
Evaluating MapReduce for Multi-core and Multiprocessor Systems

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis∗

Computer Systems Laboratory
Stanford University

Abstract

This paper evaluates the suitability of the MapReduce
model for multi-core and multi-processor systems. MapRe-
duce was created by Google for application development
on data-centers with thousands of servers. It allows pro-
grammers to write functional-style code that is automati-
cally parallelized and scheduled in a distributed system.

We describe Phoenix, an implementation of MapReduce
for shared-memory systems that includes a programming
API and an efficient runtime system. The Phoenix run-
time automatically manages thread creation, dynamic task
scheduling, data partitioning, and fault tolerance across
processor nodes. We study Phoenix with multi-core and
symmetric multiprocessor systems and evaluate its perfor-
mance potential and error recovery features. We also com-
pare MapReduce code to code written in lower-level APIs
such as P-threads. Overall, we establish that, given a care-
ful implementation, MapReduce is a promising model for
scalable performance on shared-memory systems with sim-
ple parallel code.

1 Introduction
As multi-core chips become ubiquitous, we need parallel

programs that can exploit more than one processor. Tradi-
tional parallel programming techniques, such as message-
passing and shared-memory threads, are too cumbersome
for most developers. They require that the programmer
manages concurrency explicitly by creating threads and
synchronizing them through messages or locks. They also
require manual management of data locality. Hence, it is
very difficult to write correct and scalable parallel code for
non-trivial algorithms. Moreover, the programmer must of-
ten re-tune the code when the application is ported to a dif-
ferent or larger-scale system.

To simplify parallel coding, we need to develop two com-
ponents: a practical programming model that allows users
to specify concurrency and locality at a high level and an

∗Email addresses: {cranger, ramananr, penmetsa}@stanford.edu,
garybradski@gmail.com, and christos@ee.stanford.edu.

efficient runtime system that handles low-level mapping, re-
source management, and fault tolerance issues automati-
cally regardless of the system characteristics or scale. Nat-
urally, the two components are closely linked. Recently,
there has been a significant body of research towards these
goals using approaches such as streaming [13, 15], mem-
ory transactions [14, 5], data-flow based schemes [2], asyn-
chronous parallelism, and partitioned global address space
languages [6, 1, 7].

This paper presents Phoenix, a programming API and
runtime system based on Google’s MapReduce model [8].
MapReduce borrows two concepts from functional lan-
guages to express data-intensive algorithms. The Map func-
tion processes the input data and generates a set of interme-
diate key/value pairs. The Reduce function properly merges
the intermediate pairs which have the same key. Given such
a functional specification, the MapReduce runtime automat-
ically parallelizes the computation by running multiple map
and/or reduce tasks in parallel over disjoined portions of
the input or intermediate data. Google’s MapReduce im-
plementation facilitates processing of terabytes on clusters
with thousands of nodes. The Phoenix implementation is
based on the same principles but targets shared-memory
systems such as multi-core chips and symmetric multipro-
cessors.

Phoenix uses threads to spawn parallel Map or Reduce
tasks. It also uses shared-memory buffers to facilitate com-
munication without excessive data copying. The runtime
schedules tasks dynamically across the available processors
in order to achieve load balance and maximize task through-
put. Locality is managed by adjusting the granularity and
assignment of parallel tasks. The runtime automatically re-
covers from transient and permanent faults during task exe-
cution by repeating or re-assigning tasks and properly merg-
ing their output with that from the rest of the computation.
Overall, the Phoenix runtime handles the complicated con-
currency, locality, and fault-tolerance tradeoffs that make
parallel programming difficult. Nevertheless, it also allows
the programmer to provide application specific knowledge
such as custom data partitioning functions (if desired).

We evaluate Phoenix on commercial multi-core and mul-

tiprocessor systems and demonstrate that it leads to scal-
able performance in both environments. Through fault in-
jection experiments, we show that Phoenix can handle per-
manent and transient faults during Map and Reduce tasks
at a small performance penalty. Finally, we compare the
performance of Phoenix code to tuned parallel code written
directly with P-threads. Despite the overheads associated
with the MapReduce model, Phoenix provides similar per-
formance for many applications. Nevertheless, the stylized
key management and additional data copying in MapRe-
duce lead to significant performance losses for some ap-
plications. Overall, even though MapReduce may not be
applicable to all algorithms, it can be a valuable tool for
simple parallel programming and resource management on
shared-memory systems.

The rest of the paper is organized as follows. Section
2 provides an overview of MapReduce, while Section 3
presents our shared-memory implementation. Section 4 de-
scribes our evaluation methodology and Section 5 presents
the evaluation results. Section 6 reviews related work and
Section 7 concludes the paper.

2 MapReduce Overview
This section summarizes the basic principles of the

MapReduce model.

2.1 Programming Model

The MapReduce programming model is inspired by func-
tional languages and targets data-intensive computations.
The input data format is application-specific, and is spec-
ified by the user. The output is a set of <key,value>
pairs. The user expresses an algorithm using two functions,
Map and Reduce. The Map function is applied on the in-
put data and produces a list of intermediate <key,value>
pairs. The Reduce function is applied to all intermediate
pairs with the same key. It typically performs some kind of
merging operation and produces zero or more output pairs.
Finally, the output pairs are sorted by their key value. In
the simplest form of MapReduce programs, the program-
mer provides just the Map function. All other functionality,
including the grouping of the intermediate pairs which have
the same key and the final sorting, is provided by the run-
time.

The following pseudocode shows the basic structure of a
MapReduce program that counts the number of occurences
of each word in a collection of documents [8]. The map
function emits each word in the documents with the tempo-
rary count 1. The reduce function sums the counts for each
unique word.

