
Fault monitoring with sequential matrix factorization
DAWEI FENG1,2 and CECILE GERMAIN2

National University of Defense Technology1, Université Paris Sud, INRIA and CNRS2

For real-world distributed systems, the knowledge component at the core
of the MAPE-K loop has to be inferred, as it cannot be realistically assumed
to be defined a priori. Accordingly, this paper considers fault monitoring as
a latent factors discovery problem. In the context of end-to-end probing, the
goal is to devise an efficient sampling policy that makes the best use of a
constrained sampling budget.

Previous work addresses fault monitoring in a Collaborative Prediction
framework, where the information is a snapshot of the probes outcomes.
Here, we take into account the fact that the system dynamically evolves
at various time scales. We propose and evaluate Sequential Matrix Factor-
ization (SMF) that exploits both the recent advances in matrix factoriza-
tion for the instantaneous information and a new sampling heuristics based
on historical information. The effectiveness of the SMF approach is exem-
plified on datasets of increasing difficulty and compared with state of the
art history-based or snapshot-based methods. In all cases, strong adaptivity
under the specific flavor of active learning is required to unleash the full
potential of coupling the most confident and the most uncertain sampling
heuristics, which is the cornerstone of SMF.

Categories and Subject Descriptors: [Computer systems organization]:
Dependable and fault-tolerant systems and networks—Reliability; [Com-
puter systems organization]: Dependable and fault-tolerant systems and
networks—Availability

General Terms: Grids and Clouds, Machine Learning

Additional Key Words and Phrases: Fault Inference, Matrix Factorization,
Active Learning

ACM Reference Format:
D. Feng and C. Germain. 201x. Fault monitoring with sequential matrix
factorization. ACM Trans. Autonomous and Adaptive Systems. Submitted.
DOI:http://dx.doi.org/10.1145/XXXXXXX.YYYYYYY

D. Feng acknowledges the support of the Chinese Scholarship Council.
C. Germain acknowledges the support of the French cooperative project
TIMCO, Pôle de Compétitivité Systematic (FUI 13). The authors acknowl-
edge the support of The European Infrastructure Project EGI-InsPIRE
INFSO- RI-261323 and France Grilles for providing computing resources
on the French National Grid Infrastructure. Authors’ addresses: Dawei
Feng, davyfeng.c@qq.com and Cécile Germain, cecile.germain@lri.fr
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/15-ARTXXX $15.00
DOI:http://dx.doi.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

We depend on computer systems that are not dependable: large
scale distributed systems pervade real-world Information Technol-
ogy infrastructures and usage; and, decades ago, Lamport charac-
terized such systems as those where “the failure of a computer you
didn’t even know existed can render your own computer unusable”.

Computer Science research has worked on large scale fault man-
agement since long, with two main directions: discovering faults,
and/or coping with them. With the advent of truly massively dis-
tributed systems with complex structures, a key change now oc-
curred: rich monitoring information becomes available. Complete
knowledge, and the very concept, of the state of a distributed
system remain unreachable for fundamental reasons [Gilbert and
Lynch 2002]. But, with the availability of equally massive infor-
mation, estimating elements of the system state becomes a realistic
goal. Specifically, some fault management goals can be re-casted
as fault inference problems. This work targets a specific aspect of
fault monitoring, fault discovery. In the following, the inference
approach to fault discovery will be called fault prediction, because
it fits with the relevant contexts in Machine Learning (supervised
learning at large, and more specifically Collaborative Prediction),
although fault estimation would more accurately describe the ap-
proach.

Predicting faults improves system availability and reliability by
providing useful information for the next task of coping with
them, as the systems are normally highly redundant and heavily
supervised. Often, alternatives to the faulty services can be pro-
posed [Torres et al. 2012; Venugopal et al. 2006]; in these cases,
a well organized fault management system will conceal the hard-
ware and software dysfunctions and will provide a transparent ser-
vice that is a crucial ingredient of Quality of Experience. On the
other hand, irrecuperable faults must be signaled as fast as possi-
ble to the human of automatic supervision. Overall, this amounts
to re-evaluate the role of monitoring in fault management, and to
consider fault prediction as an inference in the space-time domain.

Autonomous Computing (AC) provides a conceptual framework
for designing fault management for these monitoring-equipped sys-
tems. Its so-called MAPE-K loop is organized around a Knowledge
component. To set up fault prediction as a realistic objective in an
AC approach, the first question is which kind of knowledge is actu-
ally reachable. In a fault diagnosis approach, the knowledge com-
ponent includes a detailed internal model of the system that can be
exploited to pinpoint the faulty components. The root causes of the
faults can be revealed through various techniques [Zhou 2010] like
statistical inference [Rish et al. 2005; Barham et al. 2004; Chen
et al. 2002], log-based causality analysis [Reynolds et al. 2006;
Fonseca et al. 2007; Liu et al. 2008] or deterministic replay[Geels
et al. 2007; Liu et al. 2007; Killian et al. 2007]. Fault diagnosis can
be seen as the process of recognizing the most likely explanation
for the symptoms based on some causal and effect models among
the propositions of interest in the problem domain.

While diagnosis maximizes the usefulness of monitoring data, it
faces some potentially significant practical limitations. The first one
is simply scalability: diagnosis is NP-hard [Rish et al. 2005]. More

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • D. Feng and C. Germain

profoundly, assuming knowledge of a decent model of the system
internals might prove unrealistic (the “computer you didn’t even
know existed” nicely summarizes this feature). As a consequence,
this work formulates the fault prediction problem in the context of
end-to-end monitoring. The overall infrastructure is a black box,
with no a priori knowledge of its structure. End-to-end probes are
designed to test a functional property of this blackbox. Then, fault
prediction involves a classification problem: from a selection of the
probes (the training set), infer the outcomes of the other probes.

In many cases, the probes can be meaningfully replicated in the
system. For instance, in the example that will be further described
in section 5, the functionality is related to file access, and the probes
are launched from the computing nodes to the storage nodes. Then,
the replication takes a matrix form: the endpoints are the row- or
column- entities, and the probes outcomes are the entries in this
matrix. Formally, fault prediction becomes a matrix completion
problem. The benefit with respect to a fully unstructured setting is
that the matrix hypothesis grounds a Collaborative Filtering tech-
nique that is more powerful than behavioral clustering [Quiroz et al.
2012], [Zhang et al. 2014]: in a nutshell, although the exact causes
of failures might remain elusive, causality can be precisely mod-
eled as the rank of the matrix, to be inferred, while clustering is
bound to phenomenology and a-posteriori analysis of exemplars or
centroids.

Our previous work [Feng et al. 2013], inspired by [Rish and
Tesauro 2007], addressed fault prediction in a classical Collabo-
rative Prediction framework, as a purely spatial problem where the
matrix is assumed to be a snapshot of the probes outcomes. Here,
we take into account the fact that the system dynamically evolves
at various time scales. Addressing this issue brings us closer to a
model consistent with the practitioners expectations, but turns out
to be significantly more difficult than the previous and more ide-
alized setting. Not surprisingly, we cope with this difficulty by ex-
ploiting the dynamic setting for enriching the snapshot with time-
related information: sequential monitoring deals with a sequence of
partially observed matrices and makes prediction using information
both from the current and previous time windows.

Within this framework, in order to be realistic, inference has to
address two specific difficulties. Firstly, strongly imbalanced dis-
tributions must be assumed, as faults are hopefully much less rep-
resented that nominal behavior; this belongs to the spatial aspect
of inference. Second, in the time domain, one cannot assume that
measurements could be kept fully up-to-date, as these systems are
highly dynamic environments.

Fortunately, the same adaptivity strategy proved successful in
various contexts to address both imbalanced distributions and noisy
information: active learning iteratively selects most-informative
samples in order to best improve the prediction accuracy. On the
other hand, and always with realism in mind, active learning has the
drawbacks to slow down the fault discovery process, as it requires
to build the input incrementally, and to make it more complicated,
thus more fault-prone itself. A transversal goal of this work is thus
to evaluate the specific contribution of the active learning ingredi-
ent in the fault inference methods that we propose.

Our experimental validation dataset comes from the European
Grid Initiative (EGI). Grids tend to be regarded as somehow out-
dated, thus a few words about the relevance of the dataset might
be necessary. The specific grid technologies of the 2000’s have of
course been superseded by cloud-related ones. However, the essen-
tial paradigm of grid is organized sharing: safely and fairly federat-
ing hardware, software and data resources from multiple indepen-
dent providers. Thus grids exemplify both the physical problems of
worldwide scale systems, and the additional and major issues asso-

ciated with a multi-owned multi-operated system, that are equally
present in federated clouds.

The main contributions of this paper are twofold.

—A detailed analysis of the algorithmic alternatives, that con-
tributes to disentangle the components of performance and sub-
stantiate the claim that sequential patterns should be exploited.

—The SMF (Sequential Matrix Factorization) algorithm, and its
active learning version, SMFA (Sequential Matrix Factorization
with active learning), that efficiently combines the spatial and
temporal information sources. Its major strength is to balance
exploration and exploitation in a way that formalizes and exploits
the multi-scale intuition of the practitioners.

The paper is organized as follows. Section 2 presents the empirical
motivation and the formal description of the problem. For clarity,
we have structured the rest of the paper by presenting first all the
algorithms that are considered for evaluation, including our adap-
tations of classical ones as well as the proposed SMF. Thus, the
motivation for SMF will become more evident only with the exper-
imental sections. Section 3 walks through the various ways to orga-
nize spatial and temporal information. Section 4 describes SMF and
its active learning version, SMFA. The next three sections present a
detailed experimental evaluation, where the vanilla algorithms are
combined in various ways with agnostic optimizations (smoothing)
and information-oriented ones (strategies for active learning). Sec-
tion 5 describes the experimental setting, and sections 6 and 7 the
results on the EGI dataset, before the usual conclusion.

