Memory is consistent from the L2 on out,
but software is required to appropriately manage the L1’s.
The system can operate in one of two modes. In
communications coprocessor mode, one core is responsible
for computing while the other core handles most messaging
functions. Careful software coordination is required in this
mode to overcome the lack of L1 coherence. When
configured in this mode, the peak performance of the 64K
node system is 183 Tera Flops. In the second mode,
“virtual node” mode, each core has its own memory space
and each core is responsible for both computing and
message handling; the system has two sets of network
injection and reception FIFOs, so that both cores can
simultaneously access the network interfaces.

2. Torus Network

We now describe the torus network in some detail. Many
of the design decisions were driven by simulation
performance studies, as will be described in Section 4.

The torus network uses dynamic routing with virtual cut-
through buffering [8]. A torus was chosen because it
provides high bandwidth nearest neighbor connectivity,
which is common in scientific applications, but also for its
scalability, cost and packaging considerations. A torus
requires no long cables and, because the network is
integrated onto the same chip that does computing, no
separate switch is required. Previous supercomputers such
as the Cray T3E [12] have also used torus networks.

Torus packets are variable in size – from 32 to 256 bytes in
increments of 32 byte chunks. The first eight bytes of each
packet contain link level protocol information (e.g.,

12/16/20039 1

sequence number) and routing information including
destination, virtual channel and size. A 24-bit CRC is
appended to each packet, along with a one byte valid
indicator. The CRC permits link level checking of each
packet received, and a timeout mechanism is used for
retransmission of corrupted packets. The error detection
and recovery protocol is similar to that used in IBM SP
interconnection networks as well as in the HIPPI standard.

For routing, the header includes six “hint” bits, which
indicate in which directions the packet may be routed. For
example, hint bits of 100100 means that the packet can be
routed in the x+ and y- directions. Either the x+ or x- hint
bits, but not both, may be set. If no x hops are required, the
x hint bits are set to 0. Each node maintains registers that
contain the coordinates of its neighbors, and hint bits are
set to 0 when a packet leaves a node in a direction such that
it will arrive at its destination in that dimension. These
hint bits appear early in the header, so that arbitration may
be efficiently pipelined. The hint bits can be initialized
either by software or hardware; if done by hardware, a set
of two registers per dimension is used to determine the
appropriate directions. These registers can be configured to
provide minimal hop routing. The routing is accomplished
entirely by examining the hint bits and virtual channels,
i.e., there are no routing tables. Packets may be either
dynamically or statically (xyz) routed. Besides point-to-
point packets, a bit in the header may be set that causes a
packet to be broadcast down any dimension. The hardware
does not have the capability to route around “dead” nodes
or links, however, software can set the hint bits
appropriately so that such nodes are avoided; full
connectivity can be maintained when there are up to three
faulty nodes, provided they are not co-linear.

The torus logic consists of three major units, a processor
interface, a send unit and a receive unit, as shown in

. The processor interface consists of network injection
and reception FIFOs. Access to these FIFOs is via the
double FPU registers, i.e., data is loaded into the FIFOs via
128 bit memory mapped stores from a pair of FPU
registers, and data is read from the FIFOs via 128 bit loads
to the FPU registers. There are a total of 8 injection FIFOs
organized into two groups: two high priority (for inter-node
OS messages) and six normal priority FIFOs, which are
sufficient for nearest neighbor connectivity. Packets in all
FIFOs can go out in any direction. Each group of reception
FIFOs contains 7 FIFOs, one high priority and one
dedicated to each of the incoming directions. More
specifically, there is a dedicated bus between each receiver
and its corresponding reception FIFO. Up to six injection
and six reception FIFOs may be simultaneously active.

Figure
1

Each of the six receivers, as shown in Figure 1, has four
virtual channels (VCs). Multiple VCs help reduce head-of-
line blocking [4], but in addition, mesh networks including
tori with dynamic routing, can deadlock unless appropriate
additional “escape” VCs are provided [5,7]. We use a
recent, elegant solution to this problem, the “bubble”
escape VC as proposed in [10,11]. BG/L has two dynamic
VCs, one bubble escape VC that can be used both for
deadlock prevention and static routing, and one high
priority bubble VC. Each VC has 1 KB of buffering,
enough for four full-sized packets. In addition to the VCs,
the receivers include a “bypass” channel so that packets can
flow through a node without entering the VC buffers, under

appropriate circumstances. Dynamic packets can only enter
the bubble escape VC if no valid dynamic VCs are
available.

