2. Algorithmique parallèle	
Or a distribution	
Introduction au parallélisme 1	
	<u>.</u>
Plan	
1. <u>Le modèle graphe de tâches</u>	
1. Définition	
2. Exemples élémentaires	
2. Applications et algorithmique	
 Primitives et fonctions génériques Applications simples 	
3. Applications difficiles	
3. <u>Scheduling</u>	
1. Statique	
2. Dynamique	
Introduction au parallélisme 2	
Un Modèle générique du parallélisme: le DAG	
Directed Acyclic Graph	
Nœud: une tâche	
– instruction, fonction,	
programme	
 Implémentée par processus, thread 	
Arête: séquentialisation	
• Donc acyclique	
Nœuds distingués	
début/fin	

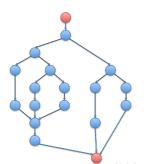
Un Modèle générique du parallélisme: le DAG

- Un DAG définit un ordre partiel
 - T1 << T2 s'il existe un chemin de T1 vers T2
 - Ordre total : programme séquentiel
 - Ordre partiel : programme parallélisable

T1 // T2 T3

Introduction au parallélism

Un Modèle générique du parallélisme: le DAG

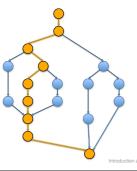


- Directed Acyclic Graph
- La réalisation du parallélisme est vue uniquement comme un problème

 ${\tt d'} {\color{red} \textbf{ordonnancement}}$

Introduction au parallélisme

Un Modèle générique du parallélisme: le DAG



- T_∞ est la longueur pondérée du chemin critique (span, profondeur). C'est la borne inférieure du temps de calcul
- T₁ la charge, est la somme des temps d'exécution de tous les nœuds – exécution séquentielle. C'est la borne supérieure du temps de calcul.
- Indice de Parallélisme:

 $T_1/T_\infty \\ \text{Quantit\'e moyenne de travail} \\ \text{par \'etape le long du chemin} \\ \text{critique}$

nduction au narallélisme

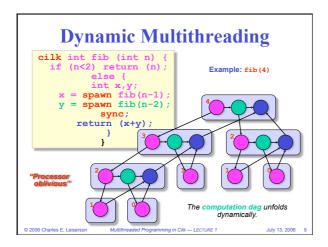
CILK

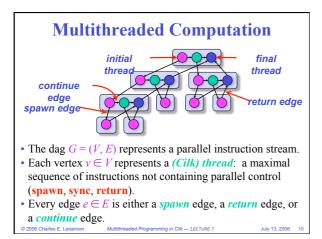
Les exemples de cette partie seront donnés en CILK http://supertech.csail.mit.edu/cilk/

- Langage adapté à l'algorithmique parallèle récursive
- Exécutif
- Développé au MIT puis industrialisé en CILK++
- Nous n'utiliserons que les constructions élémentaires, mais il y en a beaucoup d'autres.

Introduction au parallélisme

Basic Cilk Keywords Identifies a function as a Cilk procedure, capable of being spawned in parallel. | cilk int fib (int n) { | if (n<2) return (n); | else { | int */y; | x = spawn fib(n-1); | y = spawn fib(n-2); | sysc; | return (x+y); | } | } | The named child Cilk procedure can execute in parallel with the parent caller. | Control cannot pass this point until all spawned children have returned.

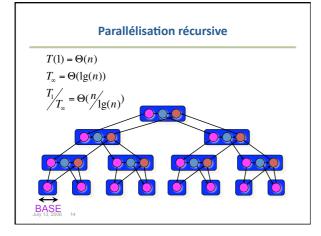




Anatomie d'une application simplissime: additionner deux vecteurs Séquentiel void vadd (double *x, double *y, double *z,int n) { int i; for (i=0; i<n; i++) Z[i]= X[i]+Y[i];} Stratégie de parallélisation: 1. convertir la boucle en récursion void vadd (double *x, double *y, double *z,int n) { if (n <= B) { int i; for (i=0; i<n; i++) z[i]= X[i]+Y[i];} else { vadd(X, y, z, n/2); vadd(X+n/2, Y+n/2, z+n/2, n-n/2);} }