2. CONTEXTS AND MOTIVATIONS

2.1 Matrix factorization for fault prediction

Consider the simple setting where a partial snapshot of the system
is available through end-to-end probes (e.g. a ping). Assume that
we have M sources and N targets. A probe selection method de-
fines which ones of the possibleMN probes are actually launched.
Each individual result is binary: positive means that the probe
failed, i.e. a fault occurred; negative, the probe succeeded. Let X
be the sparse M ×N binary matrix of the outcomes of the selected
probes.

Then, the inference task falls into the general category of matrix
completion: given a sparse matrix X , find a full, matrix Y of the
same size that approximates X , i.e. that minimizes some measure
of discrepancy between X and Y . When Y is required to be equal
toX on the known entries, the problem is termed exact completion,
and approximate otherwise.

With such a general setting, the problem is hopelessly ill-defined:
in order to guess the missing entries, some assumptions have to be
made about the matrix to recover Y . A natural one is to look for
low-rank matrices, amounting to assume that a small number of
hidden and partially shared factors (latent factors) affect the matrix
entries.

The existence and unicity of a solution of exact matrix comple-
tion is a complicated problem (see e.g. [Candès and Tao 2010]).
Anyway, this formulation does not look not very helpful, as rank
minimization for completion is NP-hard and not feasible practically
even for small sizes. However, it has paved the way for efficient al-
gorithms, both for exact [Candès and Tao 2010; Recht 2011] and
approximate [Srebro et al. 2005] completion. The main insight is to
replace the rank by the trace (or nuclear) norm in the regularization
term.

This heuristic grounds the theories of both exact completion of
real-value matrices [Candès and Tao 2010; Recht 2011] and ap-

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fault monitoring with sequential matrix factorization • 3

proximate completion of binary ones [Srebro et al. 2005]. Although
they apparently address the same issue, they do not coincide in
their assumptions and their goals (for an in-depth discussion of the
differences, see e.g. [Davenport et al. 2014]). The real-valued ap-
proach is related to compressed sensing; its goal is to provide suf-
ficient conditions for exact recovery (with high probability). Infor-
mally the sample size is related to the ”spikiness” of the target ma-
trix: at the extreme, a matrix with only one positive entry needs on
average to be fully sampled. Non-spikiness can be formally quan-
tified by the incoherence indicator [Candes and Recht 2009], an
intrinsic (isometry-invariant) quantity related to the spread of the
target values; the less coherence in rows or columns, the less en-
tries must be sampled.

Approximate completion for binary matrices adopts the point
of view of statistical learning theory. Hinge loss as the discrep-
ancy measure yields the Maximum Margin Matrix Factorization
(MMMF) algorithm [Srebro et al. 2005] with the objective func-
tion:

||Y ‖Σ + CLh(X(S), Y (S)), (1)

where S is the set of known entries, ||.||Σ is the nuclear norm and
Lh(A,B) is the hinge loss between A and B. As the minimization
procedure of equation (1) produces a real-valued matrix, a deci-
sion threshold (the classification common practice) gives the final
binary matrix. This is a model-free approach, where the goal is to
bound the generalization error. More precisely, [Srebro et al. 2005]
bounds the average error across all matrix entries in terms of the
margin error on the observed entries: if the recovered matrix Y has
low nuclear norm and matches the observed entries by a significant
margin, then the error on unobserved entries is guaranteed to be
small.

As previously mentioned, the optimization problem (1) is con-
vex, thus is guaranteed to define a global optimal solution. More
generally, as the nuclear norm is a convex function, and the ma-
trices of bounded nuclear norm are a convex set, any convex loss
function provides a convex optimization problem. However, each
observed entry acts as a constraint during the minimization pro-
cess, and the computational complexity increases drastically with
the number of involved constraints. Therefore, in the fault predic-
tion case, the external cost of each probe as a monitoring overhead
doubles as an internal computational practical limit.

The soft-margin approach of (1) is more adapted to the prob-
lem at hand than exact matrix completion. Firstly, there is signif-
icant empirical evidence [Davenport et al. 2014] that the standard
approach for exact matrix completion behaves poorly in the dis-
crete case, due to hard scale bounds resulting of constraining to
the exact values; the thresholding of the continuous discriminant
function learned in the soft-margin approach might be more in-
formative. Secondly, the fault matrices can be expected to present
isolated faults on a large background of healthy entries, in other
words to be spiky. Thus, the theoretical evaluations of the sample
size derived from the incoherence indicator would not provide any
effective guideline, as they would be quite large.

In classical collaborative filtering,X is given (e.g. consumer rat-
ings); matrix completion theory assumes a priori defined uniform
sampling schemes, which make theoretical analysis tractable. The
goal of this paper is very different: the contribution of SMF and
SMFA is on the focus on smarter, data-driven sampling schemes
for the case where historical information is available.

2.2 Motivation

[Rish and Tesauro 2007] proposed a method to handle fault infer-
ence based on a collaborative prediction approach, further analyzed
in [Feng et al. 2013]. Although this method significantly reduces
the number of required probes for acquiring an accurate view of
the system, it is somehow static. More exactly, its only input is a
snapshot from (assumed) simultaneous probes.

This setting has two drawbacks. Firstly, fault behavior is multi
scale in time: beyond the stable system components with consistent
status over time, there are other ones which status may fluctuate in-
tensely at peak time and remain stable at off-peak time. Second,
transient faults are systematically observed: transients are faults
that get on and off at high frequency and should be considered as
noise; practitioners do not have a clear explanation for them, and
they might as well be produced by flaws in the monitoring software
itself. Of course, the problem is to disentangle them from real, but
short-lived faults.

A further motivation is to explore the possibility of getting rid
of adaptivity. [Rish and Tesauro 2007] integrated active learning
with MMMF (min-margin heuristic) and [Feng et al. 2013] have
shown that active learning was a required ingredient in the most
difficult and realistic case on a real-world fault prediction example.
On the other hand, active learning is somehow inconvenient: be-
cause the probe selection is adaptive, it requires a feedback loop, an
interface between online analysis and monitoring, and thus a more
complicated software than with a pre-determined setting. At grid or
cloud scale, any unnecessary source of complexity should be elimi-
nated. Thus, we explore the hypothesis that the past could statically
provide information equivalent to the one obtained by adaptively
querying the present.

2.3 Categorization

To address these issues, this paper reconsiders the collaborative
monitoring task with a series of time-based inputs and exerts the
collaborative prediction sequentially. Then, two types of inputs be-
come available: spatial and temporal. For a given monitoring com-
ponent, the spatial information is the current status of other com-
ponents in the system, while the temporal information is its own
historical information from the past. Here the components are re-
stricted to end-to-end probes.

Depending on which information a method uses as input, we fur-
ther divide the methods into three categories.

—The pure spatial methods only use information available from
the current timestamp; they will be exemplified by MMMF pre-
sented in section 2.1.

—The pure temporal methods where the inputs are the entry-
wise historical sequences considered independently; they predict
entry-wise too, based on time series methods, e.g. Moving Aver-
age. They will be exemplified by the EWM method presented in
section 3.1.

—The integrated methods, which exploit both informations as in-
puts. In the classical Collaborative Filtering framework, the so-
called Tensor method exemplifies this approach and is discussed
in section 3.3. Our algorithms, SMF and SMFA (section 4), fall
into this category. The collapsed methods are a subcase. They
straightforwardly transfer those employed in static matrix based
prediction to the sequential situation and are the simplest ap-
proach to integration: first, the temporal information is exploited
to build a summary, then a purely spatial method uncovers its
hidden structure. They will be exemplified by the SSVD method
presented in section 3.2.

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • D. Feng and C. Germain

X_1 X_2 X_t

……

time

X_3

Y_1 Y_2 Y_t

……

Y_3

OK FAILURE UNKNOWN ESTIMATED

Fig. 1. Problem description

2.4 Problem statement

We now introduce the notations and formalize the previous con-
cepts. Let

Xt ∈ BM×N be the partially observed matrix at time t,

Ŷt ∈ RM×N be the result of a prediction algorithm,

Yt ∈ BM×N be the thresholded binary version of Ŷt.

With threshold ρ, YT (i, j) is defined by:

YT (i, j) =

{
−1 if ŶT (i, j) ≤ ρ,
1 otherwise.

With B = {−1, 1}, the binarization threshold ρ is set to 0.
We define the task of sequential matrix prediction as: given a se-

ries of partially observed matrices (X1, . . . ,Xt), predict the fully
estimated matrix Yt. Figure 1 illustrates the sequential process:
at each time step t, a matrix Yt is estimated from the observa-
tion sequence (X1, . . . ,Xt) and the sequence of the past estimates
(Y1, . . . , Yt−1).

With this formalism, temporal methods, that only rely on the
entry-wise historical information, try to complete the prediction of
YT (i, j) only based on information of entry (i, j), which could be
only theXt(i, j), t = 1, . . . , T or include Yt−1(i, j), t = 2, . . . , T .

In spatial methods, where only information of the current time
window is available, the prediction of YT (i, j) is completed only
using knowledge captured in XT .

Here, it must be clear how much prediction is a misnomer, as
there is no concept of history. Inference would convey the correct
semantics, but usage has settled for prediction.

The integrated methods utilize both spatial and temporal infor-
mation to make a prediction of YT . Precisely, to produce a predic-
tion of YT (i, j), all Xt for t = 1, . . . , T and Yt−1 for t = 2, . . . , T
are exploited.

3. BACKGROUND

This section first discusses the options for temporal methods, in re-
lation with their intended application, fault prediction at large scale;
then we present a collapsed approach, and we briefly survey the
tensor one.

