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Abstract

This paper was motivated by the following two questions which arise in the theory ot com-
plexity for computation over ordered rings in the now famous computational model introduced
by Blum, Shub and Smale:

(1) is the answer to the question P=?NP the same in every real-closed field?

(ii) if P#NP for R, does there exist a problem of R which is NP but neither P nor NP-
complete ?

Some unclassical complexity classes arise naturally in the study of these questions. They are
still open, but we could obtain unconditional results of independent interest.

Michaux introduced /const complexity classes in an effort to attack question (i). We show
that Ag/const = Ay, answering a question of his. Here A is the class of real problems which
are algorithmic in bounded time. We also prove the stronger result: PAR/const = PARz, where
PAR stands for parallel polynomial time. In our terminology, we say that R is A-saturated and
PAR-saturated. We also prove, at the nonuniform level, the above results for every real-closed
field. It is not known whether R is P-saturated. In the case of the reals with addition and order
we obtain P-saturation (and a positive answer to question (ii)). More generally, we show that
an ordered ()-vector space is P-saturated at the nonuniform level (this almost implies a positive
answer to the analogue of question (1)).

We also study a stronger notion that wc call P-stability. Blum, Cucker, Shub and Smale
have (essentially) shown that fields of characteristic 0 are P-stable. We show that the reals with
addition and order are P-stable, but real-closed fields are not.

Questions (i) and (ii) and the /const complexity classes have some model theoretic flavor.
This leads to the theory of complexity over “arbitrary” structures as introduced by Poizat.
We give a summary of this theory with a special emphasis on the connections with model
theory and we study /const complexity classes from this point of view. Note also that our proof
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of the PAR-saturation of R shows that an o-minimal structure which admits quantifier elimination
is A-saturated at the nonuniform level. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper was motivated by the following two questions which arise in the theory
of complexity for computation over ordered rings in the now famous computational
model introduced by Blum, Shub and Smale [6]:

(i) is the answer to the question P=7? NP the same in every real-closed field?

(ii) if P # NP for R, does there exist a problem of R which is NP but neither P nor
NP-complete ? (In the standard model of computation the positive answer to this
question is known as Ladner’s theorem [24].)

Some unclassical complexity classes arise naturally in the study of these questions. They

are still open, but we could obtain unconditional results of independent interest. These

questions have a model-theoretic flavor. This led us to work with arbitrary first-order
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structures in a finite language. The theory of computation and complexity over such
structures was developed by Poizat [14, 32] as a generalization of the Blum, Shub
and Smale model of computation. However, the main results of this paper concern
computations over real-closed fields. On the other hand, the model-theoretic setting has
some advantages, at least for a better understanding of the results.

Let M be a first-order structure in a finite language (one may think of M as a
real-closed field in the language of ordered rings). One of the difficulties of the theory
of computation over an infinite structure is that an algorithm over M can use (a finite
number of) elements of M, the parameters (or constants) of the algorithm. For example,
with the reals, we can encode in the digit of a real number any sequence of 0 and 1
and an algorithm can retrieve these digits. This gives to the reals an algorithmic power
that the real-closed field of the real algebraic numbers does not have. Let M <N be
an elementary extension (or an extension of real-closed fields): as the above example
shows, there is no reason for M to have the same algorithmic power as N. Conversely,
Michaux [28] has noted that if P=NP in M, then P=NP in N. Thus, question (i)
above become: (i) does P=NP in N imply P =NP in M ? This question lead Michaux
[28] to introduce the complexity class Peonst. If M satisfies P/const = P, then for every
clementary extension N of M question (i’) has a positive answer, The point is that
one can sometimes give a “yes-or-no” answer to the question P="? P/const.

Another difficulty is that if M is uncountable we have uncountably many algorithms
over M. This can be an obstruction for diagonalization arguments. For example, the
uncountability of R is an obstruction for extending the usual proof of Ladner’s theorem
to the reals (however, the proof of Ladner’s theorem works for the real algebraic
numbers). Again, this difficult disappears if M satisfies Pconst =P (and has a decidable
first-order theory): Ben-David et al. [3] and independently Poizat [33] have shown that
under these assumptions, question (ii) has a positive answer for M.

Let us define the complexity classes %/const. If £ € N, and if 6 is a class of problems
of M, one can define a new class €/k as follows. A problem X CM™> is in %/k if
there exists ¥ € ¢ (the “corresponding problem”) such that for every n>0 there exists
%, € M* satisfying

YVreM™ [xeX & (xa,) € Y] (1)

Note that the advice «, must work for all inputs of length ar most n. Let %/const =
.o é/k be the union of these classes. If /€ N and % is a classical complexity class.
we denote by %' the class of problems which are % with an “algorithm™ using /
parameters from M. For any M, the inclusions 4* C%°/k and % C %/const clearly
hold. If % =%/const, we say that M is % -saturated.

The main theme of this paper is the study, for real-closed ficlds and ordered Q-vector
spaces, of classes é/const where % is a classical complexity class. We also study from
a general point of view classes of the form %/const and give counterexamples.

Let us now describe the contents and main results of this paper.

Section 2 is of a preliminary nature. We recall some elementary facts from model
theory (such as the notions of saturation and o-minimality). We then give a summary of
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the theory of complexity for computation over arbitrary structures. One of the goals of
this summary is to show to a model theorist that computation over a first-order structure
is not an alien thing for her or him. Conversely, a number of model theoretic notions
and results can be useful. These preliminaries contain a new result: a generalization of
Karp-Lipton’s theorem. This result allows us to prove (in Section 3) that if M <N is
an elementary extension and if P=NP or P=NP in N then the (uniform) polynomial
hierarchy over M collapse at the third level.

We need to introduce some notations. As usual we denote by PAR the class of
problems solved in parallel polynomial time. In this paper we need to work at the
nonuniform level. Following Poizat, we denote by P, (respectively, PAR,,) the class
of problems of M solved by a sequence of circuits (in the sense of M), using pa-
rameters from a finite subset of M, of polynomial size (respectively, of polynomial
depth). The above classes can be also defined using boolean advice functions. For
parallel time we need a semi-nonuniform class: PAR;, is the class of problems solved
in parallel polynomial time with the help of a boolean advice function f from N into
{0,1}*° such that the size of f(n) is polynomial in n. We denote by Ay the class of
problems of M solved in bounded time. The nonuniform counterpart of A, is denoted
by Ay. This is the class of problems of M solved in bounded time with the help of a
boolean advice function. Note that for a real-closed field or an ordered (D-vector space
containing the reals, then P =P, PAR=PAR and A=A (but PAR C PAR; in this
paper C denotes strict inclusion).

In Section 3, continuing the work of Michaux, we develop the abstract theory for
the classes %/const. The main ingredient from model theory is saturation (for every
reasonable €, € = %/const for an N;-saturated structure). In that section, we are also
concerned with counterexamples. We remark that for a number of countable struc-
tures (and in particular for countable real-closed fields and countable ordered Q-vector
spaces) there are problems in P%/1 not in A. This implies that we need to work at
the nonuniform level. We also construct a structure (with elimination of quantifiers)
such that P/const is not included in A and another one with A/const = A but where
P/const is not included in P.

Section 4 is central and deals with real-closed fields. After recalling some background
in the first subsection, we show in Section 4.2 that algebraic parameters can be elimi-
nated. In other words, when working with a real-closed field we may assume (without
loss of time) that the parameters of the algorithms are algebraically independent. This
has some important consequences for the study of /const algorithms. In the third sub-
section, we prove that P°/1 =P' for R. We do not know whether P5/1 C Pg, but Pg/1
is contained in Z,P over R. We also exhibit a family of problems in P}/1 that contains
a part of the difficulty of the question P}/l C? Pr. We conclude this subsection with
proofs that A/const=A for the reals. Section 4.4 gives a characterization (in terms
of sequences of quantifier-free formulae) of parallel algorithms over real-closed fields.
The proof depends on the algorithmic version of the theorem of Milnor—Petrovskii—
Olienik—Thom on the number of consistent sign vectors for a family of polynomials
as it can be found in [35]. In Section 4.5 we prove that PAR/const = PAR and that
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PAR/const = PAR for every real-closed field (we need to work at the nonuniform
level, for R the second equality implies that PAR/const =PAR). We also give some
applications of these results.

We do not know whether P®/1 CP for the real algebraic numbers. We exhibit a
family of problems in P°/1 which seems to show that this question is “impossible”
(at least before a solution to the question P=? PAR). In the last subsection we use a
construction of van den Dries [40] to show that R has a real-closed extension R with
problems Y in P? with a restriction to R not in A, or even with a restriction in A but
not in P. In our terminology, R is not P-stable.

Computation over the reals without multiplication has also been considered. In that
setting, ordered Q-vector spaces are the structures to consider. We denote by R, the
reals without multiplication (i.¢, R in the language of ordered abelian groups). In the
last section of this paper we show (using the same kind of arguments as for real-closed
fields) that P/const =[P for such structures. It follows that P/const =P for R, that
question (i1) has a positive answer for R,y and that the question P =? NP has the same
answer in every (nontrivial) ordered Q-vector space. Moreover, we show that R, 1s
P-stable: given an extension R, <FE and a problem Y of E in P, the restriction of ¥
to Ry is P.

One of the main ingredients of the proof that P®/1 =P' for R and that PAR/const =
PAR for a real-closed field is the fast quantifier elimination algorithm of Renegar [35]
or Heintz et al. [15] (for the case of ordered Q-vector spaces we use an climination
theorem of Sontag [36]). Another important fact (for PAR/const =[PAR) is a result
of Pillay [29] on definable equivalence relations in o-minimal structures which applies
to real-closed fields and ordered (-vector spaces. In fact, our proof of the equality
PAR/const = PAR for real-closed fields shows that if M is an o-minimal structure
which admits elimination of quantifiers, then A,;/const = A,,. Moreover, the results of
non P-stability of R and of P-stability of R, are connected with results of van den
Dries [37] and of Marker and Steinhorn [27] on the definability of types in o-minimal
structures (see Section 3.4).

Note that for algebraically closed fields of characteristic 0, questions (i) and (ii) have
received positive answers (with C in place of R in question (ii)). Blum et al. proved
in [4] that if K<L is an extension of fields of characteristic 0 (with K contained in
the algebraic closure of (; but this is not essential) and if ¥ is a problem of L in P,
the restriction of Y is Pg. It follows that P/const=P in K and (independently) that
question (i) has a positive answer for algebraically closed fields of characteristic 0.
Koiran proved in [23] similar results in the case of positive characteristic for [P. Note
that the above transfer cannot hold in the case of ordered fields (see Section 4.6).
In fact, such a result is possible only in the presence of an w-stable theory or for
specific models, such as a Dedekind complete mode! of an o-minimal theory (see
Section 3.4). For question (ii) in the case of C, the first proof of a positive answer
was given in [26] by Malajovich and Meer. Using the w-saturation of C,
Ben-David et al. [3] and independently Poizat [33] gave a more clementary
proof.
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2. Preliminaries
2.1. A word on model theory

We assume some familiarity with first-order logic. However, we recall a few defi-
nitions and facts. For more details and any unexplained notions we refer the reader to
[18] or [31].

In this paper, M denotes a first-order structure in a language ¥ (we always assume
that equality is in &). A subset X of M" is said to be definable if there is some
formula ¢(x,...,x,) (of &) with parameters in M such that X is the set of elements
a € M" such that M |= ¢(a). If 4 is a subset of M we say that X is A-definable if X
is definable with a formula with parameters in 4 only.

Let M <N be an extension of .Z-structures. Such an extension is said to be elemen-
tary if every sentence of .¥ with parameters in M which is true in N is also true in M
(this implies that M and N have the same first-order theory). Note that if a first-order
theory 7 admits elimination of quantifiers, then every extension between models of T
is elementary.

Let A be an infinite cardinal. M is said to be A-saturated if for every subset 4 of M
of cardinal <A and every positive integer n the following holds: every set of formulae
with parameters in 4 and with free variables x,...,x, which is finitely satisfiable in A
is satisfiable in M. For example, R (in the language of ordered rings) is not Ny-saturated
because the set of (parameter-free) formulae {x>#n|n>0} is finitely satisfiable in R
but R is archimedean. On the other hand, it is an easy exercise (assuming elimination
of quantifiers) to show that C (in the language of rings) is N,-saturated.

The point is that we can find A-saturated structures “everywhere”. More precisely,
if M is an Z-structure and 4 an infinite cardinal then M has a A-saturated elemen-
tary extension. Moreover, any A-saturated structure N is A" -universal. This means that
if M is another #-structure of cardinal </ with the same first-order theory as N, then
there exists an elementary embedding of M into N (i.e., an injective morphism in the
sense of ¥ of M into N such that the image of M is an elementary restriction of N).

Some of the results of this paper which concern real-closed fields can be general-
ized to arbitrary o-minimal structures that admit (effective) elimination of quantifiers.
For o-minimal structures we refer the interested reader to [30, 19, 38]. Let M be an
Z-structure and assume that & contains a binary relation < that is interpreted as a
linear ordering. M is said to be o-minimal if every definable subset of M is a finite
union of intervals in M (as usual we assume that < is dense and without extremity).
By elimination of quantifiers, real-closed fields (in the language of ordered rings) and
ordered Q-vector spaces (in the language of ordered abelian groups) are o-minimal.
Let M <N be an elementary extension. If M is o-minimal then so is N (this is not
obvious). Assume M to be o-minimal. Let @ be an element of N, then a defines a
cut of M: (C,;C}l) where C; ={beM |b<a} and C/ ={beM|b>a}. The ele-
ment g is said to be rational over M if C; (and C; ) is a definable subset of M. By
o-minimality, if a is rational over M then C, and C; are intervals. Then, the standard



O. Chapuis, P. Koiran! Annals of Pure and Applied Logic 99 (1999) 149 7

part of « is the right extremity of C,; (—oc if C is empty). We denote this element
of M U{—oc.+ox} by st(a). M is said to be Dedekind complete in N if every a €N
is rational over M. M is Dedekind complete if M is Dedekind complete in every
elementary extension of M. It is easy to see that M is Dedekind complete iff every
nonempty majored (minored) subset of M has a supremum (infimum) in M.

2.2. Models of computation

This subsection is a summary of the foundations of the theory of complexity for
computation over “arbitrary” structures. Of course some knowledge in standard com-
plexity theory is not useless (a classical reference for this subject is [1]). However, it
one is mainly interested in nonuniform complexity classes it is not necessary to know
what an algorithm is.

Let M be a structure in a finite first-order language #. For simplicity, we assume
that %’ contains two constant symbols denoted by 0 and 1 which are interpreted by two
distinct elements of M (if there are no such constants we add them, and if possible
we choose these two elements in a canonical way). We denote by M ™ the set of
finite sequences of elements of A/. A problem X of M is a subset of M™. Let #(n)
be a function from N into N*. TIME,(¢) denotes the class of problems X which
can be decided in time O(¢#(n)) by a machine over M (essentially a Turing machine
which manipulates elements of M and which can apply the functions of ¥ and the
characteristic functions of the relations of ). Thus, X € TIMEy(¢) if and only if
there is a machine over M which, given a finite sequence (a,....a,) of M, outputs !
it (ay...., a,)€X and 0 if (ay,....a,)& X after O(#(n)) elementary operations. If .#
i1s a machine over M then .# may use a finite number of elements of M not named
by constant symbols of #. These elements are the parameters of .# (in particular, 0
and | are given for free; they are never considered as parameters). If & is a positive
integer, we denote by TlMEﬁ,(t) the class of problems decided by a machine working
in time O(t) with at most k£ parameters in its program. Note that the word constant
has sometimes been used instead of the word parameter. We prefer the latter since for
us a constant is an element of M named by a constant symbol of . As usual, we
define Py, (respectively, EXPy,) as the class of problems of M which can be decided
by a machine over M working in polynomial (respectively, exponential) time. The
cotresponding classes for machines with at most & parameters in their programs are
denoted by P}, and EXP., (throughout the paper, exponentials and logarithms are to
the base 2).

