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Abstract 

This paper was motivated by the following two questions which arise in the theory of com- 
plexity for computation over ordered rings in the now famous computational model introduced 
by Blum, Shub and Smale: 

(i) is the answer to the question P =? NP the same in every real-closed field? 
(ii) if P # NP for R, does there exist a problem of R which is NP but neither P nor NP- 

complete ? 
Some unclassical complexity classes arise naturally in the study of these questions. They are 

still open, but we could obtain unconditional results of independent interest. 
Michaux introduced /const complexity classes in an effort to attack question (i). We show 

that Ap;/const = A;, answering a question of his. Here A is the class of real problems which 
are algorithmic in bounded time. We also prove the stronger result: PAR;/const = PAR;, where 
PAR stands for parallel polynomial time. In our terminology, WC say that [w is A-saturated and 
PAR-saturated. We also prove, at the nonuniform level, the above results for every real-closed 
held. It is not known whether [w is P-saturated. In the case of the reals with addition and order 
we obtain P-saturation (and a positive answer to question (ii)). More generally. we show that 
an ordered @vector space is P-saturated at the nonuniform level (this almost implies a positive 
answer to the analogue of question (i)). 

We also study a stronger notion that WC call P-stability. Blum, Cuckcr, Shub and Smalc 
have (essentially) shown that fields of characteristic 0 are P-stable. We show that the reals with 
addition and order are P-stable, but real-closed fields are not. 

Questions (i) and (ii) and the jconst complexity classes have some model theoretic flavor. 
This leads to the theory of complexity over “arbitrary” structures as introduced by Poizat. 
We give a summary of this theory with a special emphasis on the connections with model 
theory and we study /const complexity classes from this point of view. Note also that our proof 
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of the PAR-saturation of [w shows that an o-minimal structure which admits quantifier elimination 
is A-saturated at the nonuniform level. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

This paper was motivated by the following two questions which arise in the theory 

of complexity for computation over ordered rings in the now famous computational 

model introduced by Blum, Shub and Smale [6]: 

(i) is the answer to the question P =? NP the same in every real-closed field? 

(ii) if P # NP for R, does there exist a problem of R’ which is NP but neither P nor 

NP-complete ? (ln the standard model of computation the positive answer to this 

question is known as Ladner’s theorem [24].) 

Some unclassical complexity classes arise naturally in the study of these questions. They 

are still open, but we could obtain unconditional results of independent interest. These 

questions have a model-theoretic flavor. This led us to work with arbitrary first-order 



structures in a finite language. The theory of computation and complexity over such 

structures was developed by Poizat [ 14, 321 as a generalization of the Blum, Shub 

and Smale model of computation. However, the main results of this paper concern 

computations over real-closed fields. On the other hand, the model-theoretic setting has 

some advantages, at least for a better understanding of the results. 

Let M be a first-order structure in a finite language (one may think of M as a 

real-closed field in the language of ordered rings). One of the difficulties of the theory 

of computation over an infinite structure is that an algorithm over A4 can use (a finite 

number of) elements of M, the parameters (or constants) of the algorithm. For example. 

with the reals, we can encode in the digit of a real number any sequence of 0 and 1 

and an algorithm can retrieve these digits. This gives to the reals an algorithmic power 

that the real-closed field of the real algebraic numbers does not have. Let M< N be 

an elementary extension (or an extension of real-closed fields): as the above example 

shows, there is no reason for M to have the same algorithmic power as N. Conversely, 

Michaux [28] has noted that if P =NP in M, then P = NP in N. Thus, question (i) 

above become: (i’ ) does P = NP in N imply P = NP in A4 ? This question lead Michaux 

[28] to introduce the complexity class P/const. If M satisfies Piconst = P, then for every 

elementary extension N of A4 question (i’) has a positive answer. The point is that 

one can sometimes give a “yes-or-no” answer to the question P = ? P,iconst. 

Another difficulty is that if M is uncountable we have uncountably many algorithms 

over M. This can be an obstruction for diagonalization arguments. For example, the 

uncountability of R is an obstruction for extending the usual proof of Ladner’s theorem 

to the reals (however, the proof of Ladner’s theorem works for the real algebraic 

numbers). Again, this difficult disappears if M satisfies %onst = P (and has a decidable 

first-order theory): Ben-David et al. [3] and independently Poizat 1331 have shown that 

under these assumptions, question (ii) has a positive answer for IV. 

Let us define the complexity classes %/const. If k E N, and if % is a class of problems 

of M, one can define a new class Z.ik as follows. A problem X C My is in % .!k if 

there exists Y E %’ (the “corresponding problem”) such that for every II 3 0 there exists 

%:,, E M” satistjring 

Vx t M <” [x E X ti (x, cc,,) E Y]. (1) 

Note that the advice c(,, must work for all inputs of length at most n. Let % ,:const = 

UF,) e/k be the union of these classes. If 1 E N and G5 is a classical complexity class. 

we denote by %’ the class of problems which are % with an “algorithm” using 1 

parameters from M. For any M, the inclusions ‘Gl’ 2 %“/k and V C ‘Uconst clearly 

hold. If % = $5 ,iconst, we say that M is VJ -saturated. 

The main theme of this paper is the study, for real-closed fields and ordered Q-vector 

spaces, of classes ‘Gjconst where ?? is a classical complexity class. We also study from 

a general point of view classes of the form %/const and give counterexamples. 

Let us now describe the contents and main results of this paper. 

Section 2 is of a preliminary nature. We recall some elementary facts from model 

theory (such as t’he notions of saturation and o-minimality). We then give a summary of 
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the theory of complexity for computation over arbitrary structures. One of the goals of 

this summary is to show to a model theorist that computation over a first-order structure 

is not an alien thing for her or him. Conversely, a number of model theoretic notions 

and results can be useful. These preliminaries contain a new result: a generalization of 

Karp-Lipton’s theorem. This result allows us to prove (in Section 3) that if A4 <N is 

an elementary extension and if P = NP or P = N[FD in N then the (uniform) polynomial 

hierarchy over M collapse at the third level. 

We need to introduce some notations. As usual we denote by PAR the class of 

problems solved in parallel polynomial time. In this paper we need to work at the 

nonuniform level. Following Poizat, we denote by PM (respectively, PA&J) the class 

of problems of M solved by a sequence of circuits (in the sense of M), using pa- 

rameters from a jinite subset of M, of polynomial size (respectively, of polynomial 

depth). The above classes can be also defined using boolean advice functions. For 

parallel time we need a semi-nonuniform class: PARM is the class of problems solved 

in parallel polynomial time with the help of a boolean advice function f from N into 

(0,l)O” such that the size of f(n) is polynomial in n. We denote by AM the class of 

problems of A4 solved in bounded time. The nonuniform counterpart of An;/ is denoted 

by A,v. This is the class of problems of A4 solved in bounded time with the help of a 

boolean advice function. Note that for a real-closed field or an ordered Q-vector space 

containing the reals, then [FD = P, PAR = PAR and A = A (but PAR C PAR; in this 

paper c denotes strict inclusion). 

In Section 3, continuing the work of Michaux, we develop the abstract theory for 

the classes %?/const. The main ingredient from model theory is saturation (for every 

reasonable %, % = +Z/const for an Nr -saturated structure). In that section, we are also 

concerned with counterexamples. We remark that for a number of countable struc- 

tures (and in particular for countable real-closed fields and countable ordered Q-vector 

spaces) there are problems in PO/l not in A. This implies that we need to work at 

the nonuniform level. We also construct a structure (with elimination of quantifiers) 

such that P/const is not included in A and another one with A/const = A but where 

P/const is not included in p. 

Section 4 is central and deals with real-closed fields. After recalling some background 

in the first subsection, we show in Section 4.2 that algebraic parameters can be elimi- 

nated. In other words, when working with a real-closed field we may assume (without 

loss of time) that the parameters of the algorithms are algebraically independent. This 

has some important consequences for the study of /const algorithms. In the third sub- 

section, we prove that PO/l = P’ for 1w. We do not know whether Pk/l & Pn, but Pn/l 

is contained in C2P over [w. We also exhibit a family of problems in P$l that contains 

a part of the difficulty of the question P&/l C? Pw. We conclude this subsection with 

proofs that A/const = A for the reals. Section 4.4 gives a characterization (in terms 

of sequences of quantifier-free formulae) of parallel algorithms over real-closed fields. 

The proof depends on the algorithmic version of the theorem of Milnor-Petrovskii- 

Olienik-Thorn on the number of consistent sign vectors for a family of polynomials 

as it can be found in [35]. In Section 4.5 we prove that pA[W/const = pA[W and that 
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pAR/const = PAR for every real-closed field (we need to work at the nonuniform 

level; for [w the second equality implies that PAR!const = PAR). We also give some 

applications of these results. 

We do not know whether PO/l C Ln for the real algebraic numbers. We exhibit a 

family of problems in PO/l which seems to show that this question is “impossible” 

(at least before a solution to the question Ilp =? PAR). In the last subsection we use a 

construction of van den Dries [40] to show that R has a real-closed extension R with 

problems Y in P’ with a restriction to LQ not in A, or even with a restriction in A but 

not in P. In our terminology, iw is not P-stable. 

Computation over the reals without multiplication has also been considered. In that 

setting, ordered Q-vector spaces are the structures to consider. We denote by [w,,, the 

reals without multiplication (i.e, Iw in the language of ordered abelian groups). In the 

last section of this paper we show (using the same kind of arguments as for real-closed 

fields) that P/const = F’ for such structures. It follows that P/const = P for I&,,,, that 

question (ii) has a positive answer for iw,,, and that the question 119 =? NlP has the same 

answer in every (nontrivial) ordered Q-vector space. Moreover, we show that EL,,, is 

P-stable: given an extension 1w Ovs <E and a problem Y of E in P, the restriction of Y 

to iw,,., is P. 

One of the main ingredients of the proof that PO/l = P’ for iw and that PAR/const = 

PAR for a real-closed field is the fast quantifier elimination algorithm of Renegar [35] 

or Heintz et al. [15] (for the case of ordered Q-vector spaces we use an elimination 

theorem of Sontag [36]). Another important fact (for 5’AR/const = PAR) is a result 

of Pillay [29] on definable equivalence relations in o-minimal structures which applies 

to real-closed fields and ordered Q-vector spaces. In fact, our proof of the equality 

pAR/const = [FDAR for real-closed fields shows that if M is an o-minimal structure 

which admits elimination of quantifiers, then A,M/const = A.M. Moreover, the results of 

non P-stability of [w and of P-stability of aB ,,Vs are connected with results of van den 

Dries [37] and of Marker and Steinhom [27] on the definability of types in o-minimal 

structures (see Section 3.4). 

Note that for algebraically closed fields of characteristic 0, questions (i) and (ii) have 

received positive answers (with C in place of [w in question (ii)). Blum et al. proved 

in [4] that if K <L is an extension of fields of characteristic 0 (with K contained in 

the algebraic closure of Qe; but this is not essential) and if Y is a problem of L in PL, 

the restriction of Y is PK. It follows that P/const = P in K and (independently) that 

question (i) has a positive answer for algebraically closed fields of characteristic 0. 

Koiran proved in [23] similar results in the case of positive characteristic for 1FD. Note 

that the above transfer cannot hold in the case of ordered fields (see Section 4.6). 

In fact, such a result is possible only in the presence of an o-stable theory or for 

specific models, such as a Dedekind complete model of an o-minimal theory (see 

Section 3.4). For question (ii) in the case of @, the first proof of a positive answer 

was given in [26] by Malajovich and Meer. Using the o-saturation of C, 

Ben-David et al. [3] and independently Poizat [33] gave a more elementary 

proof. 
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2. Preliminaries 

2.1. A word on model theory 

We assume some familiarity with first-order logic. However, we recall a few defi- 

nitions and facts. For more details and any unexplained notions we refer the reader to 

[18] or [31]. 

In this paper, M denotes a first-order structure in a language 3 (we always assume 

that equality is in 9). A subset X of Mn is said to be definable if there is some 

formula &xi , . . ,x,,) (of 2) with parameters in M such that X is the set of elements 

a EM” such that A4 + &a). If A is a subset of A4 we say that X is A-definable if X 

is definable with a formula with parameters in A only. 

Let A4 <N be an extension of _‘2?-structures. Such an extension is said to be elemen- 

tary if every sentence of 9 with parameters in A4 which is true in N is also true in A4 

(this implies that A4 and N have the same first-order theory). Note that if a first-order 

theory T admits elimination of quantifiers, then every extension between models of T 

is elementary. 

Let 2 be an infinite cardinal. M is said to be A-saturated if for every subset A of M 

of cardinal </z and every positive integer n the following holds: every set of formulae 

with parameters in A and with free variables xl, . . . ,.q, which is finitely satisfiable in A4 

is satisfiable in M. For example, R (in the language of ordered rings) is not No-saturated 

because the set of (parameter-free) formulae {.x > IZ / n 20) is finitely satisfiable in R 

but R is archimedean. On the other hand, it is an easy exercise (assuming elimination 

of quantifiers) to show that @ (in the language of rings) is NI -saturated. 

The point is that we can find /,-saturated structures “everywhere”. More precisely, 

if A4 is an _Y-structure and ,? an infinite cardinal then M has a ),-saturated elemen- 

tary extension. Moreover, any ),-saturated structure N is jVf-universal. This means that 

if M is another Y-structure of cardinal ~2 with the same first-order theory as N, then 

there exists an elementary embedding of A4 into N (i.e., an injective morphism in the 

sense of _Y of A4 into N such that the image of A4 is an elementary restriction of N). 

Some of the results of this paper which concern real-closed fields can be general- 

ized to arbitrary o-minimal structures that admit (effective) elimination of quantifiers. 

For o-minimal structures we refer the interested reader to [30, 19, 381. Let M be an 

Y-structure and assume that 2? contains a binary relation < that is interpreted as a 

linear ordering. M is said to be o-minimal if every definable subset of A4 is a finite 

union of intervals in M (as usual we assume that < is dense and without extremity). 

By elimination of quantifiers, real-closed fields (in the language of ordered rings) and 

ordered Q-vector spaces (in the language of ordered abelian groups) are o-minimal. 

Let A4 dN be an elementary extension. If M is o-minimal then so is N (this is not 

obvious). Assume M to be o-minimal. Let a be an element of N, then a defines a 

cut of M: (C;;Cz) where C;={b~Mlb<a} and C~~={b~M)b>a}. The ele- 

ment a is said to be rational over A4 if C; (and C;) is a definable subset of M. By 

o-minimality, if a is rational over M then Cl; and C,’ are intervals. Then, the standard 
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part of u is the right extremity of C,; (-cc if C;r is empty). We denote this element 

of M U {-x,+x} by .~(a). A4 is said to be Dedekind complete in N if every a tN 

is rational over M. M is Dedekind complete if M is Dedekind complete in every 

elementary extension of M. It is easy to see that A4 is Dedekind complete iff every 

nonempty majored (minored) subset of M has a supremum (infimum) in M. 

2.2. hfodels of’ computation 

This subsection is a summary of the foundations of the theory of complexity for 

computation over “arbitrary” structures. Of course some knowledge in standard com- 

plexity theory is not useless (a classical reference for this subject is [l]). However, if 

one is mainly interested in nonuniform complexity classes it is not necessary to know 

what an algorithm is. 

Let M be a structure in a finite first-order language -9. For simplicity, we assume 

that _Y contains two constant symbols denoted by 0 and 1 which are interpreted by two 

distinct elements of A4 (if there are no such constants we add them, and if possible 

we choose these two elements in a canonical way). We denote by M” the set of 

tinite sequences of elements of A4. A problem X of A4 is a subset of M‘. Let t(n) 

be a function from N into N*. TIME,$,(t) denotes the class of problems X which 

can be decided in time O(t(n)) by a machine over M (essentially a Turing machine 

which manipulates elements of M and which can apply the functions of 9’ and the 

characteristic functions of the relations of 9). Thus, X E TIME\,(t) if and only if 

there is a machine over M which, given a finite sequence (a 1,. . . . a,, ) of M, outputs 1 

if (ui . . . . . ~,,)EX and 0 if (ai ,..., a,,)QX after O(t(n)) elementary operations. If .N 

is a machine over M then JZ may use a finite number of elements of M not named 

by constant symbols of 9. These elements are the pammeters of &’ (in particular, 0 

and 1 are given for free; they are never considered as parameters). If k is a positive 

integer, we denote by TIME/I,(t) the class of problems decided by a machine working 

in time O(t) with at most k parameters in its program. Note that the word constunt 

has sometimes been used instead of the word purunwter. We prefer the latter since for 

us a constant is an element of M named by a constant symbol of K’. As usual, we 

define Pi, (respectively, EXP,,) as the class of problems of M which can be decided 

by a machine over M working in polynomial (respectively, exponential) time. The 

corresponding classes for machines with at most k parameters in their programs are 

denoted by P:, and EXP,:, (throughout the paper, exponentials and logarithms are to 

the base 2). 