3.1 Temporal methods

Three classical methods for embedding sequential information are
auto regressive moving average (ARMA), Hidden Markov Mod-
els (HMM) and exponential weighted moving average (EWM). In
our case, ARMA or HMM would need to learn a set of model pa-
rameters and update them for each entry in the target (monitored)
matrix. The total cost for ARMA is O(m3LMN) where L is the
length of the time series sample, m = max(p, q + 1) with p the
window size of AR and q the window size of MA. The total cost
for HMM isO(S2L2MN), where S is the number of HMM states.
For EWM the cost is O(LMN). Besides selecting a baseline, the
reason to consider EWM instead of ARMA is to evaluate the actual
performance of a method with really fast execution time.

Unlike simple moving average where equal weights are assigned
to the past observations, exponential weighted moving average
gives exponentially decreasing weights to data over time.

In the sequential monitoring task, at a time step T we want to
predict for a given matrix its current status based on a series of
historical observations. This can be completed directly using the
EWM in an entry-wise manner:

ŶT (i, j) =

{
X1(i, j), T = 1,

θXT (i, j) + (1− θ)ŶT−1(i, j), T > 1
. (2)

Note that in equation 2, ŶT (i, j) is estimated based on informa-
tion only from the entry’s past observation sequence Xt(i, j), t =
1, ...T , making it a pure temporal method. For simplicity, in the
following we keep the EWM name for the point wise application
of EWM to the matrix entries.

Steps of using EWM to estimate YT are given in algorithm 1.
The last L samples XT−L+1, ...,XT are used as input for EWM.
However, it is well possible that all of these are missing, that is
no probe was launched on this particular (i, j) pair. In this case,
the missing entry in ŶT is filled with the corresponding entry in
ŶT−1, as the best available estimate. For ensuring a starting point,
at the initial stage, Yinit is computed as the exponential weighted
moving average of a sequence of fully observed matrix with length
L, i.e.X1,X2, ...,XL. BecauseX1,X2, ...,XL are fully observed
matrices, no missing entry exists in Yinit.

Algorithm 1: EWM, exponential weighted moving average.

Input: N , number of random samples;
Yinit, initial value for each entry;
ρ, threshold for binarization;
Xl,l=t−L,...,t−1, history sample sequence;

Output: Full binary-valued matrix Yt

Initialize: Xt ← 0, init random sample heuristic h2

1 Sr ← Sample(h2, N) /*Select N random sample indexes*/;
2 Xt(Sr)← QueryLabels(Sr) /*Query the true labels for

entries in Sr*/;
3 Ŷt ← θXt + (1− θ)Ŷt−1 ;
4 I ← findMissingEntries(Ŷt) ;
5 for i ∈ I do
6 Ŷt(i)← Yinit(i)

7 Yt ← binarization(Ŷt, ρ) /*Turn the real-valued Yt into
Binary matrix*/;

8 return Yt

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fault monitoring with sequential matrix factorization • 5

3.2 Collapsed methods

The idea behind collapsed methods is to exploit a full matrix built
by a temporal method: predictions are produced based on a full
matrix X ′t. Going back to the essential intuition that we are look-
ing for low-rank approximation, dimension reduction methods are
then employed on X ′t for matrix factorization. Thus, in this sec-
tion, we consider the adaptation of Singular Value Decomposition
to the sequential case under the name of sequential singular value
decomposition, SSVD.

The rank-R SVD approximation of a matrix X is given by:

X ≈ URΣRV
T
R ≈

R∑
k=1

σkukv
T
k , (3)

where V T means the transpose of V .
Algorithm-2 describes how SSVD predict Yt. In the first step,

the missing values in Xt are imputed using ImputeMatrix (algo-
rithm 3): an EWM imputation is implemented in ImputeMatrix by
replacing the missing entries with an exponential weighted mov-
ing average of its past values. The second step of SSVD employs
a SVD decomposition on the imputed matrix; then the top R-rank
approximation is binarized and the result returned as the SSVD es-
timated matrix.

Another possible collapsed method would build a partial matrix
X ′t from the past, but including only the actually observed past en-
tries, and then perform matrix completion through e.g. MMMF on
X ′t. However, X ′t would be not so sparse, and the computational
complexity would become prohibitive as explained in 2.1.

Algorithm 2: SSVD, sequential R-rank SVD approximation

Input: N , number of random samples;
R, # of top singular components to select;
ρ, threshold for binarization;
l, # of past observations used for imputing missing
entries;

Output: Full binary-valued matrix Y ′t
Initialize: Xt ← 0

1 Sr ← Sample(h2, N) /*Select N random sample indexes*/;
2 Xt(Sr)← QueryLabels(Sr) /*Query the true labels for

entries in Sr*/;
3 X ′t ← ImputeMatrix(Xt,Xt−l,...,t−1) /*Impute missing

entries in Xt;
4 [U,Σ, V t] = SV D(X ′t) /*SVD decomposition of X ′T */ ;
5 Yt ← URΣRV

t
R /*Top R-rank approximation*/ ;

6 Y ′t ← binarization(Yt, ρ) /*Turn the real-valued Yt into
Binary matrix*/;

7 return Y ′t

3.3 Tensor factorization

A number of approaches have been proposed for the sequential
matrix completion problem based on tensor factorization. For the
recommendation application, [Li et al. 2011] separates the sequen-
tial data into several coarse time domains. It then assumes a static
group-level rating distribution and a slightly drifting individual user
interests across the time domains. A cross-domain CF framework
is used to share the static group-level rating matrix, together with
a Bayesian latent factor model for capturing the drifting behav-
ior of individual user. The inference model is learned using Gibbs

Algorithm 3: ImputeMatrix, impute missing entries in a matrix

Input: Xt, matrix with missing entries ;
Xt−l,...,t−1, matrix sequence for imputing missing
entries;

Output: X ′t, imputed matrix
1 X ′ ← X ;
2 I ← findMissingEntries(Xt) /*find missing entries in Xt*/ ;
3 for i ∈ I do
4 X ′(i)←

∑l
k=1(1− θ)l−kX(i) /*Impute missing entries

via EWM*/
5 return X ′

sampling. This method is suitable for modeling relative long term
(coarse time domains) user interests, however, not appropriate for
capturing system transients. A user’s interest will certainly last for
a relative long time, but a component’s status in a complex system
may fluctuate frequently.

[Liu et al. 2009] extends the low-rank matrix completion to the
tensor case by proposing the trace norm for tensors. As in the ma-
trix completion case, the tensor completion is formulated as a con-
vex optimization problem, and solved by three heuristic methods
proposed by the user. A recent work [Krishnamurthy and Singh
2013] concerning sequential active matrix and tensor completion
employs adaptive sampling schemes to obtain guarantee of strong
performance for the low-rank matrix and tensor completion prob-
lem. Entries which are informative for learning the column space of
the matrix are identified (tensor) through an adaptivity exploitation.
Theoretical results of the sufficient number of adaptively selected
samples for an exact recovery are given both for the matrix and
tensor case.

Despite these extensive alternatives, here we test more generic
tensor factorization methods since they are easy to implement and
can serve as a baseline for the tensor based approaches. In the fol-
lowing, we first go through the basics of tensor factorization, and
then discuss its applicability for our problem.

A tensor is a multidimensional array. A N -way (or N th-order)
tensor can be described as the product of N vector spaces. This
decomposition can be used to reveal underlying linear structures in
the data, and has applications like noise reduction or data compres-
sion. Generally speaking, two particular tensor decompositions are
widely discussed: CANDECOMP/PARAFAC (CAPA for short in
the following) and Tucker [Kolda and Bader 2009]. CAPA decom-
poses a tensor as a sum of rank-one tensors, and Tucker decom-
poses a tensor into a set of matrices and one small core tensor.

The benefits brought by not collapsing data into a flat matrix but
keeping its natural high dimensional structure are twofold: firstly,
the underlying patterns in multi-way datasets are preserved, as col-
lapsing along any dimension loses information in that dimension.
Secondly, CAPA yields a highly interpretable factorization that in-
cludes a time dimension, and patterns in the time dimension can
be extracted out directly. Unlike matrix based prediction which is
limited to predict for a single time step, CAPA can be used in both
single step and periodic temporal prediction problems.

Compared to Tucker decomposition, the CAPA model is reputed
to be more advantageous in terms of interpretability, uniqueness
of solution and determination of parameters [Bro 1997]. A CAPA
mode-3 decomposition can be expressed as either a sum of rank-
one tensors (each of which an outer product of vectors ar , br , cr

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • D. Feng and C. Germain

and a weight λr) or factor matrices:

Z ≈
R∑

r=1

λr(ar ◦ br ◦ cr) ≡ [λ;A,B,C]

where Z represents the raw data tensor and R specifies the num-
ber of rank-one components. a ◦ b means the outer product of
a and b. For sequential monitoring, we have a third-order tensor
Zt = (X1, . . . ,Xt), Z ∈ RI,J,K at time t, and the CAPA tensor
factorization directly decomposes Zt into a set of rank-one compo-
nents. Then the missing entries in Zt can be recovered by making
an outer product of the first R rank-one components.

In principle, tensor factorization could be able to deal with se-
quential matrix factorization in a promising way. Because infor-
mation along the temporal dimension is processed directly with-
out any collapsing, the temporal transition can be preserved in the
factorization. However, tensor factorization without regularization
can be seen as a simple linear regression along each dimension,
thus only those principally important factors are kept in the result.
Moreover, entries are equally weighted, and in a dynamic setting,
we care more about the most recent information than the far past
one.

4. SEQUENTIAL MATRIX FACTORIZATION

4.1 The SMF algorithm

As mentioned before, there are two types of information avail-
able for sequential monitoring: spatial and temporal information.
The spatial information can be thoroughly exploited by a collab-
orative prediction method like MMMF, while on the other hand,
the temporal information which concerns the dynamics of the en-
tries provides extra opportunity for improving algorithm perfor-
mance. At each time step t we have a sequence of history pre-
dictions Y1, ..., Yt−1. The confidence in these predictions can be
expressed by the distance of each predicted value to the separation
hyper-plane. Thus two types of predictions emerge: those predic-
tions close to the separation plane and those far from the separation
plane. We call the former ones the most uncertain prediction set and
the latter ones the most confident prediction set. From the system
point of view, the most uncertain predictions are related to those
components with short term status like the transient faults and the
most confident predictions are related to those components with
relatively long term stable status.

