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Abstract

Global Computing platforms, large scale clusters and fu-
ture TeraGRID systems gather thousands of nodes for com-
puting parallel scientific applications. At this scale, node
failures or disconnections are frequent events. This Volatil-
ity reduces the MTBF of the whole system in the range of
hours or minutes.

We present MPICH-V, an automatic Volatility tolerant
MPI environment based on uncoordinated checkpoint/ roll-
back and distributed message logging. MPICH-V architec-
ture relies on Channel Memories, Checkpoint servers and
theoretically proven protocols to execute existing or new,
SPMD and Master-Worker MPI applications on volatile
nodes.

To evaluate its capabilities, we run MPICH-V within a
framework for which the number of nodes, Channels Mem-
ories and Checkpoint Servers can be completely configured
as well as the node Volatility. We present a detailed per-
formance evaluation of every component of MPICH-V and
its global performance for non-trivial parallel applications.
Experimental results demonstrate good scalability and high
tolerance to node volatility.

1 Introduction

A current trend in Technical Computing is development
of Large Scale Parallel and Distributed Systems (LSPDS)
gathering thousands of processors. Such platforms are the
result of construction of a single machine or the clustering
of loosely coupled computers that may belong to geograph-
ically distributed computing sites. TeraScale computers like
the ASCI machines in US, the Tera machine in France, large
scale PC clusters, large scale LANs of PC used as clusters,
future GRID infrastructures (such as the US and Japan Ter-
aGRID), large scale virtual PC farms built by clustering PCs
of several sites, large scale distributed systems like Global

and Peer-to-Peer computing systems are examples of this
trend.

For systems gathering thousands of nodes, node failures
or disconnections are not rare, but frequent events. For
Large Scale Machine like the ASCI-Q machine, the MTBF
(Mean Time Between Failure) for the full system is esti-
mated to few hours. The Google Cluster using about 8000
nodes experiences a node failure rate of 2-3% per year [6].
This can be translated to a node failure every 36 hours. A
recent study of the availability of desktop machines within a
large industry network ( � 64,000 machines) [5], which is a
typical Large Scale Virtual PC Farms targeted for Global
Computing platforms in industry and university, demon-
strates that from 5% to 10% of the machines become un-
reachable in a 24 hour period. Moreover a life time evalua-
tion states that 1/3 of the machines disappeared (the con-
nection characteristics of the machine changed) in a 100
days time period. The situation is even worse for Inter-
net Global and Peer-to-Peer Computing platforms relying
on cycle stealing for resource exploitation. In such environ-
ment, nodes are expected to stay connected (reachable) less
than 1 hour per connection.

A large portion of the applications executed on large
scale clusters, TeraScale machines and envisioned for Tera-
GRID systems are parallel applications using MPI as mes-
sage passing environment. This is not yet the case for Large
Scale Distributed Systems. Their current application scope
considers only bag of tasks, master-worker applications, or
document exchanging (instant messaging, music and movie
files). However many academic and industry users would
like to execute parallel applications with communication
between tasks on Global and Peer-to-Peer platforms. The
current lack of message passing libraries allowing the exe-
cution of parallel applications is one limitation to a wider
distribution of these technologies.

For parallel and distributed systems, the two main
sources of failure/disconnection are the nodes and the net-
work. Human factors (machine/application shutdown, net-
work disconnection), hardware or software faults may also
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be at the origin of failures/disconnections. For a sake of
simplicity, we consider the failures/disconnections as node
volatility: the node is no more reachable and the eventual
results computed by this node after the disconnection will
not be considered in the case of a later reconnection. The
last statement is reasonable for message passing parallel ap-
plications since a volatile node will not be able to contribute
any more (or for a period of time) to the application and,
further more, it may stall (or slowdown) the other nodes ex-
changing messages with it. Volatility can affect individual
or group of nodes when a network partition failure occurs
within a single parallel computer, a large scale virtual PC
farm or an Internet Global Computing platform.

The cornerstone for executing a large set of existing par-
allel applications on Large Scale Parallel and Distributed
Systems is a scalable fault tolerant MPI environment for
Volatile nodes. Building such message passing environment
means providing solution for several issues:

Volatility tolerance It relies on redundancy and/or check-
point/restart concepts. Redundancy implies classical tech-
niques such as task cloning, voting, and consensus. Check-
point/restart should consider moving task contexts and
restarting them on available nodes (i.e., task migrations)
since lost nodes may not come back before a long time.

Highly distributed & asynchronous checkpoint and
restart protocol Designing a volatility tolerant message
passing environment and considering thousands of nodes, it
is necessary to build a distributed architecture. Moreover,
a checkpoint/restart based volatility tolerant system should
not rely on global synchronization because 1) it would con-
siderably increase the overhead and 2) some nodes may
leave the system during synchronization.

Inter-administration domain communications Har-
nessing computing resources belonging to different
administration domains implies dealing with fire-walls.
When the system gathers a relatively small number of sites
like for most of the currently envisioned GRID deploy-
ments, security tool sets like GSI [13] can be used to allow
communications between different administration domains.
Global and Peer-to-Peer Computing systems generally
use a more dynamic approach because they gather a very
large number of resources for which the security issue
cannot be discussed individually. Thus, many P2P systems
overcomes fire-walls by using their asymmetric protection
set-up. Usually, fire-walls are configured to stop incoming
requests and accept incoming replies to outgoing requests.
When client and server nodes are both fire-walled, a non
protected resource implements a relay between them which
works as a post office where communicating nodes deposit
and collect messages.

Non named receptions The last difficulty is in message
receptions with no sender identity. Some MPI low level
control messages as well as the user level API may al-
low such receptions. For checkpoint/restart fault tolerance
approaches, the difficulty comes from two points: node
volatility and scalability. For the execution correctness,
internal task events and task communications of restarted
tasks should be replayed in a consistent way according to
previous executions on lost nodes. The scalability issue
comes from the unknown sender identity in non named re-
ceptions. A mechanism should be designed to prevent the
need for the receiver to contact every other nodes of the sys-
tem.