If M is infinite, in general (essentially if M is not recursively saturated), there exist
problems of M which are decided by a machine over M but without bound on its
running time (e.g., {(a)|a€Z} in (R, +,..—,0,1, <)). Since we are mainly interested
in problems decided in bounded time we denote by A;; the class of problems X
of M which are decided in bounded time (i.e., there exists a function ¢ such that
X € TIMEy,(1)). A large subclass of Ay; can be characterized using only the standard
notion of computation: a problem X of M is decided in time bounded by a standard
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recursive function if and only if there exists a sequence of quantifier-free formulae
(Dn(X1s. - Xy P1se- s Vi) nso (k is fixed) and an element « € M* such that: (i) there
exists an algorithm (in the standard Turing machine model) which produces the ¢, and
(i) X NM"={aeM" |M = ¢,(a,x)}. We also define the class A, of problems of
M which are decided by “nonuniform algorithms working in bounded time” as above
but without imposing condition (i). A, can be also defined as Ay /&, the class of
problems decided by a machine over M which works in bounded time with the help of
a boolean advice function f€ # ={f : N—{0,1}>}. It is also useful to introduce
the class of problems which are (quantifier-free) definable over M. This class is defined
in the same way as Ay, except that the ¢, can be arbitrary (quantifier-free) formulae
with parameters in M.

To define the nonuniform counterpart of P (and EXP) we recall from [14, 32] the
notion of circuit in the sense of M. This will be useful for a number of reasons. First,
we have to add a selector to M. A selector for M is a function S: M3 — M such
that S(0,y,z)=y, S(1, y,z)=z and S(x, y,z) =t(x, y,z) for x ¢ 0,1 where ¢ is a term
of ¥. Sometimes a structure M has a selector: this means that there exists a term
s(x, y,z) of & with the above property (for example, if M is a field one can always
take s(x, y,z) = (1—x)z+xy. If M does not have a selector (e.g., (R,+,—,0,1, <)) we
add to the language of M a new function symbol § with the above interpretation (one
can take t(x,y,z)=x; note that since S is (-definable in A/ without quantifiers, from
the point of view of model theory, M with S is the same thing as M without S). We
denote by .#* the new language. A circuit C (in the sense of M) is a finite acyclic
directed graph (where the vertices are called gates and the edges are called arrows)
labeled by variables and symbols of ¥~ in the following way:

(1) Since C is acyclic, there are gates without incoming arrows: such a gate is
labeled by a constant of ¢ or by a variable xj,x;,...; moreover, gates labeled by
variables are called input gates and are ordered (we use the notation C(xi,...,x,) to
say that the input gates are xi,...,x,).

(i) A gate with incoming arrows receives » arrows where r is the arity of a symbol
of &% and it is labeled by such a symbol; moreover, the incoming arrows are ordered
and if the gate is labeled by a relation we say that the gate is a test.

(iii) Gates without outgoing arrows are called output gates and they are ordered.
Note that since C is acyclic, there are output gates. The size of C, size(C) is the number
of gates of C. Let C(xy,...,x,) be a circuit in the sense of M with m output gates.
Then C(xy,...,x,) computes in an obvious way a function f¢ : M" — M" (here we see
that we need to order the input and output gates and that we need to order the incoming
arrows since the operations/relations of M are not necessarily commutative/symmetric).
Indeed, to each gate we can inductively associate a function of the input variables in
the usual way (a test gate labeled by a relation R return 1 if M = R(a;,...,a,) and 0
otherwise).

In what follows all our circuits are “decisional”. This means that there is only
one output gate and that this gate is a test. Thus, a circuit computes a function
Jo: M" — {0, 1}. Indeed, if C(xy,...,x,) is a circuit and a € M", we say that M |= C(a)
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if fo(a)=1. Circuits are compact forms of quantifier-free formulae. If ¢(x,,...,x,) is a
quantifier-free formula of ., then there exists a circuit C(xy,..., x,) of size bounded by
the size of ¢ such that for all ac M, M |= C(a) if and only if M | ¢(a). Conversely,
if C(xy,....x,) is a circuit, then there exists a quantifier-free formula ¢(xi,....x,) such
that for all ae M", M = C(a) if and only if M |= ¢(a). Note that the size of ¢ is in
general not polynomial in the size of C. However, by quantifying the gates one can
construct in polynomial time (in the standard sense) an existential formula (%) which
is equivalent to C.

If X is a problem of M, (C,(x1,...,%; ¥1,---. V& Dn=0 1S a sequence of circuits
with & fixed, and « € M*, we say that (C,(x,%)),»0 solves X if for all n=0, for all
acM", aeX ff M = C,(a,a). Of course, the components of « are the parameters.
Then, we have the following result: if X €TIME},(¢) then there exists a sequence
of circuits (Co(X1....,Xp Y1ve-.n Vi) )ns0 and o € M* such that (C,(x,u)), >0 solves X
and such that there exists a standard algorithm which outputs the circuit C,(x, y) in
time p(Ot(n)) where p is a polynomial depending on the model of computation (note
that this implies that the size of C, is at most p(Ot(n))). Note that the converse
of this result is also true: there exists a polynomial algorithm over M which, given a
parameters-free circuit C(x,,...,x,) and a tuple (a1,...,a,), accepts if and only if M =
C(a). Thus, we can define the classes Py and EXPy using circuits and the standard
notions of polynomial and exponential algorithms. To define nonuniform complexity
classes we proceed as follows. We say that X € SIZEﬁ,,(t) if there exists a sequence
of circuits (Co{X1,.-- Xy, Y1svvs Vi) nzo and € M" such that (C,(x,%)),>0 solves X
and such that size(C,)<O(t(n)). Then, we define SIZEy(z), P, Py and EXP,, in
the obvious way. Again, one can define some of these classes using boolean advice
functions. For example, Py is the class Py /polybool where polybool is the class of
function f : N — {0,1}° such that the length of f(n) is polynomial in n.

We turn our attention to nondeterministic classes. One can define the class NPy, as
follows. A problem X is in NPy, iff there exist a polynomial p and a problem Y & Py
such that for all n>0, for all a € M", a € X iff there exists b € M """ such that (a,b) €Y.
In the same way we can define NP, NA,, and NA;; (one has to be a little more
carefully for defining, say, NEXPy, ). In the standard case, obviously we have NA = A.
This is no longer true in the general case. In fact, it is easy to see that a structure M
satisfies NA,, = Ay, (respectively, NA;; = Ay ) iff there is a tuple o of elements of M
such that the theory of M with new constant symbols for the components of x admits
elimination of quantifiers (respectively, effective elimination of quantifiers). We denote
by SAT,, the problem of satisfiability of quantifier-free formulae with parameters in M
(SATy can be viewed as a problem of M after an adequate coding of quantifier-
free formulae). The problem SATy is NPy and NPy, complete. This implies that
P,y = NPy, iff there exist a tuple « of M and a polynomial algorithm in the sense
of M which, given an existential formula Y(¥) computes a circuit C(X, ¥} such that
Y(x) is equivalent to C(X,2) (for Py, = NPy, it suffices that C be of size polynomial
in the size of ). Thus, if Py, = NPy, or Py, = NPy, there is a tuple « of elements of M
such that the theory of M with new constant symbols for the % admits elimination of
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quantifiers. This leads the theory of complexity over arbitrary structure to consider with
a special attention structures M which admit quantifier elimination. However, it seems
that the main gap in the theory is that there is no example of a structure M in a finite
language with Py, = NPy, or Py, =NPy,. Note also that results of model theory can be
applied: (i) if an infinite field K in the language {+,—..,0,1,2,...,0} where the o;
are constants admits quantifier elimination then K is an algebraically closed field; (ii) if

an ordered field K in the language {+,—,.,0,1, <,ay,..., %} where the %; are constants
admits quantifier elimination then K is a real-closed field; (iii) if an infinite ordered
abelian group G in the language {+,—,0, <.«,...,a;} where the o; are constants

admits quantifier elimination then G is an ordered ()-vector space of dimension >1
(see [25] for (i1) and (1); (i1) and (iii) are direct consequences of [30, Theorem 2.3 and
2.1]). Thus for classical structures we know where to look for and since the quantifier
elimination algorithms have been studied in detail, one may hope to prove something
about the question P =7 NP. Nevertheless, for the above structures this main question
is still open (and it is conjectured that the answers are negative). There are at least
two main differences between the classical work on algorithmic quantifier elimination
and the question Py =? NPy,. The first one is that for the question Py, =? NPy we
can use algorithms in the sense of M for eliminating quantifiers and thus use elements
of M. The second one is that for the question Py, =? NP, the eliminating formula can
be a circuit which can be more compact than a quantifier-free formula.

Now we want to define the polynomial hierarchy. First of all, note that a prob-
lem X of M is NPy, iff there exists a sequence of existential formulae (¢,(xi,....x,,
Vis.oos Ve Duso and o € M¥ such that (¢p,(x, %)), >0 solves X and such that there exists
a standard algorithm which constructs the formulae ¢,(x, y) in polynomial time. This
comes from the fact that there exists a polynomial algorithm (in the standard sense)
which, given a circuit C(x,,...,x,), constructs an existential formula ¢(x) which is
equivalent to C. Let 2>=1 be an integer. Then we can define X,Py, (respectively,
I1,Py ) as the class of problems X of M which are solved by a sequence (¢, (x,%)),>0
of 2, (respectively, IT,) formulae of % with parameters « € M* such that ¢,(x, y) can
be constructed by a standard polynomial algorithm. We set A4,Py, = 2Py, N 11,Py, and
PH,, is the union of all the I1,P,. We define the alternating polynomial time class
PAT),, in the same way by requiring the formulae ¢, to be in prenex form but without
bounds on the alternation of quantifiers.The usual inclusions hold and these definitions
are in accordance with the definitions using machines over #. One can also define
the nonuniform counterparts of these classes: 2Py, I1,Py;, PHy and PAT,,, by just
imposing a polynomial size condition on the ¢, in the place of the standard algorithm.

One can be surprised by the importance we give to nonuniform complexity classes.
There are a number of arguments in [14] in favor of considering nonuniformity. First,
recall that if the structure M contains the reals with its addition and usual order, then,
in general, there is no difference between the uniform and the nonuniform setting (for
boolean advice) since we can encode the advice function in the digits of a real number
and retrieve these advice using + and <. For example, for such a structure Py, =Py,
(and thus NPy, =NBP,,), EXPy, =EXP,; and Ay, = Ay, (and the same thing holds for
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all the complexity classes defined above). Secondly, one can prove a Karp-Lipton
Theorem for arbitrary structures (see Section 2.4). Finally, in this paper we need to
work with nonuniform complexity classes. For example, for the ordered field of real
algebraic numbers P/const P for somewhat obvious reasons (see Propositions 3.15
and 4.17).

2.3. A model of parallel computation

As in the previous subsection we assume that all our circuits have only one output
gate and that this gate is a test (thus, a circuit compute a function into {0,1}). We
recall that the depth of a circuit is the length of a maximal directed path. Sequential
time corresponds to the size of circuits. A natural way to define parallel time is to
use the depth of circuits (see [2, Ch. X] for the standard case). However, to obtain
a “concrete” model of computation (as opposed to the nonuniform one) one has to
introduce some uniformity condition on the sequences of circuits.

Definition 2.1. Let X be a problem of M and 4 a function from N into N*. We say
that a problem X is DEPTH,,(d(n)) if there exists a sequence of circuits (C,(xy,....x,.
Vlerens Vi V=0 (k fixed) and a k-tuple o of M such that (C,(x.2)) solves X and such
that the depth of C, is <O(d(n)).

We say that X is UDEPTH(d(n)) (respectively, UDEPTH\(d(n))) if, moreover,
there exists a standard algorithm in SPACE(d(n)) (respectively, in SPACE(d(n)) with
advice of size O(d(n))) which on input 1" outputs C,.

By definition, X 1s PAR,, if X is DEPTH,,(n") for a constant ¢. In the same
way, we define PARy, and PAR, with UDEPTH,, and UDEPTH,, in place of
DEPTH,(n"), and we define PEXPy, PEXP,, and PEXP,, with exp(n‘) in placc

of n“.

The definition above is not the same as the definition given in [8—10]. However, it
is not very difficult to show that the PAR defined here 1s equal to the PAR defined in
the above cited papers.

With this definition, in order to show that a problem is in PAR one must first
exhibit a family of polynomial depth circuits that solves the problem, and then show
that this family can be constructed in polynomial space. We will often use a different
characterization: a problem is in PAR if it can be solved in polynomial time by a
parallel machine using an exponential (2””1“) number of processors. It can be shown
as in the standard case that these two definitions are equivalent. See [S] for a formal
development on parallel machines over the reals, and [2] for the standard case. The
second definition is convenient because of its more algorithmic flavor. Thus, in order to
show that a problem is in PAR, we will just describe informally a parallel algorithm
that solves it in polynomial time; and to show that it is in PAR, we will describe
a parallel algorithm that solves it in polynomial time with the help of a polynomial
amount of boolean advice.
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Note that a circuit of depth 4 has size at most exp(cd(n)) where ¢ is a constant
which depends only on . Thus the usual inclusion between parallel time d and
sequential time exp(d) holds. If M is a real-closed field which contains the reals R,
one can prove that UDEPTH,,(d(n))=UDEPTH,,(d(n)). Note that PARR is strictly
contained in PARg (and the same thing is true for every real-closed field). Indeed, we
always have that ZP2(PAR,,) is the set of all problems in {0,1}° and the proof of
the main result of [10] implies that Z2(PARR) is PSPACE/poly (if ¥ is a complexity
class over M, BP(¥)) denotes the set of problems in {0,1}> which are %),). One
might think that the class PAR,, does not have any interest, but note, for example,
that PARg C EXPg and that the separation of PARr and EXPg given in [8, 9] is
shown with PARg in the place of PARg (which gives a stronger result).

We recall from [9] the relationship, for a real-closed field, between all the classes
defined thus far: P C NP C PH C PAR C EXP C PEXP, PAR C PAT C PEXP. The rela-
tionship between EXP and PAT is not known (C means the inclusion and that we do
not know if the inclusion is strict). We have the same situation for the nonuniform set-
ting (with PAR in the place of PAR and PEXP in place of PEXP) but we can strictly
insert PAR: ...PAR C PARCEXIP.... The inclusion PHC PAR and PAT C PEXP
come from the “fast” algorithm of elimination of quantifiers for real-closed fields (see
Section 4.1 for details).

The situation for the reals without multiplication (which leads to consider ordered
Q-vector spaces) is quite similar. The above inclusions and strict inclusions hold as
well and no more is known.

2.4. A Karp—Lipton theorem for arbitrary structures

We recall that the polynomial hierarchy is said to collapse at level & where A>1
is an integer if any one of these three equivalent statements holds: X,Py = II;Py,
Zhr1 Py = ZyPy, or I\ Py = I1,Py. Recall that for the standard case, if P =NI[P then
the uniform (standard) polynomial hierarchy collapse at its second level (see [20]). If
M is an arbitrary structure we define Py, /poly as in the standard case. Here poly is the
set of functions f from N into M>° such that the length of f(n) is polynomial in n
(for the standard case see [1, Ch. IV]). Obviously, P, C Py, /poly and this inclusion is
in general strict (if M is infinite).