If M is infinite, in general (essentially if M is not recursively saturated), there exist 

problems of M which are decided by a machine over M but without bound on its 

running time (e.g., {(a) 1 a EZ} in (R, +. ., -, 0,l. < )). Since we are mainly interested 

in problems decided in bounded time we denote by A\! the class of problems X 

of M which are decided in bounded time (i.e., there exists a function t such that 

X E TIME,\,(t)). A large subclass of A ,tf can be characterized using only the standard 

notion of computation: a problem X of M is decided in time bounded by a standard 
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recursive function if and only if there exists a sequence of quantifier-free formulae 

(~n(~l,...,~,,~~,...,~k))n~~ (k is fixed) and an element CI l Mk such that: (i) there 

exists an algorithm (in the standard Turing machine model) which produces the & and 

(ii) X n M” = {u EM” (A4 + $,(a, g)}. We also define the class AM of problems of 

M which are decided by “nonuniform algorithms working in bounded time” as above 

but without imposing condition (i). A M can be also defined as AM/~;, the class of 

problems decided by a machine over M which works in bounded time with the help of 

a boolean advice function f E 9 = {f : N ---f (0, I}“}. It is also useful to introduce 

the class of problems which are (quantifier-free) definable over M. This class is defined 

in the same way as AM except that the & can be arbitrary (quantifier-free) formulae 

with parameters in M. 

To define the nonuniform counterpart of P (and EXP) we recall from [14, 321 the 

notion of circuit in the sense of M. This will be useful for a number of reasons. First, 

we have to add a selector to M. A selector for M is a function S: M3 +M such 

that S(O,y,z)=y, S(l,y,z)=z and S(x,y,z)=t(x,y,z) for x60,1 where t is a term 

of 9. Sometimes a structure M has a selector: this means that there exists a term 

s(x, y,z) of 9 with the above property (for example, if M is a field one can always 

take s(x, y, z) = (1 -x)z +xy. If M does not have a selector (e.g., (R, +, -, 0, 1, < )) we 

add to the language of M a new function symbol S with the above interpretation (one 

can take t(x, y,z) =x; note that since S is @definable in M without quantifiers, from 

the point of view of model theory, M with S is the same thing as M without S). We 

denote by 5?* the new language. A circuit C (in the sense of M) is a finite acyclic 

directed graph (where the vertices are called gates and the edges are called arrows) 

labeled by variables and symbols of 9* in the following way: 

(i) Since C is acyclic, there are gates without incoming arrows: such a gate is 

labeled by a constant of 9 or by a variable x1 ,x2,. .; moreover, gates labeled by 

variables are called input gates and are ordered (we use the notation C(xi,. . . ,x,) to 

say that the input gates are xl,. . . ,x,). 

(ii) A gate with incoming arrows receives r arrows where r is the arity of a symbol 

of 9: and it is labeled by such a symbol; moreover, the incoming arrows are ordered 

and if the gate is labeled by a relation we say that the gate is a test. 

(iii) Gates without outgoing arrows are called output gates and they are ordered. 

Note that since C is acyclic, there are output gates. The size of C, size(C) is the number 

of gates of C. Let C(xi, . . . , x,) be a circuit in the sense of M with m output gates. 

Then C(xl, , . ,xn) computes in an obvious way a function fc : M” + Mm (here we see 

that we need to order the input and output gates and that we need to order the incoming 

arrows since the operations/relations of M are not necessarily commutative/symmetric). 

Indeed, to each gate we can inductively associate a function of the input variables in 

the usual way (a test gate labeled by a relation R return 1 if M + R(al, . . , , a,) and 0 

otherwise). 

In what follows all our circuits are “decisional”. This means that there is only 

one output gate and that this gate is a test. Thus, a circuit computes a function 

fc: M” + (0, 1). Indeed, if C(xl , . . . ,x, ) is a circuit and a E M”, we say that A4 + C(a) 
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if ,fc(a) = 1. Circuits are compact forms of quantifier-free formulae. If &XI,. . ,x,) is a 

quantifier-free formula of 2, then there exists a circuit C(xl, . . ,x,) of size bounded by 

the size of 4 such that for all a EM”, M + C(a) if and only if A4 k $(a). Conversely, 

if C(x,,. . ,n,,) is a circuit, then there exists a quantifier-free formula $(x1,. . .x,,) such 

that for all a EM”, M /= C(a) if and only if M + $(a). Note that the size of 4 is in 

general not polynomial in the size of C. However, by quantifying the gates one can 

construct in polynomial time (in the standard sense) an existential formula $(.?) which 

is equivalent to C. 

If X is a problem of M, (C,l(xl,. ,x,!, ~1,. . , y~))~~o is a sequence of circuits 

with k fixed, and c( E M”, we say that (C,,(x, CC)),,~~~ solves X if for all n 2 0, for all 

a EM”, a EX iff M k C,(u, u). Of course, the components of SI are the parameters. 

Then, we have the following result: if X ETIME~~(~) then there exists a sequence 

of circuits (C,,(x,. . ..,x,,yl,..., Y~))~~o and cc~M” such that (C,,(-u,a)),,2a solves X 

and such that there exists a standard algorithm which outputs the circuit C,,(?c, y) in 

time p( Ot(n )) where p is a polynomial depending on the model of computation (note 

that this implies that the size of C,, is at most p(Ot(n))). Note that the converse 

of this result is also true: there exists a polynomial algorithm over M which, given a 

parameters-free circuit C(x), . . . ,x1,) and a tuple (a,, . , CIZ,~), accepts if and only if M + 

C(u). Thus, we can define the classes Pti and EXE’\, using circuits and the standard 

notions of polynomial and exponential algorithms. To define nonuniform complexity 

classes we proceed as follows. We say that X E SIZE:,(t) if there exists a sequence 

of circuits (C,,(x,, . .,x,,, ~1,. . , Y~)),~~c, and r EM” such that (C,l(x, CI)),,~(, solves X 

and such that size(C,,)<O(t(n)). Then, we define SIZE,\,(t), LFD,[,, E’J, and LEx& in 

the obvious way. Again, one can define some of these classes using boolean advice 

functions. For example, &,f is the class PLI/polybool where polybool is the class of 

function f : W + (0. l}” such that the length of ,f(n) is polynomial in n. 

We turn our attention to nondeterministic classes. One can define the class NP\, as 

follows. A problem X is in NPM iff there exist a polynomial p and a problem Y E Pi, 

such that for all IZ 2 0, for all a E M”, a E X iff there exists b E Mf’(“) such that (u. b) E Y. 

In the same way we can define Np~t.21, NA,V and NG,,, (one has to be a little more 

carefully for defining, say, NEXP,i, ). In the standard case, obviously we have NA = A. 

This is no longer true in the general case. In fact, it is easy to see that a structure A4 

satisfies NA,b, = A,w (respectively, NA,\, = A,u) iff there is a tuple c( of elements of M 

such that the theory of M with new constant symbols for the components of r admits 

elimination of quantifiers (respectively, effective elimination of quantifiers). We denote 

by SAT,,, the problem of satisfiability of quantifier-free formulae with parameters in M 

(SATw can be viewed as a problem of M after an adequate coding of quantifier- 

free formulae). The problem SAT,l, is NP,tf and NP. ,I complete. This implies that 

Pw = NP,, iff there exist a tuple x of M and a polynomial algorithm in the sense 

of M which, given an existential formula $(2) computes a circuit C( X, _?) such that 

$( 2) is equivalent to C(2, r) (for 5?,{ = N& it suffices that C be of size polynomial 

in the size of @). Thus, if I$! = NPv or & = NL? ,,, there is a tuple CL of elements of M 

such that the theory of M with new constant symbols for the x admits elimination of 
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quantifiers. This leads the theory of complexity over arbitrary structure to consider with 

a special attention structures M which admit quantifier elimination. However, it seems 

that the main gap in the theory is that there is no example of a structure M in a,finite 

language with PM = NPM or PM = N~M. Note also that results of model theory can be 

applied: (i) if an infinite field K in the language {+, -, ., 0, 1, XI,. . . , c(k) where the Xi 

are constants admits quantifier elimination then K is an algebraically closed field; (ii) if 

an ordered field K in the language { f, -, ., 0, 1, <, CII , . . , LYA } where the x; are constants 

admits quantifier elimination then K is a real-closed field; (iii) if an infinite ordered 

abelian group G in the language {+, -, 0, <, xl,. . . , ax} where the c(; are constants 

admits quantifier elimination then G is an ordered Q-vector space of dimension 3 1 

(see [25] for (ii) and (i); (ii) and (“‘) 111 are direct consequences of [30, Theorem 2.3 and 

2.11). Thus for classical structures we know where to look for and since the quantifier 

elimination algorithms have been studied in detail, one may hope to prove something 

about the question P = ? NP. Nevertheless, for the above structures this main question 

is still open (and it is conjectured that the answers are negative). There are at least 

two main differences between the classical work on algorithmic quantifier elimination 

and the question Ph, = ? NPv. The first one is that for the question Pz, = ? NPu we 

can use algorithms in the sense of A4 for eliminating quantifiers and thus use elements 

of M. The second one is that for the question Pb, = ? NPbf the eliminating formula can 

be a circuit which can be more compact than a quantifier-free formula. 

Now we want to define the polynomial hierarchy. First of all, note that a prob- 

lem X of A4 is NPw iff there exists a sequence of existential formulae (+,,(-ul,. . . .x,~, 

YI,. , Y~)),,~o and a EM” such that (&(x, a)) ,ra~ solves X and such that there exists 

a standard algorithm which constructs the formulae &(_Y, y) in polynomial time. This 

comes from the fact that there exists a polynomial algorithm (in the standard sense) 

which, given a circuit C(XI , . . ,x,,), constructs an existential formula 4(X) which is 

equivalent to C. Let h > 1 be an integer. Then we can define C,,P, (respectively, 

ZZ&v) as the class of problems X of A4 which are solved by a sequence ($,!(x, z)),,~o 

of Cl1 (respectively, _U/,) formulae of 9’ with parameters z E Mk such that $,,(n, y) can 

be constructed by a standard polynomial algorithm. We set dhP~ = C,,P,v n IZ& and 

PH,v is the union of all the ~,PM. We define the alternating polynomial time class 

PAT.v in the same way by requiring the formulae $,, to be in prenex form but without 

bounds on the alternation of quantifiers.The usual inclusions hold and these definitions 

are in accordance with the definitions using machines over M. One can also define 

the nonuniform counterparts of these classes: C,,Oqv, I7hpb,, PI-U,,, and UDAU,,,, by just 

imposing a polynomial size condition on the +,, in the place of the standard algorithm. 

One can be surprised by the importance we give to nonuniform complexity classes. 

There are a number of arguments in [14] in favor of considering nonuniformity. First, 

recall that if the structure A4 contains the reals with its addition and usual order, then, 

in general, there is no difference between the uniform and the nonuniform setting (for 

boolean advice) since we can encode the advice function in the digits of a real number 

and retrieve these advice using + and <. For example, for such a structure Phf = p,v 

(and thus NPM =Nphd), EXPv = IEX~,,J and A,, = AM (and the same thing holds for 
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all the complexity classes defined above). Secondly, one can prove a Karp-Lipton 

Theorem for arbitrary structures (see Section 2.4). Finally, in this paper we need to 

work with nonuniform complexity classes. For example, for the ordered field of real 

algebraic numbers P/const # P for somewhat obvious reasons (see Propositions 3.15 

and 4.17). 

2.3. A model qf parallel computation 

As in the previous subsection we assume that all our circuits have only one output 

gate and that this gate is a test (thus, a circuit compute a function into (0, l}). We 

recall that the depth of a circuit is the length of a maximal directed path. Sequential 

time corresponds to the size of circuits. A natural way to define parallel time is to 

use the depth of circuits (see [2, Ch. X] for the standard case). However, to obtain 

a “concrete” model of computation (as opposed to the nonuniform one) one has to 

introduce some uniformity condition on the sequences of circuits. 

Definition 2.1. Let X be a problem of A4 and d a function from N into N’. WC say 

that a problem X is DEPTH,il(d(n)) if there exists a sequence of circuits (C,,(XI,. ..Y,,, 

1.1.. . ,~:a )) ,,$, (1 (k fixed) and a k-tuple IX of M such that (C,,(x. x)) solves X and such 

that the depth of C,, is <O(d(n)). 

We say that X is UDEPTH,,f(d(n)) (respectively, WDEPTH\,(d(n))) if, moreover, 

there exists a standard algorithm in SPACE(d(n)) (respectively, in SPACE(d(n)) with 

advice of size O(n(n))) which on input 1” outputs C,,. 

By definition, X is pAIW,%, if X is DEPTH,$f(n’ ) for a constant c. In the same 

way, we define PAR,\! and PAR,,! with UDEPTH,,, and uDDEPTH,\f in place of 

DEPTH,,f(n’ ). and we define p[Expll. PEXPw and PEXPt, with exp(n’ ) in place 

of n’. 

The definition above is not the same as the definition given in [&lo]. However, it 

is not very difficult to show that the PAR defined here is equal to the PAR defined in 

the above cited papers. 

With this definition, in order to show that a problem is in PAR one must first 

exhibit a family of polynomial depth circuits that solves the problem, and then show 

that this family can be constructed in polynomial space. We will often use a different 

characterization: a problem is in PAR if it can be solved in polynomial time by a 

parallel machine using an exponential (2”‘)” ’ ) number of processors. It can be shown 

as in the standard case that these two definitions are equivalent. See [5] for a formal 

development on parallel machines over the reals, and [2] for the standard case. The 

second definition is convenient because of its more algorithmic flavor. Thus, in order to 

show that a problem is in PAR, we will just describe informally a parallel algorithm 

that solves it in polynomial time; and to show that it is in PAR, we will describe 

a parallel algorithm that solves it in polynomial time with the help of a polynomial 

amount of boolean advice. 
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Note that a circuit of depth d has size at most exp(cd(n)) where c is a constant 

which depends only on 2. Thus the usual inclusion between parallel time d and 

sequential time exp(d) holds. If M is a real-closed field which contains the reals [w, 

one can prove that UJDEPTHM(~(~))=UDEPTHM(~(~)). Note that [IDARlw is strictly 

contained in PAL& (and the same thing is true for every real-closed field). Indeed, we 

always have that L&7( PA[WM) is the set of all problems in (0, 1 }” and the proof of 

the main result of [lo] implies that gp(lnAR~) is PSPACE/poly (if %? is a complexity 

class over M, G&?(%?M) denotes the set of problems in (0, l}” which are %?M). One 

might think that the class PALQ does not have any interest, but note, for example, 

that PA&Q 5 EXPw and that the separation of PARR and EXPR given in [S, 91 is 

shown with PA&Q in the place of PARR (which gives a stronger result). 

We recall from [9] the relationship, for a real-closed field, between all the classes 

defined thus far: P C NP C PH C PAR c EXP C PEXP, PAR c PAT C PEXP. The rela- 

tionship between EXP and PAT is not known (C means the inclusion and that we do 

not know if the inclusion is strict). We have the same situation for the nonuniform set- 

ting (with PAR in the place of PAR and PEXP in place of PEXP) but we can strictly 

insert [14A[W: . . . PAR c PA 1w c [EXP . . The inclusion PH C PAR and PAT C PEXP 

come from the “fast” algorithm of elimination of quantifiers for real-closed fields (see 

Section 4.1 for details). 

The situation for the reals without multiplication (which leads to consider ordered 

Q-vector spaces) is quite similar. The above inclusions and strict inclusions hold as 

well and no more is known. 

2.4. A KarpLipton theorem for arbitrary structures 

We recall that the polynomial hierarchy is said to collapse at level h where h 2 1 

is an integer if any one of these three equivalent statements holds: z:hP~ = LIhPM, 

Ch+i PM = ChPM, or nh+lP~ = UhPM. Recall that for the standard case, if P = NlP then 

the uniform (standard) polynomial hierarchy collapse at its second level (see [20]). If 

M is an arbitrary structure we define P~/poly as in the standard case. Here poly is the 

set of functions f from N into M” such that the length of f(n) is polynomial in n 
(for the standard case see [l, Ch. IV]). Obviously, LQ C P~/poly and this inclusion is 

in general strict (if M is infinite). 