In this paper we present MPICH-V, a distributed, asyn-
chronous automatic fault tolerant MPI implementation de-
signed for large scale clusters, Global and Peer-to-Peer
Computing platforms. MPICH-V solves the above four
issues using an original design based on uncoordinated
checkpoint and distributed message logging. The design
of MPICH-V considers additional requirements related to
standards and ease of use: 1) it should be designed from
a widely distributed MPI standard implementation to en-
sure wide acceptance, large distribution, portability and take
benefit of the implementation improvements and 2) a typical
user should be able to execute an existing MPI application
on top of volunteer personal computers connected to Inter-
net. This set of requirements involves several constraints:
a) running an MPI application without modification, b) en-
suring transparent fault tolerance for users, c) keeping the
hosting MPI implementation unmodified, d) tolerating N si-
multaneous faults (N being the number of MPI processes in-
volved in the application), e) bypassing fire-walls, f) featur-
ing scalable infrastructure and g) involving only user level
libraries.

The second section of the paper presents a survey of
fault-tolerance message passing environments for parallel
computing and show how our work differs. Section 3
presents the architecture, and overviews every component.
Section 4 evaluates the performance of MPICH-V and its
components.

2 Related Work

A message passing environment for Global and Peer-to-
Peer computing involves techniques related to Grid comput-
ing (enabling nodes belonging to different administration
domains to collaborate for parallel jobs) and fault tolerance
(enabling the parallel execution to continue despite the node
volatility).

Many efforts have been conducted to provide MPI envi-
ronments for running MPI applications across multiple par-
allel computers: MPICH-G* [12], IMPI, MetaMPI, MPI-
connect [11], PACX-MPI [14], StaMPI. They essentially
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consist in layering MPI on top of vendor MPI, redirecting
MPI calls to the appropriate library and using different tech-
niques (routing processes, tunnels, PVM) to provide high
level management and inter operability between libraries.
Compared to GRID enabled MPI, MPICH-V provides fault
tolerance.

Several research studies propose fault tolerance mecha-
nisms for message passing environments. The different so-
lutions can be classified according to two criteria : 1) the
level in the software stack where the fault-tolerance mecha-
nism lies and 2) the technique used to tolerate faults.

We can distinguish between three main levels in the con-
text of MPI:

� at the upper level, an user environment can ensure
fault-tolerance for a MPI application by re-launching
the application from a previous coherent snapshot,

� at a lower level, MPI can be enriched to inform ap-
plications that a fault occurred and let the applications
take corrective actions,

� at the lowest level, the communication layer on which
MPI is build can be fault-tolerant, inducing a transpar-
ent fault-tolerance property for MPI applications.

Only the upper and the lowest levels approaches provide
automatic fault tolerance for MPI applications, transparent
for the user. Others approaches require the user to manage
fault tolerance by adapting its application.

As discussed in [8, 21], many techniques of fault toler-
ance have been proposed in previous works, lying in various
level of the software stacks : one solution is based on global
coherent checkpoints, the MPI application being restarted to
the last coherent checkpoint in case of faults (even in case of
a single crash). Other solutions use a log technique that con-
sists in saving the history of events occurring to processes,
in order to re-execute the part of the execution located be-
tween the last checkpoint of the faulty processes and the
failure moment. This assumes that every non-deterministic
event of the application can be logged. This is generally
the case for MPI applications. Three main techniques of
logging are defined :

� optimistic log (in which we can include the sender-
based techniques) assumes that messages are logged,
but that part of the log can be lost when a fault occurs.
Either this technique uses a global coherent checkpoint
to rollback the entire application when too much infor-
mation has been lost, or they assume a small number
of faults (mostly one) at one time in the system;

� causal log is an optimistic log, checking and building
an event dependence graph to ensure that potential in-
coherence in the checkpoint will not appear;

� pessimistic log is a transaction logging ensuring that
no incoherent state can be reached starting from a lo-
cal checkpoint of processes, even with an unbounded
number of faults.

In Figure 1, we present a classification of well known
MPI implementations providing fault-tolerance according
to the technique used and the level in the software stack.
MPICH-V uses pessimistic log to tolerate an unbounded
(but finite) number of faults in a distributed way (there is
no centralized server to log messages for all nodes).

2.1 Checkpoint based methods

Cocheck [22] is an independent application making a
MPI parallel application fault tolerant. It is implemented
at the runtime level (but its implementation on top of tuMPI
required some modification of the tuMPI code), on top of
a message passing library and a portable process check-
point mechanism. Cocheck coordinates the application pro-
cesses checkpoints and flushes the communication channels
of the target applications using a Chandy-Lamport’s algo-
rithm. The checkpoint and rollback procedures are man-
aged by a centralized coordinator.

Starfish [1] is close to Cocheck providing failure de-
tection and recovery at the runtime level for dynamic and
static MPI-2 programs. Compared to Cocheck, it provides
a user level API allowing the user to control checkpoint
and recovery. User can choose between coordinated and
uncoordinated (for trivial parallel applications) checkpoints
strategies. Coordinated checkpoint relies on the Chandy-
Lamport’s algorithm. For an uncoordinated checkpoint, the
environment sends to all surviving processes a notification
of the failure. The application may take decision and cor-
rective operations to continue execution (i.e. adapts the data
sets repartition and work distribution).

Clip [7] is a user level coordinated checkpoint library
dedicated to IntelParagon systems. This library can be
linked to MPI codes to provide semi-transparent check-
point. The user add checkpoint calls in his code but does
not need to manage the program state on restart.