Anatomie d'une application simplissime: additionner deux vecteurs Séquentiel void vadd (double *X, double *Y, double *Z,int n) { int i; for (i=0; i<n; i++) Z[i] = X[i] + Y[i];} Stratégie de parallélisation: 2. expliciter le parallélisme cilk vadd (double *X, double *Y, double *Z,int n) { if (n <= B) { int i; for (i=0; i<n; i++) Z[i] = X[i] + Y[i];} else { spawn vadd(X, Y, Z, n/2); spawn vadd(X+n/2, Y+n/2, Z+n/2, n-n/2); sync;} }

Parallélisation récursive cilk vadd (double *X, double *Y, double *Z,int n) { if (n <= B) { int i; for (i=0; i<n; i++) Z[i]= X[i]+Y[i];} else { spawn vadd(X, Y, Z, n/2); spawn vadd(X+n/2, Y+n/2, Z+n/2, n-n/2); sync;} }</pre>



Avantages

Stratégie de parallélisation:

- 1. Convertir la boucle en récursion
 - 2. Expliciter le parallélisme
- C'est une stratégie *Divide* & *Conquer* qui favorise la localité **ET** la répartition de charge
- La performance ne dépend pas de B au premier ordre
- Mais synchronisations inutiles

Introduction au parallélism

Gestion explicite des tâches

```
cilk void vadd1 (double *X, double *Y, double *Z){
   int i; for (i=0; i<B; i++)
        Z[i]= X[i]+Y[i];}
}
cilk void vadd (double *X, double *Y, double *Z){
   int j; for(j=0; j<N; j+=B) {
        spawn vaddl(X+j, Y+j, Z+j);}
        sync;
}</pre>
```

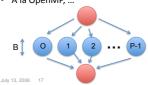
Aussi à la PVM, threads

 $T_{\infty} = B + N/B$ $T_{1} = N$ Conclusion ?

Réaliste : l'addition et le spawn sont au mieux du même ordre

Une autre vision du même algorithme

• A la OpenMP, ..

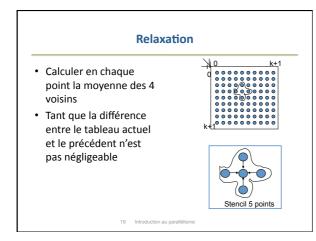


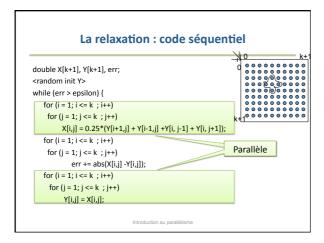
 $T_{\infty} = B$ $T_{1} = N$ $T_{1}/T_{\infty} = N/B$ Conclusion ?

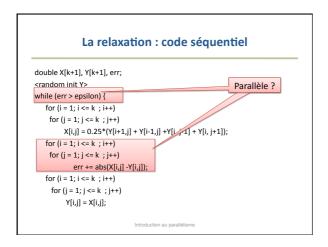
Conclusion sur l'exemple simplissime

- L'approche Divide & Conquer est la plus robuste
- Le modèle par graphe de tâches dépend de finesse de la représentation des tâches
 - Granularité: degré de repliement du parallélisme maximal.
 - Réalisme: description des actions de gestion
- Le modèle par graphe de tâches représente assez naturellement la programmation en EAU, mais pas en EAM

Introduction au parallélisme







Plan

- 1. Le modèle graphe de tâches
 - 1. Définition
 - 2. Exemples élémentaires
- 2. Applications et algorithmique
 - 1. Primitives et fonctions génériques
 - 2. Applications simples
 - 3. Applications difficiles
- 3. Scheduling
 - 1. Statique
 - 2. Dynamique

Primitives

- Problème: calculer et communiquer des valeurs conceptuellement uniques lorsque
 - En espace d'adressages multiples, les données sont distribuées
 - En espace d'adressage unique, les données sont privées
- Parallélisme de données

La réduction

- $s = f(x_0, ..., x_{n-1})$ où f est « associative et commutative » : addition, produit max, min, ...
- Réalisations optimisées spécifiques de chaque architecture, visibles à travers des constructions du langage

 OpenMP: reduction(+:result)

 MPI_reduce

S(n, n) = ?S(n, p) = ?

La réduction

- Où est le résultat ?
 - OpenMP: partout, plus précisément dans une variable partagée
 - MPI_reduce : sur un seul processeur
 - Si on veut l'avoir sur tous les processeurs, MPI_Allreduce
 - Pourquoi?