In this section, we propose an algorithm, i.e. sequential matrix
factorization (SMF), to capture both the long term and short term
status behavior by utilizing the spatial information as in MMMF,
and exploring the most uncertain and most confident heuristic con-
cealed in the temporal information meanwhile. In the following,
Su, Sc and Sr are index sets of matrix X , for denoting the most
uncertain prediction set, most confident prediction set and a ran-
dom sample set, respectively. The observed set (labels queried at
time t) is Su ∪ Sr . All three sets depend on t, but we dropped the
unnecessary supplementary indices.

With squared-error loss, the objective function of MMMF would
translate to:

arg min
Y
||Yt||Σ + C||Yt(Sr)−Xt(Sr)||22 (4)

where C is a regularization term. The objective function is com-
posed of two terms, where the first one is the trace norm of the es-
timated matrix Yt and the second term is the discrepancy between
estimation and observation. In the following we will develop the

objective function of SMF by adding the most uncertain and the
most confident information to equation 4.

First we consider the most uncertain information. The most un-
certain prediction set Su (entries with small margin to the classi-
fication hyper-plane) can be derived from Yt−1 and their labels at
time t can be queried from the system. Hence, the ground truth of
those most uncertain predictions in Yt−1 is available in the sample
set Xt. We denote this as Xt(Su).

The second information, the most confident predictions is con-
cealed in the history estimation. For these most confident entries,
instead of sampling their true labels at time t, their previous pre-
dictions can be used directly in the next run. More exactly, in SMF
we choose those most confident predictions from Yt−1 and assume
their states remain unchanged at time t with a confidence level γ.

We compute γ in terms of the overall difference between Yt−1

and Xt (i.e. the difference between last estimation and current ob-
servation) on the observed entries in Xt. Any classification criteria
like accuracy, true positive rate (TPR) or FSCORE can be used for
measuring this discrepancy. Since inXt the observed set is Su∪Sr ,
we therefore compute γ as the difference betweenXt(Su∪Sr) and
Yt−1(Su ∪ Sr) as follows:

γ = TPR(Yt−1(Su ∪ Sr),Xt(Su ∪ Sr)), (5)

where TPR(A,B) is the true positive rate of A according to the
ground truth set B. In the prediction, γ is used as an adaptive
cost ratio which adjusts the weight (penalty) of the heuristic in-
formation in the objective function (similar to the coefficient C in
equation 4). The reason we choose TPR as the penalty lies in the
fact that in distributed system monitoring successfully discovering
a failure comes more important than alerting one incorrectly (see
section 5.3).

In addition to the most uncertain set Su and most confident set
Sc, we keep the random set Sr in the objective function of SMF.
The random sample set Sr serves as a term for avoiding over-fitting
the history information, as sudden change between past estimation
and current observation might occur.

To sum up, SMF has the following objective function:

||Yt||Σ + C||Yt(S)−Xt(S)||22 + Cγ||Yt(Sc)− Yt−1(Sc)||22
(6)

where S = Su ∪ Sr is the sample set which labels are queried
at time t and Sc is the most confident prediction set that we bor-
row from t − 1. Thus the difference between equation 4 and 6 is
exhibited by the selection of Su and the presence of Sc. Like in
equation 4 this function is convex, thus can be directly minimized,
with a a SDP solver. The complexity issue is the same as explained
in section 2.1: the number of samples is the controlling factor.

Figure 2 illustrates the selection process. The most uncertain and
most confident predictions are selected from Yt−1, where labels of
the former set are further queried at time t, and labels of the latter
set are the corresponding estimation values in the last run.

Algorithm 4 describes the pseudocode of SMF. At the beginning,
the sample set S of Xt is generated by a combination of selecting
most uncertain predictions from Yt−1 and a random sampling (line
1 to 3). Then the true labels of S are queried from the system and
are used as ground truth for measuring the discrepancy between
Yt−1 and Xt (line 4, 5). The most confident predictions in Yt−1

are selected in the following step and used as input for the estima-
tion. In the final step Yt is derived by finding an estimation which
minimizes equation 6.

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fault monitoring with sequential matrix factorization • 7

Xt

Yt‐1 Yt

Most uncertain predictions Most confident predictions

OK FAILURE UNKNOWN ESTIMATED

Fig. 2. Illustration of heuristics in SMF

Algorithm 4: SMF, Sequential Matrix Factorization

Input: Yt−1, last prediction;
Nu, number of most uncertain samples from Yt−1;
Nc, number of most confident samples from Yt−1;
Nr, number of random samples;
C, slack penalty.

Output: Full real-valued matrix Yt

Initialize: Inith1, h2, h3, /*Initialize the most uncertain,
most confident and random sampling heuristic,
respectively*/;

1 Su ← Sample(h1, Nu, Yt−1) /*select Nu most uncertain
sample indexes from Yt−1*/;

2 Sr ← Sample(h2, Nr), /*select Nr random sample
indexes*/;

3 S ← Su ∪ Sr ;
4 Xt(S) ← QueryLabels(S), /*query the true label for

entries in S*/ ;
5 γ ← Precision(Xt(S), Yt−1(S)) /*given Xt(S) (true

labels for entries in S), compute the precision of Yt−1(S)*/;
6 Sc ← Sample(h3, Nc, Yt−1), /*select Nc most confident

samples from Yt−1*/;
7 Yt ← arg minY ||Yt||Σ + C||Yt(S)−Xt(S)||22 +
Cγ||Yt(Sc)− Yt−1(Sc)||22 /*find an estimation that minimizes
the objective function*/;

8 return Yt

4.2 Sequential matrix factorization with active
sampling, SMFA

In active matrix factorization [Rish and Tesauro 2007; Feng et al.
2013], the prediction performance is improved by selecting the
sample entries in Xt actively and iteratively, using the most uncer-
tain heuristic from the very last prediction until the maximum al-
lowed number of samples is reached. The key idea is that, with the
progress of each iteration, confidence in the estimation increases
simultaneously.

In SMF, sample entries are selected under three policies: random,
most uncertain and most confident. The latter two strategies rely on
information from the last prediction Yt−1. The selection of active
samples is complete all at once in SMF and no further actions can
be taken given its first estimation of Y . Sequential matrix factor-
ization with active sampling (SMFA) builds a sequence of esti-
mators Y i

t , i = 2, 3, ... that iteratively benefits from the estimation
process to refine the definition of both the most uncertain and most
confident predictions.

Algorithm 5 describes the steps of SMFA. We denote the esti-
mation matrix at the ith iteration of time t as Y i

t . At the beginning,
SMF is used to give an initial estimation Y 0

t from Yt−1 (line 4),
then an iterative estimation is employed on the prediction sequence
Y i
t , i = 1, 2, ... until the maximum number of samples is reached

(line 5 to 9). Active sample selection is engaged each time the SMF
algorithm selects the most uncertain and most confident predictions
from the last estimation.

Algorithm 5: SMFA, Sequential Matrix Factorization with ac-
tive sampling

Input: N , max # of new samples;
Yt−1, last prediction;
P0, initial sample rate for the 1st prediction;
Pa, active sample rate at each iteration;
ρ, ratio of random samples and most uncertain sam-
ples for Pa;
C, slack penalty.

Output: Full real-valued matrix Yt

initialize: Init(Nc). /*Initialize the number of most confident
samples to select in each iteration*/;

1 i = 0 /*current iteration index*/ ;
2 n = N × P0 /*current number of new samples*/ ;
3 [Nu, Nr]← computeSampleSize(n, ρ) /*Get random and

most uncertain sample size for the initial prediction*/;
4 Y i

t ← SMF (Yt−1, Nu, Nc, Nr, C);
5 while (n < N) do
6 [Nu, Nr]← computeSampleSize(N × Pa, ρ) /*Get

random and most uncertain sample size according to ρ and
Pa*/;

7 Y i+1
t ← SMF (Yti , Nu, Nc, Nr, C);

8 n = n+Nu +Nc +Nr ;
9 i = i+ 1 ;

10 Yt = Y i
t ;

11 return Yt

Formally, neither the SMF nor the SMFA algorithms can be con-
sidered as bandit methods: they exploit only the previous estimate
and the current sample, thus there is no concept corresponding to
the empirical mean of the reward that would be used for selecting
an arm; in our case, an arm would be a matrix entry or a subset of
matrix entries. There is a good reason not to consider a straight-
forward bandit framework, with the above-defined arms: the corre-
sponding action space would be exceedingly large with respect to
the hypothesis of a stable distribution (see section 6.1 for an exam-
ple). However, the self-calibration of the γ parameter that controls
the respective weights of the past information and newly acquired
one in the objective function has some analogy with the adaptation
of the parameter of the bandit ε-greedy strategy described in [To-
kic 2010]. An approach for a more aggressive sample balancing is
presented in the conclusion.

4.3 Smoothing the results

Although one of the key features in SMF or SMFA is to preserve
the continuity of predictions between consecutive time windows,
extra smoothing of the outputs can be considered. Smoothing the

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • D. Feng and C. Germain

Table I. Methods summary
Input Data Output Data Parameters

EWM Xt−L+1, ...,Xt−1,Xt Yt

N, # of samples;
θ, damping factor;

L, lag window length.

SSVD Xt Yt

N, # of samples;
R, rank of SVD approximation;

L, lag window length for imputation.

MMMF Xt Yt
N, # of samples;

C, coefficient for slack penalty;

SMF Xt, Yt−1 Yt

Nr , # of random samples;
Nc, # of most confident samples.
Nu, # of most uncertain samples;

C, slack penalty.