// input: a document
// intermediate output: key=word; value=1

Map(void *input) {
for each word w in input

EmitIntermediate(w, 1);
}

// intermediate output: key=word; value=1
// output: key=word; value=occurences

Reduce(String key, Iterator values) {
int result = 0;
for each v in values

result += v;
Emit(w, result);
}

The main benefit of this model is simplicity. The pro-
grammer provides a simple description of the algorithm that
focuses on functionality and not on parallelization. The ac-
tual parallelization and the details of concurrency manage-
ment are left to the runtime system. Hence the program
code is generic and easily portable across systems. Nev-
ertheless, the model provides sufficient high-level informa-
tion for parallelization. The Map function can be executed
in parallel on non-overlapping portions of the input data and
the Reduce function can be executed in parallel on each set
of intermediate pairs with the same key. Similarly, since
it is explicitly known which pairs each function will oper-
ate upon, one can employ prefetching or other scheduling
optimizations for locality.

The critical question is how widely applicable is the
MapReduce model. Dean and Ghemawat provided several
examples of data-intensive problems that were successfully
coded with MapReduce, including a production indexing
system, distributed grep, web-link graph construction, and
statistical machine translation [8]. A recent study by Intel
has also concluded that many data-intensive computations
can be expressed as sums over data points [9]. Such compu-
tations should be a good match for the MapReduce model.
Nevertheless, an extensive evaluation of the applicability
and ease-of-use of the MapReduce model is beyond the
scope of this work. Our goal is to provide an efficient im-
plementation on shared-memory systems that demonstrates
its feasibility and enables programmers to experiment with
this programming approach.

2.2 Runtime System

The MapReduce runtime is responsible for paralleliza-
tion and concurrency control. To parallelize the Map func-
tion, it splits the input pairs into units that are processed
concurrently on multiple nodes. Next, the runtime parti-
tions the intermediate pairs using a scheme that keeps pairs
with the same key in the same unit. The partitions are
processed in parallel by Reduce tasks running on multi-
ple nodes. In both steps, the runtime must decide on fac-
tors such as the size of the units, the number of nodes in-
volved, how units are assigned to nodes dynamically, and
how buffer space is allocated. The decisions can be fully
automatic or guided by the programmer given application

specific knowledge (e.g., number of pairs produced by each
function or the distribution of keys). These decisions allow
the runtime to execute a program efficiently across a wide
range of machines and dataset scenarios without modifica-
tions to the source code. Finally, the runtime must merge
and sort the output pairs from all Reduce tasks.

The runtime can perform several optimizations. It can re-
duce function-call overheads by increasing the granularity
of Map or Reduce tasks. It can also reduce load imbal-
ance by adjusting task granularity or the number of nodes
used. The runtime can also optimize locality in several
ways. First, each node can prefetch pairs for its current
Map or Reduce tasks using hardware or software schemes.
A node can also prefetch the input for its next Map or Re-
duce task while processing the current one, which is simi-
lar to the double-buffering schemes used in streaming mod-
els [23]. Bandwidth and cache space can be preserved using
hardware compression of intermediate pairs which tend to
have high redundancy [10].

The runtime can also assist with fault tolerance. When it
detects that a node has failed, it can re-assign the Map or
Reduce task it was processing at the time to another node.
To avoid interference, the replicated task will use separate
output buffers. If a portion of the memory is corrupted, the
runtime can re-execute just the necessary Map or Reduce
tasks that will re-produce the lost data. It is also possible to
produce a meaningful partial or approximated output even
when some input or intermediate data is permanently lost.
Moreover, the runtime can dynamically adjust the number
of nodes it uses to deal with failures or power and tempera-
ture related issues.

Google’s runtime implementation targets large clusters of
Linux PCs connected through Ethernet switches [3]. Tasks
are forked using remote procedure calls. Buffering and
communication occurs by reading and writing files on a dis-
tributed file system [12]. The locality optimizations focus
mostly on avoiding remote file accesses. While such a sys-
tem is effective with distributed computing [8], it leads to
very high overheads if used with shared-memory systems
that facilitate communication through memory and are typ-
ically of much smaller scale.

The critical question for the runtime is how significant
are the overheads it introduces. The MapReduce model re-
quires that data is associated with keys and that pairs are
handled in a specific manner at each execution step. Hence,
there can be non-trivial overheads due to key management,
data copying, data sorting, or memory allocation between
execution steps. While programmers may be willing to sac-
rifice some of the parallel efficiency in return for a simple
programming model, we must show that the overheads are
not overwhelming.

3 The Phoenix System
Phoenix implements MapReduce for shared-memory

systems. Its goal is to support efficient execution on mul-
tiple cores without burdening the programmer with concur-
rency management. Phoenix consists of a simple API that
is visible to application programmers and an efficient run-
time that handles parallelization, resource management, and
fault recovery.

3.1 The Phoenix API

The current Phoenix implementation provides an
application-programmer interface (API) for C and C++.
However, similar APIs can be defined for languages like
Java or C#. The API includes two sets of functions sum-
marized in Table 1. The first set is provided by Phoenix
and is used by the programmer’s application code to ini-
tialize the system and emit output pairs (1 required and
2 optional functions). The second set includes the func-
tions that the programmer defines (3 required and 2 optional
functions). Apart from the Map and Reduce functions, the
user provides functions that partition the data before each
step and a function that implements key comparison. Note
that the API is quite small compared to other models. The
API is type agnostic. The function arguments are declared
as void pointers wherever possible to provide flexibility in
their declaration and fast use without conversion overhead.
In constrast, the Google implementation uses strings for ar-
guments as string manipulation is inexpensive compared to
remote procedure calls and file accesses.

The data structure used to communicate basic function
information and buffer allocation between the user code and
runtime is of type scheduler args t. Its fields are sum-
marized in Table 2. The basic fields provide pointers to in-
put/output data buffers and to the user-provided functions.
They must be properly set by the programmer before call-
ing phoenix scheduler(). The remaining fields are
optionally used by the programmer to control scheduling
decisions by the runtime. We discuss these decisions further
in Section 3.2.4. There are additional data structure types to
facilitate communication between the Splitter, Map, Parti-
tion, and Reduce functions. These types use pointers when-
ever possible to implement communication without actually
copying significant amounts of data.