Theorem 2.2. Let M be an arbitrary structure. If NPy C Py /poly then the (uniform)
polynomial hierarchy over M collapses at the third level.

Proof. Assume that NPy, CPy,/poly and let X € NPy,. By definition, there exists a
polynomial p and Y € Py, such that

VxeM" [xeXe3yeMPix y)eY]
Since NPy, C Py /poly, there exists another problem Z &Py, a polynomial ¢ and a
sequence a, € M7 such that

YxeM" [xeX & (x,a,) €Z]
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Note that the set of a €M) that are “good advice” can be defined by the formula
VxeM" [(xa)€ZeIyeM?"(x ) eV
In prenex form this gives
VxeM" Vze M Iye MM (x, y.z,a) € W. (2)
where the polynomial-time set W is defined by
(ra)yeZAx,»)eY)V(xa)gZA{xz)gY).

We are now ready to prove that X3Py = I1;Py,. Thus, let L € £5P,. By definition, for
xeM” xelLiff

Juy Yup {x,up,up) €X,

where X € NPy, (here each quantified variable is in M#" for some polynomial p; from
now on this is omitted for notational simplicity). We can apply the remarks above
to X. Thus there exists Z &€ Py, such that for any x € M™, x € L iff for any a which is
a good advice for X,

Juy Yualx, uy,up,a) € Z.
Using the characterization of good advice given by (2), this is equivalent to
Va [Vx' ul, u)Vz3y(x" u), uh, vz, a) € W= 3u\Vus (x, 1y up.a) € Z],
where W & Py,. This is equivalent to
Ya[Ju\Yuy (x,uy, w00y € Z Vv AU 29U, y,z,a) & W1,
where U stands for x’,u},u}. Finally, this is equivalent to
Ya Juy U,z Yug, y[{x,uj,us,a) €ZV (X, y.z,a) € W,

Hence L & I15Py,. O

3. The abstract theory

In this section, M will be a first-order structure in a finite language ¥ and N will
be in general an (elementary) extension of M. & will be a “good” complexity class.
We do not want to give a formal definition of this notion here. A good complexity
class will simply be one of the global complexity class defined in the preliminaries
such as P, P, PAR NP,..., A, A.
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3.1. Restrictions and extensions

The restriction X of a subset ¥ C N” to a smaller structure M <N is defined in the
natural way: X =¥ N M". The restriction of a problem ¥ CN*> is X = [ J, (Y NM").
If X is a restriction of ¥ we say that ¥ is an extension of X. In general a given set or
problem has too many different extensions for this notion to be useful. We will only
consider extensions of definable sets and problems, and will usually require that ¥ be
defined by the same quantifier-free formula(e) over N as X over M. This is justified
by the following obvious observation.

Lemma 3.1. Let X CM" be defined by a first-order formula ¢ over M. Let Y CN"
be defined by the same formula in an extension N of M. If ¢ is quantifier-free,
X=YnmMm"

This is no longer true for quantified formulae. For instance, the formula Vx x? #2 A
y=y defines X =Q over Q, but defines the empty set over C. Even with quantifier-
free formulae, the extension may not be unique. For instance, the set X = can be
defined by the formula x =x over Q. The corresponding extension to N =C is B=C.
The same X can also be defined by the formula x? #2. The corresponding extension
now is C\{—+/2,v/2}. These difficulties disappear if M <N is an elementary exten-
sion: one can now use quantified formulae, and the extension of a definable problem
is uniquely defined.

Lemma 3.2. Let X CM" be defined by a formula ¢. If N is an elementary exten-
sion of M, the subset X' CN" defined by ¢ interpreted in N is an extension of X.
Moreover, X' is the only extension of X to N that can be defined by a formula with
parameters in M.

Proof. It follows immediately from the clementary extension hypothesis that X is the
restriction of X’ to M.

Let X" CN" be defined by a formula  with parameters in M. If X" is an extension
of X, it follows from elementary equivalence that X is defined by . Thus the following
formula holds:

Vx € M" ¢p(x) < Y(x).

Again by elementary equivalence, this formula must also hold in N, hence X' =X".
O

Note that the above lemma holds (“by definition™) for problems. Thus, if X is a
definable set or a definable problem of M and if N is an elementary extension the
extension of X to M is well-defined. Note that if X is a problem in %), then it is
definable. Thus we have the following obvious lemma.

Lemma 3.3. Let M <N be an elementary extension and let X be a problem of M in
€. The extension of X to N is €y with the same algorithm that solves X over M.
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Let 4 be a subset of N. We denote by ¥y (4) the class of problems which are in 4,
with a machine (or a sequences of circuits) which uses parameters from 4. If M <N
is an elementary extension and if Y is a problem of N definable with parameters from
M, then it is easily verified that the restriction of ¥ to M is definable by the same
family of formulae that define Y. Thus we have:

Lemma 3.4. Let M <N be an elementary extension and let Y be a problem of
Cv(M). The restriction of Y to M is %y with the same algorithm that solves Y
orer N.

Now we state a general version of an upward transfer for question of the form 4 =?
%' due to Michaux [28).

Lemma 3.5. Let M <N be an elementary extension, ¢’ a good complexity class and
% a good deterministic complexity class such that @ C 6 C €' for N and M. Assume
that there is a problem S in €\ (M) which is %\,-complete under & -reduction such
that the reduction of a problem in € ,(M) to S can be performed with parameters
in M (i.e., by a @v(M)-reduction). Then, the restriction of S to M is 6,-complete
under &y-reduction and if €y =€), then €y =%,.

Proof. Since S is in 4},(M ), Lemma 3.4 implies that the restriction of S is in 47,. Let
X be a problem of %,. The extension ¥ of X to N is in 4\(M) by Lemma 3.3. Thus
there exists a %y (M )-reduction of Y to S. Then, this reduction gives “by Lemma 3.4 a
& -reduction of X to the restriction of S to M. We have shown that the restriction of S
to M is ¢'},-complete under 2,,-reduction. Now, assume that %, = %,. The restriction
of § to M is then % and thus S is €y by Lemma 3.3. By 4/ -completeness of S,
“ Ny = % /\ . Bl

Let us recall that the formula satisfiability problem SAT,, is NPy,-complete in any
structure M. Moreover, SATy, is clearly in NP,,(0) and the proof of the NPy, -hardness
of SAT,; shows that if X € Py, then there is a P,/ ({))-reduction of X to SAT,; (the
same is true if we replace P by P). Note also that if M <N is an elementary extension,
then the restriction of SATy 1s SAT4, and the extension of SAT,, is SATy.

Corollary 3.6. If N is an elementary extension of M, Py, =NP,, implies P» = NPy.

Note that the following complexity classes have a complete problem (under
P-reduction) with the same properties as SAT: X, i, 1, 1/, PARy;, EXPyy, PATy,.

3.2. €-saturation

Let us recall the definition of /const complexity classes. If £ € N, a problem X C M™>
is in %y /k if there exists Y €% , (the “corresponding problem”), such that for every
n>=0 there exists %, € M* satisfying

VxeM® [xeX e ()€Y
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Let @y /const = (J 2, €m/k be the union of these classes. If /€N and € is a good
complexity class, we denote by %%, the class of problems which are % with an
“algorithm” using / parameters from M. For any M, the inclusions %%, C 69, /k and
@ C Gy/const clearly hold. If €y = %)y /const, we say that M is ¥-saturated.

The following proposition gives examples of ¥-saturated structures. It is essentially
due to Michaux [28] as some of the ideas of this subsection. The presentation is slightly
different, however, and there are additional results.

Proposition 3.7. Every Ni-saturated structure is €-saturated.

Proof. Let X € 43, /k, and let Y € €Y, be the corresponding problem. For every j € N,
let ¢;(y) be the formula

VxeM! (x,y)eY & (x,a,) €Y,

where the free variable y lives in M*. By definition of %9,/k, any finite subset
{d1(¥),....0(y)} of the family {¢p,(y); ne€N} is satisfied by o, Since M is
N|-saturated, this implies that there exists « € M* satisfying the whole family. Hence
for any x e M, x € X if and only if (x,«) € Y. This shows that X € ¢%,. O

If X is in %) /const, then X is definable (with parameters in M), thus if N is an
(elementary) extension of M, the extension of X to N is well-defined. We can be more
precise.

Lemma 3.8. Let M <N be an elementary extension, k € N and let X be a definable
problem of M.Then, X is in €%, /k if and only if the extension of X to N is in €% /k.

Proof. Assume that X € %}, /k, and let Y € %), be the corresponding problem given
by (1). Let X’ and Y’ be the extensions of X and ¥ to N. Since N is an elementary
extension, it follows from (1) that

VxeNS"[xeX' & (x,a,) €Y'].

Hence X' € P} /k.

Conversely, assume that the extension X’ of X to N is 43 /k and that X is definable
by a sequence (¢,),>0 of first-order formulae with parameters in M. Since N is an
elementary extension of M, the sequence (¢,),>¢ defines X’. Moreover, there exists
Y' € %Y such that for all n>0, the following formula holds:

Jee N Vx e NS [¢,(x) < (x,a) € Y.

Since Y’ € 6%, Y’ is (-definable and the restriction ¥ of Y’ to M is 49, and (-definable
with the same formulae. Thus, by elementary equivalence, the formula

Jee M Yxe M<"[¢(x) e (x,a) € Y]

must hold for all n>0. Hence X €43, /k. O
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We can characterize %), /const in terms of extensions.

Proposition 3.9. X is in %, /const if and only if X is definable and there exists an
elementary extension N of M such that the extension of X to N is €.

Proof. Assume that X € %, /const. We know that M has an N -saturated elemen-
tary extension N. By Lemma 3.8 the extension X’ of X to N is %y/const and by
Proposition 3.7 X' is €y.

Conversely, assume that X is a definable problem of M such that there cxists an
elementary extension N of M such that the extension X’ of X to M is in %A\, then X’
is in €9 /k and by Lemma 3.8 X is in 4, /k. O

We can also characterize ¥-saturation in terms of “elimination of parameters”. But
here we need to work with a theory T (say the theory of M).

Proposition 3.10. Let T be a first-order complete theorv (in a finite language). The

Jollowing properties are equivalent:

(a) for all M =T, €y /const =6y,

(b) for all N |= T and all elementary restrictions M of N, if Y is 6~ and definable
with parameters in M then Y is €xy(M);

(¢) for an N -saturated model N of T and for all elementary restrictions M of N, if
Y is €~ and definable with parameters in M then Y is €~(M).

Proof. The implication (b) = (c¢) is obvious. Assume (a) and let us prove (b). Let
M <N be an clementary extension of models of 7 and let ¥ be in ¥, and definable
with parameters in M. Then, the restriction X of ¥ to M is also definable and by
Proposition 3.9, X is %, /const and thus %,; by hypothesis. Since the extension of X
to N is ¥, by Lemma 3.3, we see that ¥ € €y(M).

Assume (¢) and let us prove (a). Let N be an N,-saturated model of T and let X be
a problem in %, /const. Then, X is definable using only countably many parameters
in M and by the Tarski-Lowenheim—Skolem theorem M has a countable elementary
restriction M, which contains all these parameters. Then the restriction X; of X to M,
is in %y, /const and the extension of Xy to M is X. By N,-universality of N, M, can be
elementarily embedded in N. Then, by Lemma 3.8 and Proposition 3.7, the extension
Y of Xy to N is éy. By hypothesis, Y is in €5 (My). Thus X is €y, and it follows
that X is €,,. O

Note that for the equivalence of (a) and (b) we do not need the completeness of
T. Michaux has introduced the class P,;/const motivated by the following proposition
(which holds at the nonuniform level).

Proposition 3.11. If Py, =Py /const and N is an elementary extension of M. Py =
NPN lmpllé’é PM :NPM



18 O. Chapuis, P. Koiran! Annals of Pure and Applied Logic 99 (1999} 1-49

Proof. SATy € Py if Py =NPy. As pointed out before Corollary 3.6, SAT,, is the
restriction of SATy to M. Hence SAT, €P,//const by Proposition 3.9 (SATy is
()-definable). This implies that SAT,, € Py, if Py, =Py /const, and thus that Py, = NPy,
by definition of NP-completeness. [

Notice that in the above proposition we do not need the full force of the hypoth-
esis. Assume that the theory of M admits elimination of quantifiers. We only need
that Py /const N AY, C Py, or even that Py /constN A, C Py, if the theory of M is de-
cidable (i.e., if we have a standard algorithm deciding whether each parameter-free
sentence in the first-order theory of M is true or false). Note that the proof of Propo-
sition 3.7 implies that if M is w-saturated (respectively, recursively saturated) then
Py /const N Ay, =Py, (respectively, Py /constN Ay =Py ). One can also characterize
the above equalities in terms of extension and in terms of elimination of parameters.

The proof of the above proposition shows that if M <N is an elementary extension
and if Py = NPy, then SAT,, € Py, /const and thus NP, C P,,/const. Since, obviously,
Py /const C Py /poly, Theorem 2.2 gives:

Proposition 3.12. Let N be an elementary extension of M. Py =NPy (or Py =NPy)
implies that the uniform polynomial hierarchy for M collapses at the third level.

One can generalize Proposition 3.11 as follows (we do not need complete problems).

Proposition 3.13. Let €' be a good complexity class such that for all elementary
extension N of M, €y C 6. If €y/const=%y and if N is an elementary extension
of M, €y =€), implies €y =%,

Proof. Let X be a problem of €},. Since %), is good, X has an extension X' to N
which is ), and thus %y by hypothesis. By Proposition 3.9, X € %,/const and thus
by hypothesis X € €. [

Another motivation is the existence of a Ladner-type theorem in P-saturated struc-
tures.

Fact 3.14. Let M be a structure such that NPy & Py, /const. Assume that the theory
of M is decidable. Then there exist problems in NPy \(Pys/const) which are not NPy,-
complete.

In particular, there are non-NP,,-complete problems in NPy, \P,, if M is P-saturated,
has a recursive decision problem, and Py, % NPy,.

For a proof the reader can consult [3]. The first Ladner-type theorem in the BSS
model was established in [26] for M =C. In that paper, the authors first showed the
result for Q using the countability of Q. Their argument can be generalized for some
other countable structures. For example, it is possible to prove a Ladner-type theorem
for the real algebraic numbers. However, the case of the ordered field of the reals is
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open. Both [3, 26] follow closely Ladner’s original proof [24] for the standard case
M={0.1}.

Note that one can obtain a nonuniform version of Theorem 3.14 (replace P by P
and NP by NP). Moreover, in this case there is no need for the decidability of the
theory of M.

3.3. Some counterexamples

If R is a countable real-closed field or a countable ordered Q-vector space, then
there are problems in P%/1 which are not Az. This can be explained as follows. Let
B be a subset of M. A (quantifier-free) k-type of M over B is a consistent set of
(quantifier-free) formulae with parameters in B in k fixed free variables, maximal
for these properties. Equivalently, a (quantifier-free) k-type of M over B is the set of
(quantifier-free) formulae with parameters in B satisfied by a k-tuple @ of an elementary
extension N of M. We denote by tp(a/B) (and tp?/ (a/B)) these sets of formulae. Note
that such a set of formulae is finitely satisfiable in M.

Proposition 3.15. Assume that M is a countable structure with uncountably many
quantifier-free k-types over (. Then, there are boolean problems in P, /k which are
not Ay.

