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Abstract. Global Computing harvest the idle time of Internet con-
nected computers to run very large distributed applications. The un-
precedented scale of the GCS paradigm requires to revisit the basic is-
sues of distributed systems: performance models, security, fault-tolerance
and scalability. The first parts of this paper review recent work in Global
Computing, with particular interest in Peer-to-Peer systems. In the last
section, we present XtremWeb, the Global Computing System we are
currently developing.

1 Introduction

Global Computing is a particular modality of MetaComputing targeting mas-
sive parallelism, Internet computing and cycle-stealing. The key idea of Global
Computing Systems (GCS) is to harvest the idle time of Internet connected com-
puters, which may be widely distributed across the world, to run a very large and
distributed application. All the computing power is provided by volunteer com-
puters, which offer some of their idle time to execute a piece of the application.
Thus Global Computing extends the cycle stealing model across the Internet.
With more than 93 millions of Internet connected computers, and the revolu-
tionary expansion of the mobile and handheld devices, the challenge is to harness
so many unused computing resources to build a Very Large Parallel Computer.
Due to poor network performance, GCS target mainly applications that can be
broken down into coarse grain tasks, either independent or scarcely communicat-
ing. From some computer graphics programs to multi-parameter simulations in
astrophysics or biology, such applications are sufficiently pervasive to motivate
a high research and even commercial interest in GCS.

Over the past years, the popular success of cryptographic key cracking chal-
lenges and the SETT@Home [4] program have aggregated huge computing power,
in the TeraFlop order. Extremely popular software such as Gnutella or Freenet
[32] have shown that Internet-based data storage and retrieval is realistic.

GCS drastically depart from usual computer usage at a psychological and eco-
nomic level [17]. Scientific and technical issues are less disrupted: performance
models, security, fault-tolerance and scalability are part of the distributed sys-
tems framework. Nevertheless, the unprecedented scale of the GCS paradigm
requires to revisit them all. In the next parts of this paper, we review recent
work in Global Computing following these axes. In the last section, we present
XtremWeb, the Global Computing System we are currently developing.



2 Architectures

A GCS is logically organized as a 3-tier system. The request layer submits a job.
The broker layer marshals the request, then maps and schedules work, and the
service layer actually computes. While the 3-tier organization is fairly common,
GCS have two major originalities. First, the physical architecture does not map
the physical one. Requesting, servicing and ultimately brokering are provided by
the same resources, the Internet links and the collaborating computers. Second,
the resources are highly volatile and users untrustworthy. Computers can come
and go freely, and the same is true for users; the bandwidth, latency and security
of Internet connections is highly variable.

All GCS do not fully implement this program. Implementing the service
layer over non-dedicated computers (the workers) is the minimum. All commer-
cial GCS and specialized ones (such as SETI@Home) do not allow for public
access to the request layer, thus working in a Master-Slave mode. The so-called
Peer-to-Peer (P2P) mode could tentatively be defined as allowing such access,
with the hugely increased security and privacy problems implied. P2P systems
are the focus of the current GCS research. Ultimate P2P systems would shift the
brokering level itself to volatile resources. This issue has been much less explored
for GCS than for data storage [32]. In this area, P2P systems offer a continuum
of broker layer architectures, from centralized organizations such as Napster to
fully decentralized ones such as Freenet. However, there is a commonality in
these architectures : a brokering functionnality is offered, either by dedicated
machines (centralized systems), or by the particpating machines themselves. In
both cases, scalability is a major issue. For centralized systems, classical hier-
archical organizations derived from the LDAP protocol are under investigation
[26]. For decentralized implementations of the broker layer, only very preliminary
results on the scalability issue are currently available [32].

3 Performance

Scheduling presumably is the key for application performance in the context of
a GCS environment.

There is a general consensus about the fact that static information is inade-
quate for the development of efficient schedulers [12]. The obvious reason is that
a Global Computer is essentially a shared resource, with external (with respect
to the scheduler) users of the computing power and externally generated network
traffic. Dynamic information on all resources of the Global Computer must be
embodied in the performance modeling scheme, so as to provide forecasts that
are one of the inputs of adaptive schedulers. Monitoring and prediction tools
such as NWS [43] have been developed in the framework of MetaComputing
systems, but not yet for GCS.



3.1 Scheduling

Predictions about processor and network workload will be used to map and
schedule the tasks on a GCS. Due to the long-term unpredictable nature of
this system [42], scheduling should be a dynamic process iterated many times
as external conditions change. Scalability of the scheduling algorithm itself is a
main concern, both with respect to the number of tasks and the size of the GCS.