The API guarantees that within a partition of the interme-
diate output, the pairs will be processed in key order. This
makes it easier to produce a sorted final output which is of-
ten desired. There is no guarantee in the processing order of
the original input during the Map stage. These assumptions
did not cause any complications with the programs we ex-
amined. In general it is up to the programmer to verify that
the algorithm can be expressed with the Phoenix API given
these restrictions.

The Phoenix API does not rely on any specific com-

Function Description R/O
Functions Provided by Runtime

int phoenix scheduler (scheduler args t * args) R
Initializes the runtime system. The scheduler args t struct provides the needed function & data pointers

void emit intermediate(void *key, void *val, int key size) O
Used in Map to emit an intermediate output <key,value> pair. Required if the Reduce is defined

void emit(void *key, void *val) O
Used in Reduce to emit a final output pair

Functions Defined by User
int (*splitter t)(void *, int, map args t *) R

Splits the input data across Map tasks. The arguments are the input data pointer, the unit size for each task, and the
input buffer pointer for each Map task
void (*map t)(map args t*) R

The Map function. Each Map task executes this function on its input
int (*partition t)(int, void *, int) O

Partitions intermediate pair for Reduce tasks based on their keys. The arguments are the number of Reduce tasks, a
pointer to the keys, and a the size of the key. Phoenix provides a default partitioning function based on key hashing
void (*reduce t)(void *, void **, int) O

The Reduce function. Each reduce task executes this on its input. The arguments are a pointer to a key, a pointer to the
associated values, and value count. If not specified, Phoenix uses a default identity function
int (*key cmp t)(const void *, const void*) R

Function that compares two keys

Table 1. The functions in the Phoenix API. R and O identify required and optional fuctions respectively.

piler options and does not require a parallelizing com-
piler. However, it assumes that its functions can freely
use stack-allocated and heap-allocated stuctures for pri-
vate data. It also assumes that there is no communica-
tion through shared-memory structures other than the in-
put/output buffers for these functions. For C/C++, we can-
not check these assumptions statically for arbitrary pro-
grams. Although there are stringent checks within the sys-
tem to ensure valid data are communicated between user
and runtime code, eventually we trust the user to provide
functionally correct code. For Java and C#, static checks
that validate these assumptions are possible.

3.2 The Phoenix Runtime

The Phoenix runtime was developed on top of P-
threads [18], but can be easily ported to other shared-
memory thread packages.

3.2.1 Basic Operation and Control Flow

Figure 1 shows the basic data flow for the runtime system.
The runtime is controlled by the scheduler, which is initi-
ated by user code. The scheduler creates and manages the
threads that run all Map and Reduce tasks. It also manages
the buffers used for task communication. The programmer
provides the scheduler with all the required data and func-
tion pointers through the scheduler args t structure.
After initialization, the scheduler determines the number of
cores to use for this computation. For each core, it spawns
a worker thread that is dynamically assigned some number

of Map and Reduce tasks.
To start the Map stage, the scheduler uses the Splitter

to divide input pairs into equally sized units to be processed
by the Map tasks. The Splitter is called once per Map
task and returns a pointer to the data the Map task will pro-
cess. The Map tasks are allocated dynamically to work-
ers and each one emits intermediate <key,value> pairs.
The Partition function splits the intermediate pairs into
units for the Reduce tasks. The function ensures all values
of the same key go to the same unit. Within each buffer,
values are ordered by key to assist with the final sorting. At
this point, the Map stage is over. The scheduler must wait
for all Map tasks to complete before initiating the Reduce
stage.

Reduce tasks are also assigned to workers dynamically,
similar to Map tasks. The one difference is that, while with
Map tasks we have complete freedom in distributing pairs
across tasks, with Reduce we must process all values for the
same key in one task. Hence, the Reduce stage may exhibit
higher imbalance across workers and dynamic scheduling is
more important. The output of each Reduce task is already
sorted by key. As the last step, the final output from all tasks
is merged into a single buffer, sorted by keys. The merging
takes place in log2(P/2) steps, where P is the number of
workers used. While one can imagine cases where the out-
put pairs do not have to be ordered, our current implemen-
tation always sorts the final output as it is also the case in
Google’s implementation [8].

Field Description
Basic Fields

Input data Input data pointer; passed to the Splitter by the runtime
Data size Input dataset size
Output data Output data pointer; buffer space allocated by user
Splitter Pointer to Splitter function
Map Pointer to Map function
Reduce Pointer to Reduce function
Partition Pointer to Partition function
Key cmp Pointer to key compare function

Optional Fields for Performance Tuning
Unit size Pairs processed per Map/Reduce task
L1 cache size L1 data cache size in bytes
Num Map workers Maximum number of threads (workers) for Map tasks
Num Reduce workers Maximum number of threads (workers) for Reduce tasks
Num Merge workers Maximum number of threads (workers) for Merge tasks
Num procs Maximum number of processors cores used

Table 2. The scheduler args t data structure type.

3.2.2 Buffer Management

Two types of temporary buffers are necessary to store data
between the various stages. All buffers are allocated in
shared memory but are accessed in a well specified way by
a few functions. Whenever we have to re-arrange buffers
(e.g., split across tasks), we manipulate pointers instead of
the actual pairs, which may be large in size. The intermedi-
ate buffers are not directly visible to user code.

Map-Reduce buffers are used to store the intermediate
output pairs. Each worker has its own set of buffers. The
buffers are initially sized to a default value and then resized
dynamically as needed. At this stage, there may be multiple
pairs with the same key. To accelerate the Partition
function, the Emit intermediate function stores all
values for the same key in the same buffer. At the end of
the Map task, we sort each buffer by key order. Reduce-
Merge buffers are used to store the outputs of Reduce tasks
before they are sorted. At this stage, each key has only one
value associated with it. After sorting, the final output is
available in the user allocated Output data buffer.