Proof. Let o(x|,...,x; ) be a quantifier-free k-type of M over §). Then, after an adequate
encoding of quantifier-free formulae, o can be viewed as a boolean problem of M. Let
n be an integer. There is a finite number of quantifier-free formulae with variables
Xi.....x; of size <n. Thus, since ¢ is finitely satisfiable in M, there exists «, in Mk
such that for all quantifier-free formulae ¥/(x;,...,x;) of size <n, Yy €o ff M = y(a,).
Since, we can decide whether M = W(a,) in time polynomial in the size of ¥, we
see that ¢ is PY,/k. Now, we can conclude by a simple cardinality argument. If M is
countable there is at most a countable number of problems in Ay;. Thus, if we have
uncountably many quantifier-free k-types over @, most of them are not Ay.

Let R be a real-closed field. Then, R has uncountably many quantifier-free 1-types
over {. Indeed, consider a real-closed extension R; of R containing R (such extension
is elementary by elimination of quantifiers for real-closed fields). If ¢ and & are in R,
then a =5 iff tp¢/ (a/0)=tp?/ (b/D). The same argument works for ordered Q-vector
spaces.

Let B be a finite subset of M and let ¢ be a quantifier-free k-type of M over B. Then,
as in the proof above we can view ¢ as a problem in P}, /k where / is the cardinality
of B. One can also associate to ¢ the set of ‘decisional’ circuits in &k variables with
parameters in B equivalent to a quantifier-free formuia of ¢ (i.e., a circuit k-type of
M over B). This problem is in P{,/k and is a priori more difficult to solve with a
fast algorithm over M. It seems to us that the above family of problems gives good
tests for the questions Py /const =? Py, Py /const=7Py..... Ay fconst =2 Ay, and
Ay /const =2 Ayy.
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Let T be a complete theory which admits elimination of quantifiers. A (quantifier-
free) k-type of T over ) is a (quantifier-free) k-type of a model M of T over @ (since
T is complete such a set is finitely satisfiable in every model of 7). By elimination
of quantifiers, a type is determined by its quantifier-free part. Thus, if Ays/const= A,
for a countable model of 7, T has countably many types over {§. A theory with this
property is called small by a model theorist. A theory is small if and only if 7 has
a countable w-saturated model M, (which is unique up to isomorphism). Moreover, a
small theory has an eclementary prime model My: My is a model of T which can be
elementarily embedded in every model of T (M, is unique up to isomorphism). Note
that the above family of problems are obviously in Py, and that all these problems
(with B=0) are, say, P, for every model of T iff all these problems are Py, .

Now we construct an example where A/const = A but where P/const is not included
in P. For this, we consider a countable version of the “arborescent” dictionary of [14].
The underlying set M is the disjoint union of the booleans {0,1} and the set of
functions u from {0,1}* into {0,1} satisfying the following property: there exists
n such that » is constant on the clements of {0,1}> of size >n. The language is
constituted of two constants for the booleans and of three unary functions r (root), d
(right) and g (left) which are the identity on the booleans, such that »(u) = u(0) (hence
r(u) is a boolean) and such that d(u) and g(u) are functions from {0,1}°° into {0,1}
defined by d(u)(x)=u(0x) and g(u)(x)=u(lx). It is easy to see that the theory of M
admits elimination of quantifiers. Moreover, it is not very difficult to show that if N is
an elementary extension of M and if Y is a problem of N in Ay, then the restriction
of Y to M is Ay (i.e., M is A-stable, see the next subsection). Thus, Ay, /const = Ay
by Lemma 3.9 (note that one can apply Proposition 3.15 to see that A,/ /const # Aur).
We claim that every boolean problem is Py /const. Indeed, let X be a boolean problem.
For any integer n we consider the element u, of M defined by: u,(x)=0 if x is of size
>n or if x¢X, and u,(x)=1 otherwise. Then, it is easy to construct in polynomial
time a sequence of circuits (using the selector!) (C,(x, y)) such that (C,(x,u,)) shows
that X is in Py,/const. On the other hand, since a given u in M contains only a finite
amount of information, it is not difficult to prove that any boolean problem in P, is
in P/poly.

Now we give an example of a structure M such that A, /const# A, (and which
admits elimination of quantifiers). The underlying set M is the disjoint union of N
and of the set of ultimately constant sequences u# on two fixed symbols o and f.
The language is constituted of two constants for the 0 and the 1 of N, of a unary
predicate P which defines N, of a unary function s which is the successor function on
N and the identity elsewhere, and of a ternary predicate R such that M |= R(n,u,v)
iff neN, u and v are not in N and u(m)=uv(m) for any integer m with 0<m<n.
Note that for € N, R(n,x,x;) defines an equivalence relation on M\N. It is not
very difficult to prove that the theory of M admits elimination of quantifiers. Then, we
consider a non ultimately constant sequence u on o and f (thus u ¢ M). For a positive
integer we consider the sequence u, of M defined by w,(m)=u(m) if m<n and by
u,(m)=o otherwise. Then, we consider the problem Y defined by {(ai,...,a,) €Y iff
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R(s"(0),a1,a,). It is clear that ¥ € Py, and that the problem defined by (q,,...,a,) €X
iff {ay,....,amu,) €Y is in be/l. We claim that X is not Ay,. The proof of this is left
to the reader.

The following result sheds some light on the above example. It also stresses the
importance of definable equivalence relations.

Proposition 3.16. Assume that the theorv of M admits elimination of quantifiers.
Ay fconst = Ay, if and only if for every integer k=1, every sequence (E,(x,V))n=0
of O-definable equivalence relations of M* such that E,., refines E,, and for every
sequences (Sy).>o such that S, is a class of E, and such that S, CS,, there exists
a tuple B of M such that all the sets S, are f-definable.

Proof. Assume that A, /const = A,,. Let 5, be an element of S,. Then, (E,(x,f,)), >0
defines a k-dimensional problem in AY,/k such that X NM" =S5,. Thus, this problem
is in Ay, and this gives the conclusion.

Conversely, let X be a problem in AY,/k. There exists a sequence of quantifier-free
formulae (¢.(x1,....Xn Yis...s Yi)aso and a sequence (f,),»0 of k-tuples of M such
that ¢,(x, B,,) defines X "M" if m>=n. For n =0, we consider the equivalence relation
E,(y.z) of M* defined by the parameter-free formulae

vxeM" N\ (i(x, y) & di(x.2)).

i=0

Let S, be the equivalence class of B, for E,. Then, by definition of AY, /k, we can apply
our hypothesis. There is a tuple f of M and a sequence of parameter-free formulae
8,(y,u) such that 8,(y, f) defines S,. Then, we consider the formula

JyeM* 6,(y,B) A dulx, ).

By elimination of quantifier, the above formula is equivalent to a quantifier-free formula
Ui (x, B). Clearly, the sequence of formula (y4,(x, )),>o shows that X is Ay. [

Of course, one can state a version of the above Proposition for Ay. In light of this,
one can probably construct a structure M such that A, /const=Ay and A, /const #
B!

3.4. A word on €-stability

Let 7 be a theory (in a finite language), M a model of T and ¥ a good com-
plexity class. We denote by %y /ext(T) the class of problems X of M which are
the restriction of a problem Y € ¥y of an extension N of M such that N = T. Ob-
viously, €. C € y/ext(T). We say that M is @r-stable if €y =Cn/ext(T) and we
say that T is %-stable if every model of T is %r-stable. We denote by %, /ext the
class of problems X of M which are the restriction of a problem Y of an elemen-
tary extension N of M (here the theory T does not play any role). We say that
M is €-stable if €y =%, /ext. Let T’ be the theory of M. It is easy to see that
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Gy CEy/ext CEy/ext(T)YC €y /ext(T). A priori all these inclusions are in general
strict. However, for example, if 7/ admits elimination of quantifiers or if ¥ is deter-
ministic, then @ /ext =@y /ext(T’).

An immediate consequence of Proposition 3.9 is that if M is €-stable, then M is
@-saturated. Let M <N be an elementary extension and Let ¥ be a problem of N in
%~ with a restriction X to M which is definable. In general, the extension of X to N
is not ¥ and Y is not in general definable with parameters in M. In other words, the
restriction X can be a drastically “different” problem than Y (the proof of Theorem
4.27 provides some examples). However, things can sometimes work nicely:

Proposition 3.17. Let M <N be an elementary extension and Y € €y. If Y is defin-
able with parameters in M and if M is €-stable, Y is €n(M).

This follows from the %-saturation of M and from Proposition 3.10, but there is a
more direct proof.

Proof. By definition of %-saturation, the restriction X of ¥ to M is %,. By Lemma 3.3,
the extension of X to N is €y (M ). But this extension is Y since Y is definable with
parameters in M. (O

There are connections between %-stability and stability in model theory (a very im-
portant part of model theory studied by Shelah and a number of mathematicians). These
connections will be considered in detail elsewhere. Let us say a word on this. Let T be
a first order theory. For simplicity, we assume that 7' is complete and admits elimina-
tion of quantifiers. Then, if 7" is A-stable (respectively, A-stable), then T is superstable
(respectively, wm-stable). We do not want to recall the definition of a superstable theory
and of an w-stable theory. It is easy for an algorithmician to understand what a stable
theory is (superstability implies stability and w-stability implies superstability): 7 is
stable iff for every elementary extension M <N of models of T, if ¥ is a definable
problem of N then the restriction of ¥ to M is definable.

A typical example of an w-stable theory is the theory of algebraically closed fields
of fixed characteristic. On the other hand, if we can (first-order) define an infinite
linear order on a model of 7, then the theory is not stable. In particular, the theory of
real-closed fields and the theory of ordered Q-vector spaces are not A-stable and in
fact not P-stable neither P-stable (this is obvious: see Proposition 4.23). However, it is
not completely obvious to show that R is not P-stable (see Theorem 4.25) and we will
see that R viewed as an ordered Q-vector space is P-stable (see Section 5.3). In fact,
these properties correspond to a general result of Marker and Steinhorn on o-minimal
theories (first proved by van den Dries [37] in the case of real-closed fields) which can
be stated as follows for an algorithmician: Let M be an o-minimal structure and M <N
an elementary extension which is Dedekind complete; if Y is a definable problem of
N, then the restriction of ¥ to M is definable.

With our terminology, a remarkable result of Blum et al. [4] says that if K is a
field contained in the algebraic closure of Q, then K is Pg,-stable where Fy is the
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theory of fields of characteristic 0. In fact, the proof of this result shows that F, is
P-stable (the witness theorem of [4] holds for any field of characteristic zero since it
can be expressed by a universal sentence in the language of fields; then the proof of
Proposition 9 of [4] works as well for any extension of fields of characteristic 0). Using
this result, Portier [34] has shown that the theory of differential fields of characteristic
0 is P-stable. Moreover, the proofs and results of [23] imply that the theory of fields is
P-stable and give an alternative proof of the P-stability of F,. Note that it is unknown
whether the algebraic closure of a finite field is P-stable. All the above results are not
obvious. If one wants to have an example of a P-stable theory with a simple proof (for
instance to construct a classroom exercise) one may consider the theory of nontrivial
divisible abelian groups.

4. Real-closed fields

4.1 Background

For the notions of real-closed field, semi-algebraic set, definable set ...etc, we refer
the reader to {7] and also to [13, 39] for a more model-theoretic point of view.

In this paper R denotes a real-closed field. We need the following quantifier elimi-
nation result which can be found in Renegar [35] or Heintz et al. [15].

Fact 4.1. Let ¢(x) be a formula in the language of ordered rings, with a total of n
variables and 1 <n free variables (thus x € R'). Assume that ¢ is in prenex form with
w blocks of quantifiers. Assume that the m atomic subformulae in ¢ are of the form
PAO where A is one of the “standard relations”

>, 2. =,#,€, <

and P is a polynomial of degree at most D, with integer coefficients of bit length at
most L.

P(x) is equivalent to a quantifier-free formula of the form
1o
VA (©i(x)4,0),

il j=1

where A;; is one of the six standard relations; I1.J; and the degrees of the polvnomials
Qij are bounded by (mD)OU)" . The coefficients of the Q,; are integers of bit length
at most (L + I)(mD) O

Moreover, the quantifier-free formula can be construct by a standard algorithm
which works in parallel time log(L)[n" log(mD)]°").

Note that the above result can be applied to formulae with parameters in R. Just
replace the parameters by new variables, apply the elimination and replace the new
variables by the parameters.
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We recall an algorithmic version of Milnor—Petrovskii—Oleinik—Thom’s theorem on
sign conditions (a result which is used in the proof of the Fact above). Let Py,..., P,
be polynomials of R in n variables. A consistent sign vector for P,...,P, is a se-
quence (4i,...,4,) of {<, =, >} such that there exists a in R" such that P;,(a)4,0
for i=1,...,m. A priori, there are 3™ consistent sign vectors, however we have the
following result (see [35, Proposition 4.1]).

Fact 4.2. Let Py,...,P, be polynomials in n variables with coefficients in R of de-
grees at most D. There are at most (mD)°" consistent sign vectors for Py,...,P,.
These consistent sign vectors can be constructed from the coefficients of the P; with
(mD) operations in parallel time [nlog(mD)|°V). If the coefficients of the P; are
integers of bit length at most L this construction can be accomplished in parallel time
(log(L))[n log(mD)I°V),

We consider R with the order topology and R* with the product topology. Let X
be a definable subset of R* (by quantifier elimination this is the same thing as a
semi-algebraic set; one can replace definable by semi-algebraic everywhere in what
follows). We recall that X is said to be definably connected if X has no nonempty
proper open-closed (in X') definable subset. X can be decomposed in a unique way in
a finite number of definable definably connected subsets Y,..., ¥, such that ¥;NY, =0
for i # j and such that the Y; are open-closed in X. The Y; are the definably connected
component of X.

We need a result of Pillay on definable equivalence relation (see [29],
Proposition 2.1 and its proof, do not make a confusion between cell and definably
connected component).

Fact 4.3. Let R be a real-closed field or any o-minimal structure. Let ~ be a definable
equivalence relation on R*. Then ~ has a finite number of equivalence classes with
nonempty interior. Let U\, ..., Us be the interior of these classes and let V be the set
of B € R* which are in an open subset of R* contained in a class of ~. V is definable,
open in R* and V is the union of the U,. Moreover, let V\,...,V, be the decomposition
of V in definable definably connected components. Then, the decomposition of V in
the V; is a refinement of the decomposition of V in the U,

4.2. Elimination of algebraic parameters

In this section R can be any real-closed field. The results of this subsection are stated
and proved in the uniform setting. However, the statements and the proofs extend in
an obvious way to the nonuniform setting.

Lemma 4.4. Assume that a problem X CR™ can be solved in sequential time s(n)
and in parallel time d(n) by a machine over R with parameters in an algebraic
extension K[a] of a subfield K <R. Then, X can be solved in sequential time c.s(n)
and in parallel time c.d(n), where c is a constant, by a machine using parameters
Jrom K only.
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Proof. Let M be the minimal polynomial of & over K, and d its degree. The idea is to
simulate the original machine .# (or the original sequence of circuits) by a machine
#' (or a new sequence of circuits) which computes modulo M. More precisely, any
quantity computed by .# can be represented as a polynomial in o (with coefficients
in R) of degree at most d—1 (we assume without loss of generality that .# does not
perform divisions) and such a polynomial can be represented as a d-tuple. After a
multiplication of two variables P(«) and Q(«), a Euclidean division by M can bring
back the degree of the product PQ below d.