A token flow control algorithm is used to prevent over-
flowing the VC buffers. Each token represents a 32B
chunk. For simplicity in the arbiters, a VC is marked as
unavailable unless 8 tokens (a full-sized packet) are
available. However, token counts for packets on dynamic
VCs are incremented and decremented according to the size
of the packet. The bubble rules, as outlined in [10,11]
require that tokens for one full-sized packet are required for
a packet already on the bubble VC to advance, but that
tokens for two full-sized packets are required for a packet
to enter the bubble VC, upon either injection, a turn into a
new direction, or when a dynamic VC packet enters the
bubble. This rule ensures that buffer space for one packet is
always available after an insertion and thus some packet
can always, eventually move. However, we discovered that
this rule is incomplete for variable-sized packets when our
simulator deadlocked using this rule. With this rule, the
remaining free space for one full-sized packet can become
fragmented resulting in a potential deadlock. To prevent
this, the bubble rules are simply modified so that each
packet on the bubble is accounted for as if it were a full-
sized (8 chunk) packet.

Eight byte acknowledgement (ack-only) or combined
token-acknowledgement (token-ack) packets are returned
when packets are either successfully received, or when
space has freed up in a VC. Acknowledgements permit the
torus send units to delete packets from their retransmission
FIFOs, which are used in the error recovery protocol. The
send units also arbitrate between requests from the receiver
and injection units.

Due to the density of packaging and pin constraints, each
link is bit serial. The torus is internally clocked at one-
fourth the rate of the processor, so at the target 700 MHz
clock rate, each torus link is 175 MB/sec. There are
sufficient internal busses so that each of the 6 outgoing and
6 incoming links can be simultaneously busy; thus each
node can be sending and receiving 1.05 GB/sec. In
addition, there are two transfer busses (paths) coming out
of each receiver that connect with the senders. Thus, a
single receiver can have up to 4 simultaneous transfers,
e.g., one to its normal reception FIFO, one to the high
priority reception FIFO, and two to two different senders.

Arbitration is distributed and pipelined, but occurs in three
basic phases. It generalizes an approach used in [3] and
represents tradeoffs between complexity, performance, and
ability to meet timing constraints. First, each packet at the
head of the injection or VC FIFOs decides in which
direction and on what VC it prefers to move. For statically
routed packets, there is only one valid choice, but
dynamically routed packets may have many choices. The
preferred direction and VC are selected using a modified
“Join the Shortest Queue” (JSQ) algorithm as follows. The
senders provide the receivers and injection FIFOs with a bit
indicating both link and token availability for each VC in
each direction. This bit vector is and-ed with a bit vector of
possible moves constructed from the packet’s hint bits and
VC. This defines the set of possible and available
arbitration requests. In addition, the sender provides 2 bits
for each VC indicting one of four ranges of available

12/16/20039 2

downstream tokens. Of all the possible and available
dynamic direction/VC pairs, the packet selects the one with
the most available downstream tokens. Ties are randomly
broken. If no dynamic direction/VC combination is
available, the packet will request its bubble escape
direction/VC pair (if available), and if that is also
unavailable, the packet makes no arbitration request. This is
a somewhat simplified description since bus availability
must also be taken into account. In addition, when a packet
reaches its destination, the “direction” requested is simply
the corresponding reception FIFO.

Second, since each receiver has multiple VC FIFOs (plus
the bypass) an arbitration phase is required to determine
which of the requesting packets in the receiver wins the
right to request. If a high priority packet is requesting, it
wins. Barring that, a modified “Serve the Longest Queue”
(SLQ) is used, based on 2 bit (4 ranges) FIFO Fullness
indicators, i.e., the packet from the most full VC (as
measured to within the 2 bits of granularity) wins.
However, this cannot always be used since doing so may
completely block out a VC. Therefore, a certain
(programmable) fraction of the arbitration cycles are
designated SLQ cycles in which the above algorithm is
used, while the remaining cycles select the winner
randomly. A packet on the bypass channel always receives
the lowest priority (unless it is a high priority packet).