Theorem 2.2. Let A4 be an arbitrary structure. If NPM G P~/poly then the (unifarm) 
polynomial hierarchy over M collapses at the third level. 

Proof. Assume that NPM C P~/poly and let X E NPM. By definition, there exists a 

polynomial p and Y E PM such that 

VXEEM” [xEXti3yEMP(“)(x,y)E Y]. 

Since NPM C P~/poly, there exists another problem Z E PM, a polynomial q and a 

sequence a, E Mq(“) such that 

Vx’xEM” [xEXw(.x,a,)EZ]. 
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Note that the set of a EMU that are “good advice” can be defined by the formula 

Vx EM” [(X, u) E z @ 3y E A4P(“)(X, y) E Y]. 

In prenex form this gives 

Vx E M" Vz E Mp'"' 3y l M”(“+,y.z,u) E W, (2) 

where the polynomial-time set W is defined by 

We are now ready to prove that C;P, = Ll3%. Thus, let L E C;P,,,. By definition, for 

XEM”, .xeL iff 

where X E NPb[ (here each quantified variable is in M p(‘1) for some polynomial p; from 

now on this is omitted for notational simplicity). We can apply the remarks above 

to X. Thus there exists Z E PV such that for any x E Mx, x EL iff for any a which is 

a good advice for X, 

324, vu2(x,ul,u2,u) EZ. 

Using the characterization of good advice given by (2), this is equivalent to 

vu [Vx’. ZL;, upzz3y(x’, 24;) zl;, y,z, u) E w =+ 3UlhQ(-~, UI 7 u2.u) E 4. 

where W E qzf. This is equivalent to 

vu[3U,vu~(X,U,.U2.u) EZV 3u3~vy(u~Y,z,~) e w. 

where U stands for x’, ~‘1, ui. Finally, this is equivalent to 

vu 3u,.u,zvU~,y[(x,u,,u2,u)EZV(X,y.z,u)~W]. 

Hence L E Z73PII. 0 

3. The abstract theory 

In this section, M will be a first-order structure in a finite language 2’ and N will 

be in general an (elementary) extension of M. % will be a “good” complexity class. 

We do not want to give a formal definition of this notion here. A good complexity 

class will simply be one of the global complexity class defined in the preliminaries 

such as P, p, lFDAR NP,. . , A, A. 
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3.1. Restrictions and extensions 

The restriction X of a subset Y C N” to a smaller structure M <N is defined in the 

natural way: X = Y nA4”. The restriction of a problem Y C N” is X = U,,,( Y nM”). 

If X is a restriction of Y we say that Y is an extension of X. In general a given set or 

problem has too many different extensions for this notion to be useful. We will only 

consider extensions of definable sets and problems, and will usually require that Y be 

defined by the same quant$er-free formula(e) over N as X over M. This is justified 

by the following obvious observation. 

Lemma 3.1. Let X CM” be defined by a jirst-order formula CJ~ over M. Let Y C N” 

be dejined by the same formula in an extension N of M. If 4 is quanttjier-free, 
X=YnkP. 

This is no longer true for quantified formulae. For instance, the formula Vxx2 # 2 A 

y = y defines X = Q over Q, but defines the empty set over @. Even with quantifier- 

free formulae, the extension may not be unique. For instance, the set X = Q can be 

defined by the formula x =x over Q. The corresponding extension to N = @ is B = @. 
The same X can also be defined by the formula x2 # 2. The corresponding extension 

now is C\{ - 4, fi}. These difficulties disappear if M <N is an elementary exten- 

sion: one can now use quantified formulae, and the extension of a definable problem 

is uniquely defined. 

Lemma 3.2. Let X CM” be defined by a formula 4. If N is an elementary exten- 
sion of M, the subset X’ C N” defined by 4 interpreted in N is an extension of X. 
Moreover, X’ is the only extension of X to N that can be defined by a ,formula with 
parameters in M. 

Proof. It follows immediately from the elementary extension hypothesis that X is the 

restriction of X’ to M. 
Let X” c N” be defined by a formula $ with parameters in M. If X” is an extension 

ofX, it follows from elementary equivalence that X is defined by $. Thus the following 

formula holds: 

k EM” 4(x) H $(x). 

Again by elementary equivalence, this formula must also hold in N, hence X’ =X”. 

Note that the above lemma holds (“by definition”) for problems. Thus, if X is a 

definable set or a definable problem of M and if N is an elementary extension the 

extension of X to M is well-defined. Note that if X is a problem in $?,v, then it is 

definable. Thus we have the following obvious lemma. 

Lemma 3.3. Let M <N be an elementary extension and let X be a problem of M in 
%‘)v. The extension of X to N is %?N with the same algorithm that solves X over M. 
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Let A be a subset of N. We denote by %\;(A) the class of problems which are in %!l 

with a machine (or a sequences of circuits) which uses parameters from A. If M <N 

is an elementary extension and if Y is a problem of N definable with parameters from 

M, then it is easily verified that the restriction of Y to A4 is definable by the same 

family of formulae that define Y. Thus we have: 

Lemma 3.4. Let M <N be un elementary’ extension and let Y he a problem qf 

% 1 (M). The restriction qf Y to M is V j 2, with the same algorithm thut sakes 1’ 

orer N. 

Now we state a general version of an upward transfer for question of the form ‘t = ? 

%’ due to Michaux [28]. 

Lemma 3.5. Let M <N be an elementary extension, %’ a good complexity class and 

9 u good deterministic complexit?~ class such that 9 C % C ‘G’ jar N and M. Assume 

that there is a problem S in g;,(M) tchich is %\ -complete under 2.2’~reduction SMA 

that the reduction qf a problem in %_I (M) to S can he performed w’ith parumeters 

in M (i.e., hi, a 9\(M)-reduction). Then, the restriction qf S to M is %:,-complete 

under ‘r\,-reduction and ly %.u = %i, then %‘,b = % \. 

Proof. Since S is in g;‘(M), Lemma 3.4 implies that the restriction of S is in ‘G’,,. Let 

X be a problem of %(\,. The extension Y ofX to N is in ‘G’,.(M) by Lemma 3.3. Thus 

there exists a 9, (M)-reduction of Y to S. Then, this reduction gives “by Lemma 3.4” a 

!I \I-reduction of X to the restriction of S to M. We have shown that the restriction of S 

to M is % :,-complete under Q,+f-reduction. Now, assume that % ,f = %j,, The restriction 

of S to M is then ‘t,u and thus S is gV by Lemma 3.3. By %:.-completeness of S, 

% \ = % \, I< 

Let us recall that the formula satisfiability problem SAT,)1 is NP.$,-complete in any 

structure M. Moreover, SATu is clearly in NP,21(0) and the proof of the NP,w-hardness 

of SAT\, shows that if X E P,,, then there is a PLf(0)-reduction of X to SAT,,! (the 

same is true if we replace P by p). Note also that if M <N is an elementary extension, 

then the restriction of SAT,V is SAT,, and the extension of SAT,tr is SAT\. 

Corollary 3.6. [f N is an elementar~~ extension of M, P,,, = NP,%, implies P,v = NP, 

Note that the following complexity classes have a complete problem (under 

P-reduction) with the same properties as SAT: Cl, \I, 17/,.,1,, PAR.\!, EXP,tf, PAT,,, 

3.2. ‘t-saturation 

Let us recall the definition of /const complexity classes. If k t N, a problem X C M” 

is in %‘,l’k if there exists Y E % ,, (the “corresponding problem”), such that for every 

17 3 0 there exists x,! E M” satisfying 

V-y t M C ” [XEXH (x,x,,) E Y]. 
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Let V~/const = U,“=, WM/k be the union of these classes. If 1 E N and V is a good 

complexity class, we denote by ‘%‘h the class of problems which are %? with an 

“algorithm” using I parameters from M. For any M, the inclusions Vi, C %7$/k and 

VM & %‘,M/const clearly hold. If V,v = wM/const, we say that M is w-saturated. 

The following proposition gives examples of g-saturated structures. It is essentially 

due to Michaux [28] as some of the ideas of this subsection. The presentation is slightly 

different, however, and there are additional results. 

Proposition 3.7. Every N1 -saturated structure is %?-saturated. 

Proof. Let X E W&/k, and let YE g& be the corresponding problem. For every j E N, 

let 4,i(~) be the formula 

where the free variable 3: lives in Mk. By definition of %$,/k, any finite subset 

{h(v), . . . , h(y)) of the family {MY); n E N} is satisfied by CI,,. Since A4 is 

Ni -saturated, this implies that there exists CY E Mk satisfying the whole family. Hence 

for any x E M”, x E X if and only if (x, E) E Y. This shows that X E VL. 0 

If X is in %‘M/const, then X is definable (with parameters in M), thus if N is an 

(elementary) extension of M, the extension of X to N is well-defined. We can be more 

precise. 

Lemma 3.8. Let A4 <N be an elementary extension, k E N and let X be a dejnable 
problem of M. Then, X is in %7:/k if and only if the extension of X to N is in Vi/k. 

Proof. Assume that X E %$,/k, and let YE VM ’ be the corresponding problem given 

by (1). Let X’ and Y’ be the extensions of X and Y to N. Since N is an elementary 

extension, it follows from (1) that 

Hence X’ E PLlk. 
Conversely, assume that the extension X’ of X to N is %7:/k and that X is definable 

by a sequence ($n),I a~ of first-order formulae with parameters in M. Since N is an 

elementary extension of M, the sequence ( &)naa defines X’. Moreover, there exists 

Y’ E %$, such that for all n > 0, the following formula holds: 

3~ E Nk Vx EN” [&,(x) @ (x, a) E Y’]. 

Since Y’ E %,t, Y’ is B-definable and the restriction Y of Y’ to A4 is %?L and B-definable 

with the same formulae. Thus, by elementary equivalence, the formula 

3c?EM” ~xEM~n[~,(x)~(x,cc)EY] 

must hold for all n 30. Hence X E 55$,/k. 0 
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We can characterize %~/const in terms of extensions. 

Proposition 3.9. X is in gjM Jconst if und only ijX is dgjinahle and there exists un 

rlementaq~ extension N oj’M such thut the extension ojX to N is c&,v, 

Proof. Assume that X E %,M/const. We know that M has an NI -saturated elemen- 

tary extension N. By Lemma 3.8 the extension X’ of X to N is %,\~/const and by 

Proposition 3.7 X’ is %.v. 

Conversely, assume that X is a definable problem of hil such that there exists an 

elementary extension N of M such that the extension X’ of X to M is in %{., then X’ 

is in @,lk and by Lemma 3.8 X is in %‘i),/k. J 

We can also characterize V-saturation in terms of “elimination of parameters”. But 

here we need to work with a theory T (say the theory of M ). 

Proposition 3.10. Let T be a jrst-order complete theory (in u finite lunguuge). The 

fXlowing properties are equivalent: 

(a) jtir all M + T, %,v/const = %:$I; 

(b) for cl11 N + T und all elementar), restrictions M ?f’ N, iJ’ Y is % v and d@wble 

Icith parameters in M then Y is % v(M); 

(c) ji)r an NI-saturated model N of T and for cl11 elementary restrictions M of’,Y, if 

Y is S’,~: Lmd dejinable with parameters in M then Y is G&(M). 

Proof. The implication (b) =+ (c) is obvious. Assume (a) and let us prove (b). Let 

M < N be an elementary extension of models of T and let Y be in %,L. and definable 

with parameters in M. Then, the restriction X of Y to M is also definable and by 

Proposition 3.9, X is G&/const and thus % 11 by hypothesis. Since the extension of X 

to N is Y, by Lemma 3.3, we see that YE G!&(M). 

Assume (c) and let us prove (a). Let N be an NI -saturated model of T and let X be 

a problem in %,tf/const. Then, X is definable using only countably many parameters 

in M and by the Tarski-Lowenheim-Skolem theorem M has a countable elementary 

restriction MO which contains all these parameters. Then the restriction X” of X to MO 

is in G&,,/const and the extension of Xc, to M is X. By Nt -universality of N, A40 can be 

elementarily embedded in N. Then, by Lemma 3.8 and Proposition 3.7, the extension 

Y of Xa to N is %,,,. By hypothesis, Y is in %,v(Mo). Thus X0 is % \!,I and it follows 

that X is %,i,_ 3 

Note that for the equivalence of (a) and (b) we do not need the completeness of 

T. Michaux has introduced the class PLI/const motivated by the following proposition 

(which holds at the nonuniform level). 

Proposition 3.11. If P,bf = P,V/const und N is an elementary extension of’ M. P\ = 

NP!v implies P,bf = NP,u. 
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Proof. SATN E PN if P:v = NP,v. As pointed out before Corollary 3.6, SATM is the 

restriction of SAT,V to M. Hence SAT,b, E P,M/const by Proposition 3.9 (SAT,v is 

B-definable). This implies that SATM E PM if PM = P,v/const, and thus that PM = NP,c, 

by definition of NP-completeness. 0 

Notice that in the above proposition we do not need the full force of the hypoth- 

esis. Assume that the theory of M admits elimination of quantifiers. We only need 

that PM/const fl AL C PM or even that PM/const n AL C P,v if the theory of M is de- 

cidable (i.e., if we have a standard algorithm deciding whether each parameter-free 

sentence in the first-order theory of M is true or false). Note that the proof of Propo- 

sition 3.7 implies that if M is w-saturated (respectively, recursively saturated) then 

P,V/const n /Yzl = P,,,, (respectively, PM/const n AM = PJk, ). One can also characterize 

the above equalities in terms of extension and in terms of elimination of parameters. 

The proof of the above proposition shows that if MGN is an elementary extension 

and if PN =N~,v, then SAT,v E PM/const and thus NI14,v C pjLI/const. Since, obviously, 

PM/const C P~/poly, Theorem 2.2 gives: 

Proposition 3.12. Let N be an elementary extension of M. P,Y = NP;y (or P,v = NIP)\, ) 

implies that the untform polynomial hierarchy for M collapses at the third level. 

One can generalize Proposition 3.11 as follows (we do not need complete problems). 

Proposition 3.13. Let V be a good complexity class such that for all elementary 

extension N of M, %?x c V,$. If VM/const = %? bf and if N is an elementary extension 

of M, Wn = Vh implies WM = V,lW. 

Proof. Let X be a problem of %‘h. Since G& is good, X has an extension X’ to N 

which is +$,, and thus go by hypothesis. By Proposition 3.9, X E %?,v/const and thus 

by hypothesis X E VM. 0 

Another motivation is the existence of a Ladner-type theorem in P-saturated struc- 

tures. 

Fact 3.14. Let M be a structure such that NPIZ,I g PM/const. Assume that the theory 

of M is decidable. Then there exist problems in NP~\(P,v/const) which are not NP,+,- 

complete. 

In particular, there are non-NP,v-complete problems in NP,v\P,,,, if M is P-saturated, 

has a recursive decision problem, and Pn;l # NPM. 

For a proof the reader can consult [3]. The first Ladner-type theorem in the BSS 

model was established in [26] for M = @. In that paper, the authors first showed the 

result for d using the countability of d. Their argument can be generalized for some 

other countable structures. For example, it is possible to prove a Ladner-type theorem 

for the real algebraic numbers. However, the case of the ordered field of the reals is 
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open. Both [3, 261 follow closely Ladner’s original proof [24] for the standard case 

M = (0, l}. 

Note that one can obtain a nonuniform version of Theorem 3.14 (replace P by p 

and NP by NP). Moreover, in this case there is no need for the decidability of the 

theory of M. 

3.3. Some counterexamples 

If R is a countable real-closed field or a countable ordered Q-vector space, then 

there are problems in Pi/l which are not AR. This can be explained as follows. Let 

B be a subset of M. A (quantifier-free) k-type of A4 over B is a consistent set of 

(quantifier-free) formulae with parameters in B in k fixed free variables, maximal 

for these properties. Equivalently, a (quantifier-free) k-type of M over B is the set of 

(quantifier-free) formulae with parameters in B satisfied by a k-tuple a of an elementary 

extension N of M. We denote by tp(a/B) (and @‘(a/B)) these sets of formulae. Note 

that such a set of formulae is finitely satisfiable in M. 

Proposition 3.15. Assume that M is N countable structure wlith uncountably man!. 

yuant$er+ee k-types over 0. Then, there are boolean problems in P&Jk lvhich we 

not A,$,. 