SMFA Xt, Yt−1 Yt

N, # of total samples;
C, slack penalty;

P0, initial sample rate;
Pa, active sample rate at each iteration;

ρ, ratio of random sample and most uncertain sample for Pa;

TENSOR Xt−L+1, ...,Xt−1,Xt Yt

N, # of samples in Xt;
R, # of rank-1 components;

λ, R× 1 vector, with each one be the
weight of an outer product of a sub-dimension.

MMMFA Xt Yt

N, # of total samples;
C, slack penalty;

P0, initial sample rate;
Pa, active sample rate at each iteration;

ρ, ratio of random sample and most uncertain sample for Pa;

H∗ Yt−L+1, ..., Yt Y ′t
L, lag window length;

θ, damping factor for smoothing.

prediction sequence with e.g. EWM works as follows:

Y ′t (i, j) =

{
Yk(i, j), k = t− l+ 1,

θYt(i, j) + (1− θ)Ŷk−1(i, j), k = t− l+ 2, ..., t
.

(7)
where θ ∈ (0, 1) is an user defined damping factor, and l is the lag
window length.

4.4 Methods summary

Table I summarizes the methods introduced in the two previous sec-
tions, with their inputs, outputs and related parameters. For a given
method H , its smoothed version is noted H∗ (e.g. the smoothed
version of SMF is noted SMF ∗ in later section).

5. EXPERIMENTAL SETTING

5.1 The source

The European Grid Infrastructure (EGI) enables access to com-
puting resources for European researchers from all fields of sci-
ence, including high energy physics, humanities, biology and more.
The infrastructure federates some 350 sites world-wide, gathering
more than 250,000 cores, which makes it the largest non-profit dis-
tributed system worldwide. Hardware and software failures are in-
trinsic to such large-scale systems. Middleware e.g. gLite [Laure
and al 2006], Globus [Foster 2001] or ARC [Ellert and al. 2007]
cannot handle this without substantial human intervention. Access
rights to EGI are primarily organized along the concept of Virtual
Organization (VO), and each of the 200 VOs has to be specifi-
cally configured on its supporting sites, which adds complexity and
introduces extra failures. User communities exploit two strategies
to cope with faults: overlay middleware e.g. DIRAC [Tsaregorodt-
sev and al. 2009], DIANE [Moscicki 2003], AliEn [Bagnasco and
al. 2008] and PaNDA [Maeno 2008] implements specific fault-
tolerance strategies to isolate users from the vagaries of the infras-
tructure; and monitoring identifies problems and quantifies perfor-
mance w.r.t. quality of service agreements.

The data source for this study is the Biomed VO. Biomed has
access to 256 Computing Elements (CEs) and 121 Storage Ele-
ments (SEs). CEs are shares of computing resources, implemented
as queues of each site manager (e.g. PBS), and SEs are shares of
storage resources; the formal definition is part of the Glue Informa-
tion model [Andreozzi and al. 2009]. File access remains one the

major issues, for numerous causes spanning from hardware break-
downs to entanglements in the complicated verification of access
rights, and including the bizarre transients reported by operations
managers.

5.2 Data description

The dataset1 was collected on EGI by submitting a series of jobs to
212 Biomed CEs every two hours between Mon Nov 12 15:52 CET
2012 and Sat Nov 24 09:54 CET 2012, for about 282 hours in total.
Each job tested the service availability between its CE and each of
96 Biomed SEs, by launching the lcg-cp probe. lcg-cp copies a file
(like Unix cp), thus is a relatively high-level probe that tests core
access (network path), availability of the access control services
as well as reading and writing capacities. The CEs and SEs have
been preselected as relatively reliable, in order to eliminate trivially
discoverable faults.

Of course, our test jobs were fully protected again the conse-
quences of a probe failure (the job successful termination does not
depend on the outcome of the probe), and the procedure has been
designed so that the resources involved in running the jobs are as
disjoint as possible from those required by the probes. However,
our test jobs were no more immune to middleware faults than any
other user job, and a significant part of them did fail, thus reporting
no information at all. In order to get a consistent sample, we deleted
the data from those CEs with less than 7000 observed entries and
also from those time windows with less than 50% data observed.
This results in a data cube of size 79 × 96 × 119, with each di-
mension corresponding to CE, SE, and time window respectively.
The goal of our experiment is to predict whether the jth SE is ac-
cessible from the ith CE at a given time window t, and this data
cube is the ground truth for the prediction algorithms. We use 0 for
representing a missing observation, 1 for a Failed probe (job suc-
ceeded and lcg-cp failed), and −1 for an OK probe. This notation
is in accordance with the general meaning of positive (abnormal)
and negative (normal) in statistics.

Let M be the total number of CEs, W be the total number of
SEs, and tk,k=1,2,...,T be the time window sequence, we further
note Ntk as the number of observed entries at tk and N+

tk
be the

number of positive entries (failures) at tk, then the observation rate
and test failure rate at tk are defined as rtk = Ntk/MW and
ftk = N+

tk
/MW, respectively. Figure 3(a) illustrates the obser-

vation rate rtk and failure rate ftk of the dataset. Most of the ob-
servation rates stay above 70% and the failure rates are less than
20%. A high observation rate ensures a more reliable result for per-
formance evaluation, since we have more ground truth information
at hand. A relatively stable failure rate indicates a consistent sys-
tem status in consecutive time windows. The failure rate presents
some breakpoints, e.g. the sharp drop from 18.74% to 12.57% at
the 101st time window. Their impact on prediction performance is
discussed in sections 6 and 7.

Another interesting aspect of the data is the duration length of
each status (i.e. OK or Failed). The duration length of a status is
defined as the number of time windows the status spans until a dif-
ferent status is observed in the sequence; table II gives an example,
and figure 3(b) shows the cumulative distributions. The high pro-
portion of duration length 1 for Failed (about 25%) illustrates the
phenomenon of transients, while the about 20% entries for both
success and failure with a duration length at least 26 illustrate rela-

1The dataset is publicly available of the Grid Observatory web site (www.
grid-observatory.org)

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fault monitoring with sequential matrix factorization • 9

Table II. Illustration of duration length for OK and Failure
sequence 1 1 0 1 1 1 -1 0 -1 -1

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

duration 2 1 3 2 1 1 2 1

0 20 40 60 80 100 120

0.5

0.6

0.7

0.8

0.9

1

O
bs

er
va

tio
n

ra
te

Time window

0 20 40 60 80 100 120

0.1
0.12
0.14
0.16
0.18
0.2

F
ai

lu
re

 r
at

e

observation rate failure rate

(a) Observation rate and failure
rate over time

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time window

C
D

F

Failure
OK

(b) CDF of duration of OK and
Failure

Fig. 3. Statistics of dataset.

tive stable behavior. These distributions sustain our considerations
about a multi-scale in time behavior.

5.3 Criteria

With the availability of the ground truth, the classical performance
indicators for binary classification can be measured. Accuracy (the
ratio of correctly predicted entries over the total number of entries)
is of limited interest: as the data set is not balanced, overly opti-
mistic algorithms that favor OK predictions will exhibit satisfac-
tory accuracy. The indicators associated with the risks (confusion
matrix) are more informative: sensitivity (True Positive Rate), the
proportion of actual positives that are correctly predicted; speci-
ficity (True Negative Rate), the proportion of actual negatives that
are correctly predicted; precision, the ratio of true positives over all
predicted positives.

They all make sense for operational needs, but sensitivity is the
most important one: an undetected failure (bad sensitivity) results
in a failed user job and a dissatisfied user, while a false negative
might go unnoticed; specifically when the services are redundant
(e.g. from replicated data), the failed request can be transparently
rerouted to another server. Of course, specificity is nonetheless an
important criterion, and compound criteria such as precision (PPV
in the tables of sections 6 and 7, or Fscore measure various tradeoffs
between them.

The last important indicator is the Matthews Correlation Coef-
ficient (MCC), a correlation coefficient between the observed and
predicted binary classifications that is relatively insensitive to un-
balanced classes. Its interest comes from the fact that MCC is a
proxy for the Area Under ROC (Receiver Operating Characteristic)
Curve (AUC), which summarizes the intrinsic quality of a binary
classifier independent of the decision threshold. Moreover, MCC
does not assume that the classification error is a reasonable estima-
tion of the prediction error [Joachims 2005], thus is a more robust
indicator with respect to the objective functions involved in the op-
timization step of the algorithms. Other related indicators such as
those involved in Neymann-Pearson learning [Scott 2007] have not
been reported, as they have not still gained widespread acceptance.

5.4 Details

For all non-active algorithms, 10% of the total entries are selected
as training set (i.e. N = 10%×W ×M), and for SMF and SMFA
another 10% of the most confident entries with values from Yt−1 is
added as in algorithm-4. The adaptive weight for the most confident
entries is computed according to line 5 in algorithm-4. Table III lists
the concrete parameter settings for the algorithms of table I. Param-
eters marked with a ’+’ are selected via training and validation on
the first 20 time windows.

Table III. Summary of parameter values
Parameters

EWM
N = 10% of random samples in Xt;

θ = 0.5, damping factor;
L = 20, input window length.

SSVD
N = 10% of random samples in Xt;
R+ = 10, rank of SVD approximation;
L = 20, lag window length for imputation.

TENSOR
N = 10% of random samples in Xt;
R+ = 10, # of rank-1 components;

λ=ones(10,1), equal weight on each sub-dimension.

MMMF
N = 10% of random samples in Xt;
C+ = 10, coefficient for slack penalty;

Σ+ =’max norm’.

SMF

Nr = 5% of random samples in Xt;
Nu = 5% of most uncertain samples in Xt;

Nc = 10% of most confident samples from Yt−1;
C+ = 10, slack penalty.