2.2 Optimistic log

A theoretical protocol [23] presents the basic aspect of
optimistic recovery. It was first designed for clusters, parti-
tioned into a fixed number of recovery units (RU), each one
considered as a computation node. Each RU has a message
log vector storing all messages received form the other RU.
Asynchronously, an RU saves its log vector to a stable stor-
age. It can checkpoint its state too. When a failure occurs,
it tries to replay input messages stored in its reliable stor-
age from its last checkpoint; messages sent since last check
point are lost. If the RU fails to recover a coherent state,
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Figure 1. Classification by techniques and level in the software stack of fault-tolerance message
passing systems

other RU concerned by lost messages should be rolled back
too until the global system reaches a coherent state.

Sender based message logging [17] is an optimistic al-
gorithm tolerating one failure. Compared to [23], this algo-
rithm consists in logging each message in the volatile mem-
ory of the sender. Every communication requires 3-steps:
send; acknowledge + receipt count; acknowledge of the ac-
knowledge. When a failure occurs, the failed process rolls
back to its last checkpoint. Then it broadcasts requests for
retrieving initial execution messages and replays them in the
order of the receipt count.

[20] presents an asynchronous checkpoint and rollback
facility for distributed computations. It is an implantation of
the sender based protocol proposed by Juang and Venkate-
san [18]. This implementation is built from MPICH.

2.3 Causal Log

The basic idea of Manetho [9] is to enhance the sender
based protocol with an Antecedence Graph (AG) recording
the ’happen before’ Lamport’s relationship. All processes
maintained an AG in volatile memory, in addition to the
logging of sent messages. AGs are asynchronously sent to
a stable storage with checkpoints and message logs. Each
time a communication occurs, an AG is piggybacked, so the
receiver can construct its own AG. When failures occur, all
processes are rolled back to their last checkpoints, retrieving
saved AG and message logs. The different AGs are used by
receivers to retrieve the next lost communications and to
wait for the sender processes to re-execute their sending.

2.4 Pessimistic log

MPIFT [4] implements failure detection at the MPI level
and recovery at the runtime level re-executing the whole
MPI run (possibility from a checkpoint). Several sensors
are used for fault detection at the application, MPI, network
and operating system levels. A central coordinator mon-
itors the application progress, logs the messages, restarts
the failed processes from checkpoints and manages control
messages for self-checking tasks. MPIFT considers coordi-
nator as well as task redundancy providing fault tolerance
but requires to implement voting techniques to detect fail-
ures. A drawback of this approach is the central coordinator
which, according to the authors, scale only up to 10 proces-
sors.

MPI-FT [19] is the closest to MPICH-V but built from
LAM-MPI. It uses a monitoring process (called the ob-
server) for providing MPI level process failure detection
and recovery mechanism (based on message logging). To
detect failures, the observer assisted by a Unix script pe-
riodically checks the existence of all the processes. Two
message logging strategies are proposed: an optimistic one,
decentralized, requiring every MPI process to store its mes-
sage traffic, or a pessimistic one, centralized, logging all
messages in the observer. For recovery, the observer spawns
new processes which involves a significant modifications of
the MPI communicator and collective operations. MPI-FT
restarts failed MPI processes from the beginning which has
two main consequences: 1) a very high cost for failure re-
covery (the whole MPI process should be replayed) and 2)
the requirement of a huge storage capacity to store the mes-
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sage traffic.

2.5 Other methods

FT-MPI [10] handles failure at the MPI communicator
level and lets the application to manage the recovery. When
a fault is detected, all the processes of a communicator are
informed about the fault (message or node). This informa-
tion is transmitted to the application by the returning value
of MPI calls. The application can take decisions and ex-
ecute corrective operations (shrinking, rebuilding, aborting
the communicator) according to various fault states. The
main advantage of FT-MPI is its performance since it does
not checkpoint neither MPI processes nor log MPI mes-
sages. Its main drawback is the lack of transparency for
the programmer.

Egida [21] is an object oriented toolkit supporting trans-
parent log-based rollback-recovery. By integrating Egida
with MPICH, existing MPI applications can take advan-
tage of fault-tolerance transparently without any modifica-
tion. Egida implements failure detection and recovery at
the low-level layer. The Egida object modules replaces P4
for the implementation of MPICH send/receive messages,
but Egida modules still use P4 as the actual communica-
tion layer. A dedicated language allows to express different
protocols from events themselves (failure detection, check-
point, etc.) to responses to these events.

3 MPICH-V architecture

MPICH-V environment encompasses a communication
library based on MPICH [16] and a runtime environment.
The MPICH-V library can be linked with any existing MPI
program as usual MPI libraries.

The library implements all communication subroutines
provided by MPICH. Its design is a layered architecture:
the peculiarities of the underlying communication facili-
ties are encapsulated in a software layer called a device,
from which all the MPI functions are automatically built
by the MPICH compilation system. The MPICH-V library
is build on top of a dedicated device ensuring a full-fledged
MPICH v.1.2.3., implementing the Chameleon-level com-
munication functions. The underlying communication layer
relies on TCP for ensuring message integrity.

MPICH-V runtime is a complex environment involving
several entities: Dispatcher, Channel memories, Checkpoint
servers, and computing/communicating nodes (Figure 2).

MPICH-V relies on the concept of Channel Memory
(CM) to ensure fault tolerance and to allow the firewall
bypass. CMs are dedicated nodes providing a service of
message tunneling and repository. The architecture does
not assume central control nor global snapshot. Fault tol-
erance is implemented in a highly decentralized and asyn-

chronous way, saving the computations and communication
contexts independently. For each node, the execution con-
text is saved (periodically or upon a signal reception) on
remote checkpoint servers. A communication context is
stored during execution by saving all in-transit messages in
CMs. Thus, the whole context of a parallel execution is
saved and stored in a distributed way. The MPICH-V run-
time assigns CM to nodes by associating each CM to differ-
ent sets of receivers (Figure 3). Following this rule, a given
receiver always receives its messages from the same CM,
called its home CM. When a node sends a message, it actu-
ally puts the message in the receiver home CM. MPICH-V
runtime provides all nodes with a map of the CM-receiver
association during the initialization.