Third, the receivers and injection FIFOs present their
requests to the senders. Note that on a given cycle a
receiver will present at most one request to the senders.
Thus each sender arbiter can operate independently. The
sender gives highest priority to token-ack or ack-only
packets, if any. Barring that, the senders tend to favor
packets already in the network and use a similar modified
SLQ algorithm in which there are SLQ cycles and random
cycles. In particular, a certain programmable fraction of
cycles (typically 1.0) give priority to packets already in the
network (unless the only high priority packet requesting is
in an injection FIFO). On such cycles the modified SLQ
algorithm is used. Higher priority can be given to injection
packets by lowering above in-network priority fraction. On
cycles in which injection packets receive priority (barring
in-network high priority packets), the modified SLQ
algorithm is also used.

3. Simulator Overview

Given the complexity and scale of the BG/L
interconnection network, having an accurate performance
simulator was essential during the design phase of the
project. Due to the potential size of such a model,
simulation speed was a significant concern and a proven
shared memory parallel simulation approach was selected.
In particular, parallel simulation on shared memory
machines has been shown to be very effective in simulating
interconnection networks (see, e.g., [13]) whereas success
with message passing parallel interconnection network
simulators is harder to come by (see, e.g., [2]). We also
recognized the difficulties in developing an execution-
driven simulator such as that in [6] for a system with up to
64K processes, and therefore decided upon a simulator that
would primarily be driven by application pseudo-codes, in
which message passing calls could be easily passed to the
simulator; such calls include the time since the last call (the
execution burst time), the destination and size of the

message, etc. This pseudo-code included a subset of the
MPI point to point messaging calls as a workload driver for
the simulator. We also extended the IBM UTE trace
capture utility that runs on IBM SP machines and were able
to use such traces as simulator inputs (for up to several
hundreds of nodes).

The basic unit of simulation time is a network cycle, which
is defined to be the time it takes to transfer one byte. As
BG/L is organized around 512 node (8x8x8) midplanes, the
simulator partitions its work on a midplane basis, i.e., all
nodes on the same midplane are simulated by the same
processor (thread) and midplanes are assigned to threads in
as even a manner as possible.

Because different threads are concurrently executing, the
local simulation clocks of the threads need to be properly
synchronized. To deal with this problem, we use a simple
but effective “conservative” parallel simulation protocol
known as “YAWNS” [9]. In particular, we take advantage
of the fact that the minimum transit time between
midplanes is known and is at least some constant w≥1
cycles. In this protocol, time “windows” of length w are
simulated in parallel by each of the threads. Consider an
event that is executed during the window (starting at time t)
on processor i that is destined to arrive on processor j in the
future; such an event represents the arrival of the first byte
of a packet. Since the minimum transit time is w, the
arrival cannot occur during the current window, represented
by the interval [t, t+w-1]. Processor i simply puts a pointer
to the event on an i-to-j linked list. When each processor
reaches the end of the window, it enters a barrier
synchronization. Upon leaving the barrier, each processor
is sure that every other processor has executed all events up
to time t+w-1 and that all inter-processor events are on the
appropriate inter-processor linked lists. Processor j can
therefore go through all its i-to-j linked lists, remove events
from them, and put the events on its own future event list.
Once this is done, the processors can simulate the next
window [t+w, t+2w-1]. If w=1, then this protocol requires
a barrier synchronization every cycle, however, on BG/L,
the minimum inter-midplane delay will be approximately
w=10 network cycles. When a large number of BG/L nodes
are being simulated, each processor will execute many
events during a window, i.e., between barriers, and thus the
simulator should obtain good speedups.

The simulator runs on a 16-way IBM “nighthawk” SMP
with 64 GB of memory. The model of the torus hardware
contains close to 100 resources per node (links, VC token
counters, busses, FIFOs, etc), so that a full 64K node
system can be thought of as a large queuing network with
approximately 6 million resources. It consumes a large
amount of memory and runs slowly; a 32K node simulation
of fully loaded network advances at about 0.25
microseconds of BG/L time per second of wall clock time.
However, it obtains excellent speedup, typically more than
12 on 16 nodes, and sometimes achieves superlinear
speedup due to the private 8MB L3 caches on the SMP and
the smaller per node memory footprint of the parallel
simulator.