Introduction au parallélism

on au parallélisme

Sémantique du parallélisme et traitement d'erreurs

« Notes on collective operations: The reduction functions (MPI_Op) do not return an error value. As a result, if the functions detect an error, all they can do is either call MPI_Abort or silently skip the problem. Thus, if you change the error handler from MPI_ERRORS_ARE_FATAL to something else, for example, MPI_ERRORS_RETURN, then no error may be indicated. The reason for this is the performance problems in ensuring that all collective routines return the same error value. » Manuel MPI

Introduction au parallélisme

26

Gather et Scatter : compacter et décompacter des données

Gather Scatter A[i] = B[L[i]] B[L[I]] = A[i]

- En espaces d'adressages multiples
 - Gather: récupérer un tableau à partir de tableaux répartis sur processeurs
 - Scatter : distribuer un tableau aux processeurs
 - Dans quel ordre ?
- En espace d'adressage unique, compacter/décompacter un tableau dans un autre
 - En parallèle, quelle sémantique si L n'est pas injective ? Modèles PRAM
 - Quelle relation avec le tri ?

Introduction au parallélisme

	•	•
١	L	
	c	٦.

Applications élémentaires

- Retour sur la relaxation
- Produit de matrices
- Relaxation de Gauss-Seidel
 - Et remplissage dynamique d'un tableau
- Merge Sort (en TD)

Introduction au parallélisme

28

Relaxation : un schéma générique pour

- Résolution numérique d'EDP par méthode des éléments finis – « toute » la simulation numérique traditionnelle
- Certaines applications de traitement d'images
- En général, méthodes de point fixe lorsque le voisinage n'est pas trop grand

$$F(X) = X$$

Sous des conditions assez générales, l'itération

$$X_{n+1} = F(X_n)$$

à partir de X_0 arbitraire converge vers le point fixe

Introduction au parallélisme

29

Master Method

Problème: résoudre

$$T(n) = aT(n/b) + f(n)$$

Avec $a \ge 1$, b > 1 et f(n) asymptotiquement positive

Idée: comparer f(n) et $n^{\log_b a}$

Introduction au parallélism

Master Method – Cas 1

$$T(n) = aT(n/b) + f(n)$$

$$n^{\log_b a} >> f(n),$$
spécifiquement $f(n) = O(n^{\log_b a - \varepsilon})$ pour $\varepsilon > 0$
alors $T(n) = \Theta(n^{\log_b a})$
Exemple : $a = 4$, $b = 2$, $f(n) = \Theta(n)$ ou $\Theta(1)$

 $n^{\log_b a} = n^2$ $T(n) = \Theta(n^2)$

oduction au parallélisme

Master Method – Cas 2

$$T(n) = aT(n/b) + f(n)$$

$$n^{\log_b a} \approx f(n),$$
spécifiquement $f(n) = \Theta(n^{\log_b a} \lg^k n)$ pour $k \ge 0$
alors $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

Exemple: a = 1, $f(n) = \Theta(\lg n)$ ou $\Theta(1)$ $n^{\log_b a} = 1$

 $T(n) = \Theta(\lg^2 n)$ ou $\Theta(\lg n)$

Master Method - Cas 3

$$T(n) = aT(n/b) + f(n)$$

$$n^{\log_b a} << f(n),$$

spécifiquement $f(n) = \Omega(n^{\log_b a + \varepsilon})$ pour $\varepsilon > 0$ et $af(n/b) \le cf(n)$ pour 0 < c < 1

alors $T(n) = \Theta(f(n))$

Introduction au parallélisme

1	1

Produit de matrices

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

July 14, 2006

Programme séquentiel naïf

<init C>
for (i= 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
C[i,j] = A[i,k]*B[k,j];

Introduction au parallélisme

Programme parallèle naïf

<init C>
parfor (i= 0; i < n; i++)
parfor (j = 0; j < n; j++) {
 parfor (k = 0; k < n; k++)
 temp[i,j,k] = A[i,k]*B[k,j];
 C[i,j] = Sum_reduce (3, temp);
}
En réalité, temp est réalisé soit comme une variable privée (EAU), soit comme une variable locale (EAM)</p>

Parallélisation naïve

- Parallélisme non borné
 - Lancer les n^3 calculs en parallèle
 - Lancer les n^2 réductions en parallèle

$$T_1 = \Theta(n^3)$$

$$T_{\infty} = \Theta(\lg(n))$$

$$T_1/T_{\infty} = \Theta(n^3/\lg(n))$$

• MAIS problème de localité

Introduction au parallélisme

Produit de matrices par blocs – vision récursive

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{bmatrix} + \begin{bmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}$$

8 multiplications de matrices (n/2) x (n/2). 1 addition de 2 matrices n x n.