Proof. Let cr(s, , . . . ,xk ) be a quantifier-free k-type of M over 0. Then, after an adequate 

encoding of quantifier-free formulae, CJ can be viewed as a boolean problem of M. Let 

n be an integer. There is a finite number of quantifier-free formulae with variables 

~1.. . ,x-i of size <n. Thus, since CJ is finitely satisfiable in M, there exists a,, in M” 

such that for all quantifier-free formulae +(.x1,. .xl; ) of size <n, $ E 0 iff M + $(a,, ). 

Since, we can decide whether M + $(ali) in time polynomial in the size of $, we 

see that CT is P&/k. Now, we can conclude by a simple cardinality argument. If A4 is 

countable there is at most a countable number of problems in A,lf. Thus, if we have 

uncountably many quantifier-free k-types over 0, most of them are not A,\,. 7 

Let R be a real-closed field. Then, R has uncountably many quantifier-free l-types 

over 0. Indeed, consider a real-closed extension RI of R containing R (such extension 

is elementary by elimination of quantifiers for real-closed fields). If a and b are in 58, 

then a = b iff tp”’ (a/B) = tpqf (b/O). Th e same argument works for ordered Q-vector 

spaces. 

Let B be a.finite subset of M and let cr be a quantifier-free k-type of M over B. Then, 

as in the proof above we can view cr as a problem in Pl,lk where 1 is the cardinality 

of B. One can also associate to cr the set of ‘decisional’ circuits in k variables with 

parameters in B equivalent to a quantifier-free formula of 0 (i.e., a circuit k-type of 

M over B). This problem is in P,i,/k and is a priori more difficult to solve with a 

fast algorithm over M. It seems to us that the above family of problems gives good 

tests for the questions P!,, /const = ? P ~1, LFDjLf/const = ? P c,, . . , Au/const = ? A \I and 

A \,/const = ? A.\, 
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Let T be a complete theory which admits elimination of quantifiers. A (quantifier- 

free) k-type of T over 0 is a (quantifier-free) k-type of a model A4 of T over 0 (since 

T is complete such a set is finitely satisfiable in every model of T). By elimination 

of quantifiers, a type is determined by its quantifier-free part. Thus, if Ax/const = Ah4 

for a countable model of T, T has countably many types over 0. A theory with this 

property is called small by a model theorist. A theory is small if and only if T has 

a countable o-saturated model Mi (which is unique up to isomorphism). Moreover, a 

small theory has an elementary prime model MO: Ma is a model of T which can be 

elementarily embedded in every model of T (MO is unique up to isomorphism). Note 

that the above family of problems are obviously in P,u, and that all these problems 

(with B = 0) are, say, p,Vf for every model of T iff all these problems are PM,, . 

Now we construct an example where A/const = A but where P/const is not included 

in P. For this, we consider a countable version of the “arborescent” dictionary of [14]. 

The underlying set A4 is the disjoint union of the booleans (0, 1 } and the set of 

functions u from (0, 1) m into (0, 1) satisfying the following property: there exists 

n such that u is constant on the elements of (0, 1)” of size an. The language is 

constituted of two constants for the booleans and of three unary functions r (root), d 

(right) and g (left) which are the identity on the booleans, such that r(u) = u(0) (hence 

r(u) is a boolean) and such that d(u) and g(tl) are functions from (0, 1)” into (0, 1) 

defined by d(u)(x) = u(Ox) and g(u)(x) = u( lx). It is easy to see that the theory of 1w 

admits elimination of quantifiers. Moreover, it is not very difficult to show that if N is 

an elementary extension of M and if Y is a problem of N in AN, then the restriction 

of Y to A4 is AM (i.e., A4 is A-stable, see the next subsection). Thus, AM/const = AM 

by Lemma 3.9 (note that one can apply Proposition 3.15 to see that AMlconst #AM). 

We claim that every boolean problem is PM/const. Indeed, let X be a boolean problem. 

For any integer IZ we consider the element u, of M defined by: u,(x) = 0 if x is of size 

> n or if x @X, and u,(x) = 1 otherwise. Then, it is easy to construct in polynomial 

time a sequence of circuits (using the selector!) (C,,(x, y)) such that (C,(x, u, )) shows 

that X is in PM/const. On the other hand, since a given u in M contains only a finite 

amount of information, it is not difficult to prove that any boolean problem in p,w is 

in Plpoly. 

Now we give an example of a structure M such that AM/const # AM (and which 

admits elimination of quantifiers). The underlying set M is the disjoint union of N 

and of the set of ultimately constant sequences u on two fixed symbols c( and p. 

The language is constituted of two constants for the 0 and the 1 of N, of a unary 

predicate P which defines N, of a unary function s which is the successor function on 

N and the identity elsewhere, and of a ternary predicate R such that M + R(n,u,v) 

iff n E N, u and u are not in N and u(m) = v(m) for any integer m with 0 <m <n. 

Note that for y1 E N, R(n,xl,x2) defines an equivalence relation on M\N. It is not 

very difficult to prove that the theory of M admits elimination of quantifiers. Then, we 

consider a non ultimately constant sequence u on CI and fi (thus u GM). For a positive 

integer we consider the sequence u,, of M defined by u,,(m) = u(m) if m<n and by 

u,(m) = a otherwise. Then, we consider the problem Y defined by (al,. . . ,a,,) E Y iff 



0. Chapuis. P. Koiranl Annals of’ Pure and Applied Logic 99 (1999) 149 21 

R(s”(O), ai, a,, ). It is clear that Y E PM and that the problem defined by (a,, . , a,,) E X 

iff (al, . . . , a,, u,?) E Y is in Pk/l. We claim that X is not AM. The proof of this is left 

to the reader. 

The following result sheds some light on the above example. It also stresses the 

importance of definable equivalence relations. 

Proposition 3.16. Assume that the theory of M admits elimination of quant$ers. 

A.u/const = AM ij” and only zf for every integer k 3 1, every sequence (EII(.x, Y)),,~o 

of 0-dejinable equivalence relations of M” such that E,,+I refines E,, and jor every’ 

sequences (S,,),73~ such that S,, is a class of E,, and such that S,,+, 2 S,,, there exists 

a tuple p of M such that all the sets S,, are fi-definable. 

Proof. Assume that G,+,/const = A,M. Let fin be an element of S,. Then, (E,(x, ~,i)),i~o 

defines a k-dimensional problem in Aj,/k such that X n M” = S,,. Thus, this problem 

is in A,$, and this gives the conclusion. 

Conversely, let X be a problem in AL/k. There exists a sequence of quantifier-free 

formulae (&(x1.. ..,x~, yi ,..., ~k)),?~a and a sequence (/?,z)n20 of k-tuples of M such 

that $,,(x, Pnr) defines X n M” if m dn. For n 3 0, we consider the equivalence relation 

E,,( y, z) of Mh defined by the parameter-free formulae 

Let S,, be the equivalence class of P,, for E,,. Then, by definition of Abfk, we can apply 

our hypothesis. There is a tuple ,6 of M and a sequence of parameter-free formulae 

8,,(y, u) such that B,,(y, p) defines S,. Then, we consider the formula 

3~ E Mk &(Y, P) A 4,&, Y). 

By elimination of quantifier, the above formula is equivalent to a quantifier-free formula 

&,(x,/3). Clearly, the sequence of formula ($Jx,/~)),,~o shows that X is A,$,. U 

Of course, one can state a version of the above Proposition for AM. In light of this, 

one can probably construct a structure M such that Ab,!const = A.v and A.u/const # 

A,\{! 

3.4. A word on g-stability 

Let T be a theory (in a finite language), M a model of T and % a good com- 

plexity class. We denote by %‘?,\,/ext(r) the class of problems X of M which are 

the restriction of a problem Y E %!v of an extension N of M such that N k T. Ob- 

viously, %,w C: g3,/ext(7). We say that M is VT-stable if %$I = %,t,/ext( T) and we 

say that T is w-stable if every model of T is %?r-stable. We denote by %?bf/ext the 

class of problems X of M which are the restriction of a problem Y of an elemen- 

tary extension N of M (here the theory T does not play any role). We say that 

M is w-stable if V.M = V,u/ext. Let T’ be the theory of M. It is easy to see that 
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%?M c wM/ext & %‘,w/ext(T’) C ‘ZM/ext(T). A priori all these inclusions are in general 

strict. However, for example, if T’ admits elimination of quantifiers or if V is deter- 

ministic, then w,u/ext = VM/ext(T’). 

An immediate consequence of Proposition 3.9 is that if M is V-stable, then M is 
W-saturated. Let M <N be an elementary extension and Let Y be a problem of N in 

%?.V with a restriction X to M which is definable. In general, the extension of X to N 

is not Y and Y is not in general definable with parameters in M. In other words, the 

restriction X can be a drastically “different” problem than Y (the proof of Theorem 

4.27 provides some examples). However, things can sometimes work nicely: 

Proposition 3.17. Let M <N be an elementary extension and Y E %?A,. If Y is defin- 
able with parameters in M and if M is g-stable, Y is %,y(M). 

This follows from the %?-saturation of M and from Proposition 3.10, but there is a 

more direct proof. 

Proof. By definition of %?-saturation, the restriction X of Y to M is %‘M. By Lemma 3.3, 

the extension of X to N is glv(M). But this extension is Y since Y is definable with 

parameters in M. 0 

There are connections between V-stability and stability in model theory (a very im- 

portant part of model theory studied by Shelah and a number of mathematicians). These 

connections will be considered in detail elsewhere. Let us say a word on this. Let T be 

a first order theory. For simplicity, we assume that T is complete and admits elimina- 

tion of quantifiers. Then, if T is A-stable (respectively, A-stable), then T is superstable 

(respectively, w-stable). We do not want to recall the definition of a superstable theory 

and of an w-stable theory. It is easy for an algorithmician to understand what a stable 

theory is (superstability implies stability and o-stability implies superstability): T is 

stable iff for every elementary extension M <N of models of T, if Y is a definable 

problem of N then the restriction of Y to M is definable. 

A typical example of an a-stable theory is the theory of algebraically closed fields 

of fixed characteristic. On the other hand, if we can (first-order) define an infinite 

linear order on a model of T, then the theory is not stable. In particular, the theory of 

real-closed fields and the theory of ordered Q-vector spaces are not A-stable and in 

fact not P-stable neither p-stable (this is obvious: see Proposition 4.23). However, it is 

not completely obvious to show that R is not P-stable (see Theorem 4.25) and we will 

see that R viewed as an ordered Q-vector space is P-stable (see Section 5.3). In fact, 

these properties correspond to a general result of Marker and Steinhorn on o-minimal 

theories (first proved by van den Dries [37] in the case of real-closed fields) which can 

be stated as follows for an algorithmician: Let M be an o-minimal structure and M <N 
an elementary extension which is Dedekind complete; if Y is a definable problem of 

N, then the restriction of Y to M is definable. 

With our terminology, a remarkable result of Blum et al. [4] says that if K is a 

field contained in the algebraic closure of Q, then K is PF,,-stable where Fo is the 



theory of fields of characteristic 0. In fact, the proof of this result shows that F. is 

P-stable (the witness theorem of [4] holds for any field of characteristic zero since it 

can be expressed by a universal sentence in the language of fields; then the proof of 

Proposition 9 of [4] works as well for any extension of fields of characteristic 0). Using 

this result, Portier [34] has shown that the theory of differential fields of characteristic 

0 is P-stable. Moreover, the proofs and results of [23] imply that the theory of fields is 

5’-stable and give an alternative proof of the P-stability of Fo. Note that it is unknown 

whether the algebraic closure of a finite field is P-stable. All the above results are not 

obvious. If one wants to have an example of a P-stable theory with a simple proof (for 

instance to construct a classroom exercise) one may consider the theory of nontrivial 

divisible abelian groups. 

4. Real-closed fields 

4. I. Backcground 

For the notions of real-closed field, semi-algebraic set, definable set .etc, we refer 

the reader to [7] and also to [13, 391 for a more model-theoretic point of view. 

In this paper R denotes a real-closed field. We need the following quantifier elimi- 

nation result which can be found in Renegar [35] or Heintz et al. [1.5]. 

Fact 4.1. Let 4(x) be a j~rmulu in the language qf ordered rings, tilith u totul ot’tz 

wriahles and I <n ,free variables (thus x E R’). Assume that 4 is in prenes ,fi,rm \\?th 

11’ blocks of' yuant$iers. Assume that the nz atomic subf&wmlae in c$ are of the.ftirm 

PdO where ‘4 is one qf’ the “standurd relutions” 

>,3.=,#,d,< 

und P is a pol~xomial of degree at most D, Lt?th integer coqficients qf’ bit length at 

most L. 

$(.Y) is equivalent to a quant$er-free ,fbwda of the jbrm 

where A,, is one of’ the six standard relations; I, J, und the degrees of‘ the polynomials 

Q, are bounded by (wzD)(‘(“))“. The co@icients qf’ the Qi, are integers of bit lenyth 

at most (L + /)(~zD)‘~‘“))“. 

Moreover. the yuant$er-free ,formula can be construct h!l a stundard algorithm 

ichich 1z.ork.s in parallel time log(L)[n” log(mD)]“’ Ii. 

Note that the above result can be applied to formulae with parameters in R. Just 

replace the parameters by new variables, apply the elimination and replace the new 

variables by the parameters. 
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We recall an algorithmic version of Milnor-Petrovskii-Oleinik-Thorn’s theorem on 

sign conditions (a result which is used in the proof of the Fact above). Let PI,. . . , P,,, 

be polynomials of R in n variables. A consistent sign vector for PI,. . , P, is a se- 

quence (At,.. .,A,) of { <, =, 3) such that there exists a in R” such that P,(a)diO 

for i=l , . . . , m. A priori, there are 3” consistent sign vectors, however we have the 

following result (see [35, Proposition 4.11). 

Fact 4.2. Let P 1,. . . , P,,, be polynomials in n variables with coeficients in R of de- 

grees at most D. There are at most (mD)‘@‘) consistent sign vectors for PI,. . . , P,. 

These consistent sign vectors can be constructed from the coeflcients of the Pi with 

(mD)“(n) operations in parallel time [n log(mD)] O(l) If the coeflicients of the Pi are 

integers of bit length at most L this construction can be accomplished in parallel time 

(log(L))[n log(mD)]O(‘). 

We consider R with the order topology and Rk with the product topology. Let X 

be a definable subset of Rk (by quantifier elimination this is the same thing as a 

semi-algebraic set; one can replace definable by semi-algebraic everywhere in what 

follows). We recall that X is said to be definably connected if X has no nonempty 

proper open-closed (in X) definable subset. X can be decomposed in a unique way in 

a finite number of definable definably connected subsets Yl, . . . , Y, such that Yj n Y; = 0 

for i # j and such that the Y are open-closed in X. The Y are the definably connected 

component of X. 

We need a result of Pillay on definable equivalence relation (see [29], 

Proposition 2.1 and its proof; do not make a confusion between cell and definably 

connected component). 

Fact 4.3. Let R be a real-closedJield or any o-minimal structure. Let N be a de&able 

equivalence relation on Rk. Then N has a jinite number of equivalence classes with 

nonempty interior. Let lJ1,. . . , Us be the interior of these classes and let V be the set 

of /3 E Rk which are in an open subset of Rk contained in a class of N. V is definable, 

open in Rk and V is the union of the Ui. Moreover, let VI,. . . , V, be the decomposition 

of V in definable definably connected components. Then, the decomposition of V in 

the Vi is a refinement of the decomposition of V in the Ui. 

4.2. Elimination of algebraic parameters 

In this section R can be any real-closed field. The results of this subsection are stated 

and proved in the uniform setting. However, the statements and the proofs extend in 

an obvious way to the nonuniform setting. 

Lemma 4.4. Assume that a problem X E R” can be solved in sequential time s(n) 

and in parallel time d(n) by a machine over R with parameters in an algebraic 

extension K[a] of a subfield K <R. Then, X can be solved in sequential time c.s(n) 

and in parallel time c.d(nj, where c is a constant, by a machine using parameters 

from K only. 
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Proof. Let A4 be the minimal polynomial of LX over K, and d its degree. The idea is to 

simulate the original machine J?+ (or the original sequence of circuits) by a machine 

r tf’ (or a new sequence of circuits) which computes modulo M. More precisely, any 

quantity computed by ~2 can be represented as a polynomial in R (with coefficients 

in R) of degree at most d-l (we assume without loss of generality that ./k does not 

perform divisions) and such a polynomial can be represented as a d-tuple. After a 

multiplication of two variables P(cc) and Q(U), a Euclidean division by M can bring 

back the degree of the product PQ below d. 