The model, which was written before the VHDL, is thought
to be a quite accurate representation of the BG/L hardware,
although a number of simplifications were made. For
example, in BG/L the arbitration is pipelined and occurs

12/16/20039 3

Arbitration Policies: plots the response time for
the light traffic, random destination workload on a 32K
node BG/L system using different arbitration policies. The
“base” policy is the above-mention random policy. In light
traffic, SLQ provides little benefit (since queues aren’t that
full) but JSQ does reduce response time in moderate traffic;
at 95% link utilization, the average response time is
reduced by about 20%. Figure 5 plots the throughput for a
4K node BG/L under the hot region model for the different
arbitration policies. While the throughputs of all policies
stabilize near the same value, the decline is slowest for the
SLQ policy (75% of the cycles are SLQ cycles). For this
traffic pattern, JSQ provides little benefit. Thus the two
policies are complementary; JSQ helps reduce response
time in moderate traffic and SLQ helps defer throughput
degradation under heavy, non-uniform traffic.

over several cycles. In the simulator, this is modeled as a
delay of several cycles followed by presentation of the
arbitration request. Because the simulator focuses on what
happens once packets are inside the network, a gross
simplification was the assumption that the injection FIFOs
were of infinite size, and that packets are placed in these
FIFOs as early as possible rather than as space frees up in
the FIFOs. This has little effect on network response time
and throughput measurements during the middle of a run,
but can affect the dynamics particularly near the end of
runs. The simulator also did not model the error recovery
protocol, i.e., no link errors were simulated and the ack-
only packets that are occasionally sent if a link is idle for a
long time were not modeled. However, the arbitration
algorithms and token flow control are modeled to a high
level of detail.

Figure 4

All-to-All: MPI_AlltoAll is an important MPI collective
communications operation in which every node sends a
different message to every other node. plots the
average link utilization during the communications pattern
implied by this collective. The Figure again shows the
benefit of dynamic over static routing. For this pattern,
there is marginal benefit in going from 1 to 2 dynamic VCs,
but what is important is that the average link utilization is,
at approximately 98%, close to the theoretical peak. This
peak includes the overhead for the token-ack packets, the
packet headers and the 4 byte CRC trailers. A reasonable
assumption for the BG/L software is that each packet
carries 240 bytes of payload, and with this assumption the
plot shows that the payload occupies 87% of the links. Not
shown in these plots is the fact that a very low percentage
of the traffic flows on the escape bubble VC and that
statistics collected during the run showed that few of the
VC buffers are full. Three-dimensional FFT algorithms
often require the equivalent of an All-to-All, but on a
subset of the nodes consisting of either a plane or a line in
the torus. Simulations of these communications patterns
also resulted in near-peak performance.

4. Sample Performance Studies

Figure 6In this section, we present some examples of use of the
simulator to study design trade-offs in BG/L. The studies
presented are illustrative and sometimes use assumptions
and corresponding parameters about the system that do not
reflect the final BG/L design.

Response Time in Light Traffic: Figure 2 plots the
response time for various 32K node BG/L configurations
when the workload driver generates packets for random
destinations and the packet generation rate is low enough
so that the average link utilization is less than one. This
Figure compares static routing to dynamic routing with one
or more dynamic VCs and one or more busses (paths)
connecting receivers to senders. Simpler, random,
arbitration rules than SLQ and JSQ were used and the plot
was generated early in our studies when the target link
bandwidth was 350 MB/sec. (The 350 MB/sec. assumption
essentially only affects results by a rescaling of the y-axis.)
The figure shows the clear benefit of dynamic over static
routing. It also shows that there is little benefit in
increasing the number of dynamic VCs unless the number
of paths is also increased. Finally, it shows only marginal
benefit in going from a 2 VC/2 path to 4 VC/4 path
configuration.

The above simulation was for a symmetric BG/L.
However, the situation is not so optimistic for an
asymmetric BG/L. For example, the 64K node system will
be a 64x32x32 node torus. In such a system, the average
number of hops in the x dimension is twice that of the y
and z dimensions, so that even if every x link is 100% busy,
the y and z links can be at most 50% busy. Thus, the peak
link utilization is at most 66.7%. Since 12% of that is
overhead, the best possible payload utilization is 59%.
However, we expect significantly more blocking and
throughput degradation due to full VC buffers. Indeed a
simulation of the All-to-All communications pattern on a
32x16x16 torus resulted in an average link utilization of
49% and payload utilization of 44%, corresponding to 74%
of the peak. This figure is probably somewhat pessimistic
due to the simulator artifact of infinite-sized injection
FIFOs, which distorts the effects at the end of the
simulation. We also believe that appropriate injection flow
control software algorithms can reduce VC buffer blocking
and achieve closer to peak performance.