July 14, 2006 38

Produit de matrices par blocs – vision récursive

```
void Mult(*C, *A, *B, n) {
    double *T = Cilk_alloca(n*n*sizeof(double));
    < base case & partition matrices>
    spawn Mult(C11, Al1, Bl1, n/2);
    spawn Mult(C12, Al1, Bl2, n/2);
    spawn Mult(C22, A21, Bl2, n/2);
    spawn Mult(C21, A21, Bl1, n/2);
    spawn Mult(T11, Al2, B21, n/2);
    spawn Mult(T12, Al2, B22, n/2);
    spawn Mult(T22, A22, B22, n/2);
    spawn Mult(T22, A22, B21, n/2);
    spawn Mult(T21, A22, B21, n/2);
    spawn Add(C,T,n);
    sync;
    return;
}
```

Addition de matrices

Complexité du produit de matrices par blocs

récursif

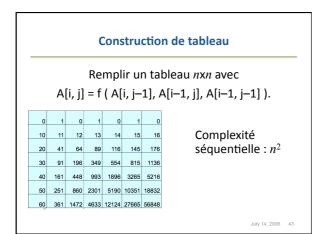
cilk void Mult(*C, *A, *B, n) {
 double*T = Cilk_allocate(n*n*sizeof(double));
 h base case & partition matrices i
 spawn Mult(C11, A11, B11, n/2);
 spawn Mult(C12, A11, B12, n/2);
 i:
 spawn Mult(T21, A22, B21, n/2);
 spawn Add(C,T,n);
 sync;
 return;
}

$$\begin{split} M_1(n) &= 8M_1(n/2) + A_1(n) + \Theta(1) \\ &= 8M_1(n/2) + \Theta(n^2) & \text{CAS 1} \\ &= \Theta(n^3) \text{ car } \log_2 8 = 3 \text{ et } n^2 << n^3 \end{split}$$

Complexité du produit de matrices par blocs récursif

cilk void Mult(*C, *A, *B, n) {
 double*T = Cilk allocate(n*n*sizeof(double));
 h base case & partition matrices;
 spawn Mult(C11, A11, B11, n/2);
 spawn Mult(C12, A11, B12, n/2);
 i;
 spawn Mult(T21, A22, B21, n/2);
 spawn Add(C,T,n);
 sync;
 return;
}

$$\begin{split} M_{\infty}(n) &= M_{\infty}(n/2) + \lg n + \Theta(1) = \Theta(\lg^2(n)) \\ M_{1}(n)/M_{\infty}(n) &= \Theta(n^3/\lg^2(n)) \end{split} \quad \text{CAS 2} \\ \text{Meilleur en pratique} \end{split}$$



Applications

- Relaxation de Gauss-Seidel
 - Même applications que la relaxation de Jacobi
 - Converge beaucoup plus vite
- Programmation dynamique
 - Edit distance
 - Alignement de séquences

– ...

Introduction au parallélisme

Construction Récursive spawn I; sync; spawn II; spawn III; spawn III; sync; spawn IV; sync; spawn IV; sync; spawn IV; sync;