The theoretical foundation for the analysis of scheduling have been laid in
[35,36, 14]. The basic model is that launching a remote task has a fixed and high
overhead, regardless of data transfers. The overhead is an incentive to supply
large chunks of work at a time, to amortize the overhead; the risk of loosing work
in progress when a worker leaves suggests to supply a sequence of small chunks.
An optimal schedule will balance these pressures in a way that maximizes the
expected output, given the expected distribution of idle time on the workers. It
has been shown in [36] that such optimal schedules do exist for a large class of
distributions, and in [35] that they can be computed efficiently and dynamically.
Unfortunately, the heavy-tailed distribution, which has been frequently verified
as being typical distribution, does not fall into this class. However, [35] defines
computationally simple schedules for the heavy-tailed distribution, which can be
tuned to have expected work output that is arbitrarily close to the optimum.

Recent work has included the cost of data access in the mapping-scheduling
problem. Computationally independent task may share large input files [18, 13].
Thus the workers must be clustered following their sharing of a storage resource.
A special case of shared file is the job code itself. A very important question
for schedulers is thus their ability to capture locality properties. The Sufferage
heuristic defined in [28] captures host locality: the sufferage index of a task is the
difference between its best and second-best execution time for a given scheduling;
tasks with higher sufferage index take precedence. [18] shows how to evolve the
Sufferage heuristic to capture cluster locality.

Tasks which exhibit a data-dependent execution time cannot be scheduled
once for all. Distributed workstealing scheme following the Cilk model [16] are the
main scheduling policy of Atlas [9] and Javelin++ [29]. In the original shared
memory multithreaded framework of Cilk, a thread pushes work to be done
to a stack, where other idle thread can pick it. The main issue in extending
this scheme to Global Computing is scalability. Atlas and Javelin+4 achieve
scalability through a tree-structured selection of the host to steal. Alternatively,
Javelin++ proposes a policy of random choice with tables of known hosts that
matches the P2P information storing structure.

3.2 Performance Models

In a production environment, the predictions got from a monitor/predictor such
as NWS will drive a scheduler. Research and benchmarking on scheduling raise
another issue. Effective investigation and objective comparison of scheduling al-
gorithms would require a performance evaluation system that allows analysis and



comparison of these algorithms under a reproducible, configurable and controlled
environment.

One model has been defined in the Bricks project [39]. The entities of the
model are clients, servers and network links. Servers and network links are mod-
elled by queuing systems, clients by arrival rates and tasks by the volume of
data they have to transfer to/from the servers and the number of instruction
they execute. Tasks and data transfers include those issued by clients as well
as those invoked by external processes. Storage performance is not explicitly
modelled, but could probably be included. Experiments against real monitor-
ing/prediction tools report Bricks to be very accurate, but the simulator is not
publicly available.

4 Fault Tolerance

GCS largely stretch the concept of Fault Tolerance. The issue becomes how to
compute efficiently in an environment where faults are normal, not exceptional,
events.

Fault tolerance is an issue both at the broker and the service level. When
physically distributed, the broker level should maintain a consistent view of a
distributed data space, which is a classical problem. Full P2P systems devoted
to file storage and retrieval have implemented broker faut-tolerance based on
redundancy. Failure-resilient distributed data space at the programming level
have been defined in [8] and in JavaSpaces.

4.1 Volatile Workers

At the worker level, a GCS has to ensure that the computation will make some
progress, at long as functional resources are available. However, defining what is
a functional resource is somehow blurred in such systems. The most traditional
way is to consider only online resource, that is computers currently registred in
the system. As soon as they do no more appear as registred, they are declared
faulty, their assigned task is lost, and must be restarted from scratch, except for
checkpointing. At the other end of the spectrum, one may consider that resources
come and go, and that is does not make sense to base the policy of them, but
only of the tasks to perform. If there exists a registration system, this allows
computations to carry on offline, when a computer is technically faulty.

With offline systems, the problem id now how to deal with truly faulty (never
coming back) resources. One solution has been proposed in the framework of
parallel computing, with the concept of eager scheduling [6]. Eager scheduling is
not a specific scheduling policy, but a layer over such policy. When all available
work has been assigned, unfinished tasks are re-assigned to workers which become
idle. This principle has been implemented in Charlotte [10], Bayanihan [37] and
Javelin++ [29]. Fault-tolerance is then only a modality of scheduling, a faulty
worker being viewed a an infinitely slow one.