This association scheme is effective for 1) keeping the
protocol simple and provable and 2) limiting the number of
messages for implementing non-named receptions (receive
from any). In one extreme a), there is a single CM for all
nodes; numbering all communications managed by the CM
provides a total order over the communication events. In
such a case, it is easy to prove that the restart protocol is
deadlock free. In the other extreme b), each node has it
own CM. In that case, numbering all communications for a
dedicated receiver provides a total order over the communi-
cation events for that receiver.

The difference between situations a) and b) is the lack of
a total order over the communications events of different re-
ceivers in the situation b). Since there is no ordering depen-
dency between the receptions made by different receivers,
it is also easy to prove that the restart protocol is deadlock
free. In addition, to implement non-named receptions, the
receiver only needs to contact its associated CM.

3.1 Dispatcher

The Dispatcher manages tasks that are instances of tra-
ditional MPI processes. During the initialization, the dis-
patcher launches a set of tasks on participating nodes, each
task instantiating a MPI process.

A key task of the dispatcher is the coordination of the
resources needed to execute a parallel program. This in-
cludes 1) providing nodes for executing services (Channel
Memories and Checkpoint Servers) and MPI processes and
2) connecting these running services together. All these ser-
vices are scheduled as regular tasks, and therefore assigned
dynamically to nodes when they are ready to participate.
When scheduled, a service is registered in a Stable Service
Registry, managed in a centralized way. It records, for each
service, the set of hosts providing this service and the proto-
col information used to bind a service requester to a service
host. When a node executes an MPI application, it first con-
tacts the Service Registry to resolve the address of a Check-
point Server and its related Channel Memory according to

5



Memory Channels

Checkpoint
Servers

Internet
or LAN

Dispactcher

Nodes

Firewall

Figure 2. Global architecture of MPICH-V

CM 1 CM 2 CM N

NP210

. . .

. . .

Figure 3. Structure of connections between
CMs and nodes. Bold pointers correspond to
connections with home CM servers to receive
incoming messages, whereas dashed point-
ers correspond to connections with other
CMs to send messages

the node rank in the MPI communication group. Check-
point servers and Channel memories are globally assigned
to the nodes in a round robin fashion at the creation time of
a parallel execution.

During execution, every participating node sends period-
ically an ”alive” signal to the dispatcher. The ”alive” signal
only contains the MPI rank number. Its frequency, currently
set to 1 minute, is adjusted considering the tread-off be-
tween dispatcher reactiveness and communication conges-
tion. The dispatcher monitors the participating nodes con-
sidering the ”alive” signal; it detects a potential failure when
an ”alive” signal is timed out, whatever is the reason: either
a node or a network failure (the dispatcher makes no dif-
ference between those two error origins). It then launches
another task (a new instance of the same MPI process). The
task restarts the execution, reaches the point of failure and
continues the execution from this point. The other nodes are

not aware about the failure. If the faulty node reconnect the
system, two instances of the same MPI process (two clones)
could run at the same time in the system. The Channel
Memory manages this situation by allowing only a single
connection per MPI rank. When a node leave the system
(disconnection or failure), it stops its permanent connection
to the Channel Memories. When a node tries to connect
a Channel Memory, the Channel Memory checks the MPI
rank and returns an error code to the node if the rank is al-
ready associated with an open connection. When a node
receives an error code for a connection tentative, it kills the
current job and re-contacts the dispatcher for fetching a new
job. So only the first node among the clones will be able to
open a connection with the Channel Memory.

3.2 Channel Memory Architecture

The Channel Memory (CM) is a stable repository for
communicating nodes messages. Its main purpose is to save
the communications during execution in order to tolerate
tasks volatility. Every node contacts all CM servers asso-
ciated with the MPI application according to the Service
Registry provided by the Dispatcher. To send (receive) a
message to (from) another node, communicating nodes de-
posit or retrieve MPI messages via CM transactions. Every
communication between the nodes and CMs are initiated by
the nodes.

The CM is a multi-threaded server with a fixed pool of
threads, which both listen to the connections and handle the
requests from the nodes, the checkpoint servers and the dis-
patcher. To ensure a total order of the messages to be re-
ceived, the CM manages all the messages as a set of FIFO
queues.

In the CM, each receiver is associated with dedicated
queues. To be compliant with higher-level MPICH func-

6



tions, the CM manages two types of queues: a common
queue for all control messages, and one queue per sender
for data messages. Such architecture of the data storage al-
lows to minimize the time to retrieve any message.

All the message queues are stored in virtual memory area
with out-of-core features. When the queues size exceeds the
physical RAM, part of the queues are swapped to the disc
following a LRU policy.

When a node leaves the system, the Dispatcher orders
another node to restart the task from the beginning or from
the last checkpoint. Because some communications may
be performed from the beginning or from the last check-
point and before the failure, some communications may be
replayed by the restarting task. The CM handles commu-
nications of a restarting task by: a) sending the number of
messages sent by the failed execution and b) re-sending the
message being already sent to the failed task. More detailed
description of both Channel Memory and the ch cm device
(outlined in the following section) architecture design and
functionality, is described in [2]

3.3 Channel Memory Device

The MPICH-V channel memory device implements MPI
library based on MPICH for a participating node. The de-
vice, called ch cm, is embedded in the standard MPICH dis-
tribution and is implemented on the top of TCP protocol.