The crucial point is how to perform tests, which we assume without loss of gen-
erality to be of the form “P(x)=0 ?”. Hence we need to determine when a vector
(a0, ..., ay_1) is in the set S = {a € RY; ’,‘1;01 a;a* >0}. We claim that S is a semi-
algebraic set, and can be defined by polynomial (in)equalities involving only parameters
from K. This will complete the proof since the test “a €S 7 can then be performed
in constant (independent of the input size) time. Hence, the new machine is slower
than the original one by a constant factor only.

The proof of the claim is as follows. Assume that « is the /th largest root of M.
S is defined by the formula F(a)

! d—1
oo -y (ocl <oy < - <1/A/\M(rx,—)=0/\2aka;">0) .

i=1 k=0

Since the parameters in F are from K only, there exists an equivalent quantifier-free
formula with parameters from K as well. [

Theorem 4.5 (Elimination of Algebraic Parameters). Assume that a problem X CR>
can be solved in sequential time s(n) and in parallel time d(n) by a machine over R
with parameters (a,...,%). X can be solved in sequential time c.s(n) and in parallel
time c.d(n), where ¢ is a constant, by a machine using 1 <k algebraically independent
parameters, where [ is the transcendence degree of the field L= Q(u.... o).

Proof. Assume for instance that (oj,....a;) 18 a transcendence base of L. Taking
K =0Qay...., % 1] in Lemma 4.4, we see that X can be solved with parameters in K
only. This process can be reiterated £ — 1 —/ times. We conclude that A can be solved
by a machine with parameters in Q[«,...,;]. Elements in this field can be built in
a finite number of steps from the algebraically independent parameters «...., %. The
times conditions follow from the times conditions of Lemma 4.4.

The following lemma will play an important role in Section 4.5.

Lemma 4.6. Let X CR™ be a problem in Ag/const with a corresponding problem
Y € Ag solved in sequential time s(n) and in parallel time d(n). Then, for some inte-
gers | and k. X € ALk with a corresponding problem Z € A}, solved in sequential time
c1.s(n+ca) and in parallel time ¢,.d(n+ c2), where ¢| and ¢y are constants, and such
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that for all n=1 the set S, of parameters € Rt satisfying
VxRS [xeX & (x,B) €Z]

has a nonempty interior.

Proof. By hypothesis there exists a sequence of quantifier-free formulae (¢,(x, v,z))
with /(x)=n, I(y)=k and /(z)=1, and « € R" such that for all n, ¢,(x, y,a) defines
Y N R Moreover, there exists a sequence (f,) of elements of R* such that for all
m and all n=m, ¢n(x,f, a) defines X NR™. Let R, be an N;-saturated elementary
extension of R. The formula ¢,(x, f,,«) interpreted in R, defines X, NRY, where X, is
the extension of X to R,. Morcover, by the proof of Lemma 3.8, X, is in Ag,/const
and the corresponding problem Y, is the extension of Y to R,. ¥, is solved in R, by
the machine which solves Y in R. By the proof of Proposition 3.7, there exists f§ GR?’I
such that X is solved in R, with the machine that solves ¥, and with the parameters
(B, o). Now we apply Theorem 4.5 over R: X is solved in sequential time c.s(n + k)
and parallel time c.d(n + k), where ¢ is a constant, with parameters {f’,«’) such that
o' €R!, B € Rt and the B! are algebraically independent over R. Now, by the proof of
Lemma 3.8, X is in Ah/k with a corresponding problem Z € A} solved in sequential
time c.s(n + k| + k) and parallel time c.d(n + k, + k). We denote by Z; the extension
of Z to R,.
For all n,f’ is in the set S/ of “suitable parameters” up to size n:

Si={yeR}; VxeR xeX, & (x,p, )€ Z}. (3)

S’ is definable with parameters in R only, using the formulae ¢,(x, f,, ). Moreover,
the same formula defines the set S, in the lemma’s statement. We claim that S, has a
nonempty interior. This can be expressed by a formula with parameters in R,

&
JucRF e R vwe Rt l(/\ui<w,-<v,~> :>(w€S,’,)} ,
i=l
where the condition z € S/ can be replaced by a first-order formula using (3). Applying
the transfer principle for real-closed fields to this formula, we conclude that the set S,
in the lemma’s statement also has a non-empty interior.
The proof of the claim is standard. One can proceed as follows. By quantifier elimi-
nation, S’ is a union of basic semi-algebraic sets B, ; defined by conditions of the form

p(»)>0,...,p., (1N>0, ¢1(¥)=0,....q,, (¥)=0,

where the p’s and g’s are polynomial with coefficients in R (because S/ is definable
with parameters in R only). Since p' € S’ and the f! are algebraically independent over
R, ¥ belongs to a B,; with s,;=0. By continuity the sign of pi,..., p,, is constant
in a neighborhood of f’, hence a box is included in S/. O

The results of this subsection can be also obtained for nondeterministic complexity
classes and in fact are easier. Indeed, assume for example that X is in NPz with a
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nondeterministic machine .# which uses a unique algebraic parameter «. Then, we
have a formula 6(y) (that we may assume to be quantifier-free) without parameters
which defines «. Then, we consider the machine which on an input ¢ € R guesses a
p and runs .# with (a, ) if § satisfies 6( ). Such a machine shows that X is in NP,
without parameters.

One can also obtain generalizations of all the above results for an o-minimal struc-
ture which admits (effective for the uniform level) elimination of quantifiers in a finite
language (for such a structure there is a natural topology and a good notion of alge-
braicity and independence). However, in this general case we cannot obtain the time
conditions since it is difficult to generalize the notion of minimal polynomial. However,
in order to prove Lemma 4.4 one can use the method of the paragraph above with
the elimination of quantifiers. For an o-minimal structure with or without elimination
of quantifiers we can obtain the above results with good time condition for some non-
deterministic complexity classes (it may be necessary to go to PH). For example for
Reop = (R, 4. x.0,1, <,exp), which is model complete [42], one can consider NP.

4.3. The reals

This section gathers results that are specific to the field R of real numbers (in the
sense that they do not apply to all other real-closed fields). The following simple lemma
will be useful. It is a straightforward consequence of the nested intervals property and
of Kénig’s lemma on infinite trees.

Lemma 4.7. Let (E,),»0 be a family of subsets of [—1.1} satisfving the following
properties for all ne N:

(i) E,#0.

(ii) £, CE,.
(iii) E, has a finite number of connected components.
(iv) MNyso Ex =

Then there exists N € N, a sequence (I,),=x with I, a connected component of E,.
a€({—1.1], and a sequence (b,),>o of points of [—1,1] such that one of these two
properties holds for all n=N:

1. I, =]a.b,[ or I, =]0.b,]

2. 1,=1b,.2[ or I, =[b,.a[.

Proof. By Konig’s Lemma, it follows from (i)-(iii) that there exists a sequence
(I,),»0 of intervals where I, C/, and [, is a connected component of E,. Let «,
and f, be the left and right endpoints of /,. We claim that one of the sequences (2, ).
(B,) is ultimately constant. Otherwise, one could extract a strictly increasing subse-
quence (2, ) and a strictly decreasing subsequence (f,, ). This would contradict (iv).

If (a,) is ultimately constant, I, must be open in «, by (iv) and thus Property I
holds. In the other case Property 2 holds. [J
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The following result is the main result of this subsection.
Theorem 4.8. P%/1=PL.

Proof. Let X €PY/1, and let Y €PY be the corresponding problem and (a,) be the
corresponding sequence of R. Let .# be a parameter-free machine recognizing Y in
polynomial time. For each » we have an equivalence relation ~, on R:y~, " if and
only if the following parameter-free formula is satisfied:

Vx RS (x,y)e Y &(x,y)e Y. 4)

Let S, be the set of parameters y € R such that y ~, a, This set is definable
since it is an equivalence class for the relation ~, on R defined by (4). Hence, the
sets E, =S,MN[—1,1] satisfy hypothesis (iii} of Lemma 4.7. Hypothesis (ii) is also
clearly satisfied. One can assume without loss of generality that E, # @ for all n>>0.
Indeed, if E,=0 for n>ny, instead of «, we can use for n>ny the new parameter
a, = 1/a, € [—1,1] (in this case, for all n, we first compute o, = 1/a and then run .#).
Therefore we assume in the remainder of this proof that (i) also holds.

If (iv) does not hold, let a€ [, ,E,: it follows from (1) that by “plugging” «
into .#, we obtain a machine which recognizes X in polynomial time. Hence X € Pj.

In the rest of the proof we consider the case where (iv) also holds. One can therefore
apply Lemma 4.7. From now on we assume that Property 1 holds (the other case
is similar). Pick any #>N and a rational point f€]u,b,[. The following formula
defines a:

(Y~ PINVzy<z<fi=f ~, 2).

Since this formula contains only rational parameters, « is an algebraic number. Let
Q be its minimal polynomial. We now want to show that for each n>N, o, can be
replaced by a new parameter which needs not be “too close” to «. In order to do
so, let us consider the set J, ={¢>0; Ja,o + ¢] CE,}. Note that J,=]10,b, — of or
J,=10,b, — a]. We would like to define J, by a “small” formula with (small) integer
parameters only.

If o is the ith largest root of P, this algebraic number can be defined by a formula
stating that P(«) =0 and that there are exactly i — 1 roots of P smaller than «. For
any ¢>0, e€J, if

Vz(a<z<o+e=>zr~,a+e) (5

Since Y is decided in polynomial time by the parameter-free machine .#, the condi-
tion (x, y) €Y can be expressed for x € R<” by a quantifier-free formula ¢,(¢) with
exp(n®!))atomic predicates (we go through all possible computation paths of .#). The
degree and bit length of the polynomials occurring in ¢,() are also at most exp(n®(")).
Hence (5) can be translated into a formula ¢,(¢) with a bounded number of quan-
tifier alternations. This formula satisfies the same size, degree, and bit-length bounds
as ¢,(e). By Fact 4.1, &,(¢) is equivalent to a quantifier-free formula ¥,(¢) in which
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all polynomials have integer coefficients of bit length < exp(n“!!). By the well-known
bound on polynomial roots, the smallest positive root r of any such polynomial must
satisfy log log 1/r <n®". We conclude that J, contains an interval of the form ]Q,r,[
where log log 1/r, <n®!). A parameter-free machine can thus construct (by “repeated
squaring”) an element ¢, €.J, in time n°"). Then one can “plug” « + ¢, in .# in
place of x,. The resulting machine .4’ recognizes X in polynomial time with a sin-
gle parameter: the algebraic number « (note that this parameter can be eliminated by
Theorem 4.5). [

The proof of Theorem 4.8 (or Theorem 4.8 with a padding argument) also shows that
ifXGA%_/l with a corresponding problem Y € A, solved in time s(n), then X € AL
in time g(s(n + 1)) where g is a polynomial. Moreover, the proof of Theorem 4.8 can
be adapted to the polynomial hierarchy. For example, we have NP%/I =NP...

We do not know whether PL/1 C Pg, but we have the following result.

Proposition 4.9. I/ X € PL/1, then X is in 2P over R.

Proof. Let X €P4/1 and let Y € Pf, be the corresponding problem with corresponding
sequence (o,) of parameters in R. As in the proof of Theorem 4.8, we consider the
sets S, of “suitable values” for «,. More precisely, €S, if and only if

VxRS [xeX & (x,f)e Y]

As in the proof of Theorem 4.8, we assume without loss of generality that
E, =S, N[—1,11#0 for all ne N, If ﬂ,ZZOEn#(D then XEP;Z“" Therefore in the rest
of the proof we consider the case where ﬂn;)UE,,sé@.

Assume for instance that we are in case 1 of Lemma 4.7. For any x € R<" with
n>=N,xeX if and only if

e Ve’ {x,e,e) e X,
where X’ € PLr! is defined by
e>0N[0<e <e= (x,a+¢))eY]

It follows that X is X,P over R. [

The above result shows that a negative answer to the question Pa/ 1 C? Pr would
have dramatic consequences. On the other hand, it seems to us that there is not a lot
of hope to prove that P[IR/I CPgu. Let us explain why. A circuit C(x),.... x,) over R
is said to be arithmetical if it has one output gate and no test gates (such a circuit
computes a polynomial function). Let R<R be a nontrivial ordered extension of [t and
let €2 be a positive element of R infinitely large over R. For a nonalgebraic element
a of R we consider the set W, of parameter-free arithmetical circuits C(x, y) with two
mputs such that C(Q,a)>0. The set W, can be viewed as a boolean problem of R
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and it is easy to see that W, € PL/1. Now we ask: is W, in Py for all (nonalgebraic)
elements a of R ?

To conclude this subsection we show that Ag/const = Ar. This result will be precised
(times conditions) and proved, in the nonuniform setting, for every real-closed field.

Theorem 4.10. Any problem in Ar/const is algorithmic over R in bounded time.

Proof. Let X € Ag/const. By Lemma 4.6, we may assume that X € Al,/k with a cor-
responding problem Y € Al such that the sets S, defined as in Lemma 4.6 have a
nonempty interior. Thus, for all #, S, contains a rational point (c,,...,cw ). We obtain
a N x k matrix with columns ci,...,c;. In order to recognize X with a real machine
M, we just have to encode each column vector in a element of R: we encode ¢; in
the digits of a single real number ¢/. On an input in R", .# can read the digits of ¢/
and retrieve the appropriate parameter ¢,;. Therefore, .# can recognize X in bounded
time (by definition of the S,). [

The proof of the above result shows that if R is a real-closed field contained in
R then Ag/const= Ag. Using a different method, it is also possible to obtain a more
precise result concerning the number of parameters:

Theorem 4.11. AY/k =A% for any real-closed field R contained in R and any inte-
ger k.

The proof relies on a lemma of independent interest.

Lemma 4.12. Let RC R be a real-closed field. Let (C,),»0 be a sequence of nested
(Cps1 C C,) nonempty definable subsets of RF.
(1) There exists a tuple a of elements of R and a family of formulas G,(a,.) with
parameter a such that G, defines a unique point c, € R, and c, € C,.
(ii) Let F(a,,.) be a defining formula for C,. There exists ny such that (i) holds
with a=a, for any p > ny.

Proof. By induction on k. For k=1, each C, is a finite union of points and intervals.
If the C,’s are all infinite they must contain rational points, which are definable without
parameters. Otherwise, let ng be such that C,, is finite. For p>n, and n2 p, any point
in C, is in Cp, and any point of C,, is definable over «a,, (it is either the largest element
of C,, or the second largest, or the 3rd, etc).

Assume now that the result holds in dimension & — 1. Let P, be the projection of
C, on R*=!, and I, C P, the set of points with infinitely many preimages in R*. The
P,’s are nested, nonempty, and definable with the same parameters as C,. I, is also
definable over a,: a set of preimages is infinite iff it contains a nonempty open interval.
One can thus apply the induction hypothesis to the I,’s if these sets are all nonempty
(they are nested as required). Then each defined point ¢, € I, can be completed by a
rational point g, such that {(c,,q,) € C,. Assume now that I, ={} for n>>ny. In this case
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we apply the induction hypothesis to (P,): there exists a family of formulas G,(a..)
defining a unique point ¢, € P,. Moreover, there exists n; such that one can take a =,
for any p = n;. Now let n; = max(ng,n;): For p 2 n; and n = p, G,(a,,.) defines a
unique point ¢, € P,. A preimage of ¢, in C, is either the largest element of C, above
¢y, or the second largest, or the 3rd, etc. Hence one can define a point d,, € C, above
¢, by a formula with parameter a, (note that there can be several occurrences of a,

in this formula: those that help define ¢,, and those that help define a point above ¢,).
[l

The proof of (i) by induction on k& was suggested by Bruno Poizat.