MMMFA

P0 = 5%, initial sample rate;
Pa = 1%, active sample rate at each iteration;

ρ+ = 0.5, equal size of random samples and most uncertain samples at each active iteration;
C+ = 10, slack penalty.

SMFA

P0 = 5%, initial sample rate;
Pa = 1%, active sample rate at each iteration;
Nc, 10% of most confident prediction from Yti ;

ρ+ = 0.5, equal size of random samples and most uncertain samples at each active iteration;
C+ = 10, slack penalty.

H∗
L = 20, lag window length;
θ = 0.5, damping factor.

All experiments are performed 10 times. The results are pre-
sented in two ways: tabulated averages with standard deviation for
precise numerical values, and notched box plots. Although not a
formal test, if two boxes notches do not overlap there is strong
evidence (95% confidence) that the corresponding medians differ
[McGill et al. 1978].

For MMMF and SMF, and their active variants, we used CSDP
[Borchers 1999] as the SDP solver. For Tensor we used the tensor
toolbox [Acar et al. 2011] as the tensor completion solver, and for
SSVD we used the Matlab internal svd function. All experiments
were conducted on a standard laptop (quad-core Intel Core i7 pro-
cessor with 8GB memory). Table IV gives the empirical runtime of
different algorithms for one matrix prediction.

Table IV. Empirical runtime for the main algorithms
MMMF MMMFA SMF SMFA SSVD TENSOR

Time (Secs) 1.29 16.37 15.70 208.54 0.135 24.79

6. EXPERIMENTAL RESULTS - NON-CURATED
DATASET

Four approaches have been presented: pure spatial with MMMF,
pure temporal with EMW, collapsed with SSVD, and integrated,
with TENSOR and our algorithm, SMF. Some of these methods are
amenable to active learning, and smoothing can be applied to either
the vanilla methods, or their active counterpart, or both. Exhaustive
exploration of the experimental landscape would only confuse the
interpretation. Thus, we first analyze the vanilla algorithms, then

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • D. Feng and C. Germain

evaluate the impact of active learning and of smoothing. Some sup-
plementary material is available in [Feng 2014].

6.1 Vanilla methods

Table V. Average performance comparison for vanilla algorithms
TPR SPC PPV MCC FSCORE

MMMF 0.713±0.040 0.970±0.010 0.824±0.045 0.725±0.051 0.764±0.041
EWM 0.699±0.054 0.944±0.011 0.703±0.052 0.643±0.046 0.699±0.037
SSVD 0.645±0.060 0.992±0.004 0.941±0.028 0.747±0.047 0.763±0.046
TENSOR 0.613±0.071 0.981±0.006 0.859±0.043 0.684±0.055 0.713±0.053
SMF 0.747±0.047 0.985±0.006 0.901±0.038 0.791±0.046 0.816±0.040

The results of table V and figure 4(a) can be analyzed along dif-
ferent paths. Firstly, while all algorithms reach fairly good speci-
ficity, sensitivity exhibits only acceptable performance: 25-30% of
the actual failures would not be predicted. This is a natural, but
nonetheless problematic effect of the imbalanced dataset.

Going further illustrates the difficulty of comparisons: the rank-
ing of SSVD and Tensor on the one hand, and of the pure temporal
method (EWM) on the other hand is reversed for the sensitivity
and specificity criteria. For an imbalanced matrix with negative as
the majority, the principal factors preserved after a singular value
decomposition mainly reflect the negative population. SVD sees
the isolated positive entries as noise, which the top rank eigenvec-
tor reconstruction is likely to remove. Thus SSVD tends to have
excellent average specificity (0.992 ± 0.004) but poor sensitivity
(0.635 ± 0.0645). In contrast, EWM tends to be more agnostic.
The effectiveness of EWM on sensitivity must be stressed, as its
simplicity might be appealing for problems with strong real-time
constraints.

Like matrix based methods, TENSOR also shows a clear supe-
riority to EWM on most criteria. However, when looking at sensi-
tivity, TENSOR performs the worst. This poor performance might
stem from the fact that tensor factorization performs a single least
square estimation for the observed entries, without any regulariza-
tion.

Finally, SMF shows a significant advantage on sensitivity, which
is our primary performance indicator (c.f. section 5.3) and ranks
only second for specificity (0.985 ± 0.006) and precision, trans-
lating into an altogether clear advantage on the compound indi-
cators. Integrating the most confident information from the last
predictionYt−1 brings some of the advantages of SSVD, although
with a completely different technique: given the large proportion of
negative entries in X , the majority part of most confident entry set
are negative values.

The time series presented in figures 5(a) and 5(b) provide some
insight on the factors of performance. MMMF and SMF behave
essentially in lockstep on sensitivity, showing that matrix factoriza-
tion provides a decisive contribution; the most important gains of
SMF over MMMF occur in the relatively stable intervals (e.g. 40-
55) where the knowledge of the past matters. This is also true for
specificity, except at the sharp drop of SMF at the 81st time win-
dow (recall that we use 20 time windows as initial input, so this is
the 101st time window in the original data). As mentioned in 5.2,
this is caused by a drop in real failures between the observations in
the two adjacent time windows. In this case the historical informa-
tion does not help, but instead hinders performance improvement,
biasing the algorithm towards false positives. EWM highlights the
phenomenon, with a similar drop of specificity. As can be expected,
SSVD is largely unaffected.

Table VI. Average performance comparison for MMMF, SMF,
MMMFA

TPR SPC PPV MCC FSCORE
MMMF 0.713±0.040 0.970±0.010 0.824±0.045 0.725±0.051 0.764±0.041
MMMFA 0.789±0.037 0.959±0.013 0.800±0.048 0.752±0.052 0.793±0.041
SMF 0.747±0.047 0.985±0.006 0.901±0.038 0.791±0.046 0.816±0.040
SMFA 0.826±0.047 0.983±0.007 0.907±0.033 0.840±0.046 0.864±0.038

6.2 Active methods

As explained in section 4.2, active learning is a candidate for im-
proving on sensitivity. Table VI and and figure 4(b) compares
MMMF and SMF with their active versions. In both cases, sen-
sitivity improves by 11%, while the decrease in specificity is
negligible (respectively 1% and 0.2%). Moreover, SMFA outper-
forms MMMFA, but active learning is powerful enough to make
MMMFA outperform SMF on sensitivity by 6%. In other words,
the good selection of current information allows to forget the past:
for selecting the most uncertain prediction, which is likely to be
on the positive entries, active sampling on the current data does a
better job than passive history.

6.3 Smoothing

Table VII. Average performance of SSVD*, MF*, SMFA*,
TENSOR, SMF*, and MMMFA*

TPR SPC PPV MCC FSCORE
SSVD* 0.635±0.063 0.997±0.004 0.974±0.034 0.757±0.050 0.767±0.050
MMMF* 0.700±0.045 0.990±0.004 0.933±0.031 0.778±0.041 0.799±0.037
MMMFA 0.789±0.037 0.959±0.013 0.800±0.048 0.752±0.052 0.793±0.041
MMMFA* 0.788±0.039 0.987±0.005 0.924±0.029 0.826±0.038 0.850±0.032
SMF* 0.716±0.071 0.993±0.005 0.947±0.042 0.797±0.053 0.813±0.051
SMFA 0.826±0.047 0.983±0.007 0.907±0.033 0.840±0.046 0.864±0.038
SMFA* 0.827±0.047 0.991±0.005 0.950±0.028 0.865±0.041 0.884±0.036

Because the simple smoothing of EWM was relatively successful
for sensitivity, one can wonder whether it would not be competitive
with the active approach, or improve on it. In fact, smoothing actu-
ally often degrades sensitivity even with respect to the vanilla algo-
rithm (e.g. MMMF goes from 0.713 down to 0.700): the smoothing
process over-corrects the false positive predictions.

Table VII and figure 4(c) compares the active versus smooth-
ing approach (e.g. SMFA vs SMF*); clearly smoothing is not com-
petitive with active learning on sensitivity, although it always im-
proves specificity and sometimes the compound criteria. On the
other hand, combining smoothing and active learning has con-
trasted results, degrading MMMFA sensitivity, but marginally im-
proving on SMFA. Finally, SSVD* dominates all the other algo-
rithms on specificity, but with unacceptably low sensitivity (SMFA
is 30% better), indicating its tendency to favor negative predictions.

For completeness (results not shown), we experimented smooth-
ing the TENSOR method. As can be expected, there is no signif-
icant difference between TENSOR and TENSOR*, as TENSOR
employs a regression on the time dimension directly, and continu-
ity in estimation sequence is already captured, leaving no room for
a smoothing-based enhancement.

6.4 Summary

The above analysis firstly emphasizes the effectiveness of the se-
quential matrix factorization approach, and specifically of the pro-
posed SMF algorithm and its variants: a properly synthesized use of
spatial and temporal information significantly outperforms purely
spatial, temporal, or collapsed methods, at equal levels of method
complexity (e.g. SMF vs MMMF or SSVD).

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fault monitoring with sequential matrix factorization • 11

EWMA MMMF TENSOR SMF SSVD

T
P

R
 w

ith
 2

5t
h,

 m
ed

ia
n

an
d

75
th

 p
er

ce
nt

ile

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(a) Vanilla

MMMF MMMFA SMF SMFA

T
P

R
 w

ith
 2

5t
h,

 m
ed

ia
n

an
d

75
th

 p
er

ce
nt

ile

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b) Active

SSVD* MMMF* MMMFA MMMFA* SMF* SMFA SMFA*

T
P

R
 w

ith
 2

5t
h,

 m
ed

ia
n

an
d

75
th

 p
er

ce
nt

ile

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(c) Smoothed

Fig. 4. Descriptive statistics of methods on the non-curated dataset. Pairwise comparison shows significant difference at 95% confidence level, except for the
impact of smoothing.