Eager scheduling is well-adapted to embarrassingly parallel problems, where
there are clear synchronization points at which work must be completed before
the next step can proceed. At this point, there is no harm in rescheduling un-
finished computations. A GCS which targets continuous computing of indepen-
dent individual tasks, e.g. a very large multi-parameter application, never fulfills
the condition of having no further work to assign. Thus, the eager scheduling
algorithm would have to be augmented with decision about when to start a
re-scheduling phase.

4.2 Checkpointing

Another important issue is long-running tasks. To guarantee their progress in
a volatile environment, some form of checkpointing must be implemented. In
essence, checkpointing is any technique that allows for saving the state of the
computation so as to restart it from the reached point. Long-running applications
generally include a simple form of checkpointing through files. In the online
scheme, these files should be saved through the network, while in the offline
scheme they could be written only locally.

Checkpointing through file saving leaves the all the burden to the applica-
tion. Ninflet [38] has proposed a more elaborate solution. The programmer is
responsible for inserting calls to a checkpoint method at appropriate places, to
skip over what could have been computed when the task resumes, and to take
into account checkpoint limitations. The checkpoint method itself is provided
by the Ninflet environment. The method uses Java Serialization to save the task
object to stable storage. Finally, automatic scheduling of checkpoints [20] merges
with task scheduling in the model of [35].

Another possibility is thread or process migration [5,3]. However, deploy-
ment of native process migration, even on a cluster, yet suffers from limitations,
especially for I/O and network access [3]. Java-based Global Computing sys-
tems are in a much better position to this respect, with already deployed mobile
technologies such as ObjectSpace Voyager and Aglets.

The major problem with checkpointing, is that the state of a long-running
computation is often much larger than the final result. In an online scheme, the
pressure on network bandwidth may be very large. Thus checkpointing would
probably be more convenient in an offline scheme, or would have to build on
existing P2P data storage and retrieval technology.

5 Security

In the P2P scheme, workers will run completely untrusted code, which may be
malicious or erroneous. Encryption techniques, such as SSL, provide reliable data
and code transmission, but this is only a small, if mandatory, step, to security.
Moreover, the privacy of the host running the worker must be guaranteed. This
level of protection requires the worker to be run in an environment that isolates
it from the physical host resources.



Sun’s Java has been the first integrated and modular sandboxing solution.
A pointer-safe language executed in a virtual machine with extended dynamic
type and array-bound checking protects against malicious or erroneous use of
processor resources. Security models allow to limit access to the network and
peripherals (displays and files), in a configurable way since Java 1.2. Many Global
Computing projects have used the most secure Java framework, namely Applets
[19,10,33,31], or Java applications with adequately configured security policy
[29, 38].

Sandboxing native code execution has been recently developed, both at com-
pile time and at run-time. Software Fault Isolation [41] restricts an object code
from writing or jumping to a memory address outside of a separate portion of
application’s address space called the fault domain. This is done by inserting in
the binary code some run-time check before the store or jump instructions. This
has approach has the drawback of inducing an overhead proportional to the exe-
cution time. Self Certifying Code [30] is an attempt to avoid this overhead. The
execution site provides a safety policy expressed as a set of rules and according
to it the code producer creates a formal safety proof that the untrusted code
respects this policy. Before being executed the proof is validated and this step
is the only needed overhead. Extension of the compiler [40,21] can analyze the
code to enforce a safe use of the commonly exploited function of the C library
(scanf(), strepy()... ), to prevent attack buffer overrun attacks.

In the run-time approach, the key idea is to monitor the execution of a
process and allowing only safe operations. A safety mechanism is interposed
between the process and the operating system. This interposition mechanism
can be sited either at the C library calls level (libsafe [11]) or at the system calls
level (Janus [27], Consh [2], MAPbox [1]). The owner of machine expresses in a
safety policy the resources the application is allowed to use, mainly network and
file usage.

Extending this principle of interposition, the User-Mode-Linux [22] project
offers a complete virtual machine dedicated to the execution of the native code.
The safety policy is provided by the configuration of the virtual machine, for
instance mapping the virtual file system to a specific file of the execution site.

Finally, workers are not only volatile, but also potentially malicious. In the
SETI@Home experiment, some workers have replaced the original version of the
worker code by a patched one. The altered code was supposed to be faster,
but the results were both formally acceptable by the server and erroneous from
the application point of view. While this may appear as an instance of very
classical problems of distributed computing, checking and correcting the results
of a computation operated by massive parallelism and independent tasks cannot
for instance be naturally modelled as a consensus problem.