3.2.3 Fault Recovery

The runtime provides support for fault tolerance for tran-
sient and permanent faults during Map and Reduce tasks. It
focuses mostly on recovery with some limited support for
fault detection.

Phoenix detects faults through timeouts. If a worker does
not complete a task within a reasonable amount of time,
then a failure is assumed. The execution time of similar
tasks on other workers is used as a yardstick for the timeout
interval. Of course, a fault may cause a task to complete
with incorrect or incomplete data instead of failing com-

pletely. Phoenix has no way of detecting this case on its own
and cannot stop an affected task from potentially corrupt-
ing the shared memory. To address this shortcoming, one
should combine the Phoenix runtime with known error de-
tection techniques [20, 21, 24]. Due to the functional nature
of the MapReduce model, Phoenix can actually provide in-
formation that simplifies error detection. For example, since
the address ranges for input and output buffers are known,
Phoenix can notify the hardware about which load/store ad-
dresses to shared structures should be considered safe for
each worker and which should signal a potential fault.

Once a fault is detected or at least suspected, the runtime
attempts to re-execute the failed task. Since the original
task may still be running, separate output buffers are allo-
cated for the new task to avoid conflicts and data corruption.
When one of the two tasks completes successfully, the run-
time considers the task completed and merges its result with
the rest of the output data for this stage. The scheduler ini-
tially assumes that the fault was a transient one and assigns
the replicated task to the same worker. If the task fails a
few times or a worker exhibits a high frequency of failed
tasks overall, the scheduler assumes a permanent fault and
no further tasks are assigned to this worker.

The current Phoenix code does not provide fault recovery
for the scheduler itself. The scheduler runs only for a very
small fraction of the time and has a small memory footprint,
hence it is less likely to be affected by a transient error. On
the other hand, a fault in the scheduler has more serious im-
plications for the program correctness. We can use known
techniques such as redundant execution or checkpointing to
address this shortcoming.

Google’s MapReduce system uses a different approach

In
p
u
t

Split

Map Partition

Map Partition

Map Partition

Map Partition

Worker 1

Worker N

Reduce

Merge

Reduce

Reduce

Merge

Reduce

Worker 1

Worker M

..
.

..
.

Merge

O
u
tp
u
t

Map Stage Reduce Stage

..
.

Figure 1. The basic data flow for the Phoenix runtime.

for worker fault tolerance. Towards the end of the Map or
Reduce stage, they always spawn redundant executions of
the remaining tasks, as they proactively assume that some
workers have performance or failure issues. This approach
works well in large clusters where hundreds of machines
are available for redundant execution and failures are more
frequent. On multi-core and symmetric multiprocessor sys-
tems, the number of processors and frequency of failures
are much smaller hence this approach is less profitable.

3.2.4 Concurrency and Locality Management

The runtime makes scheduling decisions that affect the
overall parallel efficiency. In general, there are three
scheduling approaches one can employ: 1) use a default
policy for the specific system which has been developed
taking into account its characteristics; 2) dynamically de-
termine the best policy for each decision by monitoring re-
source availability and runtime behavior; 3) allow the pro-
grammer to provide application specific policies. Phoenix
employs all three approaches in making the scheduling de-
cisions described below.

Number of Cores and Workers/Core: Since MapRe-
duce programs are data-intensive, we currently spawn
workers to all available cores. In a multi-programming en-
vironment, the scheduler can periodically check the sys-
tem load and scale its usage based on system-wide priori-
ties. The mechanism for dynamically scaling the number of
workers is already in place to support fault recovery. In sys-
tems with multithreaded cores (e.g., UltraSparc T1 [16]),
we spawn one worker per hardware thread. This typically
maximizes the system throughput even if an individual task
takes longer.

Task Assignment: To achieve load balance, we always
assign Map and Reduce task to workers dynamically. Since
all Map tasks must execute before Reduce tasks, it is dif-
ficult to exploit any producer-consumer locality between
Map and Reduce tasks.

Task Size: Each Map task processes a unit of the input
data. Given the size of an element of input data, Phoenix
adjusts the unit size so that the input and output data for
a Map task fit in the L1 data cache. Note that for some
computations there is little temporal locality within Map or
Reduce stages. Nevertheless, partitioning the input at L1
cache granularity provides a good tradeoff between lower
overheads (few larger units) and load balance (more smaller
units). The programmer can vary this parameter given spe-
cific knowledge of the locality within a task, the amount of
output data produced per task, or the processing overheads.

Partition Function: The partition function determines
the distribution of intermediate data. The default partition
function partitions keys evenly across tasks. This may be
suboptimal since keys may have a different number of val-
ues associated with them. The user can provide a function
that has application-specific knowledge of the values’ dis-
tribution and reduces imbalance.

There are additional locality optimizations one can use
with Phoenix. The runtime can trigger a prefetch engine
that brings the data for the next task to the L2 cache in par-
allel with processing the current task. The runtime can also
provide cache replacement hints for input and output pairs
accessed in Map and Reduce tasks [25]. Finally, hardware
compression/decompression of intermediate outputs as they
are emitted in the Map stage or consumed in the Reduce
stage can reduce bandwdith and storage requirements [10].

4 Methodology
This section describes the experimental methodology we

used to evaluate Phoenix.

4.1 Shared Memory Systems

We ran Phoenix on the two shared-memory systems de-
scribed in Table 3. Both systems are based on the Sparc
architecture. Nevertheless, Phoenix should work with-
out modifications on any architecture that supports the P-
threads library. The CMP system is based on the UltraSparc
T1 multi-core chip with 8 multithreaded cores sharing the
L2 cache [16]. The SMP system is a symmetric multipro-
cessor with 24 chips. The use of two drastically different
systems allows us to evaluate if the Phoenix runtime can
deliver on its promise: the same program should run as ef-
ficiently as possible on any type of shared-memory system
without any involvement by the user.