Throughput Under Non-Uniform Traffic: plots
the throughput, as a function of time, for a 4K node BG/L
system under a highly non-uniform traffic pattern. In this
pattern, the destinations of 25% of the packets are chosen
randomly within a small “hot” contiguous sub-mesh region
consisting of 12.5% of the machine. The remaining 75% of
the packets chose their destinations uniformly over the
entire machine. Again, random arbitration and a 350
MB/sec link speed were used. The figure considers three
different buffer sizes for the VC FIFOs: 512B, 1KB, and
2KB. At the beginning of the run throughput (as measured
over 10,000 cycle intervals) increases as packets enter the
network, but then declines as the buffers fill up.
Eventually, the throughput levels off at a value that is
approximately equal for the three buffer sizes. The decline
happens more quickly for smaller buffer sizes. It is worth
noting that the steady state throughput is close to the peak
possible throughput for this workload; the throughput is
limited by the number of links entering the hot region.
Measurements during the simulations indicated that those
links generally have a mean utilization of around 95%.

Figure 3

Nevertheless, the above study points out a disadvantage of
the torus architecture for asymmetric machines in which the
application cannot be easily mapped so as to result in a
close proximity communications pattern.

12/16/20039 4

Virtual Channel Architecture: Here we consider several
different deadlock prevention escape VC architectures.
The first, originally proposed in [5] has two escape VCs per
direction. Each dimension has a “dateline.” Before crossing
the dateline, the escape VC is the lower numbered of the
pair, but after crossing the dateline the escape VC is the
higher numbered of the pair. In addition we consider
dimension ordered or direction ordered escape VCs. In
dimension ordered, the escape VC is x first, then y if no x
hops remain, then z if no x or y hops remain. In direction
ordered, the escape VCs are ordered by x+, y+, z+, x-, y-,
z- (other orderings are possible). We also consider
dimension and direction ordered escape VCs for the bubble
escape. We again use the hot region workload where the
hot region starts at coordinates (0,0,0) and the datelines are
set at the maximum coordinate value in each dimension.

 plots the throughput as a function of time. The
dimension ordered dateline pair shows particularly poor
and wild behavior, with a steep decline in throughput,
followed by a rise and then another steep decline.
plots the throughput on a per VC basis for a longer period
of time. The decreasing and increasing bandwidth waves
persist even over this much longer time scale. An
appreciable fraction of the traffic flows on the escape VCs,
indicating a high level of VC buffer occupation.

Figure 7

Figure 8

What causes these waves? First, the placement of the
dateline causes an asymmetry in the torus, whereas the
bubble escape is perfectly symmetrical in each dimension.
Since there are two escape VCs, we thought it likely that
packets at the head of the VC buffers could be waiting for
one of the escape VCs but tokens are returned for the other
escape VC. In such a situation, no packets could move
even though the link may be available and downstream
buffer space is available. To confirm this, the simulator was
instrumented to collect additional statistics. In particular,
we measured the fraction of time a token-ack is returned
that frees at least one previously blocked packet to move.

 plots this unblocking probability along with the
throughput as a function of time. The unblocking
probability is relatively constant for the bubble (after the
initial decline), but varies directly with the throughput for
the dateline pair; when the unblocking probability
increases, the throughput increases and vice-versa.

Figure 9

Performance Verification: To verify the VHDL logic of
the torus, we built a multi-node verification testbench. This
testbench, which runs on the Cadence VHDL simulator,
consisted of workload drivers that inject packets into the
injection FIFOs, links between nodes on which bits could
be corrupted to test the error recovery protocol, and packet
checkers that pull packets out of the reception FIFOs and
check them for a variety of conditions, such as whether the
packet arrived at the correct destination and whether its
contents were received correctly. The workload drivers
could be flexibly configured to simulate a number of
different traffic patterns.