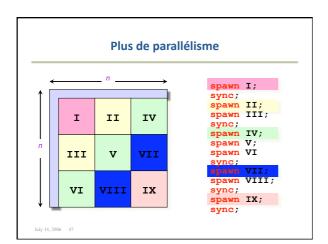
Construction récursive

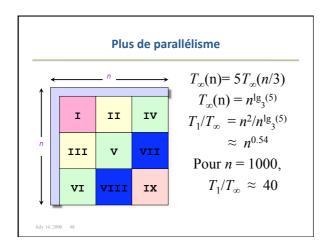
$$T_{\infty}(n) = 3T_{\infty}(n/2)$$

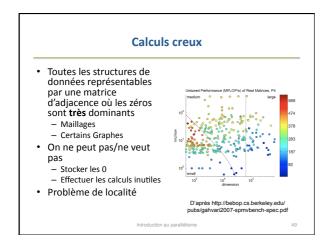
$$T_{\infty}(n) = \Theta(n^{\lg(3)})$$

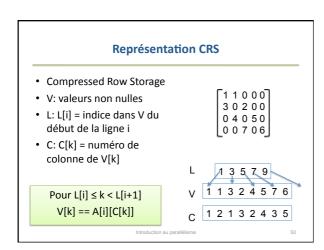
$$T_{1}/T_{\infty} = n^{2}/n^{\lg(3)}$$

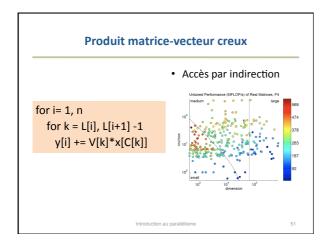
$$\approx n^{0.42}$$
Pour $n = 1000$,
$$T_{1}/T_{\infty} \approx 17$$





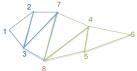






Décomposition de domaines

- Renuméroter les sommets
- Matrice creuse avec une structure localisée



D1 D2

 Surcoût important, amorti car structure statique ré-exploitée

Introduction au parallélisme

Parallélisation du produit matrice-vecteur en décomposition de domaines

$$\begin{bmatrix} Y1 \\ Y2 \\ Y3 \end{bmatrix} = \begin{bmatrix} A1 & 0 & C1 \\ 0 & A2 & C2 \\ B1 & B2 & S1+S2 \end{bmatrix} \begin{bmatrix} X1 \\ X2 \\ X3 \end{bmatrix}$$

En parallèle, calcul local optimisé (cache). X3 doit être dupliqué

$$\begin{bmatrix} Y1 \\ Z3 \end{bmatrix} = \begin{bmatrix} A1 & C1 \\ B1 & S1 \end{bmatrix} \begin{bmatrix} X1 \\ X3 \end{bmatrix}$$

$$\begin{bmatrix} Y2 \\ T3 \end{bmatrix} = \begin{bmatrix} A2 & C2 \\ B2 & S2 \end{bmatrix} \begin{bmatrix} X2 \\ X3 \end{bmatrix}$$

Mise à jour aux interfaces (petit) Y3 = T3 + T3

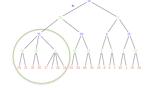
Introduction au parallélisme

53

Branch-And-Bound

Exemple: arbre max-min

- Parallélisme naïf
 - Développement de l'arbre
 - Heuristique d'évaluations
 - Remontée



Introduction au parallélisme

Branch-And-Bound

Exemple: arbre max-min

- Parallélisme naïf
 - Développement de l'arbre
 - Heuristique d'évaluations

 - Remontée
- Coupures alpha-beta
- Problème d'équilibrage de charge

Applications irrégulières dynamiques Le voisinage évolue dans le temps $\bullet \quad \text{Voisinage local} - N \\$ Voisinage global – N² interactions interactions Dynamique moléculaire • N-corps

Applications irrégulières dynamiques Le voisinage évolue dans le temps $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ • Voisinage global – N^2 interactions • N-corps Dynamique moléculaire

Applications irrégulières dynamiques Le voisinage évolue dans le temps • Voisinage local – N interactions • Dynamique moléculaire • N-corps Introduction au parallétisme

Plan

- 1. Le modèle graphe de tâches
 - 1. Définition
 - 2. Exemples élémentaires
- 2. Applications et algorithmique
 - 1. Primitives et fonctions génériques
 - 2. Applications simples
 - 3. Applications difficiles
- 3. Scheduling
 - 1. Statique
 - 2. Dynamique

Introduction au parallélisme

Scheduling = placement-ordonnancement

 $\label{eq:processeurs} \mbox{Avec P processeurs, réaliser un ordre partiel compatible avec celui défini par le DAG.}$

- « Replier » le parallélisme illimité sur P ressources
- Objectif : Minimisation du temps total d'exécution (makespan) T_{P} -> équilibrage de charge
- Contrainte : minimisation des surcoûts, au premier ordre localité spatiale et temporelle voir chapitres programmation
- Qui ? Placement des calculs
- Quand ? Ordonnancement
 - Intra-code: synchronisation (OpenMP, HPF, Cilk PAR(SEQ)), communication (MPI, PVM PAR(SEQ)), structures de contrôles (HPF SEQ(PAR))
 - Extérieur: Exécutif (Condor, Cilk)