The crucial point is how to perform tests, which we assume without loss of gen- 

erality to be of the form “P(E) 30 ?“. Hence we need to determine when a vector 

(uo,...,cz~_I) is in the set S={ugR”; Edi’ k 0 U~CX’: >O}. We claim that S is a semi- 

algebraic set, and can be defined by polynomial (injequalities involving only parameters 

from K. This will complete the proof since the test “a E S ?” can then be performed 

in constant (independent of the input size) time. Hence, the new machine is slower 

than the original one by a constant factor only. 

The proof of the claim is as follows. Assume that a is the lth largest root of M. 

S is defined by the formula F(a) 

Since the parameters in F are from K only, there exists an equivalent quantifier-free 

formula with parameters from K as well. 0 

Theorem 4.5 (Elimination of Algebraic Parameters). Assume that a problem X i R” 

can be solved in sequential time s(n) and in parallel time d(n) by a machine over R 

with parameters (al,. . . , cq j. X can be solved in sequential time c.s(n) and in parallel 

time c.d(n), where c is a constant, by a machine using 1 d k algebraically independent 

parameters, where 1 is the transcendence degree of the field L = UB(x,, . . XL j. 

Proof. Assume for instance that (~1,. . , cc,) is a transcendence base of L. Taking 

K = Q;e[ccl.. , cc_ I] in Lemma 4.4, we see that X can be solved with parameters in K 

only. This process can be reiterated k - 1 - 1 times. We conclude that A can be solved 

by a machine with parameters in CI![nr , . a/]. Elements in this field can be built in 

a finite number of steps from the algebraically independent parameters CI ,, , XI. The 

times conditions follow from the times conditions of Lemma 4.4. C 

The following lemma will play an important role in Section 4.5. 

Lemma 4.6. Let XC Rx be a problem in AR/const with a corresponding problem 

Y E AR solved in sequential time s(n j and in parallel time d(n). Then. for some inte- 

gers 1 and k. X E AL/k with a corresponding problem Z E AL solved in sequential time 

cl.s(n +c?) and in parallel time cl.d(n+c~), where cl and c? are constants, and such 
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that for all n > 1 the set S,, qf parameters p E Rk satisf$ny 

Vx’xER” [xEXH(X,~)EZ] 

has a nonempty interior. 

Proof. By hypothesis there exists a sequence of quantifier-free formulae ($,,(x,~,z)) 

with I(x) = IZ, I(y) = ki and l(z) = II and c( E R’l such that for all n, $,,(x, y, a) defines 

Y n R’lfkl. Moreover, there exists a sequence (/$) of elements of R”’ such that for all 

m and all n>m, ~$~~(x,/?,~,a) defines XflR”‘. Let RI be an N, -saturated elementary 

extension of R. The formula &(x, /J7, CX) interpreted in RI defines Xi n R;, where Xi is 

the extension of X to RI. Moreover, by the proof of Lemma 3.8, Xi is in AR, /const 

and the corresponding problem YI is the extension of Y to R1 YI is solved in RI by 

the machine which solves Y in R. By the proof of Proposition 3.7, there exists p E Rfl 

such that Xl is solved in RI with the machine that solves Y, and with the parameters 

(B, R). Now we apply Theorem 4.5 over R: XI is solved in sequential time c.s(n + kl ) 

and parallel time c.d(n + kl ), where c is a constant, with parameters (B’, x’) such that 

LX’ E R’, /I’ E R’; and the p: are algebraically independent over R. Now, by the proof of 

Lemma 3.8, X is in AA/k with a corresponding problem Z E AA solved in sequential 

time c.s(n + kl + k) and parallel time c.d(n + kl + k). We denote by Z1 the extension 

of Z to R,. 

For all n,/?’ is in the set Si of “suitable parameters” up to size n: 

$;={y~Rf; ‘dx~R7” x~X~~(x,y,a’)~Z,}. (3) 

S: is definable with parameters in R only, using the formulae +n,(~, p,,, CC). Moreover, 

the same formula defines the set S,, in the lemma’s statement. We claim that SA has a 

nonempty interior. This can be expressed by a formula with parameters in R, 

3u~R~3u~R~b~ ERR I , ’ , [(mu,-) ~ba] 1 

where the condition z E S: can be replaced by a first-order formula using (3). Applying 

the transfer principle for real-closed fields to this formula, we conclude that the set S,, 

in the lemma’s statement also has a non-empty interior. 

The proof of the claim is standard. One can proceed as follows. By quantifier elimi- 

nation, SL is a union of basic semi-algebraic sets B,,,, defined by conditions of the form 

PI(Y)>O,. ..>P?,,.,(Y)>@ ql(Y)=o,...,q,,,~(Y)=o, 

where the p’s and q’s are polynomial with coefficients in R (because 5’: is definable 

with parameters in R only). Since /?’ E S: and the p: are algebraically independent over 

R, fi’ belongs to a Bt7.i with s,,,, = 0. By continuity the sign of pl,. . , pr,,, is constant 

in a neighborhood of /I’, hence a box is included in S:. 0 

The results of this subsection can be also obtained for nondeterministic complexity 

classes and in fact are easier. Indeed, assume for example that X is in NPk with a 
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nondeterministic machine A+’ which uses a unique algebraic parameter x. Then, WC 

have a formula U(y) (that we may assume to be quantifier-free) without parameters 

which defines x. Then, we consider the machine which on an input a E R” guesses a 

fi and runs , &’ with (‘x, b) if j satisfies H(y). Such a machine shows that X is in NP,< 

without parameters. 

One can also obtain generalizations of all the above results for an o-minimal strnc- 

ture which admits (effective for the uniform level) elimination of quantifiers in a finite 

language (for such a structure there is a natural topology and a good notion of alge- 

braicity and independence). However, in this general case we cannot obtain the time 

conditions since it is difficult to generalize the notion of minimal polynomial. However, 

in order to prove Lemma 4.4 one can use the method of the paragraph above with 

the elimination of quantifiers. For an o-minimal structure with or without elimination 

of quantifiers we can obtain the above results with good time condition for some non- 

deterministic complexity classes (it may be necessary to go to PH). For example for 

R, ,,,, = (R, +. x ,O, 1, <, exp), which is model complete [42], one can consider NP. 

4.3. The reals 

This section gathers results that are specific to the field R of real numbers (in the 

sense that they do not apply to all other real-closed fields). The following simple lemma 

will be useful. It is a straightforward consequence of the nested intervals property and 

of K&rig’s lemma on infinite trees. 

Lemma 4.7. Let (E,z),,3~j be a farnil), qf’ subsets of’ [-1. l] sutisfjky the ,fbllon,ing 

properties .fbr all n E N: 

(i) 6,#0. 

(ii) 6-i C 6,. 
(iii) E,, has a ,finite number sf connected components. 

(iv) n,,,,, E,, = 0. 
Then th&e e.vists N E FV, a sequence (I,,),,a,\ w’ith I,, a connected component of’ E,,. 

XE [-l,l], and a sequence (b,,),,30 c ?fpolnts qf [-1, l] sue12 that one qf tlwsr tuw 

propesties holds ,fbr all n 3 N: 

1. I,, =]r, b,,[ or I,, = lx, b,,]. 

2. I,, = lb,,, x[ or I,, = [b,,. c([. 

Proof. By Konig’s Lemma, it follows from (i)-(iii) that there exists a sequence 

(I,,),, aa of intervals where I,?+, C I,? and I,, is a connected component of E,,. Let ‘x,, 

and /3,? be the left and right endpoints of I,,. We claim that one of the sequences (r,, ), 

(p,,) is ultimately constant. Otherwise, one could extract a strictly increasing subse- 

quence (x,,, ) and a strictly decreasing subsequence (/?,], ). This would contradict (iv). 

If (a,,) is ultimately constant, I,, must be open in x,, by (iv) and thus Property I 

holds. In the other case Property 2 holds. 0 
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The following result is the main result of this subsection. 

Theorem 4.8. Pi/l = Pk. 

Proof. Let X E Pi/l, and let Y E Pi be the corresponding problem and (a,) be the 

corresponding sequence of R. Let ~2 be a parameter-free machine recognizing Y in 

polynomial time. For each n we have an equivalence relation -n on R : y-,, y’ if and 

only if the following parameter-free formula is satisfied: 

(4) 

Let S, be the set of parameters y E R such that y -n 01,. This set is definable 

since it is an equivalence class for the relation -n on R defined by (4). Hence, the 

sets E,, =S, n [-1, l] satisfy hypothesis (iii) of Lemma 4.7. Hypothesis (ii) is also 

clearly satisfied. One can assume without loss of generality that E,, # 0 for all II 2 0. 

Indeed, if En = 0 for n ano, instead of CC, we can use for n 2 no the new parameter 

CC: = l/a, E [-I, l] (in this case, for all n, we first compute CI, = l/a; and then run A). 

Therefore we assume in the remainder of this proof that (i) also holds. 

If (iv) does not hold, let c( E n,l,o En: it follows from (1) that by “plugging” a 

into A, we obtain a machine which recognizes X in polynomial time. Hence X E Pk. 

In the rest of the proof we consider the case where (iv) also holds. One can therefore 

apply Lemma 4.7. From now on we assume that Property 1 holds (the other case 

is similar). Pick any n 2N and a rational point fi ~]a, b,[. The following formula 

defines a: 

Since this formula contains only rational parameters, c( is an algebraic number. Let 

Q be its minimal polynomial. We now want to show that for each n >N, a, can be 

replaced by a new parameter which needs not be “too close” to c(. In order to do 

so, let us consider the set J, = {E >O; ]a, CI + E] C E,}. Note that J, =]O, b, - c([ or 

J, = IO, b, - ct]. We would like to define J,, by a “small” formula with (small) integer 

parameters only. 

If CI is the ith largest root of P, this algebraic number can be defined by a formula 

stating that P(a) = 0 and that there are exactly i - 1 roots of P smaller than CC For 

any E>O, EEJ, if 

vz((a<z<a+EJZ~nff+E). (5) 

Since Y is decided in polynomial time by the parameter-free machine A, the condi- 

tion (x, y) E Y can be expressed for x E R<” by a quantifier-free formula &(E) with 

exp(n”(‘))atomic predicates (we go through all possible computation paths of A). The 

degree and bit length of the polynomials occurring in &(E) are also at most exp(n’(‘)). 

Hence (5) can be translated into a formula Q,(E) with a bounded number of quan- 

tifier alternations. This formula satisfies the same size, degree, and bit-length bounds 

as &,(a). By Fact 4.1, @,(a) is equivalent to a quantifier-free formula ‘&(.a) in which 
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all polynomials have integer coefficients of bit length 6 exp(n”(’ )). By the well-known 

bound on polynomial roots, the smallest positive root Y of any such polynomial must 

satisfy log log l/r < n O(‘). We conclude that J,, contains an interval of the form ]O,I-,,[ 

where log log l/r,, <n ‘(I) A parameter-free machine can thus construct (by “repeated . 

squaring”) an element E,, E J,, in time no” ). Then one can “plug” R + E,? in // in 

place of ‘x,,. The resulting machine JZ’ recognizes X in polynomial time with a sin- 

gle parameter: the algebraic number r (note that this parameter can be eliminated by 

Theorem 4.5). C 

The proof of Theorem 4.8 (or Theorem 4.8 with a padding argument) also shows that 

if X E Ai/1 with a corresponding problem Y E Ai solved in time s(n), then X E AL1 

in time q(s(n + 1)) where q is a polynomial. Moreover, the proof of Theorem 4.8 can 

be adapted to the polynomial hierarchy. For example, we have NPi/l =NP&,. 

We do not know whether PL/l & Pn, but we have the following result. 

Proposition 4.9. !f X E P’,/l, then X is in C2P orer R 

Proof. Let X E Pi/l and let Y E Pi be the corresponding problem with corresponding 

sequence &) of parameters in R. As in the proof of Theorem 4.8, we consider the 

sets S,, of “suitable values” for CI,,. More precisely, b E S,, if and only if 

V.T f R 4 ” [x EX * (x, P) E Yl. 

As in the proof of Theorem 4.8, we assume without loss of generality that 

E,, = S,, n [- I, l] # 0 for all N E N. If n,, 20 E,,fB then X E PE’ . Therefore in the rest 

of the proof we consider the case where n,,,E,,#0. 

Assume for instance that we are in case 1 of Lemma 4.7. For any x E iW<” with 

n > N, x E X if and only if 

3 v’e’ (x, E, E’) EX’, 

where X’ E P$ ’ is defined by 

E>OA[O<E’<&~ (x,x + E’)) f Y]. 

It follows that X is C2P over R!. 0 

The above result shows that a negative answer to the question Pk/l C? Pr; would 

have dramatic consequences. On the other hand, it seems to us that there is not a lot 

of hope to prove that Ph/l C P n. Let us explain why. A circuit C(xl, . . . J,,) over R 

is said to be arithmetical if it has one output gate and no test gates (such a circuit 

computes a polynomial function). Let R d R be a nontrivial ordered extension of R and 

let R be a positive element of R infinitely large over R. For a nonalgebraic element 

a of R we consider the set W, of parameter-free arithmetical circuits C(n. v) with two 

inputs such that C(!2, a) > 0. The set W;, can be viewed as a boolean problem of R 
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and it is easy to see that W, E Pk/l. Now we ask: is W, in PR for all (nonalgebraic) 

elements a of R ? 

To conclude this subsection we show that Aw/const = AR. This result will be precised 

(times conditions) and proved, in the nonuniform setting, for every real-closed field. 

Theorem 4.10. Any problem in Aw/const is algorithmic over iw in bounded time. 

Proof. Let X E AR/const. By Lemma 4.6, we may assume that X E AL/k with a cor- 

responding problem Y E AL such that the sets S, defined as in Lemma 4.6 have a 

nonempty interior. Thus, for all n, S,, contains a rational point (c,~, , Cnk ). We obtain 

a N x k matrix with columns cl,. . . , ck. In order to recognize X with a real machine 

A, we just have to encode each column vector in a element of R: we encode ci in 

the digits of a single real number ci. On an input in R”, ~2 can read the digits of ci 

and retrieve the appropriate parameter c,~. Therefore, ~2’ can recognize X in bounded 

time (by definition of the S,,). 0 

The proof of the above result shows that if R is a real-closed field contained in 

R then AR/const = AR. Using a different method, it is also possible to obtain a more 

precise result concerning the number of parameters: 

Theorem 4.11. Ai/k = Ai for any real-closed field R contained in [w and any inte- 
ger k. 

The proof relies on a lemma of independent interest. 

Lemma 4.12. Let R C iw be a real-closed field. Let (C,,)n3~ be a sequence of nested 
(C,,,, c C,) nonempty deJinable subsets of Rk. 

(i) There exists a tuple a of elements of R and a family of formulas G,(a,.) with 
parameter a such that G, defines a unique point c, E R”, and c,, E C,. 

(ii) Let F,(a,,.) be a defining formula for C,,. There exists no such that (i) holds 

with a = at, for any p 3 no. 

Proof. By induction on k. For k = 1, each C, is a finite union of points and intervals. 

If the G’s are all infinite they must contain rational points, which are definable without 

parameters. Otherwise, let 120 be such that C,,, is finite. For p 2 no and n 2 p, any point 

in C, is in C,, and any point of C, is definable over ap (it is either the largest element 

of C,, or the second largest, or the 3rd, etc). 

Assume now that the result holds in dimension k - 1. Let P, be the projection of 

C, on Rk-' , and I, 2 P, the set of points with infinitely many preimages in Rk. The 

P,,‘s are nested, nonempty, and definable with the same parameters as C,,. 1, is also 

definable over a,: a set of preimages is infinite iff it contains a nonempty open interval. 

One can thus apply the induction hypothesis to the In’s if these sets are all nonempty 

(they are nested as required). Then each defined point c, E I,, can be completed by a 

rational point q,, such that (cn,qn) E C,,. Assume now that 1, = 0 for n 3no. In this case 
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we apply the induction hypothesis to (P,, ): there exists a family of formulas G,,(a. .) 

defining a unique point c,, E P,,. Moreover, there exists nt such that one can take a = ui, 

for any p 3 ~1~. Now let n2 = max(no,rzt): For p 3 IZZ and n 3 p, G,,(aP, .) defines a 

unique point c,~ E P,,. A preimage of c,] in C,, is either the largest element of C, above 

c,!, or the second largest, or the 3rd, etc. Hence one can define a point d,, E C,, above 

c,, by a formula with parameter a,> (note that there can be several occurrences of a,) 

in this formula: those that help define c,,, and those that help define a point above c,,). 

r; 

The proof of (i) by induction on k was suggested by Bruno Poizat. 