0 20 40 60 80 100

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Time window

T
P

R

MMMF EWM SSVD TENSOR SMF

(a) Sensitivity

0 20 40 60 80 100
0.88

0.9

0.92

0.94

0.96

0.98

1

Time window

S
P

C

MMMF EWM SSVD TENSOR SMF

(b) Specificity

Fig. 5. Time series of sensitivity and specificity for the vanilla algorithms. Windows are numbered from the first one where prediction starts.

Then, active learning is consistently and significantly beneficial:
the positive entries are the minority part of the whole population,
it is therefore difficult to uncover them by using any conventional
method with equal cost on positive and negative entries. However,
with the aid of active sampling it is possible to unveil those diffi-
cult to predict entries, since they are more likely to be exposed and
labeled during the active sampling process.

Finally, simple smoothing cannot compete with the active ap-
proach, and should be considered useful only combined with active
learning, and only when false positives are a major concern.

7. EXPERIMENTAL RESULTS WITH THE
CURATED DATASET

7.1 The curated dataset

It could be argued that our benchmark is too easy: the tail of the dis-
tribution of the failure duration lengths corresponds to long-lasting
errors, that basic monitoring tools (e.g. heartbeats) would report
anyway, and the prediction methods should be applied only to more
elusive causes of errors. While this is disputable (remember that all
probes succeed as jobs, thus a significant part of the services are
up and running), it is worth assessing the performance of the meth-
ods when these systematic errors are eliminated. Therefore, we de-
signed a second set of experiments, with curated matrices as the
reference fault structure.

0 20 40 60 80 100 120

0.05

0.1

0.15

0.2

Time window

F
ai

lu
re

 r
at

e

un−curated curated

(a) Timeseries of failure rates

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Duration length

C
D

F

un−curated−failure
un−curated−OK
curated−failure
curated−OK

(b) CDF of duration lengths

Fig. 6. Comparison of curated and un-curated datasets.

The curated dataset is derived by removing those lines and
columns with at least 98% failed entries in the reference matri-
ces. Figure 6(a) shows the magnitude of the decrease in the fail-
ure rate, approximately from 15% to 5% on average. Moreover, the
CDF of failure duration length also experiences a sharp change (fig-
ure 6(b)). The percentage of length-one durations increases from
25% to about 60%, and the percentage of duration lengths less
than 20 grows from 75% to approximately 92%. In other words,
after the elimination of systematic failures, the proportion of short
term failures increases significantly.

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • D. Feng and C. Germain

MMMF EWMA SSVD TENSOR SMF

T
P

R
 w

ith
 2

5t
h,

 m
ed

ia
n

an
d

75
th

 p
er

ce
nt

ile

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Vanilla

MMMF MMMFA SMF SMFA

T
P

R
 w

ith
 2

5t
h,

 m
ed

ia
n

an
d

75
th

 p
er

ce
nt

ile

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Active

SMFA-0.1 SMFA-0.15 SMFA-0.2

T
P

R
 w

ith
 2

5t
h,

 m
ed

ia
n

an
d

75
th

 p
er

ce
nt

ile

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Sampling rate

Fig. 7. Descriptive statistics of methods on the curated dataset. Pairwise comparison shows significant difference at 95% confidence level.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time window

T
P

R

MMMF EWM SSVD TENSOR SMF

(a) Sensitivity

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

Time window

S
P

C

MMMF EWM SSVD TENSOR SMF

(b) Specificity

Fig. 8. Curated dataset: time series of sensitivity and specificity for the vanilla algorithms. Windows are numbered from the first one where prediction starts.

Table VIII. Average performance comparison of MMMF, SMF and
MMMFA on curated dataset

TPR SPC PPV MCC FSCORE
MMMF 0.319±0.102 0.968±0.011 0.427±0.110 0.328±0.106 0.361±0.107
EWM 0.396±0.069 0.955±0.007 0.392±0.066 0.347±0.053 0.389±0.051
SSVD 0.084±0.076 0.993±0.004 0.398±0.211 0.150±0.124 0.130±0.112
TENSOR 0.275±0.065 0.990±0.003 0.661±0.094 0.397±0.068 0.381±0.069
SMF 0.362±0.074 0.960±0.009 0.374±0.078 0.326±0.075 0.365±0.074

7.2 Vanilla methods

The very adverse curated dataset produces quite interesting results
(table VIII and figure 7(a)) concerning sensitivity. Most impor-
tantly, all vanilla method perform poorly: at best (EWM), more than
60% of the faults will get unpredicted. The extreme imbalance of
the data obviously highlights the limits of accuracy-based methods
(MMMF).

The real surprise is that the basic EWM gives the best (or the
least bad) performance. Our SMF is very close (1% difference),
while EWM is 21% better than MMMF. This confirms that using
only the snapshot information (MMMF) cannot suffice in such a
sparse setting: historical information is critical (EWM, SMF), but
must be properly used (SSVD behaves poorly).

The catastrophic results of SSVD on sensitivity might seem at
odds with the relatively good ones of EWM, as SSVD is the singu-
lar value decomposition of the EWM-collapsed matrix. The prob-
lem stems from the fact that with so few not too transient failures,
the EWM-collapsed matrix is highly unbalanced. Without interpre-
tation (EWM algorithm), it may preserve some of them, while the

Table IX. Average performance comparison of MMMF, SMF and
MMMFA on curated dataset

TPR SPC PPV MCC FSCORE
MMMF 0.319±0.102 0.968±0.011 0.427±0.110 0.328±0.106 0.361±0.107
MMMFA 0.482±0.081 0.959±0.014 0.471±0.080 0.436±0.080 0.471±0.077
SMF 0.362±0.074 0.960±0.009 0.374±0.078 0.326±0.075 0.365±0.074
SMFA 0.569±0.076 0.986±0.006 0.743±0.079 0.628±0.080 0.642±0.076

Singular Value Decomposition followed by binarization squashes
them, for the same reasons that have been identified in the analysis
of the non-curated case, but with much more impact.

In all cases, specificity is more than acceptable, even if, as previ-
ously EWM shows the worst one. With such sensitivity/specificity
imbalance, the compound criteria do not make much sense, as con-
firmed by the spread of the results.

Figure 8 give some insights about the issues encountered by
SMF. For sensitivity, contrary to the non-curated case, SMF and
MMMF are not in lockstep. More precisely, there are intervals
where EWM and MMMF behave in opposite directions, e.g. at time
40-45; there, taking into account the past somehow helps SMF to
limit its loss, but the weight of the catastrophic behavior of MMMF
is still to high.

7.3 Active learning

Table IX and figure 7(b) show the results for the active versions of
static (MMMFA) and sequential (SMFA) matrix factorization. As
can be expected, active learning procures a decisive improvement,
in the order of more than 50% for both. SMFA has a clear advan-

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fault monitoring with sequential matrix factorization • 13

Table X. Average performance of SMFA* with different sampling
rate, curated dataset

Sensitivity Specificity Precision MCC FSCORE
SMFA*-0.1 0.562±0.078 0.993±0.003 0.853±0.053 0.675±0.069 0.675±0.070
SMFA*-0.15 0.664±0.076 0.997±0.002 0.947±0.031 0.780±0.057 0.778±0.059
SMFA*-0.2 0.720±0.074 0.998±0.002 0.970±0.033 0.825±0.051 0.825±0.054

tage: it is capable of discovering more than 50% of the faults while
maintaining good specificity and acceptable precision: only 25% of
the alarms are spurious.

For lack of space, the results of smoothing are not given. Their
trend is very similar to the one of section 6.3.

7.4 Higher sampling rate

So far, the sampling rate was limited to 10%. Table X and figure
7(c) illustrate the result of increased sample rates, i.e. 10%, 15%
and 20%, of SMFA∗ on the curated dataset. Results are averaged on
a 5-run experiment. A steady and notable improvement is exhibited.
For example, at 20%, SMFA∗ finds out 72% of the faults while
keeping a balanced MCC value of 0.825. The good news is that
the prediction performance increases steadily with the sample rate
even in the curated situation. However, the sampling rate drives
two costs: the monitoring overhead per se, and the computational
cost, as discussed in section 2.1. To control the computational cost,
accelerating methods like Fast MMMF [Rennie and Srebro 2005]
might be required.

7.5 Summary

The curated dataset is highly imbalanced, with only about 5%
positive entries. Then static accuracy-based classification becomes
awkward and exhibits poor performance. Active learning is one of
the few approaches that can contribute to alleviating this issue. Our
question in this section was its impact within already ”smart” -
heuristic based - methods. The results show that active learning
carries a consistent improvement, with a very similar factor, for the
two relatively different heuristics involved with SMF and MMMF;
in other words, active learning is robust in this context. To be com-
plete, analogous techniques for SSVD, such as weighted synthetic
oversampling [He and Garcia 2009] could be explored, as well as
improvements over the base SVD [Peng et al. 2012]; however, the
very poor results of the baseline and its intrinsic over-denoising
characteristic make the solution not attractive.

8. CONCLUSION

Efficient monitoring of production grids and clouds at acceptable
manpower cost cannot assume exhaustive a priori knowledge of
their software and hardware infrastructures. In this context, and
with end-to-end probing as sole data acquisition strategy, fault dis-
covery can be re-casted as an inference task, and can borrow meth-
ods from collaborative prediction. The challenge as well as the op-
portunity brought by switching from a static, snapshot-oriented,
view of the monitoring to considering the time dimension reside
in the sequential correlation between consecutive data points. We
have shown that these sequential patterns, if exploited properly, can
play an important role in improving prediction performance.

This paper explores various methods that combine time and
space information with increasing complexity. It proposes and eval-
uates SMF, a fully integrated method that exploits both the recent
advances in matrix factorization for the spatial information and a
new heuristics based on historical information. The effectiveness
of the SMF approach has been exemplified on datasets of increas-
ing difficulty. In all cases, active learning unleashed the full poten-

tial of coupling the most confident and the most uncertain heuris-
tics, which is the cornerstone of SMF. To our question about the
need of adaptive, and thus more complicated and fault-prone al-
gorithms, the answer is unambiguous: a method versatile enough
for accommodating various levels of difficulty on both the sensi-
tivity and specificity criteria must include adaptivity through active
learning.

