Réalité Virtuelle et Interactions
Collaboration en Réalité Virtuelle

Année 2016 - 2017 / 5 Info à Polytech Paris-Sud
Cédric Fleury (cedric.fleury@lri.fr)
Collaboration in Virtual Reality

• Several users work/play together in a VE
 – Co-expertise of 3D data
 – Complex manipulation (real or virtual)
 – Training
 – Social presence (telepresence)
Co-located collaboration
Remote Collaboration

Distributed virtual environment

Video
Collaboration in Virtual Reality

• Awareness
• Communication
• Collaborative Interaction
 – Navigation
 – Co-manipulation
Collaboration in Virtual Reality

• Awareness
• Communication
• Collaborative Interaction
 – Navigation
 – Co-manipulation
Awareness

• Perception of the other users
 – Where are they?
 – What are they doing?
 • What are they looking?
 • Are they looking at me?
 – What could they do ?
 • Can they see me?
 • Could they see what I am showing to them?
 • Could they do what I am asking them to do?
Awareness

• Improve the mutual understanding
 – Just next to me... But where are you?
 – Just in front of me ... But where are you looking at?
 – Etc.

• Multi-sensorial restitution
 – Visual awareness
 – Audio awareness
 – Haptic awareness
Visual Awareness

- Avatar: representation of users in the VE

Simplified

Realistic

[Fleury et al., 2012]

[DIVE, 1991]

[CALVIN, 1996]

[Fleury et al., 2008]

[Second Life, 2005]

[Beeler et al., 2010]

[Fleury et al., 2013]
Visual Awareness

- Animation of the avatars

Kinect Avatar

Body tracking

[Image of avatars and body tracking]
Visual Awareness

- Use of a WIM [CALVIN, 1996]

Mortal’s view

Deity’s view
Virtual Awareness

- Multi-scale collaborative virtual environment

[Zhang et Furnas, 2002]
Audio Awareness

• Spatialized voice restitution

• Remote users’ noises
 – Give a lot of information
 • Where they are
 • What they are doing
 – Add some sounds to describe the actions
 – Need to be spatialized sounds
Haptic Awareness

• Force feedback of the others
 – Direct
 • Touch the others through haptic devices
 – Virtual handshake
 – affective haptic
 • Can be asymmetrical
 – Indirect
 • Manipulate an object together
 • Feel the force apply by the other on the object
Awareness Model

• Spatial Model of Interaction [Benford et al., 1994]
 – Compute which users can interact which others

 – Medium
 • A typical communication medium
 • Ex: audio, visual, haptic, etc.

 – Aura
 • Sub-space bounding the presence in a particular medium
 • Interaction is possible between two users with colliding Aura

[Benford et al., 1994]
Awareness Model

• Spatial Model of Interaction [Benford et al., 1994]
 – Aura determines potential interactions
 (on a technical point of view)
 – Users are responsible for controlling interactions
 – Measure of awareness between two users
 • Asymmetrical
 • Dependent of the medium
 (i.e. different for each medium)
 – Introduction of the Focus and Nimbus
Awareness Model

- Spatial Model of Interaction [Benford et al., 1994]
 - Focus
 - Area where a user perceive the others
 - For each particular medium
 - Nimbus
 - Area where the others can perceive a particular user
 - For each particular medium
 - Different from the focus
⇒ How can users understand what the others are doing?
⇒ How can they understand what the others can do?
Interaction Workspaces

• 3D space in the real world
 – Associated to a particular material device
 – Perceive or interact with the virtual world
 – Ex: visual, audio, haptic, physical displacement, etc.

• Why integrating these interaction workspaces?
 – Each user can have different interaction workspaces
 – Take into account workspaces for users’ interaction
 • Adapt the interaction techniques
 • Capabilities perception
Examples of Interaction Workspaces

• User’s physical displacement workspace
 – Magic Carpet in 3DM [Butterworth et al. 92]
 – Magic Barrier Tape [Cirio et al. 09]
Examples of Interaction Workspaces

• Haptic interaction workspace
 – Bubble technique [Dominjon et al. 05]
Immersive Interactive Virtual Cabin

• Organizes and integrates interaction workspaces
 – Users can carry them on the VE
• Based on a structured hierarchy
Activities Perception

What is the user seeing?

What is the user doing?