4.2 Applications

We used the 8 benchmarks described in Table 4. They
represent key computations from application domains such
as enterprise computing (Word Count, Reverse Index,
String Match), scientific computing (Matrix Multiply), ar-
tificial intelligence (Kmeans, PCA, Linear Regression), and
image processing (Histogram). We used three datasets for
each bemchmarks (S, M, L) to test locality and scalability
issues. We started with sequential code for all benchmarks
that serves as the baseline for speedups. From that, we de-
veloped a MapReduce version using Phoenix and a conven-
tional parallel version using P-threads. The P-threads code
is statically scheduled.

Table 4 also lists the code size ratio of each parallel ver-
sion to that of the sequential code (lower is better). Code
size is measured in number of source code lines. In general,
parallel code is significantly longer than sequential code.
Certain applications, such as WordCount and ReverseIndex,
fit well with the MapReduce model and lead to very com-
pact and simple Phoenix code. In contrast, the MapReduce
style and structure introduce significant amounts of addi-
tional code for applications like PCA and MatrixMultiply
because key-based data management is not the most natu-
ral way to express their data accesses. The P-threads code
would be signifciantly longer if dynamic scheduling was
implemented. Phoenix provides dynamic scheduling in the
runtime. Of course, the number of lines of code is not a
direct metric of programming complexity. It is difficult to
compare the complexity of code that manages keys or type-
agnostic Phoenix function interfaces against the complexity
of code that manually manages threads. For reference, the
Phoenix runtime is approximately 1,500 lines of code (in-
cluding headers).

The following are brief descriptions of the main mecha-
nisms used to code each benchmark with Phoenix.

CMP SMP
Model Sun Fire T1200 Sun Ultra-Enterprise 6000
CPU Type UltraSparc T1 UltraSparc II

single-issue 4-way issue
in-order in-order

CPU Count 8 24
Threads/CPU 4 1
L1 Cache 8KB 4-way SA 16KB DM
L2 Size 3MB 12-way SA 512KB per CPU

shared (off chip)
Clock Freq. 1.2 GHz 250 MHz

Table 3. The characteristics of the CMP and SMP sys-
tems used to evaluate Phoenix.

Word Count: It counts the frequency of occurence for
each word in a set of files. The Map tasks process different
sections of the input files and return intermediate data that
consist of a word (key) and a value of 1 to indicate that the
word was found. The Reduce tasks add up the values for
each word (key).

Reverse Index: It traverses a set of HTML files, ex-
tracts all links, and compiles an index from links to files.
Each Map task parses a collection of HTML files. For each
link it finds, it outputs an intermediate pair with the link
as the key and the file info as the value. The Reduce task
combines all files referencing the same link into a single
linked-list.

Matrix Multiply: Each Map task computes the re-
sults for a set of rows of the output matrix and returns the
(x,y) location of each element as the key and the result of
the computation as the value. The Reduce task is just the
identity function.

String Match: It processes two files: the “encrypt”
file contains a set of encrypted words and a “keys” file con-
tains a list of non-encrypted words. The goal is to encrypt
the words in the “keys” file to determine which words were
originally encrypted to generate the “encrypt file”. Each
Map task parses a portion of the “keys” file and returns a
word in the “keys” file as the key and a flag to indicate
whether it was a match as the value. The reduce task is
just the identity function.

KMeans: It implements the popular kmeans algo-
rithm that groups a set of input data points into clusters.
Since it is iterative, the Phoenix scheduler is called multi-
ple times until it converges. In each iteration, the Map task
takes in the existing mean vectors and a subset of the data
points. It finds the distance between each point and each
mean and assigns the point to the closest cluster. For each
point, it emits the cluster id as the key and the data vector as
the value. The Reduce task gathers all points with the same
cluster-id, and finds their centriod (mean vector). It emits

Description Data Sets Code Size Ratio
Pthreads Phoenix

Word
Count

Determine frequency of words in a file S:10MB, M:50MB, L:100MB 1.8 0.9

Matrix
Multiply

Dense integer matrix multiplication S:100x100, M:500x500, L:1000x1000 1.8 2.2

Reverse
Index

Build reverse index for links in HTML files S:100MB, M:500MB, L:1GB 1.5 0.9

Kmeans Iterative clustering algorithm to classify 3D
data points into groups

S:10K, M:50K, L:100K points 1.2 1.7

String
Match

Search file with keys for an encrypted word S:50MB, M:100MB, L:500MB 1.8 1.5

PCA Principal components analysis on a matrix S:500x500, M:1000x1000, L:1500x1500 1.7 2.5
Histogram Determine frequency of each RGB compo-

nent in a set of images
S:100MB, M:400MB, L:1.4GB 2.4 2.2

Linear Compute the best fit line for a set of points S:50M, M:100M, L:500M 1.7 1.6
Regression

Table 4. The applications used in this study. Relative code size with respect to sequential code.

the cluster id as the key and the mean vector as the value.
PCA: It performs a portion of the Principal Compo-

nent Analysis algorithm in order to find the mean vector and
the covariance matrix of a set of data points. The data is pre-
sented in a matrix as a collection of column vectors. The al-
gorithm uses two MapReduce iterations. To find the mean,
each Map task in the first iteration computes the mean for
a set of rows and emits the row numbers as the keys, and
the means as the values. In the second iteration, the Map
task is assigned to compute a few elements in the required
covariance matrix, and is provided with the data required to
calculate the value of those elements. It emits the element
row and column numbers as the key, and the covariance as
the value. The Reduce task is the identity in both iterations.

Histogram: It analyzes a given bitmap image to com-
pute the frequency of occurence of a value in the 0-255
range for the RGB components of the pixels. The algo-
rithm assigns different portions of the image to different
Map tasks, which parse the image and insert the frequency
of component occurences into arrays. The reduce tasks sum
up these numbers across all the portions.