Functionality of the device supports initialization, com-
munication and finalizing functions of the higher levels ac-
cording to the features of the MPICH-V system. At the ini-
tialization time, when a parallel application has been dis-
patched, the device provides connection of the application
with CM servers and Checkpointing servers. The connec-
tions established with CM servers during this phase are TCP
sockets opened until the application finishes all its commu-
nications.

The implementation of all communication functions in-
cludes sending and receiving of special system messages,
used for preparation of the main communication part and
for identifying the type of communication both for node and
for CM server part.

Application finalization includes disconnection notifica-
tions to all contacted CMs.

In addition to the ch cm device properties, described
above, its important difference from the usual ch p4 device
is the absence of local message queues. All the queues are
served by Channel Memory as it was described above and
the device retrieves the required message directly, accord-
ing to the information about the source/destination and an
internal MPI tag.

3.4 Checkpoint System

Checkpoint Servers (CS) stores and provides task images
on-demand upon node requests. MPICH-V assumes that:
1) CS are stable and not protected by fire-walls, 2) commu-
nication between nodes and CS are transactions, 3) every
communication between the nodes and CSs are at the initia-
tive of the nodes.

During execution, every node performs checkpoints and
sends them to a CS. When a node restarts the execution of
a task, the Dispatcher informs it about: 1) the task to be
restarted and 2) which CS to contact to get the last task
checkpoint. The node issues a request to the relevant CS
using the MPI rank and application id. The CS responds
to the request by sending back the last checkpoint corre-
sponding to the MPI rank. Thus, this feature provides a task
migration facility between nodes.

Checkpoint can be performed periodically or upon re-
ception of an external signal. Currently, the decision of
initiating a checkpoint is taken periodically on local node,
without any central coordination.

We currently use the Condor Stand-alone Checkpointing
Library (CSCL), which checkpoints the memory part of a
process and provides optional compression of the process
image. CSCL does not provide any mechanism to handle
communications between nodes. In particular, sockets that
were used by a checkpointed process are not re-opened af-
ter a restart. In order to workaround this limitation, when
a process is restarted, MPICH-V restores the connections
with CMs before resuming execution.

To permit overlap between checkpoint calculation and
network transfer of the process image, the checkpoint im-
age is never stored on the local node disk. Generation and
compression of the checkpoint image, and transmission to
the checkpoint server are done in two separate processes.
Size of the image is not precomputed before sending data,
so we begin transmission as soon as CSCL library begins to
generate checkpoint data. The transmission protocol relies
on the underlying network implementation (TCP/IP) to be
able to detect errors.

When restarting a process from its checkpoint image,
messages are not replayed from the beginning. So the CS
and CM associated with a task must be coordinated to en-
sure coherent restarts. The last message before the begin-
ning of a checkpoint is a special message describing from
which message the replay should start. In order to ensure
transactional behavior of the checkpointing mechanism, this
special message is acknowledged by the CS when the trans-
fer of the checkpoint image is completed.

The process of checkpointing a program requires to stop
its execution. However, generating, compressing and send-
ing a checkpoint image could take a long time. To reduce
the stall time, MPICH-V actually checkpoints a clone of
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the running task. The process clone is created using stan-
dard fork unix process creation system call. This system
call duplicates all memory structures and process flags; file
descriptor’s states are inherited as well as opened sockets.
Since this process has the same data structures and is in the
same state as the original one, we use it to perform a check-
point while the original process can continue its execution.

3.5 Theoretical foundation of the MPICH-V Pro-
tocol

The MPICH-V protocol designed relies on uncoordi-
nated checkpoint/rollback and distributed messages log-
ging. According to our knowledge, such fault tolerant pro-
tocol has not been proved yet. To ensure the correctness
of our design, we have formally proved the protocol. The
following paragraphs sketch the theoretical verification (the
complete proof is out of scope of this paper; it will be pub-
lished separately later).

Model We use well known concepts of distributed sys-
tem: processes and channels, defined as deterministic finite-
state machines, and a distributed system as processes collec-
tion linked together with channels. Channels are FIFO, un-
bounded and lossless. An action is either a communication
routine or an internal state modification. A configuration is
a vector of the states of every components (processes and
channels) of the system. An atomic step is the achievement
of an action on one process of the system. Finally, an exe-
cution is an alternate sequence of configurations and atomic
steps, each configuration being obtained by applying the ac-
tion of atomic step to the preceding configuration.

We define a fault as a specific atomic step where one
process changes its state back to a known previous one. This
defines the crash, recovery and rollback to a checkpointed
state. Any previous state is reachable, so if no checkpoint is
performed, we simply reach back the initial state (recovery).
This model also states that the checkpoints are not necessary
synchronized, since for two different faults, the two targeted
processes may rollback to unrelated previous states.

A canonical execution is an execution without faults.
We define an equivalence relationship between executions,
such that if two executions lead to the same configuration,
they are equivalent.

Definition 1 (fault-tolerance to crash with recovery and
rollback to non-synchronized checkpoints) Let

�
be a

canonical execution, for any configuration � of
�

, consider
the sequence ���������	�
�����
��������� where ��� are atomic steps
of the system or faults. A protocol is fault-tolerant if the
execution starting from ��� is equivalent to a canonical ex-
ecution.

Definition 2 (pessimistic-log protocols) Let � be a dis-
tributed system of processes � , and � be a process. Let

�
be

an execution of � and � and ��� be two configurations of
�

( � before ��� ). Let ��� be a fault action of � , and � � a con-
figuration such that ��� leads to � � from � � and state of � in
� � is equal to its state in � . Let

� � be an execution starting
from � � without faults for � . A protocol is a pessimistic-log
protocol if and only if there is a configuration ���� such that

logging projection on � of
�

between � and � � is equal to
projection on � of

� � between ��� and ���� ;

silent re-execution projection on �! �� of
� � between ���

and ���� does not hold actions related to � .