Proof of Theorem 4.11. Let X E Ai/k and Y E Ai the corresponding problem. The 

sets C,, of parameters a,, E Rk such that (1) holds satisfy the hypotheses of Lemma 4.12, 

and each of them is definable with k parameters (recall from the proof of Theorem 4.8 

that C,, is an equivalence class of an equivalence relation on Rh definable without 

parameters). Hence for any x E R”, 

.XEXH~CER~ G,,(a,c)A(x.c)EY. 

where a and G,, are given by Lemma 4.12. The result follows by quantifier elimination. 

For [w and uniform algorithms, one can also obtain the best possible bound on the 

number of parameters. 

Theorem 4.13. For any k 3 0, Ai/k = A$ 

Proof. Let X E Ai/k. By Theorem 4.11, X E A’,$. A sequence of formulas F,,(a, .) with 

a E R’ defining X n Iw” can be encoded in the digits of a single real constant. Hence we 

obtain X E AF' . We can obtain X E AL if one of the parameters al.. , ak turns out to 

be rational (in this case we effectively need k - 1 parameters only). Let C,, be the set 

of parameters r,, E [w” such that (1) holds. Recall from the proof of Theorem 4.11 that 

~7 can be any element of C,, if n is large enough. Then there are two cases. If the C,,‘s 

are all infinite, by Lemma 4.14 below there exists a point with a rational component 

in C,,, and we are done. If C,, is finite for n large enough, then nwBO C,, # 8 and by 

picking a point in this intersection we obtain directly A E AL. 0 

Lemma 4.14. Let E 2 [Wk be a dqfinable set. If this set is infinite, it contains a point 

w.ith a rational component. 

Proof. By induction on k. For k = 1 the result is clear since E is a finite union of 

points and intervals. Assume now that the result holds in dimension k - 1, and let E’ 

be the projection of E C IWk on 1w/‘-‘. If E’ is infinite it must contain a point with a 

rational component by induction hypothesis, and we are done. Otherwise since E is 
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infinite, E’ must contain a point x0 with infinitely many preimages in E. In this case, 

we can apply the k = 1 result to the set of preimages of x0. 0 

4.4. The class DEPTH for real-closed fields 

A quantifier-free formula of the form 

is said to be in (disjunctive-conjunctive) normal form (the Ai, are one of the six stan- 

dard relations). We say that the above formula is of size d s if the degrees of the 

polynomials Qj, I, J, and the bit length of the coefficients of the Qii are bounded 

by s. We need the following characterization of the class DEPTH for real-closed 

fields. The proof depends on Fact 4.2 on the number of consistent sign conditions 

(this is not the first application of this result in complexity theory over the reals, see 

for example [9]). 

Theorem 4.15. Let d be a function from N into N* such that for all n, d(n) 3 n. Let 
X be a problem in DEPTHR(d(n)). There exists a sequence of quantljier-free formulae 

(~n(~~,...,~,,,y~,...,yk))n~~ in normalform and u6Rk such that ($,(~,a)),>0 solves 
X and such that the & are of size < exp(q(d(n))) where q is a polynomial. Moreover, 
zfX is in UDEPTHR(d(n)) (respectively, in uDEPTHR(d(n))) then the sequences (&) 
is SPACE(q(d(n))) unzform (respectively, SPACE(q(d(n))) uniform with boolean 
advice of size q(d(n))). 

Moreover, the converses hold (within a polynomial). 

Proof. The “converse” of the theorem is easy and the proof is left to the reader. For 

the first part, it suffices to prove that there is a polynomial q such that if C(xl, . . ,x,) 

is a parameter-free circuit in the sense of R of depth d, then there exists a quantifier- 

free formula 4(x) in normal form of size <q(d) equivalent to C(x) and that moreover 

formula 4(x) can be constructed from C(x) by a standard algorithm which works in 

parallel time polynomial in d. 
First, we focus on the existence of a 4 with good bounds. Note first that we may 

assume that the tests of C are of the form P(X) >0 (where P is a polynomial which 

depends on the answers to the previous tests). Note also that a parameter-free circuit 

of depth e without tests and with one output gate computes a polynomial of degree 

d exp(e) and with coefficients of bit length < exp(e) (we say that the polynomial is 

of size d exp(e)). Let G be the set of test gates of C. The height of a gate g E G is 

the maximal number of gates in G in a path from an input gate to g (including g). 

Let s be the maximum of the height of a gate in G. Then, obviously 1 <s <d. We 

denote by G, the set of gates of height i; G,Y is constituted by the output gate and 

the Gi are of cardinal mid exp(d). Set G1 ={g~,1,...,g,,,,,l}: at gate g,,l, C makes a 

test of the form Pi, l(x)>0 where Pi. I(X) is a fixed polynomial of size < exp(d). If 
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s = 1, then ml = 1 and we can take for 4 the formula P,,,(x) > 0. Thus, we assume that 

s>2. Let GZ ={yi.~ ,..., gm2.2}. At gate g,,~, C makes a test of the form P,,z(x)>O 

where P,,z(x) is a polynomial of size < exp(d). But the form of P,,? depends on 

the answers of the tests performed at the gates of height 1. More precisely, for each 

vector of consistent sign conditions A = (A,, . , A,,,, ) for PI,, , . . , P,,,,, 1, there exists 

a fixed polynomial P,f2 such that the test performed by C at gate gi.? is P;,‘? > 0 for 

the inputs which give’ to the P,, 1 the sign determined by A. We denote by CSCl the 

set of vectors of consistent sign conditions for PI ,, . . ,P,,,, I : by Fact 4.2, CSCl is of 

cardinality <(exp(d) exp(d))“’ = exp(2cnd) ( w h ere c is a universal constant). Then, 

if s = 2 we consider the formula 

pi.~(x)A, = 0 
A + (P,,?(x)>O) 1 

. 
/ _I 

which is equivalent to C(x) and contains at most exp(3cnd) polynomials. If s >, 3 we 

proceed as above with the gates of height 3 and if s = 3, C(X) is equivalent to a 

formula of the form 

where CSC” is a set of consistent sign conditions which depends on Al of cardinality 

< exp(2cnd), and we see that there are at most exp(4cnd) distinct polynomials in this 

formula. We continue this process and at the end (which is attained at most after d 

steps) we obtain a quantifier-free formula $(x) equivalent to C(x) of the form 

A[(A )* (A [(A )=s (&(A )* “’ ~(p:~~~~.~‘(.~)>O)l...)] 

which contains at most exp(2cnd3) distinct polynomials of size < exp(d). Let @, . , 

Q,. be these polynomials. If A is a vector of length r of { < , =, > } then we denote by 

0 1 the formula r\:, QlAiO. Then, by Fact 4.2, there are at most (exp(2cnd’) exp(d))” 

= exp(2cn’d’ + nd) d’s such that 8 J defines a nonempty subset of R”. Moreover, $ 

is equivalent to a disjunction of some of the formulae 0.l. Such a disjunction provides 

a formula 4(.~) with the required bounds. More precisely, for any A we have that 

either R + Vx(O~(x)+ y?(x)) or R /= V.X~(~,(X)II$(X)) and this can be tested in a 

boolean fashion (by replacing the basic subformulae P(x)A’O of $(x) by I if P(x)A’O 

is consistent with A:‘=, Q,AiO and by 0 otherwise, and then evaluating this boolean 

instance of $). 

Now we have to prove the uniformity of the above procedure. First, we note that by 

Fact 4.2 we can compute the possible vectors of consistent sign conditions of a family 

PI,. , P,,, of polynomials in n variables of degree <D and with coefficient of bit 

length L in parallel time log(L)(n log(mD))” w h ere c is a universal constant. Thus, in 

the above context such a computation takes time at most d”’ in parallel. Note also that 

the construction of Q, from t/ can be done in parallel time polynomial in d using the 
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(parallelizable) procedure described in the paragraph above and the fast algorithm for 

the computation of consistent sign conditions. The construction of $ is “parallelizable” 

in the sense that it can be decomposed in at most d steps. At one step we have to 

compute some sign conditions and this can be done rapidly and we have to extract 

some polynomials from C. Essentially, we need an algorithm which given a circuit C’ 

of depth <d without tests and with one output gate computes the polynomial of size 

6 exp(d) that it defines in parallel time polynomial in d. Since it is easy to describe 

such an algorithm the proof of the theorem is completed. 0 

Let us define the class N,PAR to be the class of problems decided by a nondeter- 

ministic parallel machine which works in polynomial time and which only makes a 

polynomial number of guesses. Then, the above theorem and Fact 4.1 give an analogue 

of Savitch’s theorem for real-closed fields. 

Corollary 4.16. If R is a real-closed field, then N,PARR = PARR. 

Without restriction on the number of guesses we cannot obtain such a result. Indeed, 

consider the family of formulae 

3Yl . ’ Yexp(n) Yl =x: A Y2 = v: . . . Yexp(n) = Y&,+1 A x2 = YZXP(,l) 

which are equivalent to the formulae x2 =x1 exp(exp(n)). Then, apply an argument similar to 

[8] to show that there is no family of circuits of polynomial depth which are equivalent 

to these formulae (see also [32, Exercice 8.51). 

4.5. The class A/const for real-closed fields 

As mentioned previously, if R is a countable real-closed field there are problems 

in P:/l which are not AR (see Proposition 3.15). The following proposition gives 

additional information. 

Proposition 4.17. [ia, C PR/ 1. 

Proof (sketch). Let X E PR be solved by a sequence of circuits (C,?(x, fi)). We can 

encode in the digits (in radix 2) of a rational c(,? E 10, 1[ the circuits Co(y), Cl (XI, y), . . , 

%?,,(x, y). Then, we consider the following PR/~ algorithm: on an input a E R” extract 

(using +, - and < ) the nth circuit encoded in clll and (using a universal machine) 

applies it to (a, /I). 0 

Note that the same argument shows that, for example, PARR C PARR/I and 

ARGAR/~. 

If we want to study AR/const for an arbitrary real-closed field we need to work at the 

nonuniform level. Do not forget that if R contains the reals, then most of the nonuni- 

form classes are in fact uniform: PR = PR, ~WR = PHR, PARR = PARR, PATR = PATR, 
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IExln’,( = EXPk and PEXPR =PEXPR (however, PARR c PAR and PEXPk c [FDEXL?R 

for every real-closed field). Thus, all the results that follow have a uniform version in 

the special case where R contains the reals (we shall not mention them explicitly). 

Here, the main open question is PRJconst = ? Pw,,, where K!,I, is the ordered field 

of real algebraic numbers. It seems that this question is difficult. On the one hand, 

we shall prove that pR/const & PARR (and it is not known whether ln’~ # PARR). On 

the other hand, if a E Iw\[w,~, we can consider the set K, of parameter-free arithmetical 

circuits C(x) in one free-variable such that C(a) >O (compare with the problems that 

follow the proof of Proposition 4.9). It is easy to see that the problems W, are in 

Pi.%,,/‘, but it seems very difficult to show that all these problems are PR,$,~ (one may 

conjecture that there are some a’s such that W, is not lpw,,,). 

We need to introduce a new “complexity class”. Let 120 and k 3 1. We say that a 

problem X of R is in Ak/*k if there exists a problem Y (the corresponding problem) 

in AL and a sequence (fi,,)>o of Rk such that 

(i) for all n>,O, for all UE R”, a EX iff (a,P,,) E Y and 

(ii) for all II 3 0 the set 

S,~={UER~(VXER~((X,/I,,)EY iff (.x,~))Yy)) 

has a nonempty interior. 

Moreover, we set AL/*0 = Ah and A,#const = U,.l, AL/*k. If % is a complexity class 

such as P, PAR,. . , we can define +@‘k by requiring that Y E %2. 

Proposition 4.18. &/const C A#const “without” aq~ loss of time and uniformit), 

(time is multiplied by a constant). 

Proof. The proposition is an immediate consequence of Lemma 4.6 since the sets S,, 

of Lemma 4.6 are contained in the sets S,:. 0 

We will see that AR/“const C AR (this is obvious if R is archimedean), thus Aklconst 

= Ak/*const. However, we do not know whether Pk/const = LFDk/*const nor whether if 

Pi/* 1 C PR. These questions can be answered for parallel polynomial time. 

Theorem 4.19. ~AiWR/const=PA[WR/*const=~A~~ and pARk/const=[14ARR/*const 

= PAR/+ 

Proof. By the above proposition we just have to prove that pA[Wk/*const C_ PA& 

and IFDARk/*const L PARR. First we focus on the first inclusion. Let X be a problem 

in PA 1Wk/*const. Then X is in pAiwk/*k for some integers k, 1 and we may assume 

that k 3 1. The hypothesis and Theorem 4.15 imply that (we may assume that) there 

exists a sequence of quantifier-free formulae 

(4&l r...,X,~,~l,...r~k,Zlr...,Z/)),,~I 

of size exp(n’(’ ) ), a tuple c( E R’ and a sequence (fin)>” of Rk such that 
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(i) for all n>O, for all XER”, XEX iff R b &(x,pn,a) and 

(ii) for all n&O the set 

S,* = {Y ERR I KC E R” (dh, Pn, a) ifl Mx, Y, a))} 

has a nonempty interior. 

Let N,, be the equivalence relation on Rk defined by 

Y -n Y’ 8 PER” (~,~(a,v,Go~~~(a,y’,cc)). 

The relation -n is a-definable and S; is a class of N,~ with nonempty interior. By 

Fact 4.3, wn has a finite number of classes with nonempty interior. Let UI,,, . . . , Us,., 

be the interior of these classes. We may assume that the interior of Sl is Ui,,,. We 

consider the set V, of the y E Rk such that 

[ 

k 

!I~ER”!!IvER~ /\u,<yi<viAYy’ERk 
1=I 

((ik<Y_<R) *Cy Nn y’))] . 

V, is the set of y E R” such that there exists an open set U of Rk such that y E U and 

U is contained in a class of N,,. Moreover, V,, is a-definable and V, is the union of 

the U.,,. 
The idea is to “construct” a point in ITU,,~, the projection of Ul,, onto the last coordi- 

nate. More precisely, we are going to construct a quantifier-free formula d,(yk, LX) which 

is satisfied by a unique point p; of R which is in rcl.J~,~. Moreover, Fact 4.1 allows 

us to show that the size of o&k, a) is < exp(n ‘(I)). Assume that such a sequence 

of formulae has been constructed. Then, X is solved by the sequence of formulae 

(3yk &(yk, ~)f@&,&, . . . , pLpl,,, yk, a)),>~ where the (k- 1 )-tvles (Pi.,,, . . . , 86_,,,z) 

are such that (p{,,7,. . . , PL_,,,,PA> is in UI,,. Then, we apply Fact 4.1 to the above se- 

quence of formulae and we obtain a sequence of quantifier-free formulae (&(x, ~1,. , 

yk-lrz))n20 in normal form and of size d exp(n’(‘)). Note that for all n the set 

has nonempty interior. Then, by Theorem 4.15, the problem defined by the sequence 

(vMX>Yl,..., yk-_l, CI)),~O is in PA@ and this problem shows that X is in PA@/* 

(k - 1). Repeating the above argument, we obtain that X is in PA@ (recall that k 

is fixed!). Note that we need to work with the class PAIWR/*const. Indeed, if X is in 

PAIWk/k the above argument does not imply that X is in PAIW$(k - 1) (even if the 

S, defined in Lemma 4.6 have nonempty interior and the equivalence relations -,2 are 

adequately defined) because in general the above pi,,, . . . , /3;_ ,,n works only for inputs 

of size 12. 

Let us construct a formula 8, with the announced properties. We consider the set 

B, of elements e E R such that e is a boundary point of the projection onto the last 

coordinate of one of the U;,,. Note that B,, is the set of elements e E R such that there 

exists y E V,, such that e is a boundary point of the projection onto the last coordinate 

of the set of elements of V, wn-equivalent to y. Thus, B, is a definable subset of R 
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and since we have a finite number of U,.,,, B, is finite. Now we consider the set T,, 

of the yk E R such that 

Since B,, is definable and finite, T,I is definable and finite. Moreover, 7’,, contains at 

least one point of zU~,,~. Now following the construction of the formula which defines 

T,,, we see that this formula has size exp(n’(‘) ) and that its only parameters are the 

c(. Moreover, this formula has a bounded number of quantifier alternations. Thus, by 

Fact 4.1, this formula is equivalent to a quantifier-free formula of the form 

and of size <exp(n’(‘)). S ince this formula defines a finite set, there exists i and 

j such that a point /$ of zU~,, is a zero of Qlj(yk,a). We denote by P, such a 

polynomial. Let D be the degree of P,,. We denote by 6, the vector (di)p_T’ of 

{ <, = , > } such that for i = 1,. . ,D - 1 we have Pc’(fiL, a)diO. Then, we take for 

B,Z the formula (P,,(yk,a) =0) A AP=7’(P~~‘(yk,a)d;O). By construction, a point of 

GUI,,, satisfies this formula and by Thorn’s lemma it is the only one. Moreover, H,, is 

clearly of size < exp(n ‘(‘)) This completes the proof of the inclusion pALWR/*const C: 

IFDG[WR. 