Linear Regression: It computes the line that best fits
a given set of coordinates in an input file. The algorithm
assigns different portions of the file to different map tasks,
which compute certain summary statistics like the sum of
squares. The reduce tasks compute these statistics across
the entire data set in order to finally determine the best fit
line.

5 Evaluation
This section presents the evaluation results for Phoenix

using the CMP and SMP shared-memory systems. All
speedups are calculated with respect to the sequential code

of the application. Unless otherwise specified, we use the
large datasets for each application.

5.1 Basic Performance Evaluation

Figure 2 presents the speedup with Phoenix as we scale
the number of processor cores used in the two systems.
Higher speedup is better. With the CMP, we use 4 workers
per core taking advantage of the hardware support for mul-
tithreading. This choice leads to good throughput across all
applications. Hence, the CMP speedup with 8 cores can be
significantly higher than 8 as we use 32 workers. Figure
3 presents the execution time breakdown between Map, Re-
duce, and Merge tasks for the CMP system. The breakdown
is similar for the SMP.

Phoenix provides significant speedups with both systems
for all processor counts and across all benchmarks. In
some cases, such as MatrixMultiply, we observe superlin-
ear speedups due to caching effects (beneficial sharing in
the CMP, increased cache capacity in the SMP with more
cores). At high core counts, the SMP system often suffers
from saturation of the bus that interconnects the processors
(e.g., PCA and Histogram). With a large number of cores,
we also noticed that some applications suffered from load
imbalance in the Reduce stage (e.g., WordCount). Rever-
seIndex achieves the highest speedups due to a number of
reasons. Its code uses array based heaps to track indices. As
work is distributed across more cores, the heaps accessed
by each core are smaller and operations on them become
significantly faster. Another contributor to the superlinear
speedup is that it spends a signficant portion of its execu-
tion time on the final merging/sorting of the output data.
The additional cores and their caches reduce the merging
overhead.

0

5

10

15

20

25

30

WordCount MatrixMult StringMatch Kmeans ReverseIndex PCA Histogram LinearReg

C
M
P
 S
p
e
e
d
u
p

2 Cores

4 Cores

8 Cores

43 72

0

5

10

15

20

25

30

WordCount MatrixMult StringMatch Kmeans ReverseIndex PCA Histogram LinearReg

S
M
P
 S
p
e
e
d
u
p

2 Cores

4 Cores

8 Cores

16 Cores

24 Cores

3539

Figure 2. Speedup with Phoenix for the large datasets as we scale the number of processors cores in the two systems.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

WordCount MatrixMult StringMatch Kmeans ReverseIndex PCA Histogram LinearReg

C
M

P
 N

o
rm

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Merge

Reduce

Map

Figure 3. Execution time breakdown for the CMP system.

In general, the applications in Figure 2 can be classified
into two types. The key-based structure that MapReduce
uses fits well the algorithm of WordCount, MatrixMultiply,
StringMatch, and LinearRegression. Hence, these applica-
tions achieve significant speedups across all system sizes.
On the other hand, the key-based approach is not the natu-
ral choice for Kmeans, PCA, and Histogram. Hence, fitting
these algorithms into the MapReduce models leads to sig-
nificant overheads compared to sequential code and reduces
the overall speedup. We discuss this issue further when we
compare the performance of Phoenix to that of P-threads in
Section 5.4.

5.2 Dependency to Dataset Size

Figure 4 shows the speedup Phoenix achieves on the
CMP with 8 cores when we vary the input dataset size. We
observed similar behavior for the SMP system. It is clear
that increasing the dataset leads to higher speedups over the
sequential version for most applications. This is due to two
reasons. First, a larger dataset allows the Phoenix runtime

0

5

10

15

20

25

30

Wordcount Matrix mult String match Kmeans Reverseindex PCA Histogram Linear Reg

C
M
P
 S
p
e
e
d
u
p

small

medium

large

38 72

Figure 4. CMP speedup with 8 cores as we vary the
dataset size.

to better amortize its overheads for task management, buffer
allocation, data spliting and sorting. Such overheads are
not dominant if the application is truly data intensive. Sec-
ond, caching effects are more significant when processing
large datasets and load imbalance is more rare. StringMatch
and LinearRegression perform similarly across all dataset
sizes. This is because even their small datasets contain a
large number of elements. Moreover, they perform a sig-
nificant amount of computation per element in their dataset.
Hence, even the small datasets are sufficient to fully utilize
the available parallel resources and hide the runtime over-
heads.

5.3 Dependency to Unit Size

Each Map task processes a unit of the input data. Hence,
the unit size determines the number of number of Map
tasks, their memory footprint, and how well their overhead
is amortized. Figure 5 shows the speedup for CMP system
as we vary the unit size from 4KB to 128KB. Many appli-
cations perform similarly with all unit sizes as there is little
temporal locality in the data access. Larger units can lead

0

5

10

15

20

25

30

WordCount MatrixMult StringMatch Kmeans ReverseIndex PCA Histogram LinearReg

C
M
P
 S
p
e
e
d
u
p

4KB Unit Size

16KB Unit Size

64KB Unit Size

128KB Unit Size

64 68 72 73

Figure 5. Speedup for the CMP (8 cores) as we vary the
unit size for Map tasks.

to better performance for some applications as they reduce
significantly the portion of time spent on spawning tasks
and merging their outputs (fewer tasks). Histogram benefits
from larger units because it reduces the number of inter-
mediate values to merge across tasks. On the other hand,
applications with short term temporal locality in their ac-
cess patterns (e.g. Kmeans and MatrixMultiply) perform
better with smaller units as they allow tasks to operate on
data within their L1 cache or the data for all the active tasks
to fit in the shared L2.

The current implementation of Phoenix uses the user-
supplied unit size or determines the unit size based on the
input dataset size and the cache size. A better approach is
to use a dynamic framework that discovers the best unit size
for each program. At the beginning of a data intensive pro-
gram, the runtime can vary the unit size and monitor the
trends in the completion time or other performance indica-
tors (processor utilization, number of misses, etc.) in order
to select the best possible value.