6 XtremWeb

The XtremWeb project [25,23] aims at building a platform for experimenting
high performance GCS. XtremWeb1.0 is currently available for download at [34],



allowing any institution to setup its own GCS. Two applications are currently
run under XtremWeb. The first one is a large simulation in the field of high-
energy particles physics, in collaboration with the Auger experiment [7]. The
other one is a PovRay computation, with most stringent requirements for both
security and data transfer.

6.1 Architecture

The XtremWeb architecture falls in the P2P model, with a broker layer imple-
mented on non-volatile and trustworthy machines. The architecture is strictly
pull-based: all activities and communications are initiated by the service or the
request layer, and go to the broker layer. This allows an easier large-scale deploy-
ment because firewalls may be block communications in the reverse direction.

Because XtremWeb targets high performance, the applications are native
binaries. The request layer is based on standard protocols and tools (PHP,
MySQL). The broker layer is organized as a set of queues of submitted and
activated tasks. The scheduling policy of the activated tasks can be freely con-
figured on the fly, while a broker is running. Electing submitted task to the
activated task queue is also fully configurable. A monitoring/prediction tool is
under development.

The service layer describes what resources the worker may use and enforces
this policy. The availability of a given machine depends on the User presence (de-
tected through the keyboard or mouse activity), the presence of non-interactive
tasks (detected through the CPU, memory and I/O usage) and other conditions
like night and day for instance. Resource utilization is continuously monitored
by the worker. An interface to the resources is provided by Operating System
features, e.g. the /proc directory for the Unix OSes. A User defines an availabil-
ity policy simply by indicating for each resource a threshold above which the
computer is usable for a Global Computation and a threshold that provokes the
interruption of the computation.

Controlling the resources used by the Global Computation can be tuned.
In the current and simplest scheme, the global computation obtains none of
the resources of an used machine and all the resources of a unused machine.
However, we are currently working on an integrated solution for allowing a User
to limit selected resources consumed by the worker (e.g. disk or memory usage),
or conversely to allow the global Computation to share some resource even when
the computer is used, for instance by nicing the global application instead of
stopping it.

The broker-worker interface have been implemented in Java. However, the
design is deliberately independent of Java specificity, especially dynamic class
loading. The first reason is that some performance bottlenecks may be created by
Java, and we wanted to be free to rebuild the critical parts with other tools. For
instance, the service/broker protocol is currently implemented over RMI. RMI
calls create threads, and Linux thread creation may scale poorly. Experiments
are ongoing to show if the performance degradation remains acceptable.



6.2 Service/Broker Protocol

A worker is a machine identified by its name and its owner. The protocol between
a worker and the broker consists of four requests detailed below:

The first request hostRegister goes to the last contacted broker or to the
root broker. This first connection authenticates the broker to the worker. The
broker sends back what is called a communication vector. The communication
vector specifies the list of brokers that may provide tasks to the worker and the
communication layer (protocol and port) on which they may be contacted. In
the simplest case, the broker may return its own address.

Next, the worker asks for a job from the broker, through the workRequest
request. The worker provides a description of its runtime environment (e.g. op-
erating system, architecture, etc.) and the list of the binaries previously down-
loaded and stored in a local cache directory. According to this information, the
broker selects a task, and sends back to the worker a description of the task, the
task inputs, the binary of the application corresponding to the runtime of the
worker if necessary, and the address of a broker that is able to store the results.

During the computation the worker periodically invokes workAlive to signal
its activity to the broker. The broker continuously monitors these calls, to im-
plement a timeout protocol. When a worker has not called for a sufficient long
time, the worker is considered down and its task may be rescheduled to another
worker.

At the end of the computation the worker sends back results to the specified
address, through the workResult call. This call is echoed back to the broker
which has provided the work, so as to signal the completion of this piece of
work.

7 Conclusion

In a recent paper [24], I. Foster attempted to define the general organization
underlying a Grid architecture. Layers and protocols are defined, and exem-
plified on the Globus system. Research in Global Computing systems has not
yet reached this maturity. Contrasting with the modular (”hourglass”) model
of Grid architectures, most GCS are vertically integrated. In the first sections
of this paper, we have sketched some aspects of the parameter landscape for
GCS along some major axes (scheduling, coping with volatility, checkpointing,
security) and situated some major GCS projects in this landscape. In the last
part, we have presented our own GCS system, as focused on experimentation
rather than in-depth exploration of one point of the landscape: while no system
can pretend to offer the possibility to combine freely all the possible choices,
XtremWeb is an attempt to provide a testbed for a significant class of GCS.
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