[Fraser et al., 1999]

[Duval et al., 2008]
Capabilities Perception

• Example for the user himself: user’s displacement workspace
Capabilities Perception

- Example for another user: interaction workspace
Collaboration in Virtual Reality

• Awareness
• Communication
• Collaborative Interaction
 – Navigation
 – Co-manipulation
Voice communication

• Essential for collaborative application
 – Compensate a bad perception of the VE [Hindmarsh et al., 1998]
 – Share different point of view

• However:
 – Users need specific tools for communication

Voice communication induces also discontinuity in interaction [Bowers et al., 1996]
Tools for communication

• Virtual Ray
 – Laser pointer metaphor
 – Easy and intuitive manipulation

[Simon, 2005] [Schild et al., 2009]
Tools for communication

• Annotations
 – Sketching, text, audio, videos
 – Especially relevant for scientific data analysis
 – Synchronous and asynchronous collaboration

[Schild et al., 2009]
Collaboration in Virtual Reality

- Awareness
- Communication
- Collaborative Interaction
 - Navigation
 - Co-manipulation
Collaborative Navigation

• Collaborative virtual environment
 – WYSINWIS (What Your See Is Not What I see)
 • Each user can have its own viewpoint
 – But, sometime users need:
 • To share the same viewpoint
 • To meet somewhere in the VE
 • To guide others in the VE
 • To follow each other
Collaborative Navigation

• 3 main modes of collaborative navigation
 – Share the same point of view
 • One user drives, the other follows
 – One move and the other follows with an offset
 • One user drives, the other can modify his offset
 – World in Miniature
 • Guide the others through the WIM
 • Move the others through the WIM

[CALVIN, 1996]
• Context: scientific data analysis
• Users can:
 – Save interesting viewpoints
 – Select on particular viewpoint
 – Travel cross of the saved viewpoints of a particular user

[Duval et al., 2008]
Group Navigation

[Dodds et Ruddle, 2008]

• Users are part of a predefined group
• Each user can travel independently
• Functionalities help to travel with the group
 – To follow the first member of the group
 – To come back at the middle of the group
 (mean of member positions)
Guidance techniques

[Nguyen et al., 2013]

• Context: collaborative navigation in a building
 – User 1 is in an immersive room
 • Find several targets in the building
 – User 2 is in front a desktop workstation
 • Guide the other user using a WIM
 – Not verbal communication
Guidance techniques

[Nguyen et al., 2013]

- Technique 1:
 - Draw arrows in the virtual environment
Guidance techniques

[Nguyen et al., 2013]

- Technique 2:
 - Orient an arrow attached to the user
 (like a compass)
Guidance techniques
[Nguyen et al., 2013]

• Technique 3:
 – Alight the path in the virtual environment
Outline

Collaboration in Virtual Reality

- Awareness
- Communication
- Collaborative Interaction
 - Navigation
 - Co-manipulation
Co-manipulation

• Several users manipulate a same virtual object
 – Achieve a hard manipulation task in VE
 – Mimic the same task than in the real world (training)

• 2 solutions
 – Users manipulate different DoF of an object
 – Users can manipulate the same DoF of an object

• DoF: Degree of Freedom
 – Usually 6 DoF (3 translations, 3 rotations) + the scale
 – Some other parameters (color, shape, etc.)
Manipulate different DoF

- Users use the same tools
 - Ex: two virtual rays [Pinho et al., 2008]
 - Help with obstacles
 - Help when the depth is hard to perceive
Manipulate different DoF

- Users use different tools
 - Ex: a virtual ray and a virtual hand
 - Virtual ray manages positions
 - Virtual hand manages rotations

- User studies show [Pinho et al., 2002]
 - Faster, easier and more precise than single user manipulations
Manipulate the same DoF

- Manipulate together positions and orientations
 - Compute the mean of each user’s actions
 - Use a physical engine [Noma et Miyasato, 1997]
 - Positions and orientations are the results of all the forces applied by the users
 - Add springs between users’ hands and the object to avoid instability
Manipulate the same DoF

• Holding together a virtual object
 – Need at least 3 control points
 – 3 hand manipulation technique [Aguerreche et al., 2009]
 • One user has 2 control points
 • The other has 1 control point
 • Co-located or remote collab. [Fleury et al., 2012]
 • Implemented with a prop (Reconfigurable tangible device) [Aguerreche et al., 2010]
Manipulate the same DoF

- Provide feedback to users about their actions
 - Force feedback with haptic devices
 - Springs or rubber bands
 - Curve virtual ray

[Riege et al., 2006] [Duval et Fenals, 2002]

[Aguerreche et al., 2009]
Conclusion

• Collaborative Virtual Environment (CVE)
 – Several solutions to represent users in a CVE
 • From realistic to simplified solutions
 • Activities/Capabilities perception

 – Usually voice communication
 • But not so much tools to improve the communication

 – Techniques for collaborative interaction
 • Navigation together or help the other to navigate
 • Move virtual objects together
Conclusion

• Collaborative Virtual Environment (CVE)
 – Feedback of what the others are doing is very important
 • Especially for co-manipulation

• Applications of CVE
 – Co-expertise, collaborative review or design
 – Training (learn a collaborative task or learn with a remote teacher)
 – Entertainment (video games, artistic performance, etc.)
 – Social presence (telepresence)