Introduction au parallélisme

_			
_			
_			
_			
_			
_			
_			
_			
_			
Π			
_			
_			

Scheduling statique

 Off-line, éventuellement paramétré par le nombre de processus et le numéro de processus

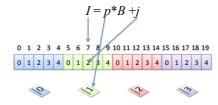
<u>Parallélisme de données / itératif: les temps de calcul sont supposés identiques</u>

- Cas régulier : Block, cyclic, cyclic (k), ...
- Cas irrégulier : ad hoc par exemple bisection récursive

Introduction au parallélism

61

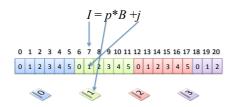
Distribution bloc



I indice global. *B* taille du bloc. B = N/P *p* numéro de processeur. p = I/B *j* indice local. $j = I \mod P$

Introduction au parallélisme

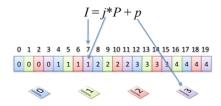
Distribution bloc



I indice global. *B* taille du bloc. $P = \lceil N/B \rceil$ *p* numéro de processeur. p = I/B *j* indice local. $j = I \mod P$

Introduction au parallélisme

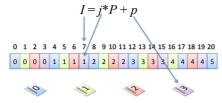
Distribution cyclique



I indice global p numéro de processeur. $p = I \mod P$ j indice local. j = I/P

Introduction au parallélisme

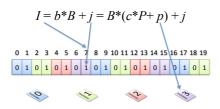
Distribution cyclique



I indice global p numéro de processeur. $p = I \mod P$ j indice local. j = I/P

Introduction au parallélisme

Distribution bloc-cyclique - cyclic(B)

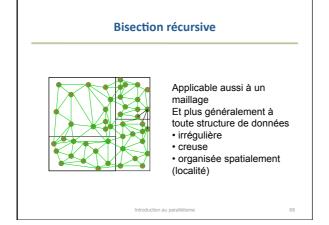


I indice global p numéro de processeur. $p = I \mod P$ j indice local. j = I/P

Introduction au parallélisme

Bisection récursive Les éléments de calcul sont caractérisés par une donnée nD Souvent position spatiale

Bisection récursive Les éléments de calcul sont caractérisés par une donnée nD Souvent position spatiale



Limites du scheduling statique

Parallélisme de contrôle

Pour un problème modérément général et réaliste

P processeurs identiques

 ${\cal M}$ tâches indépendantes de durée t_i La minimisation du makespan est un problème NP-complet

Scheduling dynamique

Introduction au parallélism

70

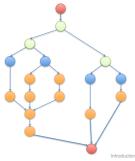
Scheduling dynamique

- Motivations supplémentaires et plus réalistes :
 - La durée des calculs n'est pas prévisible
 - La puissance des machines n'est pas connue
- Scheduling on-line : décidé à l'exécution
- Questions
 - Surcoûts : gestion des processus ou des threads, des échanges d'information
 - Robustesse à l'irrégularité des temps d'exécution

Introduction au parallélisme

71

Scheduling glouton (greedy)



- Parallélisme de contrôle
- Exécuter toute tâche prête dès que possible
- (Relativement) facile à implémenter
- Distance à l'optimal ?

n au narallélisme

Scheduling glouton (greedy)

P processeurs

- Exécuter tout ce qui peut l'être dès que possible
- Phase pleine: le nombre de processus actifs $\operatorname{est} \geq P$
 - Choix des processus activés = algorithmique du scheduling
- Phase incomplète: le nombre de processus actifs est $\leq P$

Introduction au parallélism

73

Scheduling glouton (greedy)

Théorème [Graham '68].

$Pour\ tout\ or donnance ment\ glouton$

$$T_P \leq T_1/P + T_{\infty}$$

Preuve

- Le nombre de phases pleines est au plus T_1/P puisque chaque pas de chaque phase pleine effectue un travail P,
- Le nombre de phases incomplètes est au plus T_{∞} puisque chaque pas de chaque phase incomplète effectue un travail 1 le long du chemin critique

Introduction au parallélisme

74

Scheduling glouton (greedy)

Théorème [Graham '68].