For the inclusion PARR/*const C PARK we need to show that & can be constructed 

from $,, in parallel polynomial time with the help of a boolean advice of polynomial 

size. Fact 4.1 overcomes almost all difficulties. However, for the construction of 8,, we 

need to know which polynomial Qij to choose for P,, and then we need to “compute” 

the vector of sign conditions 6,. At this point we need a boolean advice (especially for 

(s,,; one can overcome this difficulty for the fl,). By Fact 4.1, the list of the Qi, can be 

constructed in parallel polynomial time. There are at most an exponential number of Q,, 

and a good fl, is, say, the s”. Thus, we have a boolean advice of polynomial size which 

tell us where there is a good P,. For 6,, we proceed in the same way. By Fact 4.2, we 

can compute the vectors of consistent sign conditions of (e!“. . , f?“) in parallel 

polynomial time and there are at most an exponential number of such vectors. Again 

a boolean advice of polynomial size can tell to us which one we must take for 6,,. 17 

Of course, Theorem 4.19 implies that ~FDR C_ PAR R. Also, by a simple padding argu- 

ment (or using the proof of Theorem 4.19) we obtain that AR/const = A#const = AR 

and that [EXpDR/const C pEXPR/const = pEXPR/*const = PEXPR and [FDiEY%pR/const = 

a4lEXpR/*const = ~[EXPR. Since Lemma 4.6 is true for nondeterministic complexity 

classes and since PWR & PARR and ~ATR C PEXPR we obtain 5VUR/const C IFDW,,!’ 

const C PARR and liDAUR/const 2 PATR/*const C PEXPR. Note that we can apply 

Theorem 4.19 with Theorem 4.5 and Proposition 3.10 to obtain results of “elimination 

of parameters”. For example, we have that if a problem is PARR and B-definable, then 

it is PARR without parameters. 
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We can also obtain a result of a general nature. 

Proposition 4.20. Let A4 be an o-minimal structure which admits elimination of quan- 

ti$ers. Then, AM/const = AM/*const = AM. 

Proof. Since Lemma 4.6 is true for A4 (but without time conditions) we have AM/const 

C AM/*const (see the end of Section 4.2). To prove that AM,/*const C AM we begin 

as in the proof of Theorem 4.19. But at the end of the second paragraph we decompose 

I$ in its definable definably connected components: I’,,,, . . , Vt,,,. By the second part 

of Lemma 4.3 we may assume that VI,, & UI.,. Since V, is a-definable, VI,, is defin- 

able by a formula B,,(y, a) with parameters c( only (see [ 191). Thus, for all n and all 

a E R”, a EX iff 3y @,(y, cr) A C,z(a, y, cc). Thus, by elimination of quantifiers XEAM. 

A number of o-minimal structures of interest are only model-complete (i.e., every 

formula is equivalent to an existential formula). For instance, this is the case of the 

reals with exponentiation (see [42]). For this structure, the good question is NP = ? 

co-NP and the above argument shows that NA/const = NA. 

We conclude this section with some applications of Theorem 4.19. The point is that 

some questions concerning the reals R or an arbitrary real-closed field can be difficult 

to answer (due to the presence of parameters) but the same question for Raig may be 

easy (by Theorem 4.5 there is no problem with parameters). Then, one can sometimes 

use Theorem 4.19 to transfer results from Ralg to every real-closed field. 

Corollary 4.21. Let R be a real-closed$eld and let u = (u,,),~ 1 be a sequence of jW+. 
We denote by X, the problem of R dejined by (al ,..., a,) EX, ifs al =u,,. If X,, is 

PAIWR, then there exists a polynomial q such that for all n, /un/ <exp(exp(q(n))). 

Proof. First we assume that R = [Walg. By Theorem 4.5, X, is in PARR with a sequence 

of circuits which do not use parameters from R. It is easy to see that X, is solved by 

a sequence of formulas (4,,(Z)) where the C& are of the form 

where the Qij,T are polynomials of Z[Z] of degree and bit length of the coefficients 

bounded by exp(ql(n)) where q1 is a polynomial (here we do not need Theorem 4.15 

because we only need bounds on the Qi,j). By definition of X,, un is the unique element 

of R which satisfies &,(xi, 0,. . . ,O). Thus, u, is a zero of a polynomial h(xl ) of Z[xi] of 

degree bounded by exp(qi(n)) and with the absolute value of the coefficients bounded 

by exp(exp(qi(n))). Then, the well-known bound on the absolute value of the roots 

of such a polynomial implies that for all n, Iu,I <exp(exp(q(n))) for some polyno- 

mial q. 
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Now we suppose that R is an arbitrary real-closed field. X is B-definable and the 

extension of X viewed as a problem of &,I, to R is X. Thus, by Proposition 3.9, X is 

pAIWk,,,*/const. By Theorem 4.19, X is PAIW n,,,,. This completes the proof. J 

Note that this result can fail if u is not a sequence of algebraic numbers. Here 

is a counterexample. Let c( E IO, 1[ be a transcendent number with radix-2 expansion 

%=o.a,al”’ a,, Let u,, = l/( ‘2 - 0. a~ 02 ~7,~). The problem X,, is in PU since the 

digits al,. , a,, can be extracted from CI in time O(n). However, one can choose r so 

that no bound of the form (u,j <exp(exp(q(n))) ( or any other bound set a priori) holds 

for every n: just take a sequence of digits with very long sequences of consecutive 

zeroes. 

Set u,, = exp(exp(exp(n))). Clearly, X,, is in EXPR for every real-closed field. By 

the corollary above X,, cannot be pA[WR and we obtain the separation of pAIwR and 

EXPK with a simpler problem than the problems used in [8, 91. 

We can also obtain the main result of [lo]. We recall that if K’ is a complexity class 

.#I&%,, ) is the class of problems X C { 0, 1 }” which are in %,, 

Corollary 4.22. Jf R is a real-closed field? then .S.P( PARR) = PSPACE/poly. 

Proof. The inclusion PSPACE/poly C .#Y(~ARR) is “obvious”. The reverse inclusion 

is easy for I&l, (use Theorem 4.5). If X c (0, l}“, then X is 0-definable and the exten- 

sion of X C [wa$ to R is X. Thus, if X is BY([FDARx), then X is dY(pAR2,Jconst) 

and thus ~a#( @ARE;,,,) by Theorem 4.19. q 

We denote by WEXPR (W[E~;(PR) the class of problems solved by a machine over R 

in weak (nonuniform) exponential time (see [22, 121 for a definition; one can define 

WIExp,f as WEXPR/.F where 9 is the set of functions from N into (0. l}” such that 

,f(n) is of exponential size in n). Note that again WEXPR = W[EX~R if R contains the 

reals. One can use Theorem 4.19 to obtain transfer results relating parallel polynomial 

time classes to higher complexity classes. For instance, the question PA[WR = ?WIE.JKp,t 

has the same answer in all real-closed fields. Unfortunately, this result is of little in- 

terest since, unlike the inclusion PR C NPx, the inclusion [FDALWx c W[EXPN is known 

to be strict in every real-closed field (this follows from a connected component argu- 

ment). Other inclusions of this type are also known to be strict (see the end of the 

above subsection). For instance, it is noted in [lo] that Corollary 4.22 implies that 

PARR is strictly included in WiEXPR because .%.Y(WLEXPR) is the set of all boolean 

problems. 

We conclude this subsection by a remark which is somewhat out of context. In the 

case of the reals, the separation of PAR and W[Exp gives the separation of PAR 

and WEXP, but if R = [w,~, we have :%Y(PAR,<) = PSPACE and ,#.Y(WEXP) = EXP. 

Thus, the separation of PARwali, and WEXPX,,,~ using a boolean problem depends on 

the well-known open question: PSPACE # ? EXP. 
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4.6. Non P-stability of the reals 

Let R be real-closed field. If R $ [w it is rather obvious that R is not P-stable. 

Proposition 4.23. Let R be a real-closed field not isomorphic to [w. There exists a 
real-closed field R’ containing R and a problem in PA, with a restriction to R which 

is not dejnable and thus not A.+ 

Proof. First, we suppose that R is archimedean. Then, we may assume that R 6 [w and 

let a E LW\R. Let Y, be the problem of R”= defined by (xl,. . . ,x,) E Y, if and only if 

x1 <a. Clearly, Y, E Ph. Moreover, the set of x E R so that x <a is not definable in R 
and thus the restriction of Y, to R is not AR. 

Now we assume that R is not archimedean. Let A be the set of x E R such that x <n 
for some integer n. Then, there exists a real-closed field R’ >R with an element a so 

that for x E R, x E A if and only if x <a (such an element exists in any card(A)+- 

saturated elementary extension of R). Then, we can proceed as above. 0 

We can use the Dedekind completeness of R to prove a weak kind of P’ -stability 

for 52 (compare with Proposition 4.9). 

Proposition 4.24. Let K be an ordered extension of [w. If X E PK with a machine k? 
which uses as parameters ~1,. . . , ak with al,. . . , q-1 E R, then the restriction 0fX to 
[w is in PHw. 

Proof (sketch). If @k E [w there is nothing to prove. If IukI is not infinitely large over 

[w, then, by Dedekind completeness of [w, & = Pk + E with Pk E iw and & infinitely 

small over R. So, we may assume that Uk >a for all a E [w (replace & by -elk or 

&l/(dlk - pk), add Ijk to al,...,ak_l and compute & before running A). 

Here, the Witness Problem WITNESS’, is the set of straight-line programs PI,. . . ,e. 

where the fi are polynomials over R with one indeterminate (i.e., a circuit without test, 

with one output gate, one input gate and with parameters in R) such that the sign of the 

leading coefficient of P,, (the polynomial computed by the circuit) is >O. WITNESS: 

is in the second level of PHw: 

P,,...,P,EWITNESS; if and only if 3xVy (y>~+&(y)>O). 

Now, by hypothesis on @k, if P~ilX[y], 

P(Q)>0 if and only if 3xVy (y >x =+ P(y) > 0). 

For inputs in IR, & can then be viewed as an indeterminate y and one can use 

WITNESS: to perform tests (that we may assume without loss of generality to be 

of the form “P>O ?“) in a simulation of the circuit family recognizing X. It is then 

easy to see that A E PHw. 0 
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Then it is natural to ask whether the problem WITNESS: of the proof of 

Proposition 4.24 is in PR. Of course, a positive answer would imply that the prob- 

lem X of Proposition 4.24 is in PR and that P’,/l C PR. 

Let R be real-closed extension of R. If Y E PR, then it follows from a result of van 

den Dries [37] that the restriction of Y to R is definable. However, the proposition 

above cannot be generalized to more that one parameter in R\IW: in general we need 

an infinite number of parameters to define the restriction of Y to R. The proof uses a 

construction communicated to us by van den Dries [40]. 

Theorem 4.25. Let iw,,i be the real-closedjeld of Puiseux series ouer [w. There exists 

a problem Y E Pk,,, nlhose restriction X to [w is not AR. 

Proof. Let R be a real-closed field. The field R,,i of Puiseux series over R is the field 

of formal power series: 

,- x 

C a,@ with kE.Z,qEN\{O} and a,EKak#O 
IF/; 

equipped with formal addition and multiplication (a series of the above form is positive 

if and only if ah > 0). Rpui is real-closed and R <R,,, in the obvious way. Given 

a sequence a of positive real numbers we denote by ;‘u the element C,a, a,~‘. Let 

Y,, C [wzi be the following problem: for x E Ri,, ,X E Y, if and only if C;_, _x~E~ < ;;,. 

Obviously, Y,, E Pi,,, . Let X, be the restriction of Y, to R. For x E R”, x E X0 if and 

only if 

(x, <a,) V(x, =a1 AX? <U?) 

V(x, =ai Ax2 =a2 Ax3 <as) 

V(x, = al A . . . Ax,,-~=~~~~~Ax,,-I <anpI) 

V(x, =a1 A “’ Ax,_1 =a,,_1 Ax,,<a,,). 

In particular, an input of the form (a,, . . , a,,_ 1, x,,) is in X, if and only if X, < a,, 

Assume that X, can be solved in bounded time by a machine over R with 1 real 

parameters xl,. . cq. The above remark implies that a, is algebraic over Q(al,. , xl. 

a I.. , a,,-, ), It then follows from a straightforward induction on n that the a,‘~ are all 

algebraic over Q(cct , . , xl). We obtain a contradiction when the a,‘~ are algebraically 

independent. q 

This theorem shows that there are problems Y E PR in an extension R <R whose 

restriction X to R is not PR, and, even worse, is not AR. One could try to recover the 

property X E PR by adding additional hypotheses. Unfortunately, even if X is AR it 

may still be the case that X @Pw. The proof is similar to that of Theorem 4.25. Instead 

of algebraically independent a,‘~, we use a sequence of algebraic numbers with very 

fast growing degrees over Q. This will ensure that the problem X, of the proof of 

the above theorem is AR (since an algebraic element is @definable). We also need 
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a lemma of independent interest. Roughly speaking, the moral is that algebraically 

independent parameters do not help create algebraic numbers of high degree. 

Lemma 4.26. Let K = Q(al,. . . ,a/) be an extension of 6J where ~1,. . . ,a[ are afge- 

braically independent. Let p E a be of degree k over 62. The degree of b over K is 

also equal to k. 

Proof. Let A be the degree of /3 over K. Obviously, d dk. For the converse, let 

M(a, .) = zJZO P;(x)y’ be the minimal polynomial of p over K, where M E Z[xr , . . . , 

XI, y]. The polynomial M(., /?) E Z[p][xl , . ,xd] vanishes for xi = al,. . . ,x( = q. Since 

~(1,. . . , cq are algebraically independent over Q[fi], this implies that M(., /I) E 0. Let 

al,. . .,a, be rational constants such that &(a,, . . . ,a~) #O. It follows that M(al,. . . , 

a,,j)=O and M(al,...,al,.)$O. Thus d>k (otherwise M(cx,.) would not be of min- 

imal degree). I7 

Theorem 4.27. There exists a problem in Pi,,, with a restriction X to R’ which is 

Arw, but X $2 PR. 

Proof. Consider the problems X, introduced in the proof of Theorem 4.25. Assume 

that X, can be solved in time bn” by a machine with 1 parameters c(, , , LYI. We have 

seen in the proof of that theorem that the ai’s must be algebraic over Q(al, . . , cq). One 

can estimate their degrees by, e.g., Fact 4.1. Namely, there exists a (monotone) bound 

f (b, c, n, 1) depending only on b, c, n, and I such that a,, is of degree at most f (b, c, n, 1) 
over Q(cc,,..., al). We can assume without loss of generality that al,. . . , cc_ I are alge- 

braically independent, and that al is algebraic over K = Q(cc~ , . . , xl_ I ). Let k be the de- 

gree of ~(1 over K. The degree of a,, over K is then bounded by g(b, c, n, 1, k) = kf (b, c, 

n, I). By Lemma 4.26, g(b,c, n, I, k) is also a bound for the degree of a, over Q. A 

contradiction results from a simple diagonalization argument: just take a,, of degree at 

least g(n, n, n,n, n) + 1. The corresponding language X, is not in PR. We have already 

seen that X, is algorithmic over [w in bounded time since the a,,‘~ are algebraic. I? 

Note that the above theorem holds as well for every real-closed field and that a 

real-closed field is Dedekind complete in its field of Puiseux series. 

5. Ordered Q-vector spaces 

5.1. Background 

In this section we consider machine over [w and related structures which perform only 

addition, opposite and branching on equality (=) and order ( < ). In the model theoretic 

setting the language is the language of ordered abelian groups with a distinguished el- 

ement 1: 3 = { +, -, 0, 1, <, =}. The theory of divisible ordered abelian groups with 

a distinguished element i >O is complete, admits elimination of quantifiers and is 
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o-minimal (in particular, any extension E < F of models of this theory is elementary). 