The choice of Partition function was not particularly im-
portant for the applications we studied as they spend most
time on Map tasks. Nevertheless, an imbalanced partition-
ing of the intermediate outputs can lead to significant im-
balance.

5.4 Comparison to Pthreads

Figure 6 compares the speedup achieved with the
Phoenix and P-threads code for the two systems. All
speedups are with respect to the same sequential code. We
use 8 cores with the CMP and 24 cores with the SMP
(largest possible configurations). The P-threads code uses
the lower level API directly and has been manually opti-
mized to be as fast as possible. The parallel code man-
ages threads directly and does not have to comply with
the MapReduce model (computation models, data formats,
buffer management approach, final output sorting etc.).

Nevertheless, in many cases we re-optimized the P-threads
code once we observed how the Phoenix code operates and
why it leads to good performance. The only shortcoming of
the P-threads code we developed is the use of static schedul-
ing for simplicity. The Phoenix system handles dynamic
scheduling in the runtime in a manner transparent to the
programmer.

Figure 6 shows that for five of the applications, Phoenix
leads to similar or slightly better speedups. These are the
applications that fit naturally into the MapReduce model.
Either the data is always associated with keys (e.g., Word-
Count) or introducing a key per large block of data does
not lead to significant overheads due to key maniputation
and sorting (e.g., MatrixMultiply). The fact that Phoenix
operates mostly on pointers and avoids actual data copies
as much as possible helps reduce its overhead. The exact
comparison between Phoenix and P-threads for these appli-
cations depends on the usefulness for the specific configu-
ration of the dynamic scheduling that Phoenix implements
in the runtime. Note that we could change the P-threads
code to implement similar dynamic scheduling at the cost
of significant programming complexity.

For three applications in Figure 6 (Kmeans, PCA, and
Histogram), P-threads outperforms Phoenix significantly.
For these applications, the MapReduce program structure is
not an efficient fit. Kmeans invokes the Phoenix scheduler
iteratively, which introduces significant overhead. At the
end of each iteration, there is also an expensive operation
to translate the output pair format to the input pair format.
In addition, the Reduce function frequently performs mem-
ory allocation. For PCA, the MapReduce code does not use
the original array structure and must track the coordinates
for each data point separately. Hence, for each integer in
the input set, it must manipulate two other integers. In con-
trast, the P-threads code uses direct array accesses and does
not experience any additional overhead. For Histogram, the
P-threads code does not use keys as the output format is pre-
dictable. It also avoids the final sorting of the output data.

The conclusion from Figure 6 is that, given an effi-
cient implementation, MapReduce is an attractive model for
some classes of computation. It leads to good parallel effi-
ciency with simple code that is dynamically managed with-
out any programmer effort. Nevertheless, its model is not
general enough to cover all application domains. While
it always leads to significant speedups, it does not always
lead to the best possible performance. A good sign is that
MapReduce performs suboptimally for applications that are
difficult to express with its model anyway.

5.5 Fault Recovery

Figure 7 presents the results for a fault injection experi-
ment on the CMP system. We observed similar results with
fault injection experiments on the SMP system. The graphs

0

5

10

15

20

25

30

Wordcount Matrix_mult String_match Kmeans Reverseindex PCA Histogram Linear_reg

C
M
P
 S
p
e
e
d
u
p

Pthreads

Phoenix

52 72

0

5

10

15

20

25

30

Wordcount Matrix_mult String_match Kmeans Reverseindex PCA Histogram Linear_reg

S
M
P
 S
p
e
e
d
u
p

Pthreads

Phoenix

38 39

Figure 6. Phoenix Vs. Pthreads speedup for the CMP (8 cores) and SMP (24 cores) systems.

0.90

0.95

1.00

1.05

1.10

1.15

WordCount StringMatch ReverseIndex

N
o
rm
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e
 (
C
M
P
)

No Faults 1 Permanent Fault 1 Transient Fault 2 Transient Faults

Figure 7. Normalized execution time in the presence of
transient and permanent faults for the CMP with 8 cores.

represent normalized execution time, hence lower is better.
For the case of a permanent error, a core in the system stops
responding at an arbitrary point within the program execu-
tion. For the case of a transient error, an arbitrary Map or
Reduce task fails to finish, but the core it was assigned to
remains functional. In both cases, the failure affects the
execution and buffers for the tasks, but does not corrupt
the runtime or its data structures (see discussion in Section
3.2.3).

The first important result from Figure 7 is that the
Phoenix runtime detects both types of faults through time-
outs and recovers to complete the execution correctly. Fail-
ure recovery is completely transparent to the application de-
veloper. In the case of the permanent error, the runtime does
not assign further tasks to the faulty core. Hence, execution
time increases by 9% to 14%, depending at which point the
fault occured within the program execution and how well
was the core utilized by the application. With a lower pro-
cessor count, the impact of a core failure is higher. In the
case of a transient fault, the runtime simply re-executes the

faulty task and integrates its output with the rest of the data.
Since the overall number of tasks is large, one or two failed
tasks does not affect execution time by more than 0.5%. In
other words, once Map and Reduce tasks are sized for con-
currency and locality, they are also efficient units for failure
recovery.

6 Related Work
MapReduce is similar to models that employ scan prim-

itives or parallel prefix schemes to express parallel compu-
tations [17, 4]. Dubey has recently suggested the use of
similar primitives in order to easily parallelize and schedule
recognition, mining, and synthesis computations [9]. Con-
cepts similar to MapReduce have also been employed in
application-specific systems [19].