Proof of Theorem 4.11. Let X € A%/k and Y € A% the corresponding problem. The
sets C, of parameters «, € R* such that (1) holds satisfy the hypotheses of Lemma 4.12,
and each of them is definable with k& parameters (recall from the proof of Theorem 4.8
that C, is an equivalence class of an equivalence relation on R* definable without
parameters). Hence for any x € R",

xeX o3ceR Glac)A{xc)el,

where a and G, are given by Lemma 4.12. The result follows by quantifier elimination.
-

For R and uniform algorithms, one can also obtain the best possible bound on the
number of parameters.

Theorem 4.13. For any k>0, AY/k = AL

Proof. Let X € A} /k. By Theorem 4.11, X € A%. A sequence of formulas F,(a..) with
a € RF defining X N R" can be encoded in the digits of a single real constant. Hence we
obtain X & Aé’;'. We can obtain X € Aéz if one of the parameters ay,...,a; turns out to
be rational (in this case we effectively need & — 1 parameters only). Let C, be the set
of parameters 2, € R* such that (1) holds. Recall from the proof of Theorem 4.11 that
a can be any element of C, if n is large enough. Then there are two cases. If the C,’s
are all infinite, by Lemma 4.14 below there exists a point with a rational component
in C,, and we are done. If C, is finite for » large enough, then ﬂnZO C,#0 and by
picking a point in this intersection we obtain directly 4 € AL, [

Lemma 4.14. Let E CR* be a definable set. If this set is infinite, it contains a point
with a rational component.

Proof. By induction on £. For £ =1 the result is clear since £ is a finite union of
points and intervals. Assume now that the result holds in dimension k& — 1, and let £’
be the projection of ECRf on R*~'. If E’ is infinite it must contain a point with a
rational component by induction hypothesis, and we are done. Otherwise since E is
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infinite, £/ must contain a point xo with infinitely many preimages in E. In this case,
we can apply the k=1 result to the set of preimages of x;. O

4.4. The class DEPTH for real-closed fields

A quantifier-free formula of the form

1

Ji

VN (©;4:0)
=1 j=1

is said to be in (disjunctive-conjunctive) normal form (the 4;; are one of the six stan-
dard relations). We say that the above formula is of size <s if the degrees of the
polynomials Q;;, I, J; and the bit length of the coefficients of the Q;; are bounded
by s. We need the following characterization of the class DEPTH for real-closed
fields. The proof depends on Fact 4.2 on the number of consistent sign conditions
(this is not the first application of this result in complexity theory over the reals, see
for example [9]).

Theorem 4.15. Let d be a function from N into N* such that for all n, d(n) = n. Let
X be a problem in DEPTHg(d(n)). There exists a sequence of quantifier-free formulae
(Dn(X1s- -3 Xms V1seros Vi Dm0 in normal form and o € R* such that (¢,(x,%)),=0 solves
X and such that the ¢, are of size < exp(q(d(n))) where q is a polynomial. Moreover,
if X is in UDEPTHg(d(n)) (respectively, in UDEPTHg(d(n))) then the sequences (¢,)
is SPACE(g(d(n))) uniform (respectively, SPACE(q(d(n))) uniform with boolean
advice of size q(d(n))).
Moreover, the converses hold (within a polynomial).

Proof. The “converse” of the theorem is easy and the proof is left to the reader. For
the first part, it suffices to prove that there is a polynomial ¢ such that if C(x,...,x,)
is a parameter-free circuit in the sense of R of depth d, then there exists a quantifier-
free formula ¢(x) in normal form of size <g(d) equivalent to C(x) and that moreover
formula ¢(x) can be constructed from C(x) by a standard algorithm which works in
parallel time polynomial in d.

First, we focus on the existence of a ¢ with good bounds. Note first that we may
assume that the tests of C are of the form P(x)>0 (where P is a polynomial which
depends on the answers to the previous tests). Note also that a parameter-free circuit
of depth ¢ without tests and with one output gate computes a polynomial of degree
< exp(e) and with coefficients of bit length < exp(e) (we say that the polynomial is
of size < exp(e)). Let G be the set of test gates of C. The height of a gate g€ G is
the maximal number of gates in G in a path from an input gate to g (including g).
Let s be the maximum of the height of a gate in G. Then, obviously 1 <s<d. We
denote by G; the set of gates of height i; G, is constituted by the output gate and
the G; are of cardinal m; < exp(d). Set Gy ={g1.1,....9m,1}: at gate g;;, C makes a
test of the form P;(x)>0 where P; (x) is a fixed polynomial of size < exp(d). If
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s=1, then m; =1 and we can take for ¢ the formula P, |(x)>0. Thus, we assume that
$22. Let Ga={g12.....9m.2}. At gate g;>, C makes a test of the form P;>(x)>0
where P;;(x) is a polynomial of size < exp(d). But the form of P;> depends on
the answers of the tests performed at the gates of height 1. More precisely, for each
vector of consistent sign conditions 4=(4,,...,4,,) for Py ,..., P, 1, there exists
a fixed polynomial P/, such that the test performed by C at gate g;, is P;',>0 for
the inputs which give to the P, the sign determined by A. We denote by CSC, the
set of vectors of consistent sign conditions for P, ,....Py, 1; by Fact 4.2, CSC, is of
cardinality < (exp(d)exp(d))”" = exp(2cnd) (where ¢ is a universal constant). Then,
if s =2 we consider the formula

A KAPM(X)A,- = 0) = (Pf]*z(x)>0)} .

4€CSC, i1

which is equivalent to C(x) and contains at most exp(3¢nd) polynomials. If =3 we
proceed as above with the gates of height 3 and if s =3, C(x) is equivalent to a
formula of the form

/\ (;I\P[,l(X)AmO) = /\ [(7\ Pfi(.x)A;‘.z()) :(P;lhg/1’(x)>0)}

4 €CSCy i=1 A, €CSC i=1

where CSC? is a set of consistent sign conditions which depends on 4, of cardinality
< exp(2cnd), and we see that there are at most exp(4cnd) distinct polynomials in this
formula. We continue this process and at the end (which is attained at most after d
steps) we obtain a quantifier-free formula W(x) equivalent to C(x) of the form

A= (A Jo= (A= =@l @>00..)]

which contains at most exp(2cnd?) distinct polynomials of size < exp(d). Let Q... ..
Q. be these polynomials. If A is a vector of length r of { <,=, >} then we denote by
04 the formula Al_,0;4,0. Then, by Fact 4.2, there are at most (exp(2cnd*Yexp(d))"
= exp(2cn’d® + nd) A’s such that 04 defines a nonempty subset of R". Moreover,
is equivalent to a disjunction of some of the formulae 8,. Such a disjunction provides
a formula ¢(x) with the required bounds. More precisely, for any 4 we have that
either R = Vx(04(x) = ¥(x)) or R = Vx—(0,4(x)AY(x)) and this can be tested in a
boolean fashion (by replacing the basic subformulae P(x)A'0 of Y(x) by 1 if P(x)4’0
is consistent with A/_, 0;4;0 and by 0 otherwise, and then evaluating this boolean
instance of ).

Now we have to prove the uniformity of the above procedure. First, we note that by
Fact 4.2 we can compute the possible vectors of consistent sign conditions of a family
Py....,P, of polynomials in n variables of degree <D and with coefficient of bit
length L in parallel time log(L)(nlog(mD))" where ¢ is a universal constant. Thus, in
the above context such a computation takes time at most d*¢ in parallel. Note also that
the construction of ¢ from y can be done in parallel time polynomial in d using the
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(parallelizable) procedure described in the paragraph above and the fast algorithm for
the computation of consistent sign conditions, The construction of  is “parallelizable”
in the sense that it can be decomposed in at most d steps. At one step we have to
compute some sign conditions and this can be done rapidly and we have to extract
some polynomials from C. Essentially, we need an algorithm which given a circuit C’
of depth <d without tests and with one output gate computes the polynomial of size
< exp(d) that it defines in parallel time polynomial in 4. Since it is easy to describe
such an algorithm the proof of the theorem is completed.

Let us define the class N,PAR to be the class of problems decided by a nondeter-
ministic parallel machine which works in polynomial time and which only makes a
polynomial number of guesses. Then, the above theorem and Fact 4.1 give an analogue
of Savitch’s theorem for real-closed fields.

Corollary 4.16. If R is a real-closed field, then N,PAR; =PARg.

Without restriction on the number of guesses we cannot obtain such a result. Indeed,
consider the family of formulae

2 2 2 2
3_)’1 -+ Yexp(n) Y1 = X] Ayz:yl "'yexp(")zyexp(n)fl sz:yexp(n)

which are equivalent to the formulae x; = x{**") Then, apply an argument similar to
[8] to show that there is no family of circuits of polynomial depth which are equivalent
to these formulae (see also [32, Exercice 8.5]).

4.5. The class A/const for real-closed fields

As mentioned previously, if R is a countable real-closed field there are problems
in P%/1 which are not Az (see Proposition 3.15). The following proposition gives
additional information.

Proposition 4.17. P C Pp/1.

Proof (sketch). Let X € P be solved by a sequence of circuits (C,(x, ). We can
encode in the digits (in radix 2) of a rational «, € ]0, 1[ the circuits Co(y), Ci(x1, ), .-,
%n(x, y). Then, we consider the following Pz/1 algorithm: on an input a € R” extract
(using 4+, — and <) the nth circuit encoded in «, and (using a universal machine)
applies it to {(a,f). O

Note that the same argument shows that, for example, PARz CPARg/1 and
Ar C Ag/l.

If we want to study Ag/const for an arbitrary real-closed field we need to work at the
nonuniform level. Do not forget that if R contains the reals, then most of the nonuni-
form classes are in fact uniform: Pz = Py, PHy =PHz, PAR; =PARg, PAT, =PATg,
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EXPr =EXPg and PEXPr =PEXP; (however, PARz C PAR and PEXP; C PEXP,
for every real-closed field). Thus, all the results that follow have a uniform version in
the special case where R contains the reals (we shall not mention them explicitly).

Here, the main open question is Py, /const =? Py, where Ry, is the ordered field
of real algebraic numbers. It seems that this question is difficult. On the one hand,
we shall prove that Pr/const C PARy (and it is not known whether Pz # PARg). On
the other hand, if a € R\Ry, we can consider the set W, of parameter-free arithmetical
circuits C(x) in one free-variable such that C(a)>0 (compare with the problems that
follow the proof of Proposition 4.9). It is easy to see that the problems W, are in
P%m /1, but it seems very difficult to show that all these problems are Py, (one may
conjecture that there are some a’s such that W, is not Pg,,).

We need to introduce a new “complexity class”. Let />0 and k>1. We say that a
problem X of R is in AL/*k if there exists a problem Y (the corresponding problem)
in A} and a sequence (f8,)s¢ of R* such that
(i) for all n=0, for all acR", ac X iff (a,f3,) €Y and
(ii) for all n=0 the set

Sr={ucR|VxcR" ((x,B,) €Y iff (x,u)€Y)}

has a nonempty interior.
Moreover, we set A/*0= A% and Ag/*const= J,, AL/*k. If % is a complexity class
such as P,PAR,..., we can define €4/*k by requiring that Y €%.

Proposition 4.18. A/const C Ag/*const “without” any loss of time and uniformity
(time is multiplied by a constant).

Proof. The proposition is an immediate consequence of Lemma 4.6 since the sets S,
of Lemma 4.6 are contained in the sets S,. [

We will see that Ap/*const C Ay (this is obvious if R is archimedean), thus Ag/const
= Ap/*const. However, we do not know whether Pz/const = Pg/*const nor whether if
P%/*1 C Pg. These questions can be answered for paraliel polynomial time.

Theorem 4.19. PARg/const=PARz/*const=PAR; and PARg/const=[PARz/*const
= PARg.

Proof. By the above proposition we just have to prove that PARg/*const C PARg
and PARz/*const C PARR. First we focus on the first inclusion. Let X be a problem
in PARg/*const. Then X is in PARL/*k for some integers &,/ and we may assume
that k> 1. The hypothesis and Theorem 4.15 imply that (we may assume that) there
exists a sequence of quantifier-free formulae

((bn(xla~‘-sxn»ylw--wyk»Zlm--sZ[))nZl

of size exp(n®"), a tuple « € R’ and a sequence (B,)>0 of R* such that
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(i) for all n=0, for all xe R, xc X iff R = ¢,(x, By, ) and
(i) for all n>0 the set

S; = {y € R | ¥x € R" (Pulx, B ) iff du(x, y, %))}

has a nonempty interior.
Let ~, be the equivalence relation on R* defined by

vy it VaeR" (¢u(a,y,0) & ¢ula, y, o).

The relation ~, is a-definable and S is a class of ~, with nonempty interior. By
Fact 4.3, ~, has a finite number of classes with nonempty interior. Let U, ,,..., U, »
be the interior of these classes. We may assume that the interior of S; is U ,. We
consider the set V, of the yeRk such that

k k
JueR e R u <y <v, A\Vy eRr' w<yi<vi| =~y)1||.
I

i=1 i=1

V, is the set of y € R such that there exists an open set U of R* such that y € U and
U is contained in a class of ~,. Moreover, V, is a-definable and ¥V, is the union of
the U;,.

The idea is to “construct” a point in 7l ,, the projection of U; , onto the last coordi-
nate. More precisely, we are going to construct a quantifier-free formula 0,(yy, «) which
is satisfied by a unique point ] of R which is in #nU; ,. Moreover, Fact 4.1 allows
us to show that the size of 6,(y,a) is < exp(n®")). Assume that such a sequence
of formulae has been constructed. Then, X is solved by the sequence of formulae
(Gvk 0u(Vies AU, BY s+ 5 By 1> Yhs #))n>0 Where the (k—1)-tuples (8} ..., f;_; )
are such that (8] ,....,5; . B,) is in U ,. Then, we apply Fact 4.1 to the above se-
quence of formulae and we obtain a sequence of quantifier-free formulae (Y, (x, yi,...,
Vi-1-2))n>0 in normal form and of size < exp(n®("). Note that for all # the set

{y eRT VxR (Yn(x. Bl s Bim ) (3, 3, )}

has nonempty interior. Then, by Theorem 4.15, the problem defined by the sequence
WX, Y150 Vi1, 2) )us0 1S N PARL and this problem shows that X is in P%\Rﬁe/*
(k — 1). Repeating the above argument, we obtain that X is in PAR& (recall that &
is fixed!). Note that we need to work with the class PARg/*const. Indeed, if X is in
PA\R;/k the above argument does not imply that X is in PAR,/Q/(k — 1) (even if the
S, defined in Lemma 4.6 have nonempty interior and the equivalence relations ~, are
adequately defined) because in general the above f; ..., B;_, , works only for inputs
of size n.

Let us construct a formula 8, with the announced properties. We consider the set
B, of elements e € R such that e is a boundary point of the projection onto the last
coordinate of one of the U;,. Note that B, is the set of elements e € R such that there
exists y € ¥, such that e is a boundary point of the projection onto the last coordinate
of the set of elements of V, ~,-equivalent to y. Thus, B, is a definable subset of R
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and since we have a finite number of U;,, B, is finite. Now we consider the set 7,
of the y; € R such that

Jder,e2€B, (i =0V yr=e, + 1V yi=e — 1 V2y =€ +e).