Pour tout ordonnancement glouton

$$T_P \le T_1/P + T_{\infty}$$

Corollaire 1 Tout ordonnancement glouton est au plus à un facteur 2 de l'optimal.

Preuve

Si T_P * est l'optimal (à P processeurs)

$$T_P^* \ge T_1/P$$
 et $T_P^* \ge T_\infty$

D'où

 $T_P \leq 2T_P^*$

Introduction au parallélisme

Scheduling glouton (greedy)

Théorème [Graham '68].

Pour tout ordonnancement glouton

$$T_P \le T_1/P + T_{\infty}$$

Corollaire 2 Si $P \ll T_1/T_{\infty}$ l'accélération est quasi-linéaire

Preuve

$$T_1/P >> T_P \text{ donc } T_1/P + T_\infty \approx T_1/P$$

 T_1/PT_{∞} : parallel slackness

Implémentation du scheduling dynamique

Centralisé: Maître-Esclave

Maître

- Gère la distribution des tâches : glouton, GSS, ...
- Effectue les opérations globales par exemple réduction

P Esclaves

- Exécutent un bloc, et redemandent du travail dès que terminé

Maître-Esclave à grain fin

- Pure self-scheduling : coût de synchronisation
- Idée : Au début, on alloue des blocs de grande taille pour diminuer les coûts de synchronisation, puis des blocs de taille décroissante pour ajuster progressivement l'équilibrage de charge
 - Guided self-scheduling (GSS): chaque esclave reçoit 1/P du batch restant
 - Factoring (FSS): durant chaque phase, chaque esclave reçoit 1/P de la moitié du batch restant

Maître-Esclave à grain fin

N = 256, P = 4

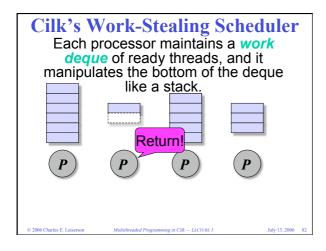
Statique: 64, 64, 64, 64 PSS: 1,1,1,1,1,1,1... GSS: 64,48,36,27,20,...

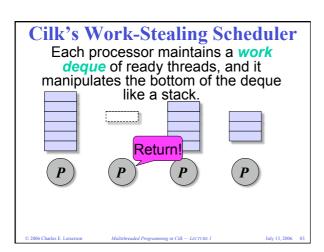
FSS: 32,32,32,32,8,8,8,8,4,4,4,2,...

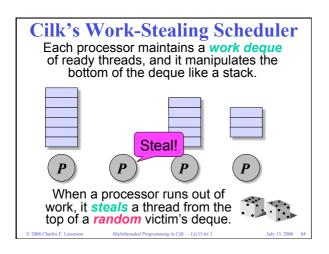
Introduction au parallélisme

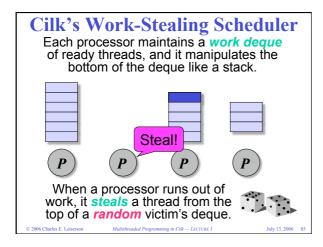
Cilk's Work-Stealing Scheduler Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack. Spawn P P P P

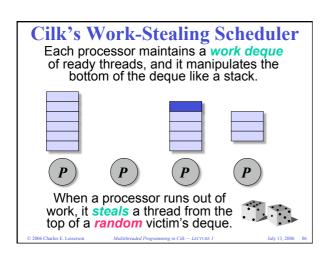
Cilk's Work-Stealing Scheduler Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack. Spawn! P P Autithreaded Programming in CIR — LECTURE 1 July 13, 2006 81

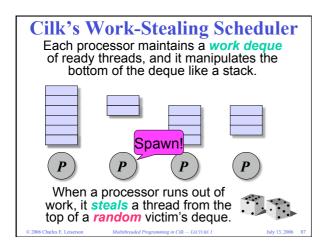












Placement/ordonnancement dynamique

- Réparti : Vol de travail
 - Peut être prouvé optimal pour une large classe d'applications
 - Implémentation délicate : gestion de verrous en espace d'adressage unique, protocole en espaces d'adressages multiples
 - http://supertech.lcs.mit.edu/cilk/

ion au parallélisme