NOM PRENOM

Partiel Architecture des Ordinateurs - 24 Octobre 2016

Q1.

Nombre	Code (notation binaire)	Code (notation hexadécimale)	Justification
74	0b 01001010	0x 4A	Ecriture en base 2
-127	0b 10000001	0x81	Codage de 256-127 = 129 en naturels

Q2.

Opération	Résultat	Retenue (0/1)	Correct en naturels	Correct en relatifs
			(Oui/Non)	(Oui/Non)
0x84 # 0x81	0x05	1	Non	Non
0x2A # 0x39	0x63	0	Oui	Oui
0x34 # 0x75	0xA9	0	Oui	Non
0x84 # 0xFF	0x83	1	Non	Oui

Q3.

Nombre	Codage	Justification
ADDU R4, R5, R6	0x00A62021	Format F1 avec codop = SPECIAL δ = 000000 et codop auxiliaire = 100001
BLEZ R1, 128	0x18200080	Format F3 avec codop = 000110 et imm = 128

Q4.

Il permet d'augmenter le nombre d'instructions en exploitant les bits 0-5 de l'instruction en format F1. NB : ceci n'est PAS équivalent à format R-R, ex. les décalages ; mais il est vrai que l'utilité est particulièrement évidente dans ce cas.

Q5.

Instruction	R1	Justification
ADDI R1, R2, 0xF0C0	0x987691E3	Extension de signe de l'immédiat et et résultat correct en relatifs
ANDI R1, R2, 0xF0C0	0x0000A000	AND bit à bit et extension à zero de l'immédiat
SRA R1, R2, 16	0xFFFF9876	Décalage arithmétique, extension de signe
SRL R1,R2, 20	0x00000987	Décalage logique, extension à 0

Q6.

R1	R3	Justification

0x0000001	0x0000F001	Calcul du max signé de R2 et R3. R2 est negatif, R3 est positif, donc
		le MOVZ ne produit pas d'effet.

Q7.

Adresse	Contenu après exécution	Instruction qui a modifié, X si aucune
0x10000000	00	х
0x10000001	23	SB
0x10000002	A1	SH
0x10000003	23	
0x10000004	98	SW
0x10000005	76	
0x10000006	A1	
0x10000007	23	

Q8. a) et b)

	Valeur de R2	Justification
a)	90	Les 3 premières instructions effectuent une multiplication par 10, la dernière ajoute 40.
b)	260	Résultat 10*22+40 =260

Q8 c)

R1 max	Justification
21	C'est le plus grand entier n tel que 10n + 40 ≤ 255

Q9.

	Réponse	Justification
a)	{7,9,3,4,6,0,1,8}	Prog2 correspond à la boucle
b)	{7,9,3,7,6,0,1,8}	for (i = 0 ; i < 4 ; i=i+2) X[i+1]=X[i]+X[i+1]

Q10.

NOM PRENOM

	Réponse	Justification
a)	5	Prog3 parcourt le tableau en ordre croissant. On sort de la boucle
b)	Prog3 calcule l'indice du premier élément nul du tableau	lorsque X[i] ==0, avec R10=@X[i]. Le calcul dans suite correspond à R10 <- (@X[i] + 28 –(@X[0]+28))/4 C'est à dire R10 <- i

Q11.

	Déplacement	Justification
c[2]	2	Caractère = 1 octet, @c[2] = b +2
х	4	Short = 2 octets, l'adresse b+3 est inutilisée à cause de l'alignement.
u[0]	16	x occupe les adresses b+4 et b+5; les adresses b+6 et b+7 ne sont pas multiple de 4 : inutilisées, alignement pour y. y occupe les adresses b+8 à b+15 16 est multiple de 8, donc u[0] peut être alloué au déplacement 16.