Since B, is definable and finite, T, is definable and finite. Moreover, T, contains at
least one point of nU; ,. Now following the construction of the formula which defines
T,, we see that this formula has size exp(n®!) and that its only parameters are the
«. Moreover, this formula has a bounded number of quantifier alternations. Thus, by
Fact 4.1, this formula is equivalent to a quantifier-free formula of the form

J,

!
V A\ ©Qi(yr.2)4,0),

i=1j=1

and of size <exp(n®!). Since this formula defines a finite set, there exists i and
J such that a point B, of nU,, is a zero of Q;;(yr,«). We denote by P, such a
polynomial. Let D be the degree of P,. We denote by 4, the vector (A,-)jD: —11 of
{<, =, >} such that for i=1,...,D — 1 we have Pﬁi)(ﬂ;\,,a)AfO. Then, we take for
6, the formula (P,(y,2)=0) A /\iD:_ll(Pf,i)(yk,d)AiO). By construction, a point of
U, satisfies this formula and by Thom’s lemma it is the only one. Moreover, 0, is
clearly of size < exp(n®!). This completes the proof of the inclusion PARg/*const C
PARg.

For the inclusion PARz/*const C PAR; we need to show that i, can be constructed
from ¢, in parallel polynomial time with the help of a boolean advice of polynomial
size. Fact 4.1 overcomes almost all difficulties. However, for the construction of 8, we
need to know which polynomial Q;; to choose for B, and then we need to “compute”
the vector of sign conditions d,. At this point we need a boolean advice (especially for
d,; one can overcome this difficulty for the P,). By Fact 4.1, the list of the Q;; can be
constructed in parallel polynomial time. There are at most an exponential number of O,
and a good P, is, say, the 5" Thus, we have a boolean advice of polynomial size which
tell us where there is a good P,. For §, we proceed in the same way. By Fact 4.2, we
can compute the vectors of consistent sign conditions of (P,?”,...,P,f‘Dil)) in parallel
polynomial time and there are at most an exponential number of such vectors. Again
a boolean advice of polynomial size can tell to us which one we must take for o,. (]

Of course, Theorem 4.19 implies that Pz C PARg. Also, by a simple padding argu-
ment (or using the proof of Theorem 4.19) we obtain that Ag/const = Ag/*const = Ay
and that EX[Pr/const C PEXPg/const = PEXPg/*const = PEXPgr and PEXPg/const=
PEXPgr/*const = PEXPg. Since Lemma 4.6 is true for nondeterministic complexity
classes and since PH; C PARy; and PAT; C PEXPz we obtain PHy/const C PHz/*
const CPARg and PATz/const CPATz/*const C PEXP;. Note that we can apply
Theorem 4.19 with Theorem 4.5 and Proposition 3.10 to obtain results of “elimination
of parameters”. For example, we have that if a problem is PARy and @-definable, then
it is PARy without parameters.
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We can also obtain a result of a general nature.

Proposition 4.20. Let M be an o-minimal structure which admits elimination of quan-
tifiers. Then, Ay /const = Ay /*const = Ay,.

Proof. Since Lemma 4.6 is true for M (but without time conditions) we have A /const
C Ays/*const (see the end of Section 4.2). To prove that Ay /*const C Ay we begin
as in the proof of Theorem 4.19. But at the end of the second paragraph we decompose
¥V, in its definable definably connected components: V) ,,..., ¥, ,. By the second part
of Lemma 4.3 we may assume that 7, C U, ,. Since ¥, is a-definable, V;, is defin-
able by a formula 6,(y,«) with parameters « only (see [19]). Thus, for all » and all
a€R", acX iff 3y 0,(y,0) A Cy(a, y,a). Thus, by elimination of quantifiers X €Ay,.

]

A number of o-minimal structures of interest are only model-complete (i.e., every
formula is equivalent to an existential formula). For instance, this is the case of the
reals with exponentiation (see [42]). For this structure, the good question is NP =?
co-NP and the above argument shows that NA/const =NA.

We conclude this section with some applications of Theorem 4.19. The point is that
some questions concerning the reals R or an arbitrary real-closed field can be difficult
to answer (due to the presence of parameters) but the same question for R, may be
easy (by Theorem 4.5 there is no problem with parameters). Then, one can sometimes
use Theorem 4.19 to transfer results from R, to every real-closed field.

Corollary 4.21. Let R be a real-closed field and let u=(u,),»1 be a sequence of Rag.
We denote by X, the problem of R defined by (a\,...,a,)€X, iff ay=u,. If X, is
PARg, then there exists a polynomial q such that for all n, |u,| <exp{exp(g(n))).

Proof. First we assume that R = R,. By Theorem 4.5, X, is in PARg with a sequence
of circuits which do not use parameters from R. It is easy to see that X, is solved by
a sequence of formulas (¢,(x)) where the ¢, are of the form

Iy Jin

V A (Qin(%)4,0).

i=1 =1

where the Q;;, are polynomials of Z[X] of degree and bit length of the coefficients
bounded by exp(q,(n)) where ¢, is a polynomial (here we do not need Theorem 4.15
because we only need bounds on the Q; ;). By definition of X, u, is the unique element
of R which satisfies ¢,(x1,0,...,0). Thus, u, is a zero of a polynomial A(x;) of Z[x,] of
degree bounded by exp(q(r)) and with the absolute value of the coefficients bounded
by exp(exp(q;(n))). Then, the well-known bound on the absolute value of the roots
of such a polynomial implies that for all n,|u,| <exp(exp(g(n))) for some polyno-
mial g¢.
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Now we suppose that R is an arbitrary real-closed field. X is ()-definable and the
extension of X viewed as a problem of Ry, to R is X. Thus, by Proposition 3.9, X is
PARp,, /const. By Theorem 4.19, X is PARg, . This completes the proof. ]

Note that this result can fail if u is not a sequence of algebraic numbers. Here
is a counterexample. Let « €]0,1] be a transcendent number with radix-2 expansion
a=0.a1a2--a, - . Let u,=1/(2x—0.a1az---a,). The problem X, is in Py since the
digits ay,...,a, can be extracted from « in time O(n). However, one can choose « $0
that no bound of the form |u,| <exp(exp(g(n))) (or any other bound set a priori) holds
for every n: just take a sequence of digits with very long sequences of consecutive
zeroes.

Set u, = exp(exp(exp(n))). Clearly, X, is in EXP; for every real-closed field. By
the corollary above X, cannot be PAR; and we obtain the separation of PAR; and
EXPgr with a simpler problem than the problems used in [8, 9].

We can also obtain the main result of [10]. We recall that if 4 is a complexity class
HBP(6,) is the class of problems X C {0,1}> which are in %,.

Corollary 4.22. If R is a real-closed field, then P(PARRz)=PSPACE/poly.

Proof. The inclusion PSPACE/poly C ##(PARy) is “obvious”. The reverse inclusion
is easy for Ry, (use Theorem 4.5). If X C {0, 1}, then X is #-definable and the exten-
sion of X C R to R is X. Thus, if X is ZZ(PARy), then X is ZZ(PARgz,, /const)

alg
and thus ##(PARg, ) by Theorem 4.19. [

lg

We denote by WEXPz (WEXPg) the class of problems solved by a machine over R
in weak (nonuniform) exponential time (see [22, 12] for a definition; one can define
WEXP, as WEXPg/# where F is the set of functions from N into {0,1}> such that
f(n) is of exponential size in n). Note that again WEXPz = WEXPp if R contains the
reals. One can use Theorem 4.19 to obtain transfer results relating parallel polynomial
time classes to higher complexity classes. For instance, the question PAR; =7WEXP,
has the same answer in all real-closed fields. Unfortunately, this result is of little in-
terest since, unlike the inclusion Pp C NPy, the inclusion PARy C WEX[P, 1s known
to be strict in every real-closed field (this follows from a connected component argu-
ment). Other inclusions of this type are also known to be strict (see the end of the
above subsection). For instance, it is noted in [10] that Corollary 4.22 implies that
PARy is strictly included in WEXP, because ZZ(WEXPyg) is the set of all boolean
problems.

We conclude this subsection by a remark which is somewhat out of context. In the
case of the reals, the separation of PAR and WEX[P gives the separation of PAR
and WEXP, but if R=R,; we have ZZ(PAR;)=PSPACE and #Z(WEXP)=EXP.
Thus, the separation of PARp, and WEXPy  using a boolean problem depends on
the well-known open question: PSPACE #£7 EXP.
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4.6. Non P-stability of the reals

Let R be real-closed field. If R % R it is rather obvious that R is not P-stable.

Proposition 4.23. Let R be a real-closed field not isomorphic to R. There exists a
real-closed field R' containing R and a problem in P}, with a restriction to R which
is not definable and thus not Ap.

Proof. First, we suppose that R is archimedean. Then, we may assume that R<R and
let a€ R\R. Let ¥, be the problem of R> defined by (xi,...,x,)€ Y, if and only if
x) <a. Clearly, Y, GP[}Q. Moreover, the set of x € R so that x <a is not definable in R
and thus the restriction of Y, to R is not Ag.

Now we assume that R is not archimedean. Let 4 be the set of x € R such that x<n
for some integer n. Then, there exists a real-closed field R’ >R with an element a so
that for x€R, x€4 if and only if x<a (such an clement exists in any card(4)"-
saturated elementary extension of R). Then, we can proceed as above. O

We can use the Dedekind completeness of R to prove a weak kind of P!-stability
for R (compare with Proposition 4.9).

Proposition 4.24. Let K be an ordered extension of R. If X € Py with a machine .4
which uses as parameters oy, ..., with a1,...,0, 1 €R, then the restriction of X to
R is in PHR.

Proof (sketch). If o, € R there is nothing to prove. If || is not infinitely large over
R, then, by Dedekind completeness of R, o =f; + ¢ with f; € R and ¢ infinitely
small over R. So, we may assume that oy >a for all a€ R (replace o, by —oy or
+1/(ox — Pr), add Bi to ay,...,a;,—1 and compute oy before running #).

Here, the Witness Problem WITNESS!, is the set of straight-line programs P, ..., P,
where the P, are polynomials over R with one indeterminate (i.e., a circuit without test,
with one output gate, one input gate and with parameters in R) such that the sign of the
leading coefficient of P, (the polynomial computed by the circuit) is >0. WITNESS‘>
is in the second level of PHp:

Py,...,P, eWITNESSl> if and only if dxVy (y>x=F.(y)>0).
Now, by hypothesis on o, if PER[y],
P(a;)>0 if and only if JxVy (y>x= P(y)>0).

For inputs in R, o; can then be viewed as an indeterminate y and one can use
WITNESS. to perform tests (that we may assume without loss of generality to be
of the form “P>0 ?”) in a simulation of the circuit family recognizing X. It is then
easy to see that A €PHy. O
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Then it is natural to ask whether the problem WITNESS. of the proof of
Proposition 4.24 is in Pgr. Of course, a positive answer would imply that the prob-
lem X of Proposition 4.24 is in P and that P{R/] C Pp.

Let R be real-closed extension of R. If ¥ € P, then it follows from a result of van
den Dries [37] that the restriction of ¥ to R is definable. However, the proposition
above cannot be generalized to more that one parameter in R\R: in general we need
an infinite number of parameters to define the restriction of ¥ to R. The proof uses a
construction communicated to us by van den Dries [40].

Theorem 4.25. Let Ry, be the real-closed field of Puiseux series over R. T here exists
a problem Y € P%_Epm whose restriction X to R is not Ap.

Proof. Let R be a real-closed field. The field Ry, of Puiseux series over R is the field
of formal power series:

Z a;e’ with k€ Z,ge N\{0} and a,€R.a;#0

ik
equipped with formal addition and multiplication (a series of the above form is positive
if and only if a;>0). Ry, is real-closed and R<R;,; in the obvious way. Given
a sequence a of positive real numbers we denote by 7, the element ), a;e'. Let
Y, SR be the following problem: for x € Ry, x € ¥, if and only if S xeet <.
Obviously, Y, GP%W‘ Let X, be the restriction of Y, to R. For x€ R", x € X, if and
only if

(xi<a)) V{x; =a; Ax2<az)
Vxi=a Axa=a> Ax3<a3)

Vxi=ai A+ AXp2 =8, 2 NXp—y <an71)
\/(X] =@ N AXpo1=ap—| Ax11<a11)~

In particular, an input of the form (ai,....a,1,%,) is in X, if and only if x, <a,.

Assume that X, can be solved in bounded time by a machine over R with / real
parameters o,..., ;. The above remark implies that a, is algebraic over Q(a,..., %,
Alneens dy—1). It then follows from a straightforward induction on » that the a;’s are all
algebraic over @(«y....,2). We obtain a contradiction when the a,’s arc algebraically
independent. [J

This theorem shows that there are problems Y € Pz in an extension R<R whose
restriction X to R is not Pg, and, even worse, is not Ag. One could try to recover the
property X € Py by adding additional hypotheses. Unfortunately, even if X is Ag it
may still be the case that X & Pr. The proof is similar to that of Theorem 4.25. Instead
of algebraically independent a,’s, we use a sequence of algebraic numbers with very
fast growing degrees over Q. This will ensure that the problem X, of the proof of
the above theorem is Ap (since an algebraic element is (-definable). We also need
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a lemma of independent interest. Roughly speaking, the moral is that algebraically
independent parameters do not help create algebraic numbers of high degree.

Lemma 4.26. Let K = Q(a),..., o) be an extension of 0 where ay,...,0; are alge-
braically independent. Let B € Q be of degree k over Q. The degree of f over K is
also equal to k.

Proof. Let d be the degree of f over K. Obviously, d<k. For the converse, let
M(a,.)= ijo Pj(2)y’ be the minimal polynomial of f over K, where M € Z[xy, ...,
x;, v]. The polynomial M (., B) € Z[f][x1,...,x4] vanishes for x| =a,...,x; =2 Since
oy,...,0y are algebraically independent over Q[f], this implies that M(.,5)=0. Let
ai,...,a; be rational constants such that Py(ai,...,a;)#0. It follows that M(ay,...,
a;, B)=0and M(ay,...,a;,.)#Z0. Thus d =k (otherwise M(2,.) would not be of min-
imal degree). [J

Theorem 4.27. There exists a problem in Pnz;%m with a restriction X to R which is
Ap, but X §ZPR.

Proof. Consider the problems X, introduced in the proof of Theorem 4.25. Assume
that X, can be solved in time hn‘ by a machine with / parameters «,...,;. We have
seen in the proof of that theorem that the a;’s must be algebraic over Q(«,..., ;). One
can estimate their degrees by, e.g., Fact 4.1. Namely, there exists a (monotone) bound
f(b,c,n, 1) depending only on b,c, n, and / such that a, is of degree at most f(b,c,n, /)
over Q(ay,...,0;). We can assume without loss of generality that «;,...,%, | are alge-
braically independent, and that «; is algebraic over K = Q(ay,...,o—). Let & be the de-
gree of o; over K. The degree of a, over K is then bounded by g(b,c,n, l.k)y=kf(b,c,
n,1). By Lemma 4.26, g(b,c,n,l,k) is also a bound for the degree of a, over Q. A
contradiction results from a simple diagonalization argument: just take a, of degree at
least g(n,n,n,n,n)+ 1. The corresponding language X, is not in Pg. We have already
seen that X, is algorithmic over R in bounded time since the a,’s are algebraic. [

Note that the above theorem holds as well for every real-closed field and that a
real-closed field is Dedekind complete in its field of Puiseux series.