As we neared the end of the logic verification process, we
wanted to ensure that network performance was as
intended. One of the benchmarks we tested was the All-to-
All. The VHDL simulator was limited (by memory) to a
maximum of 64 nodes, so we simulated both a 4x4x4 torus
and an 8x8x1 torus and compared the average link
utilizations to those predicted by the performance
simulator. While these agreed to within 2%, the VHDL

(corresponding to the actual network hardware) indicated
that VC buffers were fuller than that predicted by the
performance simulator. A close inspection of the
arbitration logic revealed that a one cycle gap in the
arbitration pipeline of the receivers could occur when all
possible outgoing links/VCs were busy. This gap was
sufficient to permit packets from the injection FIFOs to
sneak into the network, leading to fuller VCs than intended.
A simple fix to eliminate this possibility was implemented,
and subsequent VHDL simulations indicated greatly
reduced levels of VC buffer occupation.

5. Current Status

We received the first pass chips back from manufacturing
in mid-June, 2003 and have been testing them extensively
for correctness (and performance). Second pass chips will
be released to manufacturing in mid-November, 2003 and
the first batch of these is expected back in March 2004.
Build and test of the Livermore machine will occur in
stages during 2004, and we expect the full 64K node
system to be operational in early 2005.

Acknowledgements

We are grateful to Jose Duato, Peter Hochschild, and Craig
Stunkel for helpful conversations.

References

1. Adiga et al., (2002). An Overview of the BG/L

Supercomputer. Proceedings of the 2002
Supercomputing Conference www.sc-
conference.org/sc2002/

2. Benveniste, C. and Heidelberger, P. (1995). Parallel
Simulation of the IBM Interconnection Network. In
Proceedings of the 1995 Winter Simulation
Conference. IEEE Computer Society Press, 584 – 589.

3. Dally, W.J., Dennison, L.R., Harris, D., Kan, K. and
Xanthoppulos, T. (1994). Architecture and
Implementation of the Reliable Router, In
Proceedings of HOT Interconnects II, 122-133.

4. Dally, W.J. (1992). Virtual-Channel Flow Control.
IEEE Transactions on Parallel and Distributed
Systems 3, No. 2, 194-205.

5. Dally, W.J. and Seitz, C.L. (1987). Deadlock-Free
Message Routing in Multiprocessor Interconnection
Networks. IEEE Transactions on Computers C-36,
No. 5, 547-553.

6. Dickens, P.M., Heidelberger, P., and Nicol, D.M.
(1996). Parallelized Direct Execution Simulation of
Message-Passing Parallel Programs. IEEE
Transactions on Parallel and Distributed Systems 7,
No. 10, 1090-1105.

7. Duato, J. and Pinkston, T.M. (2001). A General
Theory for Deadlock-Free Adaptive Routing Using a
Mixed Set of Resources. IEEE Transactions on
Parallel and Distributed Systems 12 No. 12, 1219-
1235.

8. Kermani, K. and Kleinrock, L. (1979) Virtual Cut-
Through: A New Computer Communication
Switching Technique, Computer Networks, Vol. 3,
pp267-286.

9. Nicol, D. Micheal, C. and Inouye, P. (1989). Efficient
Aggregation of Multiple LP's in Distributed Memory

12/16/20039 5

Parallel Simulations, In Proceedings of the 1989
Winter Simulation Conference. IEEE Computer
Society Press, 680-685.

10. Puente, V., Beivide, R., Gregorio, J.A., Prellezo, J.M.,
Duato, J., and Izu, C. (1999). Adaptive Bubble Router:
A Design to Improve Performance in Torus Networks.
In Proceedings of the 1999 International Conference
on Parallel Processing, 58-67.

11. Puente, V., Izu,C., Beivide, R., Gregorio, J.A.,
Vallejo, F. and Prellezo, J.M. (2001). The Adaptive

Bubble Router. Journal of Parallel and Distributed
Computing 61, No. 9, 1180—1208.

12. Scott,S. and Thorson, G. The Cray T3E network:
Adaptive routing in a high performance 3D torus. In
Proceedings of HOT Interconnects IV. 1996

13. Yu, Q., Towsley, D. and Heidelberger, P. (1989).
Time-Driven Parallel Simulation of Multistage
Interconnection Networks. In Distributed Simulation,
1989. The Society for Computer Simulation
International, 191-196.