The recent turn towards multi-core chips has sparked sig-
nificant work on novel programming models and runtime
systems. StreamIt uses a synchronous data-flow model that
allows a compiler to automatically map a streaming pro-
gram to a multi-core system [13]. The Click language
for network routes is also based on data-flow concepts and
is amenable to optimizations and static scheduling by the
compiler [15]. The Data-Demultiplexing approach com-
bines data-flow execution with speculative parallelization of
sequential programs [2]. Demultiplexed functions are spec-
ulatively executed as soon as their inputs are ready. Lan-
guages based on transactional memory introduce database
semantics for concurrency control to multithreaded pro-
gramming [14, 5]. Cilk is a faithful extension of C for mul-
tithreading that uses asynchronous parallelism and an effi-
cient work-stealing schedule [11]. There are also propos-
als for langauges based on partitioned global address space
that provide the programmer with explicit or implicit con-
trol over locality in large parallel systems [6, 1, 7]. Finally,
there are also mature commercial models for parallel pro-
gramming on shared memory systems such as OpenMP that
uses high-level directives to specify fork-join parallelism
from loops or independent tasks [22].

It is too early to discuss the applicability and practical
success of each approach. It is likely that multiple models
will succeed, each in a separate application domain. Apart
from ease-of-use and scalability, two factors that may affect
their acceptance is how well they run on existing hardware
and if they can tolerate errors. Phoenix runs on stock hard-
ware and automatically provides fault recovery for map and
reduce tasks.

7 Conclusions

This paper evaluated the suitability of MapReduce as a
programming environment for shared-memory systems. We
described Phoenix, an implementation of MapReduce that
uses shared memory in order to minimize the overheads
of task spawning and data communication. With Phoenix,
the programmer provides a simple, functional expression
of the algorithm and leaves parallelization and scheduling
to the runtime system. We showed that Phoenix leads to
scalable performance for both multi-core chips and con-
ventional symmetric multiprocessors. Phoenix automati-
cally handles key scheduling decisions during parallel ex-
ecution. It can also recover from transient and permanent
errors in Map and Reduce tasks. We compared the perfor-
mance of Phoenix to that of parallel code written directly
in P-threads. Despite runtime overheads, Phoenix leads to
similar performance for most applications. Nevertheless,
there are also applications that do not fit naturally in the
MapReduce model for which P-threads code performs sig-
nificantly better.

Overall, this work establishes that MapReduce provides
a useful programming and concurrency management ap-
proach for shared-memory systems.

References
[1] E. Allen et al. The Fortress Language Specification. Sun

Microsystems, 2005.
[2] S. Balakrishnan and G. S. Sohi. Program Demultiplexing:

Data-flow based Speculative Parallelization of Methods in
Sequential Programs. In the Proceedings of the 33rd Intl.
Symp. on Computer Architecture, June 2006.

[3] L. Barroso et al. Web Search for a Planet: The Google Clus-
ter Architecture. IEEE Micro, 23(2), Mar. 2003.

[4] G. E. Blelloch. Scans as Primitive Parallel Operations. IEEE
Transactions on Computers, 38(11), Nov. 1989.

[5] B. D. Carlstrom et al. The Atomos Transactional Program-
ming Language. In the Proceedings of the Conf. on Program-
ming Language Design and Implementation, June 2006.

[6] P. Charles et al. X10: an Object-oriented Approach to Non-
uniform Cluster Computing. In the Proceedings of the 20th
Conf. on Object Oriented Programming Systems Languages
and Applications, Oct. 2005.

[7] Cray. Chapel Specification. Feb. 2005.
[8] J. Dean and J. Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. In the Proceedings of the 6th

Symp. on Operating Systems Design and Implementation,
Dec. 2004.

[9] P. Dubey. Recognition, Mining, and Synthesis Moves Com-
puters to the Era of Tera. Technology@Intel Magazine, Feb.
2005.

[10] M. Ekman and P. Stenstrom. A Robust Main-Memory Com-
pression Scheme. In the Proceedings of the 32nd Intl. Symp.
on Computer Architecture, June 2005.

[11] M. Frigo et al. The Implementation of the Cilk-5 Mul-
tithreaded Language. In the Proceedings of the Conf. on
Programming Language Design and Implementation, June
1998.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In the Proceedings of the 9th Symp. on Operating
Systems Principles, Oct. 2003.

[13] M. I. Gordon et al. A Stream Compiler for Communication-
exposed Architectures. In the Proceedings of the 10th Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, Oct. 2002.

[14] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In the Proceedings of the 18th Conf. on Object-
oriented Programing, Systems, Languages, and Applica-
tions, Oct. 2003.

[15] E. Kohler et al. Programming Language Optimizations for
Modular Router Configurations. In Proceedings of the 10th
Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 2002.

[16] P. Kongetira et al. Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE MICRO, 25(2), March 2005.

[17] R. E. Ladner and M. J. Fischer. Parallel Prefix Computation.
Journal of the ACM, 27(4), Oct. 1980.

[18] B. Lewis and D. J. Berg. Multithreaded Programming with
Pthreads. Prentice Hall, 1998.

[19] M. Linderman and T. Meng. A Low Power Merge Cell Pro-
cessor for Real-Time Spike Sorting in Implantable Neural
Prostheses. In the Proceedings of the Intl. Symp. on Circuits
and Systems, May 2006.

[20] S. Mitra et al. Robust System Design with Built-In Soft-Error
Resilience. IEEE Computer, 38(2), Feb. 2005.

[21] S. S. Mukherjee et al. Detailed Design and Evaluation of
Redundant Multithreading Alternatives. In the Proceedings
of the 29th Intl. Symp. on Computer architecture, May 2002.

[22] OpenMP Architecture Review Board. OpenMP Application
Program Interface, v. 2.5, May 2005.

[23] S. Rixner. Stream Processor Architecture. Kluwer, 2002.
[24] J. C. Smolens et al. Fingerprinting: Bounding Soft-error De-

tection Latency and Bandwidth. In Proceedings of the 11th
Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 2004.

[25] Z. Wang et al. Using the Compiler to Improve Cache Re-
placement Decisions. In the Proceedings of the Intl. Conf.
on Parallel Architectures and Compilation Techniques, Sept.
2002.