5. Ordered Q -vector spaces
5.1. Background

In this section we consider machine over R and related structures which perform only
addition, opposite and branching on equality (=) and order { <). In the model theoretic
setting the language is the language of ordered abelian groups with a distinguished el-
ement 1: ¥ ={+,—,0, 1, <,=}. The theory of divisible ordered abelian groups with
a distinguished element 1>0 is complete, admits elimination of quantifiers and is
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o-minimal (in particular, any extension E <F of models of this theory is elementary).
The models of this theory are exactly the ordered Q-vector spaces with an element
1>0. The reals R without multiplication are of course a model of this theory (inter-
preting 1 by 1 or any positive element). To avoid confusion, when we look at R in &’
we denote it by R,,. Computation over R, has been studied in a number of papers
(see for example [21, 11]) and the question Pp, . = ? NP seems to be difficult. In
this section, £ will be an ordered vector space and we always assume that our ordered
vector spaces have a distinguished element 1>0 (and thus has dimension >1). We
can make a correspondence with the setting of the previous section: ordered Q-vector
spaces correspond to real-closed fields, the ordered Q-vector space of dimension one
that we denote by Qs corresponds to R., (as the ordered J-vector space which em-
beds in all ordered Q-vector spaces) and of course R, corresponds to R (as the only
ordered Q-vector space with a complete order). We consider £ with the order topol-
ogy and E* with the product topology. As for real-closed fields we can express some
topological facts with first-order formulae. Also, we can define the classes A/*const.
P/*const,..., as for real-closed fields.

In Section 5.2, we need a good elimination theorem. If ¢ is a formula of % with
parameters o, then the terms which appear in ¢ arc of the form

a|. x|y + -+ a,.x, + b].CXl + - 'bA-.O(Av.

where the a; and the b; are in Z. The S-size of such a term is the max of the bit
length of the a; and the b;. We denote by #(¢) the max of the S-size of the terms
which appear in ¢. The following result is a consequence of a result of Sontag (see
[36, Lemma 3.3]).

Fact 5.1. There exists a polynomial p such that the following holds. Assume that
O(x, o) is a formula of the form

017003y, O (Froeees Fopr B 20),

where the Q. are quantifiers, ¢’ is quantifier-free, the y, are tuples of length <n
and the o are parameters of E. Then, there exists a quantifier-free formula y(x.x)
equivalent to ¢(x.2) such that #(Y) < p(n)"#(¢').

Now, we recall some facts that we shall need (in Section 5.3) to prove the P-stability
of Ryys. Let G be an abelian ordered group. A subset X of G is convex if for every
g.heX, if g<c<h then ¢ € X. The convex hull of a subset of G is the smallest
convex subset of G which contains X. If X is a subgroup of G, then the convex hull
H of X is also a subgroup of G. Moreover, if G is divisible then H is also divisible
(thus the convex hull of a subspace of an ordered (J-vector space is a subspace). We
denote by |g| the absolute value of g. Let g and 4 be two elements of G. We write
g<h if ng<|h| for all ne Z. We say that g and 4 are comparable if neither g<h
nor h<g. If X and Y are subsets of G, we write X <Y if for all g € X\{0} and all
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he Y\{0}, g<h. G is archimedean if all the nonzero elements of G are comparable.
These groups are well-known:

Fact 5.2. An abelian ordered group is archimedean iff it is isomorphic to a subgroup
of the ordered additive group of the reals. Moreover, a Dedekind complete ordered
abelian group is isomorphic to Ryys.

We recall the “classification” of finite dimensional ordered Q-vector spaces.

Fact 5.3. Let E be an ordered Q-vector space of finite dimension. There exist sub-
spaces E\,...,E, of E such that

(1) E~E| x ---E, (as a vector space),

(2) the E; are archimedean;

() E\RE; < -+ KE,.

In other words, E is a direct product of archimedean vector spaces E; and the order
on E is given by the right lexicographic order on E\x - -- xXE,,.

5.2. P-saturation

Note first that Proposition 3.15 implies that if E is countable, there are boolean
problems in P%/1 which are not in Az. Moreover, the proof of Proposition 4.17 does
not use multiplication and holds for ordered Q-vector spaces (i.e., Pz CPg/1). Thus
we need to work at the nonuniform level. Note that, again, if £ contains Ry, then
most of the nonuniform classes for £ are uniform without loss of time (in particular,
Pr,.. = Pr,.).

The results of Section 4.2 can be adapted. We need the following well-known lemma.

Lemma 5.4. Let E be an ordered Q-vector space. Let X be a problem in SIZEL(¢),
and (a,...,04) the corresponding vector of parameters. Then, X is in SIZEL(t) using
1<k linearly independent parameters over the subspace spanned by 1, where [+ 1 is
the dimension of the subspace spanned by (1,01,...,0;). (The same result holds with
TIME in the place of SIZE.) O

With this lemma and the proof of Lemma 4.6 we obtain the analogue of Proposi-
tion 4.18.

Proposition 5.5. Let E be an ordered Q-vector space. Ag/const C Ag/*const “with-
out” loss of time or uniformity. [

In ordered Q-vector spaces, everything is for the best in the best of all possible
worlds [41].

Theorem 5.6. [Pz/*const=Pg/const =Py.
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Proof. The beginning of the proof is the same as the proof of Theorem 4.19, but
here, the formulae ¢, are circuits C,(x|,....Xx,. Vi,.... VisZlaeens z;) of polynomial size
in n: (C,(x, v.2)),50 defines a problem Y of E, there exists a sequence (f,) of E*
such that for all n, X NE" is solved by C,(x,f,.2) and for all n the set S’ of the
f € E" such that X NE” is solved by C,(x.f,2) has nonempty interior. We define ~,
and ¥, in the same way as in the proof of Theorem 4.19. Using Fact 4.3, we know
that ¥, is the union of U, ,,...,U,, , where the U, , are the interior of the classes of
~, with nonempty interior. We may assume that U, , is the interior of S'. Then, we
define the sets B, and 7, in the same way as in the proof of Theorem 4.19. Note
that there exists a formula ¥, (x, y,z) equivalent to C,(x, y.z) of polynomial size (in #)
of the form 2w ,(x, y,z,w) where W/ (x, y,z,w) is quantifier-free. It follows that the
T, are defined by formulae of polynomial size with a bounded number of quantifier
alternations (with parameters « only). Thus, by Fact 5.1, T, is defined by a quantifier-
free formula 6,( vy, o) such that #(6,) is polynomial in n. By construction, we have a
point 8/ in 7l which satisfies 0,(y;. ). Since T, is finite, there exists a term #( ;. %)
of 0,(yx, ) such that #(f/,%)=0. Thus b,.8, =aq,.1 +ai,. % + -+ a; .2 where b,
and the ¢, , are integers of bit length polynomial in n. Clearly, we have a circuit D,(z)
(without tests and selections and with one output) of polynomial size such that D, (x)

computes b,.f,,. Using D, it is then easy to construct a circuit C (x, yi..... Vi—1.Z)
such that C) is of polynomial size and such that C/(x, yi,..., Vi—1,2) is equivalent to
Colx, ¥i... s Yi—1. . ). Then, we see that X is in P}./“(k —1). We can repeat k times

the above procedure and see that X is in PL. [

By Fact 3.14 and since Py =Pp, we obtain

\\\\\

o

complete.
Also, Proposition 3.11 gives:

Corollary 5.8. If E and F are two ordered Q-vector spaces, then Pr=NPg if and
only if Pr=NPr. If E and F contain Ry, we can replace P by P in the above
statement.

As a corollary (to the proof) of Theorem 5.6 we have the following result (the
details are left to the reader).

Corollary 5.9. Let E be an ordered Q-vector space and % be one of the com-
plexity classes 2,P, I1,P, PH, PAR, PAR, EXP. PAT, PEXP, PEXP. Then,
% r/const =% .

The results above have as consequences some of the known results [11] about
boolean part: BP(Pg)=P/poly and HBP(PARr)=PSPACE/poly. Of course
BP(EXPL) and BP(PARg) are the class of all problems of {0,1}. This gives
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the separation of PARr and PARg. Note that the analogue of Corollary 4.21 (with
exp(exp(g(n)) in place of exp(q(n))) is easy in the context of this section. This
gives the separation of PAR; and EXPgz. One can also obtain results similar to
Corollary 5.8, for example we have: the questions X,/polybool =? IT,/polybool and
PH =? PAR are the same in every ordered {J-vector space.

Note that (in contrast to the case of real-closed ficlds) the boolean part of Pz, NP,
ZyPg, I1)Pgz, PHe and PARg are known and are equal to (respectively) P/poly,
NP/poly, 2,P/poly, II,P/poly, PH/poly and PSPACE/poly (see [11]; the main point
is that for £ boolean nondeterminism is the same thing as nondeterminism). Thus,
for example, if Pz =NP; then P/poly =NP/poly (and by [20] the standard (uniform)
polynomial hierarchy collapse at its second level). The converse implication is estab-
lished in [16], and a similar result for the problem P =? PSPACE can be found in [17].

3.3 P-stability Of Rovs

In this subsection we shall show some P-stability results for ordered Q-vector spaces.
We need the following lemma which allows to get controllable parameters.

Lemma 5.10. Let E<F be an extension of ordered Q-vector spaces. We assume
that E is Dedekind complete in F. Let a1,...,0; be elements of F. Then, there exist
integers m,m’,8o,....Smit, ..., tw, elements fy,...,Bs, of E, for every je{l,...,m} a
finite dimensional subspace H; of F spanned by (s ;);., and for every j€{1,...,m'}
a finite dimensional subspace G; of F spanned by (y;; )f:/:I such that

(1) each a; is a linear combination of the f;, ¢ ; and v; j;

(2) the subspaces E, H; and G; of F are in direct sum;

BYH H;< -+ <H,<E<G < <Gy
Thus the subspace spanned by E, the H; and the G, is isomorphic to H, x ---H,
x Ex Gy -+ x Gy with the right lexicographic order.

Proof. We denote by Fy the convex hull of £ in F. Then, there exists a subspace
G of F such that F~Fyx G. Then it easy to see that Fy <G. We may assume
that oy,...,0; € Fy and that a;4q,...,2 € G. Then, we apply Fact 5.3 to the subspace
spanned by %;,1,...,% and we obtain the G; and the y (we take for the H; subspaces
of Fy). Obviously, we may assume that «,,...,0, € Fo\E. Let i € {1,...,[}: since «; is
in the convex hull of £ and since £ is Dedekind complete in F, st(«;) €E. If st(a;)=0
we do not modify o;. If s#(2;)#0, then o, =s¢(x;) + &€ where e € F)\E and st{(e)=0
and we replace «; by e. The above argument shows that we may assume that for all
ie{l,...,1}, st(a;) = 0. Let H be the subspace spanned by «y,...,a,. Then, H <E and
HNE=(0). We can apply Fact 5.3 to A and obtain the H; and &. O

Theorem 5.11. Let E<F be a Dedekind complete extension of ordered Q-vector
spaces. If X is a problem of F which is Pr, then the restriction of X to E is Pg. In
particular, R, is P-stable.
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Proof. It suffices to show that if o is a k-tuple of F, then there exists a polynomial
g and a k'-tuple o' of E such that for every circuit C(x1.....% V1a...a Vi) of P
(do not forget the selector), there exists a circuit D(x, yi,...,ypr) of £, of size
<¢(size(C)) such that for all v€ E, E &= D(v,o') iff F = C(v,«). Note that we may
assume that all the tests in C are of the form L(x,x)<0.

By Lemma 5.10 we may assume that o is equal to {f.¢,7) with the properties (and
the notations of)} Lemma 5.10 (we assume without loss of generality that | = 1). Then,
we have a tower of Dedekind extensions

, N o
E<H,x<E<. _XIH,-><E<~--‘><1H,-><E>< ><lG,.
- - i

Clearly, we may assume that F'= X" H; x E x ><;.”:IIG,-. Moreover, an induction shows
that it suffices to consider extensions of the form £ <H, x E and £<E x G,. Let us
consider an extension of the form E<H, x E (the other case is similar). Thus, we
assume that F =H x E, H<E, H is archimedean and that o = {f5, ¢). Now we construct
a new circuits D’. The idea is to replace each computation (addition or subtraction)
gate of C by two gates so as to separate infinitely small elements from standard parts.
If on an input ¢ in £” a gate of C computes the value L(v.f,e)=Li(v.B) + La(e),
then the value of the first corresponding gate in D’ (the “standard gate™) should be
Li(v, ), and the value of the second gate (the “infinitesimal gate™) should be La(&).
Here L, Ly and L, are linear functions with integer coefficients. The construction of D’
by induction is clear. In order to perform an addition, we apply the rule:

[Ly(v. B) + La(e)] + [L} (v, B) + La(e)) = [Li (v, B) + Li (v, B)] + [La(e) + Li(e))-

A similar rule applies to subtractions. In order to perform a test L(v, ,£) <0, we apply
the following rules:

(i) if Ly(v. B)#£0, L(v, B, &) <0 iff L (v, f)<0:;

(i) if Li(e, ) =0, L(v, B,e)<0 iff L,(¢e) <O.
The nullity test for the first argument of a selection gate can be performed as follows:
Li(v,fy+ La(e)=0 iff Li(v,$)=0 and L,(¢)=0. Thus we replace each test gate and
each selection gate of C by a little subcircuit made of test and selection gates. The
circuit C{x,a) is equivalent to the circuit D'(x, 8, ¢) for inputs in £. Moreover, the size
of D’ is bounded by c - size(C) where c is a universal constant.

To complete the proof, we want to replace e € H* by a “small” vector of ¥ (which
depends on ). ¢ can be replaced by any # € Q° such that for any input in E” and any
value L>(£) computed at an infinitesimal gate of D', Lo(¢) and L»(n) have the same
sign. This yields a finite system of linear inequalities, even though there are infinitely
many inputs (that’s because the coeflicients of L, are integers of bounded size; indeed
their size is polynomial in the size of ). This finite system has a solution in H*
(namely, &), so it must have a solution in Q" since H is elementarily equivalent to ().
This implies the existence of a solution #=(p,/q...., ps/q;) where the p;’s and g,’s
are integers of polynomial size (this fact was used in [21] to show that the boolean part
of Py, is P/poly). Finally, the binary digits of the p;’s and ¢;’s can be “plugged” in a
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circuit D(v, f) that will simulate D'(v, 8,n) for v € E". The size of D is polynomially
related to the size of C. [J

Note that in this proof we have not used the fact that A is archimedean. One could
therefore take directly H = x" | H; to avoid the induction on m. However, the proof by
induction has its merits when E contains R,.. In this case, since H is archimedean,
there exists an embedding of H in R,s. Let & the image of the tuple & by this
embedding. Then, it is easy to see that the circuit D'(x, B,¢') is equivalent to D'(x, f,¢)
for input in £. Thus, in this case, we do not need to use the existence of small rational
points in polyhedra.

Note also that the depth of D in the proof above is also polynomial in the depth of C
(with a polynomial which depends only on «). Thus R is also PAR-stable. Finally,
note that Theorem 5.11 implies Corollary 5.7. This gives a very different proof of this
result (the proof of Theorem 5.11 for Ryys does not use Fact 5.1 nor the existence of
small rational points in polyhedra).

For an obvious reason, if £ is not isomorphic to Ry, then £ is neither P-stable nor
[P-stable (the proof of Proposition 4.23 works as well for ordered Q-vector spaces).
However, it seems to us that every ordered U-vector space satisfies a weak form of
P-stability: if E<F is an extension of ordered Q-vector spaces, if X € Pr and the
restriction of X to E is in Ag, then the restriction of X to £ is Pz. Note that, again,
we need to work at the nonuniform level: there exist boolean problems which are Ag,,
and Pp  but not Pg, .
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