Figures

Processor Interface

 Torus
Sender

Dynamic VC1

Dynamic VC 2

Escape VC

Bypass Path

Torus Receiver

High Priority VC

Figure 1: General Structure of Torus Router

0.05 0.25 0.50 0.75 0.90 0.95

Average Link Utilization

0

10

20

30

40

50

N
et

w
or

k
La

te
nc

y
(m

ic
ro

se
co

nd
s)

Static Routing
1 Path, 1 Dynamic VC

1 Path, 2 Dynamic VCs
2 Paths, 2 Dynamic VCs

4 Paths, 4 Dynamic VCs

32K (32x32x32) Node BG/L Under Random Traffic Pattern
256 Byte Packets, 4KB Buffers/Link (+1KB for Escape)

(Old Parameters)

Figure 2: Sample Response Time in Light Traffic

12/16/20039 6

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Cycle (Millions)

1200

1300

1400

1500

1600

1700

B
an

dw
id

th
 (M

B
/s

ec
/n

od
e)

2KB/VC 1KB/VC 512B/VC

4K (16x16x16) Node BG/L Under Hot Region Traffic
(25% of Traffic to 12.5% of Machine)

2 Dynamic VCs, 2 Paths, Bubble Escape (Old Parameters)

Figure 3: Throughput Under Non-Uniform Load

0.05 .25 .50 .75 .90 .95

Average Link Utilization

0

5

10

15

20

25

N
et

w
or

k
La

te
nc

y
(m

ic
ro

se
co

nd
s)

Base SLQ JSQ SLQ and JSQ

32K Node BG/L Under Random Traffic Pattern
256 Byte Packets, 4KB Buffers/Link (+1KB for Escape)

(Old Parameters)

Figure 4: Response Time in Light Traffic for Different Arbitration Policies

12/16/20039 7

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

Cycle (Millions)

1200

1300

1400

1500

1600

1700

B
an

dw
id

th
 (M

B
/s

ec
/n

od
e)

Base (Steady State BW = 1315 MB/sec)
SLQ (Steady State BW = 1334 MB/sec)

JSQ (Steady State BW = 1317 MB/sec)
SLQ and JSQ (Steady State BW = 1336 MB/sec)

4K Node BG/L Under Hot Region Traffic
(25% of Traffic to 12.5% of Machine)

2 Dynamic 2KB VCs, 2 Paths, 2KB Bubble Escape (Old Parameters)

Figure 5: Throughput Under Non-Uniform Traffic for Different Arbitration Policies

Static Routing 1 Dynamic VC 2 Dynamic VCs
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
ve

ra
ge

 L
in

k
U

til
iz

at
io

n

Total
Payload

Link Utilization During All-to-All on a 32K (32x32x32) Node BG/L
Equal Total Buffer Sizes (3 KB for non-priority)

Figure 6: Average Link Utilization During All-to-All

0 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

Cycle (Millions)

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
/s

ec
/n

od
e)

Direction Ordered Bubble (1336 MB/s/node)
Dimension Ordered Bubble (1334 MB/s/node)
Direction Ordered Dateline Pair (1193 MB/s/node)
Dimension Ordered Dateline Pair (435 MB/s/node)

4K Node BG/L Under Hot Region Traffic
(25% of Traffic to 12.5% of Machine)

2 Dynamic 2KB VCs, 2 Paths, 2KB Escape Buffers (Old Parameters)

Figure 7: Throughput Under Hot Region Traffic for Different Escape VC Architectures

12/16/20039 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cycle (Millions)

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
/s

ec
/n

od
e)

Escape VC 3 Escape VC 2 Dynamic VC 1 Dynamic VC 0

4K Node BG/L Under Hot Region Traffic
(25% of Traffic to 12.5% of Machine)

2 Dynamic VCs, Dimension Ordered Dateline Pair

Figure 8: Throughput on Each VC for the Dimension Ordered Dateline Pair Escape VC Architecture

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
/s

ec
/n

od
e)

4K Node BG/L Under Hot Region Traffic
(25% of Traffic to 12.5% of Machine)

2 Dynamic 2KB VCs, 2 Paths, 2KB Escape Buffers (Old Parameters)

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

Cycle (Millions)

0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 T

im
e

To
ke

n
R

et
ur

n
U

nl
oc

ks
 P

ac
ke

t

Dimension Ordered Dateline Pair Dimension Ordered Bubble

Figure 9: Explanation of the Bandwidth Waves

12/16/20039 9

	Abstract
	Introduction
	Torus Network

	Sample Performance Studies
	Current Status
	Acknowledgements

	References