The models of this theory are exactly the ordered Q-vector spaces with an element 

i > 0. The reals R without multiplication are of course a model of this theory (inter- 

preting i by 1 or any positive element). To avoid confusion, when we look at R in Y’ 

we denote it by If&,,. Computation over R,,, has been studied in a number of papers 

(see for example [21, 111) and the question PR,,,, = ? NPR,>_ seems to be difficult. In 

this section, E will be an ordered vector space and we always assume that our ordered 

vector spaces have a distinguished element i >O (and thus has dimension 3 1). We 

can make a correspondence with the setting of the previous section: ordered Q-vector 

spaces correspond to real-closed fields, the ordered Q-vector space of dimension one 

that we denote by Qeobs corresponds to R,i, (as the ordered Q-vector space which cm- 

beds in all ordered Q-vector spaces) and of course R,,, corresponds to R (as the only 

ordered Q-vector space with a complete order). We consider E with the order topol- 

ogy and E” with the product topology. As for real-closed fields we can express some 

topological facts with first-order formulae. Also, we can define the classes A/*const. 

p./*const, , as for real-closed fields. 

In Section 5.2, we need a good elimination theorem. If 4 is a formula of y with 

parameters x. then the terms which appear in 4 are of the form 

where the a, and the bj are in Z. The S-size of such a term is the max of the bit 

length of the a, and the b,. We denote by #(4) the max of the S-size of the terms 

which appear in 4. The following result is a consequence of a result of Sontag (see 

[36, Lemma 3.31). 

Fact 5.1. There exists a polynomial p such that the .fk4lowing holds. Assume that 

C&Y, a) is a ,formulu of the form 

Ql _F, . QWJ,,, 4’(.?, 1.. 9 Y,,p.t x)3 

where the Ql we quantijers, 4’ is quantijerTfree, the j, are tuples of length <n 

and the cz are parameters of E. Then, there exists a quant$erTf~ee .formulo I/?(.?. r) 

equiaalent to $(Y, X) surh that #($)< p(n)“#($‘). 

Now, we recall some facts that we shall need (in Section 5.3) to prove the P-stability 

of R,,,. Let G be an abelian ordered group. A subset X of G is convex if for every 

g, h E X, if g <c < h then c E X. The convex hull of a subset of G is the smallest 

convex subset of G which contains X. If X is a subgroup of G, then the convex hull 

H of X is also a subgroup of G. Moreover, if G is divisible then H is also divisible 

(thus the convex hull of a subspace of an ordered Q-vector space is a subspace). We 

denote by lg] the absolute value of g. Let g and h be two elements of G. We write 

g @ h if ng < Ihl for all n E Z’. We say that g and h are comparable if neither y Q h 

nor h @g. If X and Y are subsets of G, we write X4 Y if for all g tX\{O} and all 
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h E Y\(O), g<h. G is archimedean if all the nonzero elements of G are comparable. 

These groups are well-known: 

Fact 5.2. An abelian ordered group is archimedean ifs it is isomorphic to a subgroup 

of the ordered additive group of the reals. Moreover, a Dedekind complete ordered 

abelian group is isomorphic to R,,,. 

We recall the “classification” of finite dimensional ordered Q-vector spaces. 

Fact 5.3. Let E be an ordered Q-vector space of finite dimension. There exist sub- 

spaces El,..., E, of E such that 

(1) E-E, x .. . E, (as a vector space); 

(2) the Ei are archimedean; 

(3) El <E2 6 . . . <<E,. 

In other words, E is a direct product of archimedean vector spaces Ej and the order 

on E is given by the right lexicographic order on El x . . xE,,,. 

5.2. P-saturation 

Note first that Proposition 3.15 implies that if E is countable, there are boolean 

problems in Pi/l which are not in AE. Moreover, the proof of Proposition 4.17 does 

not use multiplication and holds for ordered Q-vector spaces (i.e., [14E C PE/~). Thus 

we need to work at the nonuniform level. Note that, again, if E contains R,,,, then 

most of the nonuniform classes for E are uniform without loss of time (in particular, 

Prw”,, = Pn,,, ). 
The results of Section 4.2 can be adapted. We need the following well-known lemma. 

Lemma 5.4. Let E be an ordered Q-vector space. Let X be a problem in SIZE:(t), 

and (~(1 , . . . , &!k) the corresponding vector of parameters. Then, X is in SIZE;(t) using 

1 <k linearly independent parameters over the subspace spanned by 1, where 1 + 1 is 

the dimension of the subspace spanned by (1, ccl,. . . , c(k ). (The same result holds with 

TIME in the place of SIZE.) 0 

With this lemma and the proof of Lemma 4.6 we obtain the analogue of Proposi- 

tion 4.18. 

Proposition 5.5. Let E be an ordered Q-vector space. &/const C AE/*const “with- 

out” loss of time or uniformity. 0 

In ordered Q-vector spaces, everything is for the best in the best of all possible 

worlds [41]. 

Theorem 5.6. PE/*const = PE/const = PE. 
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Proof. The beginning of the proof is the same as the proof of Theorem 4.19, but 

here, the formulae & are circuits C,(xr , . . ..x,]. ~1,. , y~.zr,. . . .z/) of polynomial size 

in n: (C,,(x,y.r)),,,o defines a problem Y of E, there exists a sequence (fl,,) of Eh 

such that for all n, X nE” is solved by C,,(.x,/,,, x) and for all n the set S,; of the 

[j E Eh such that X n E” is solved by C,,(.Y, j, a) has nonempty interior. We define --,( 

and V,, in the same way as in the proof of Theorem 4.19. Using Fact 4.3, we know 

that V,, is the union of Ur .,,, . , U ,,,.,, where the U,,,, are the interior of the classes of 

N,, with nonempty interior. We may assume that Ur.,, is the interior of S(r Then, we 

define the sets B,, and r,, in the same way as in the proof of Theorem 4.19. Note 

that there exists a formula $,!(x, y,z) equivalent to C,,(x. y,z) of polynomial size (in n) 

of the form 3~ &/,:(,x, y.z,w) where $:,(.x, y,z, MI ) is quantifier-free. It follows that the 

T,, are defined by formulae of polynomial size with a bounded number of quantifier 

alternations (with parameters x only). Thus, by Fact 5.1, T,, is defined by a quantifier- 

free formula 0,,(~,,, a) such that #(O,,) is polynomial in n. By construction, we have a 

point #, in ~cU,,,~ which satisfies O,i(y~, x). Since T,, is finite. there exists a term t( ?I,, 3 ) 

of (),,(y~, ~1) such that t(#,, m) = 0. Thus 6,,.#, = a”.,,.1 + ~I.,~.xI + + ai .,,. XI where h,, 

and the u,,,, are integers of bit length polynomial in n. Clearly, we have a circuit D,,(Z) 

(without tests and selections and with one output) of polynomial size such that D,,(r) 

computes b,,./j;,. Using D,, it is then easy to construct a circuit C:,(.X, ye,. . . )‘A PI .z) 

such that C,: is of polynomial size and such that C:,(X. yr , , J‘/\ ~ I, cx) is equivalent to 

c’,,(.~.~~~,....~.,,~,./j~~.c(). Then, we see thatX is in p:;‘“(k- 1). We can repeat k times 

the above procedure and see that X is in I$. C 

By Fact 3.14 and since LFDE,,_ =Pw,,,. we obtain 

Corollary 5.7. (i) PRJconst = P_c~,~_. 

(ii 1 U PF,, ~ # Nh,, I then there exist problems in NPT,,,,\PQ,~>. \ihich are not NP,__, \_- 

complete. 

Also, Proposition 3.11 gives: 

Corollary 5.8. If E and F are two ordered Q-vector spaces, then IFDE =NpE lf’and 

only if P’1.- =NP’F. Jf E and F contain R,,,, w’e can replace P’ by P in the ahow 

statement. 

As a corollary (to the proof) of Theorem 5.6 we have the following result (the 

details are left to the reader). 

Corollary 5.9. Let E be an ordered Q-vector space and ‘t be one of’ the com- 

plexity clusses C,,P, II/,$, PW, PAR, I?A[W, [Exp. Lo’AU, PEXP, P[Exp. Then, 

%L-/const =(Gb. 

The results above have as consequences some of the known results [I l] about 

boolean part: gYp( lu’,) = P/poly and aY( PARE) = PSPACEjpoly. Of course 

.#,Y(LEXpE) and .%‘b(PA[WE) are the class of all problems of (0, l}. This gives 
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the separation of [IDARE and PARE. Note that the analogue of Corollary 4.21 (with 

exp(exp(&)) in place of exp(+))) is easy in the context of this section. This 

gives the separation of [FDA& and lEXln’~. One can also obtain results similar to 

Corollary 5.8, for example we have: the questions Ch/polybool =? Ii’h/polybool and 

PW =? [IDAR are the same in every ordered Q-vector space. 

Note that (in contrast to the case of real-closed fields) the boolean part of PE, N[FDE, 

Chp~, ZI~~DE, PWE and IPARE are known and are equal to (respectively) P/poly, 

NP/poly, ChP/poly, UhP/poly, PH/poly and PSPACE/poly (see [ll]; the main point 

is that for E boolean nondetetminism is the same thing as nondeterminism). Thus, 

for example, if lp’~ = NPE then P/poly = NP/poly (and by [20] the standard (uniform) 

polynomial hierarchy collapse at its second level). The converse implication is estab- 

lished in [16], and a similar result for the problem P =? PSPACE can be found in [ 171. 

5.3. P-stability of R,,, 

In this subsection we shall show some P-stability results for ordered Q-vector spaces. 

We need the following lemma which allows to get controllable parameters. 

Lemma 5.10. Let E <F be an extension of ordered Q-vector spaces. We assume 

that E is Dedekind complete in F. Let ~(1,. , CI~ be elements of F. Then, there exist 

integers m,m',so, . . ,sm, tl, . . . , &,I, elements /31,..., & ofE,for every jE{l,..., m} a 

finite dimensional subspace H, of F spanned by (Ed,;);):, and for every j E { 1,. . , m’} 

a jinite dimensional subspace G, of F spanned by (ri,,):=, such that 

(1) each a; is a linear combination of the /!I;, E,%, and y;,i; 

(2) the subspaces E, Hi and Gi of F are in direct sum; 

(3) H,<<Hz<... 4H,4E@G,@... @G,,. 

Thus the subspace spanned by E, the I?/ and the Gi is isomorphic to HI x . H,,, 

x E x G, ‘. x G,, with the right lexicographic order. 

Proof. We denote by FO the convex hull of E in F. Then, there exists a subspace 

G of F such that F YFO x G. Then it easy to see that FO @G. We may assume 

that al, . . , CII E Fo and that a/+ i , . . , & E G. Then, we apply Fact 5.3 to the subspace 

spanned by al+i , . . . , c(k and we obtain the Gi and the y (we take for the Hj subspaces 

ofFo). Obviously, we may assume that al,...,ccl~Fo\E. Let iE{l,...,I}: since c(, is 

in the convex hull of E and since E is Dedekind complete in F, st(ai) E E. If st(Ni) = 0 

we do not modify cl;. If st(ai)#O, then a, =St(cci) + E where EEFo\E and St(E)=0 

and we replace ai by E. The above argument shows that we may assume that for all 

iE{l,..., I}, st(a;) = 0. Let H be the subspace spanned by ~(1,. . . , MI. Then, H <E and 

H n E = (0). We can apply Fact 5.3 to H and obtain the Hi and E. 0 

Theorem 5.11. Let E <F be a Dedekind complete extension of ordered Q-vector 

spaces. If X is a problem of F which is P F, then the restriction of X to E is PE. In 

particular, R,,, is P-stable. 
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Proof. It suffices to show that if c( is a k-tuple of F, then there exists a polynomial 

q and a k’-tuple x’ of E such that for every circuit C(xr , .,x,,, ~1,. . , yi;) of Y/‘,,,., 

(do not forget the selector), there exists a circuit D(x. ~1,. , yk~) of Y,,(-, of size 

<q(size(C)) such that for all u E E, E + D(LJ, u’) iff F /= C(v, cx). Note that we may 

assume that all the tests in C are of the form L(_x, ‘x) < 0. 

By Lemma 5.10 we may assume that c( is equal to (0. E. y) with the properties (and 

the notations of) Lemma 5.10 (we assume without loss of generality that /?I = 1). Then, 

we have a tower of Dedekind extensions 

111 ll, Ill’ 
E<H,,, xE<.,. X H,xE+F,H,xEx ,:,G,. 

1x1 

Clearly, we may assume that F = x:L, Hi x E x x ;i, Gi. Moreover, an induction shows 

that it suffices to consider extensions of the form E 6 H,,, x E and E bE x Cl. Let us 

consider an extension of the form E < H,, x E (the other case is similar). Thus, we 

assume that F = H x E, H 4 E, H is archimedean and that CI = (fl, a). Now we construct 

a new circuits D’. The idea is to replace each computation (addition or subtraction) 

gate of C by two gates so as to separate infinitely small elements from standard parts. 

If on an input c in En a gate of C computes the value _!,(c, p, E) = Lr (t:, fl) + L?(e), 

then the value of the first corresponding gate in D’ (the “standard gate”) should be 

LI (c, /3), and the value of the second gate (the “infinitesimal gate”) should be Lz(E). 

Here L, Lt and L? are linear functions with integer coefficients. The construction of D’ 
by induction is clear. In order to perform an addition, we apply the rule: 

[Ll (r. B) + L?(E)] + [L:(v, j?) + &)I = [L,(a, p) + L{(2’, p)] + [L?(E) +L;(i-:)]. 

A similar rule applies to subtractions. In order to perform a test L(v, 8, E) < 0, we apply 

the following rules: 

(i) if L~(U,~)#O, L(u,/?,E)<O iff LI(U,~)<O: 

(ii) if Ll(U,p) = 0, L(v,fi,a)<O iff L?(a)<O. 

The nullity test for the first argument of a selection gate can be performed as follows: 

Li(v.j?)+L?(j:)=O iff ri(v,p)=O and Lz(E)=O. Thus we replace each test gate and 

each selection gate of C by a little subcircuit made of test and selection gates. The 

circuit C(x, c() is equivalent to the circuit D’(x, /?, E) for inputs in E. Moreover, the size 

of D’ is bounded by c size(C) where c is a universal constant. 

To complete the proof, we want to replace E E H’ by a “small” vector of Q‘ (which 

depends on C). E can be replaced by any q E Q’ such that for any input in E” and any 

value L?(c) computed at an infinitesimal gate of D’, L?(E) and Lz(n) have the same 

sign. This yields a finite system of linear inequalities, even though there are infinitely 

many inputs (that’s because the coefficients of LZ are integers of bounded size; indeed 

their size is polynomial in the size of C). This finite system has a solution in H‘ 
(namely, E), so it must have a solution in Q’ since H is elementarily equivalent to Q. 

This implies the existence of a solution q = ( pI /qj , . , pl/qs) where the pi’s and q,‘s 

are integers of polynomial size (this fact was used in [21] to show that the boolean part 

of PX,, is P/poly). Finally, the binary digits of the p!‘s and qi’s can be “plugged” in a 
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circuit D(v, /?) that will simulate D’( v, /3, q) for c‘ E E”. The size of D is polynomially 

related to the size of C. 0 

Note that in this proof we have not used the fact that H is archimedean. One could 

therefore take directly H = x y!“=,H; to avoid the induction on m. However, the proof by 

induction has its merits when E contains I&,,,. In this case, since H is archimedean, 

there exists an embedding of H in I&,,,. Let E’ the image of the tuple E by this 

embedding. Then, it is easy to see that the circuit D’(x, /!I, E’) is equivalent to D/(x, /?, E) 

for input in E. Thus, in this case, we do not need to use the existence of small rational 

points in polyhedra. 

Note also that the depth of D in the proof above is also polynomial in the depth of C 

(with a polynomial which depends only on a). Thus [w 01,S is also PAR-stable. Finally, 

note that Theorem 5.11 implies Corollary 5.7. This gives a very different proof of this 

result (the proof of Theorem 5.11 for [w,,, does not use Fact 5.1 nor the existence of 

small rational points in polyhedra). 

For an obvious reason, if E is not isomorphic to [w,,,, then E is neither P-stable nor 

p-stable (the proof of Proposition 4.23 works as well for ordered Q-vector spaces). 

However, it seems to us that every ordered Q-vector space satisfies a weak form of 

p-stability: if E <F is an extension of ordered Q-vector spaces, if X E PF and the 

restriction of X to E is in AE, then the restriction of X to E is PE, Note that, again, 

we need to work at the nonuniform level: there exist boolean problems which are AQ,,\ 

and Pw,,%\ but not PQ,)_. 
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