Future work will go further in the adaptivity direction. The first
perspective considers self-calibrating the SMFA parameters in an
auto-learning approach. The samples are selected with two strate-
gies: the most uncertain predictions in the last run guide the selec-
tion of samples to enhance the current prediction confidence, while
the random sampling strategy avoids over-fitting the past.The cur-
rent sample ratio between the two strategies is fixed and set to 1 : 1.
However, a straightforward extension is to address this problem un-
der the sequential decision optimization framework. The hybrid op-
timization indicator of [Wang and Sebag 2013] can be considered
to efficiently balance the exploitation and exploration trade-off.

We have seen that performance was limited by the occurrence
of abrupt changes, where the advantage of taking into account
the past turns into a liability. The second perspective considers a
semi-supervised online change detection framework that has al-
ready proved to be efficient at the level of the individual timeserie
[Feng 2014]. The next step would be to extend it towards the full
matrix data.

REFERENCES

Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mørup.
2011. Scalable Tensor Factorizations for Incomplete Data. Chemomet-
rics and Intelligent Laboratory Systems 106, 1 (March 2011), 41–56.
DOI:http://dx.doi.org/10.1016/j.chemolab.2010.08.004

S. Andreozzi and al. 2009. Glue Schema Specification, V.2.0. Technical
Report. Open Grid Forum.

S Bagnasco and al. 2008. AliEn: ALICE environment on the GRID. Journal
of Physics: Conference Series 119, 6 (2008), 062012.

Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004.
Using Magpie for Request Extraction and Workload Modelling.. In
OSDI, Vol. 4. 18–18.

Brian Borchers. 1999. CSDP, AC library for semidefinite programming.
Optimization methods and Software 11, 1-4 (1999), 613–623.

Rasmus Bro. 1997. PARAFAC. Tutorial and applications. Chemometrics
and intelligent laboratory systems 38, 2 (1997), 149–171.

Emmanuel J. Candes and Benjamin Recht. 2009. Exact Matrix Completion
via Convex Optimization. Foundations of Computational Mathematics 9,
6 (2009), 717–772.

Emmanuel J. Candès and Terence Tao. 2010. The Power of Convex Re-
laxation: Near-optimal Matrix Completion. IEEE Trans. Inf. Theor. 56, 5
(2010), 2053–2080.

Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric
Brewer. 2002. Pinpoint: Problem determination in large, dynamic in-
ternet services. In Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on. IEEE, 595–604.

Mark A. Davenport, Yaniv Plan, Ewout van den Berg, and Mary Wootters.
2014. 1-Bit Matrix Completion. Information and Inference 3, 3 (2014),
189–223.

M. Ellert and al. 2007. Advanced Resource Connector middleware for
lightweight computational Grids. Future Generation Computer Systems
23, 2 (2007), 219 – 240.

Dawei Feng. 2014. Efficient End-to-End Monitoring for Fault Management
in Distributed Systems. Ph.D. Dissertation. Universite Paris Sud.

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • D. Feng and C. Germain

Dawei Feng, Cecile Germain-Renaud, and Tristan Glatard. 2013. Efficient
Distributed Monitoring with Active Collaborative Prediction. Future
Generation Computer Systems 29, 8 (2013), 2272–2283.

Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion
Stoica. 2007. X-trace: A pervasive network tracing framework. In Pro-
ceedings of the 4th USENIX conference on Networked systems design &
implementation. USENIX Association, 20–20.

I. Foster. 2001. The Globus Toolkit for Grid Computing. In IEEE Int. Symp.
on Cluster Computing and the Grid.

Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion
Stoica. 2007. Friday: Global Comprehension for Distributed Replay.. In
NSDI, Vol. 7. 285–298.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasi-
bility of Consistent, Available, Partition-tolerant Web Services. SIGACT
News 33, 2 (2002), 51–59.

Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced data.
Knowledge and Data Engineering, IEEE Transactions on 21, 9 (2009),
1263–1284.

T. Joachims. 2005. A Support Vector Method for Multivariate Performance
Measures. In International Conference on Machine Learning (ICML).
377–384.

Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat. 2007.
Life, death, and the critical transition: Finding liveness bugs in systems
code. NSDI 07: Networked Systems Design and Implementation (2007),
243–256.

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and
applications. SIAM review 51, 3 (2009), 455–500.

Akshay Krishnamurthy and Aarti Singh. 2013. Low-Rank Matrix and Ten-
sor Completion via Adaptive Sampling. In Advances in Neural Informa-
tion Processing Systems. 836–844.

E. Laure and al. 2006. Programming the Grid with gLite. In Computational
Methods in Science and Technology, Vol. 12. 33–45.

Bin Li, Xingquan Zhu, Ruijiang Li, Chengqi Zhang, Xiangyang Xue, and
Xindong Wu. 2011. Cross-domain collaborative filtering over time. In
Proceedings of the Twenty-Second international joint conference on Ar-
tificial Intelligence-Volume Volume Three. AAAI Press, 2293–2298.

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. 2009. Ten-
sor completion for estimating missing values in visual data. In Computer
Vision, 2009 IEEE 12th International Conference on. IEEE, 2114–2121.

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian
Tang, Ming Wu, M Frans Kaashoek, and Zheng Zhang. 2008. D3S: De-
bugging Deployed Distributed Systems.. In NSDI, Vol. 8. 423–437.

Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. 2007. WiDS
Checker: Combating Bugs in Distributed Systems.. In NSDI.

T Maeno. 2008. PanDA: distributed production and distributed analysis
system for ATLAS. Journal of Physics: Conference Series 119, 6 (2008),
062036.

Robert McGill, John W. Tukey, and Wayne A. Larsen. 1978. Variations of
Box Plots. The American Statistician 32, 1 (February 1978), 12–16.

J. T. Moscicki. 2003. DIANE - distributed analysis environment for GRID-
enabled simulation and analysis of physics data, In Nuclear Science Sym-
posium Conference Record, 2003 IEEE. Nuclear Science Symposium
Conference Record, 2003 IEEE 3 (2003), 1617–1620 Vol.3.

Chengbin Peng, Ka-Chun Wong, Alyn Rockwood, Xiangliang Zhang, Jin-
ling Jiang, and David Keyes. 2012. Multiplicative Algorithms for Con-
strained Non-negative Matrix Factorization.. In ICDM. IEEE Computer
Society, 1068–1073.

Andres Quiroz, Manish Parashar, Nathan Gnanasambandam, and Naveen
Sharma. 2012. Design and Evaluation of Decentralized Online Cluster-
ing. ACM Trans. Auton. Adapt. Syst. 7, 3 (2012), 34:1–34:31.

Benjamin Recht. 2011. A Simpler Approach to Matrix Completion. J.
Mach. Learn. Res. 12 (2011), 3413–3430.

Jasson DM Rennie and Nathan Srebro. 2005. Fast maximum margin ma-
trix factorization for collaborative prediction. In Proceedings of the 22nd
international conference on Machine learning. ACM, 713–719.

Patrick Reynolds, Charles Edwin Killian, Janet L Wiener, Jeffrey C Mogul,
Mehul A Shah, and Amin Vahdat. 2006. Pip: Detecting the Unexpected
in Distributed Systems.. In NSDI, Vol. 6. 115–128.

Irina Rish, Mark Brodie, Sheng Ma, Natalia Odintsova, Alina Beygelzimer,
Genady Grabarnik, and Karina Hernandez. 2005. Adaptive diagnosis in
distributed systems. IEEE Trans. Neural Networks 16, 5 (2005), 1088 –
1109.

Irina Rish and Gerald Tesauro. 2007. Estimating End-to-End Performance
by Collaborative Prediction with Active Sampling. In Integrated Network
Management. 294–303.

Clayton Scott. 2007. Performance Measures for Neyman-Pearson Classifi-
cation. IEEE Trans. Inf. Theor. 53, 8 (Aug. 2007), 2852–2863.

Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakola. 2005.
Maximum-Margin Matrix Factorization. In Advances in Neural Informa-
tion Processing Systems 17. 1329–1336.

Michel Tokic. 2010. Adaptive epsilon-greedy Exploration in Reinforce-
ment Learning Based on Value Differences. In 33rd Annual German
Conference on Advances in Artificial Intelligence (LNCS 6359). Springer-
Verlag, Berlin, Heidelberg, 203–210.

Erik Torres, German Molto, Damia Segrelles, and Ignacio Blanquer. 2012.
A Replicated Information System to Enable Dynamic Collaborations in
the Grid. Concurr. Comput. : Pract. Exper. 24, 14 (2012), 1668–1683.

A Tsaregorodtsev and al. 2009. DIRAC3 . The New Generation of the
LHCb Grid Software. Journal of Physics: Conference Series 219, 6
(2009), 062029.

Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao.
2006. A Taxonomy of Data Grids for Distributed Data Sharing, Man-
agement, and Processing. ACM Comput. Surv. 38, 1 (June 2006).

Weijia Wang and Michèle Sebag. 2013. Hypervolume indicator and domi-
nance reward based multi-objective Monte-Carlo Tree Search. Machine
Learning 92, 2-3 (May 2013), 403–429.

Xiangliang Zhang, Cyril Furtlehner, Cecile Germain-Renaud, and Michele
Sebag. 2014. Data Stream Clustering with Affinity Propagation. IEEE
Transactions on Knowledge and Data Engineering 26, 7 (2014).

Wenchao Zhou. 2010. Fault Management in Distributed Systems. Tech-
nical Report MS-CIS-10-03. University of Pennsylvania Department of
Computer and Information Science.

ACM Transactions on Autonomous and Adaptive Systems, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