Theorem 1 Any protocol verifying the two properties (log-
ging and silent re-execution) of pessimistic-log protocols is
fault-tolerant to crash with recovery and rollback to not-
synchronized checkpoints.

Key points of the proof: In this paper we only present the
key-points of the proof by constructing a canonical execu-
tion starting from � � . We consider first every event non-
related to crashed processes of

� � between � � and ���� , and
we prove that this event is a possible event of a canonical ex-
ecution. Then, we consider every events related to crashed
processes that are not re-execution events (therefore after
recover), and we state that second property of pessimistic
log protocols ensure that these events can happen, but will
happen after the crashed process reaches its state in �"�� .
Lastly, first property of pessimistic-log protocols induces
that crashed processes reaches this state. We conclude that
the system reaches a configuration which is member of a
canonical execution, thus that

� � is equivalent to a canoni-
cal execution.

Therefore, we have proven that the two properties of
pessimistic-log protocols were sufficient to tolerate faults
for any asynchronous distributed system. In order to replay
the events, we log them on reliable media. Since we are de-
signing a scalable pessimistic-log protocol, the reliable me-
dia has to be distributed. We present now the algorithm used
in MPICH-V with the topology we introduced in preceding
section, and we have proven in the preceding model that this
protocol verify the two pessimistic-log protocol properties.

Theorem 2 The MPICH-V protocol of figure 4 is a
pessimistic-log protocol.

Key points of the proof: We proove that MPICH-V pro-
tocol verifies the two properties of pessimistic-log protocols

a) MPICH-V has the logging property Logging property
states that events between the recovery point and the crash
are logged and that the order of events is also logged. Non-
deterministic events are receptions and probes. They are
all logged by one single CM and the order is kept in the
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Algorithm of Worker
On Recv/Probe � �

send Recv/Probe request to CM
recv answer of CM
deliver answer

On Send m to W’ � �
if( nbmessage � limit)

send m to Channel Memory of W’
nbmessage � nbmessage+1

On Begin Checkpoint � �
Send Begin Checkpoint to CM
checkpoint and send checkpoint to CS

On Restart � �
send Restart to CS
recv Checkpoint and recover
For each Channel Memory C,

send Restart to C
receive nbmessage
limit � nbmessage + limit

Algorithm of Checkpoint Server of Worker W
On Receive checkpoint from W � �

save checkpoint
send End Checkpoint to CM

On Receive restart � �
send last successful checkpoint to W

Algorithm of Channel Memory of Worker W
On Receive non-deterministic event from W � �

if( no more events in past events )
replay � False

if(replay)
lookup next event in past events
send next event to W

else
choose event in possible events
add event in queue of past events
send event to W

On Receive a message m for W from W’ � �
add m to possible events
Inc(received messages [W’])

On Receive a Begin checkpoint from W � �
mark last event of past events as

checkpoint
On Receive a End checkpoint from CS � �

free every events of past events
until checkpoint marked event

On Receive a restart from W’ �� W � �
send received messages [W’] to W’

On Receive a restart from W � �
send received messages [W] to W
replay � true

Figure 4. MPICH-V Protocol

past events list. Moreover, the events are kept if they are
after the last successful checkpoint, thus this protocol has
the logging property

b) MPICH-V has the silent re-execution property. Events
that are related to two processes are solely emissions: recep-
tions and probing are related to the process and its memory,
whereas emissions are related to the process and other mem-
ories of the system. On restart, the process contacts every
channel memory of the system, and recover the number of
messages already delivered to this memory. Thus, it knows
the number of messages to ignore and emissions has no ef-
fects on non-crashed processes. Thus, MPICH-V is silently
re-executing.

4 Performance evaluation

The purpose of this section is to provide reference mea-
surements for MPICH-V. Performance evaluation for a
larger application set and for different experimental plat-
forms will be published later.

We use XtremWeb [15] as a P2P platform for the per-
formance evaluation. XtremWeb is a research framework
for global computing and P2P experiments. XtremWeb ex-
ecutes parameter sweep, bag of tasks and embarrassingly
parallel applications on top of a resource pool connected by
Internet or within a LAN. XtremWeb architecture contains

three entities: dispatcher, clients and workers. For our tests,
we use a single client requesting the execution of a paral-
lel experiment. XW-Workers execute MPICH-V computing
nodes, CMs and CSs. XW-Dispatcher runs the MPICH-V
Dispatcher. XtremWeb framework allows to control sev-
eral parameters for every experiment: the task distribution
among the XW-Workers (the number of CMs, CSs and com-
puting nodes), the number of times each experiment should
be executed.

In order to reproduce experimental conditions at will,
we choose to execute our tests on a stable cluster and
we simulate a volatile environment by enforcing process
crashes. The platform used for the performance evalua-
tion (ID IMAG ‘Icluster’) is a cluster of 216 HP e-vectra
nodes (pentium III 733 MHZ, memory of 256 Mo, disc
of 15 Go, with Linux 2.2.15-4 mdk or Linux 2.4.2) inter-
connected in 5 subsystems by HP procurve 4000 switches
(1 GB). In each subsystem, 32 nodes are connected through
a 100BaseT switch. Only about 130 nodes were available
for our tests. All tests were compiled with the PGI Fortran
compiler or GCC.

Several measurements are based on the NAS BT bench-
mark [3]. This code (Block Tridiagonal matrix solver) is a
simulated Computational Fluid Dynamics application. We
have chosen this code because 1) it is widely accepted as
a parallel benchmark, 2) it features significant amount of
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communications, 3) it requires large memory for the com-
puting nodes.

We first present the performance of basic components
and then the performance of the whole system.

4.1 Ping-Pong RTT

First we compare MPICH-V with MPICH over TCP
(P4). Figure 5 presents the basic round-trip time measure-
ment (mean time over 100 measurements) for each version
according to the message size. We measure the communi-
cation time for blocking communications.

As expected the MPICH-V memory channel induces a
factor 2 of slowdown compared to MPICH-P4 on the com-
munication performances with its fastest version. Other
fault tolerant MPI may provide better communication per-
formance but, as it was explained in the related work sec-
tion, they have some limitations in the number of tolerated
faults or they rely on coordinated checkpoint. The factor
2 slowdown is mostly due to the current store and forward
protocol used by the Channel Memory. One of the future
work will consider a faster protocol based on pipelining the
receive and send operations performed by the CM for relay-
ing the message.

The in-core version stores messages until no more mem-
ory is available. The out-of-core version presented on this
figure stores all exchanged messages using the virtual mem-
ory mechanism. This system shows slower communication
times (worst) when several virtual memory page faults oc-
cur. When all virtual memory pages are in-place, the per-
formance is similar to the in-core performance.

The next experiment investigates the impact on the com-
munication performance when several nodes stress a CM si-
multaneously. The benchmark consists of an asynchronous
MPI token ring ran by 8 and 12 nodes using one CM. We
use from 1 to 8 threads inside the CM to manage incoming
and outgoing communications. We measure the commu-
nication performance 100 times and compute the mean for
each node. Figure 6 shows the improvement of the total
communication time according to the number of threads on
the CM.

The figure 6 shows that increasing the number of threads
improves the response time whatever the number of nodes
involved in the token ring. The overlap of the message man-
agement for one thread and the communication delay expe-
rienced by other threads explains this performance.

Figure 7 shows the impact of the number of nodes sup-
ported simultaneously by the CM on the communication
time. We measure the communication performance 100
time, compute the mean for each node and the standard de-
viation across all the nodes. We only plot the mean value
for each node to improve readability. For every curve we
select the number of threads within the CM giving the best

performance.
Figure 7 demonstrates that the response time increases

linearly with the number of node per CM. We have mea-
sured a standard deviation lower than 3% across the nodes.
This relatively low standard deviation shows that the proto-
col is fair.

4.2 Performances of re-execution

Figure 8 shows the replay performances. The benchmark
consists of an asynchronous MPI token ring ran by 8 nodes
using one CM.

The origin curve (0 restart) shows the performance of the
first complete run of the benchmark. Next, the benchmark
is stopped before being finalized and restarted from the be-
ginning. The curves “ � restart” show the time for replaying
this application simultaneously on � nodes.

Because the nodes start to replay the execution when all
the messages are stored within the CM, the replay only con-
sists in performing the receive and probe actions to the CM.
The send actions are simply discarded by the senders. Thus
as demonstrated on figure 8, the re-execution is faster than
the original execution even when all nodes of the applica-
tion restart.

As a consequence, when a node restart the execution of
a failed task, the part re-executed is played quicker than the
original one. This feature combined with the uncoordinated
restart provides a major difference compared to the tradi-
tional Chandy Lamport algorithm where nodes replays ex-
actly the first execution at the same speed.

4.3 Checkpoint performance

Figure 9 presents the characteristics of the checkpoint
servers from the round trip time (RTT) benchmark measur-
ing the time between the checkpoint signal reception and
the actual restart of the process. This time includes a fork of
the running process, the Condor checkpoint, the image com-
pression, the network transfer toward the CS, the way back,
the image decompression, and the process restart. The top
figure presents the cost of remote checkpointing compared
to a local one (on the node disc) for different process sizes.
The considered process image sizes correspond to the im-
age of one MPI process for different configurations/classes
of the BT benchmark. The bottom figure presents RTT as
experienced by every MPI process (BT.A.1) when several
other processes are checkpointing simultaneously on a sin-
gle CS. For this measurement, we synchronized the check-
point/restart transactions initiated by the nodes in order to
evaluate the CS capability to handle simultaneous transac-
tions. The figure presents the mean value for up to 7 nodes
and the standard deviation.
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Figure 9 demonstrates that the cost of remote and lo-
cal checkpointing are very close. This is mostly due to
the overlap of the checkpoint transfer by the overhead of
data compression made by the node. Network transfer time
on a 100BaseT LAN is marginal. When several applica-
tions are checkpointing their processes (BT.A.1) simultane-
ously, the RTT increases linerly after the network saturation
is reached. The standard deviations demonstrates that the
CS provides a fair service for multiple nodes.

Figure 10 presents the slowdown of an application (BT
class A, 4 processes), compared to an application without
checkpoint, according to the number of consecutive check-
points performed during the execution. Checkpoints are
performed at random times for each process using the same
CS (at most 2 checkpoints are overlapped in time).

When four checkpoints are performed per process (16
checkpoints in total), the performance is about 94% of the
performance without checkpoint. This result demonstrates
that 1) several MPI processes can use the same checkpoint
server and 2) several consecutive checkpoints can be made
during the execution with a tiny performance degradation.

4.4 Performance of the whole system

To evaluate the performance of the whole system, we
conducted three experiments using the NAS BT benchmark
and the MPI-PovRay applications. The three tests were
intented to measure the scalability of MPICH-V, the per-
formance degradation when faults occur and the individual
contribution of every MPICH-V component to the execu-
tion time. For all tests, we compare MPICH-V to P4.

4.4.1 Scalability for the PovRay application

This experiment evaluates the scalability of MPICH-V. The
benchmark is a parallelized version of the ray-tracer pro-
gram Povray called MPI-PovRay. MPI-PovRay is a mas-
ter worker application which exhibits a low communica-
tion/computation ratio and therefore is highly scalable. For
this experiment, we used a ratio of 1 CM per 8 comput-
ing nodes. Table 11 compares the execution times to render
a complex image at resolution 450x350 with MPI-Povray
built on top of MPICH-P4 and MPICH-V.

# nodes 16 32 64 128
MPICH-P4 744 sec. 372 sec. 191 sec. 105 sec.
MPICH-V 757 sec. 382 sec. 190 sec. 107 sec.

Figure 11. Execution time for MPI-PovRay for
MPICH-V compared to P4.

The results show an almost linear speedup up to 128 pro-

cessors for both MPICH-V and MPICH-P4. Note that the
lower value for 128 nodes is due to the irregular distribution
of the load to the workers. The performance of MPICH-P4
and MPICH-V are similar for this benchmark. The commu-
nication to computation ratio for this test is about 10% for
16 nodes. It explains the good performance of MPICH-V
even when few CMs are used. For an application with a
higher ratio, more CMs are needed per computing nodes as
shown in section 4.4.3.

4.4.2 Performance with Volatile nodes

The experiment of figure 12 was intended to measure ap-
plication performance when many faults occur during ex-
ecution. We run the NAS BT benchmark with 9 proces-
sors and Class A. For this test, MPICH-V configuration uses
three Channel Memory Servers (three nodes per CM), two
Checkpoint Servers (four nodes on one CS and five nodes
on the other).

During execution, every node performs and sends a
checkpoint image with a 130s period. We generate faults
randomly according to the following rules: 1) faults oc-
cur between two consecutive checkpoints and not during the
checkpoint procedure, 2) faults occur on different nodes and
no more that two faults occur during the same checkpoint
phase.

The overhead of the MPICH-V for BT.A.9 is about 23%
when no fault occurs during the execution due to the check-
point cost. When faults occur, the execution time smoothly
increases up to 180% of the execution time without fault.

This result demonstrates that the Volatility tolerant fea-
ture of MPICH-V based on uncoordinated checkpoint and
distributed message logging is actually running and that we
can execute a real parallel application efficiently on volatile
nodes: MPICH-V successfully executes a MPI application
on a platform where one fault occurs every 110 seconds
with a performance degradation less than a factor two.

4.4.3 Performance for NAS NPB 2.3 BT

Figure 13 presents the execution time break down for the
BT benchmark when using from 9 to 25 nodes. For each
number of computing nodes, we compare P4 with several
configurations of MPICH-V: base (using on CMs as re-
lays for messages), w/o checkpoint (full fledged MPICH-V
but checkpoint) and whole (checkpointing all nodes every
120s). For this experiment there is an equal number of CM
and computing nodes for MPICH-V. There is 1 CS per set
of 4 nodes.

Figure 13 demonstrates that MPICH-V compares favor-
ably to P4 for these benchmark and platform. The execution
time break down shows that the main variation comes from
the communication time. The difference between MPICH-
V and P4 communications times is due to the way asyn-
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Figure 12. Execution time degradation of NAS BT with 9 processors and Class A running under
MPICH-V when random faults (from 1 to 10) occur.

chronous communications are handled by the two environ-
ments. The CM and its out-of-core message storage mech-
anism do not increase the communication time on a real
applications. Conversely, the remote checkpointing system

consumes a significant part of the available network band-
width. If we reduce the number of CMs per computing
node, the performance smoothly decreases: for 49 comput-
ing nodes, the performance degradation when using 25 CMs
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Figure 13. Execution time break down of MPICH-V for NAS BT compared to MPICH-P4.

instead of 49 is about 6% and about 20% when using 13
CMs instead of 49.

5 Conclusion and future work

We have presented MPICH-V, a MPI fault tolerant im-
plementation based on uncoordinated checkpointing and
distributed pessimistic message logging. MPICH-V re-
lies on the MPICH-V runtime to provide automatic and
transparent fault tolerance for parallel applications on large
scale parallel and distributed systems with volatiles nodes.
By reusing a standard MPI implementation and keeping
it unchanged, MPICH-V allows to execute any existing
MPI application and only requires to re-link them with the
MPICH-V library. MPICH-V architecture gathers several
concepts: Channel Memory for implementing message re-
lay and repository, Checkpoint Servers for storing remotely
the context of MPI processes.

One of the first issue when designing a fault toler-
ant distributed system is to prove its protocols. We have
sketched the theoretical foundation of the protocol underly-
ing MPICH-V and proven its correctness with respect to the
expected properties.

We have used a Global Computing / Peer-to-Peer sys-
tem (XtremWeb) as a framework for performance evalu-
ation. The performance of the basics components: Com-
munication Channel and Checkpoint Server have been pre-

sented and discussed. MPICH-V reaches approximatively
half the performance of MPICH-P4 for the round trip time
test. Stressing the CM by increasing number of nodes leads
to a smooth degradation of the communication performance
and a fair distribution of the bandwidth among the nodes.
Checkpoint servers implement a tuned algorithm to overlap
process image compression and network transfer. The re-
sult is a very low overhead for remote checkpoint relatively
to local checkpoint.

We have tested the performance of the whole system us-
ing the NAS NPB2.3 BT benchmark and the MPI-PovRay
parallel ray tracing program. The test using MPI-PovRay
demonstrates a scalability of MPICH-V similar to the one of
P4. For testing the volatility tolerance we ran BT on a plat-
form where one fault occurs every 110 seconds. MPICH-
V successively executed the application on 9 nodes with a
performance degradation less than a factor 2. This result
demonstrates the effectiveness of the uncoordinated check-
point and distributed message logging and that MPICH-V
can execute a non-trivial parallel application efficiently on
volatile nodes. The execution time break down of the BT
benchmark demonstrates that MPICH-V compares favor-
ably to P4 and that the main performance degradation on
real application is due to the checkpoint mechanism when
the number of CM equals the number of nodes.

Future works will consist in increasing the bandwidth
and reducing the overhead of MPICH-V by implementing
a pipeline inside the CM and adding the management of
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redundant executions.
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