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FROM “METABELIAN Q-VECTOR SPACES” TO

NEW ù-STABLE GROUPS

OLIVIER CHAPUIS

The aim of this paper is to describe (without proofs) an analogue of
the theory of nontrivial torsion-free divisible abelian groups for metabelian
groups. We obtain illustrations for “old-fashioned” model theoretic algebra
and “new” examples in the theory of stable groups. We begin this paper with
general considerations about model theory. In the second section we present
our results and we give the structure of the rest of the paper. Most parts of
this paper use only basic concepts from model theory and group theory (see
[14] and especially Chapters IV, V, VI and VIII for model theory, and see for
example [23] and especially Chapters II and V for group theory). However,
in Section 5, we need some somewhat elaborate notions from stability theory.
One can find the beginnings of this theory in [14], and we refer the reader to
[16] or [21] for stability theory and to [22] for stable groups.

§1. Some model theoretic considerations. Denote by A(1) the theory of
torsion-free abelian groups in the language of groups Lgp. A finitely gener-
ated group G satisfiesA(1) iffG is isomorphic to a finite direct power of Z. It
follows that A(1) axiomatizes the universal theory of free abelian groups and
that the theory of nontrivial torsion-free abelian groups is complete for the
universal sentences. Denote byT(1) the theory of nontrivial divisible torsion-
free abelian groups. The models of this theory are the nontrivial Q-vector
spaces and T(1) is the model completion of A(1). Another example of this
situation is: the theory ACF p of algebraically closed fields of characteristic
p is the model completion of the theory of commutative domains of char-
acteristic p. A notion which is more general and conceptually better than
model completion is model companion. Model companions are intimately
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connected with existentially closed (e.c.) models1: an inductive theory T0
has a model companion T iff the e.c. models of T0 are the models of T .
The theories T(1) and ACF p are complete and uncountably categorical.
Moreover, the theories T(1) and ACF p are ù-stable of Morley rank and
Morley degree one, in other words they are strongly minimal (a definable
subset of a model is either finite or cofinite). To distinguish the theories T(1)
and ACF p we can adopt the point a view of geometrical stability theory.
If M is a strongly minimal structure, the algebraic closure acl gives rise
to a pregeometry2. Then, we can define, as for vector spaces, a notion of
independence and a dimension (for a model of T(1), acl(X ) is the subvector
space generated by X ). One condition on a pregeometry that simplifies its
structure is (local)modularity. Apregeometry ismodular if for all closed sets
X ,Y , dim(X )+dim(Y ) = dim(X ∪Y )+dim(X ∩Y ), it is locally modular if
the equation holds whenever X ∩Y 6= ∅. The pregeometries associated with
the models of T(1) are modular as those associated with the models of ACF p
are not locally modular. More generally, we can associate a pregeometry
with any regular type of a stable theory3. Hrushovski [15] gives a fine analysis
of locally modular regular type. Again (local) modularity is a geometrical
condition that simplifies the analysis of a theory. A stable theory is (locally)
modular if all the regular types have a (locally) modular pregeometry. The
analysis of [15] implies that a connected superstable locally modular group
is solvable and that we can not interpret an infinite field in a superstable
locally modular theory.
In [10], Cherlin conjectured that an ù-stable simple group is an algebraic
group (over an algebraically closed field). Independently, Zil’ber in [29],
made the analogous conjecture for ℵ1-categorical simple groups. Related
conjectures are the Cherlin-Zil’ber conjecture: an ù-stable simple group of
finite Morley rank is algebraic and the Berline conjecture [4]: a simple su-
perstable group is of finite Morley rank. All these conjectures are open. The
Cherlin-Zil’ber conjecture gave rise to an extensive theory. In particular,
there is an elaborate theory of solvable centerless groups of finite Morley
rank due to the importance of maximal solvable algebraic (definable) sub-
groups of a simple algebraic (finite Morley rank) group. For example, Nesin
et al. proved that in a metabelian centerless group of finite Morley rank

1We recall that T is a model companion of T0 if T and T0 have the same universal
consequences and if T is model complete. A model M is e.c. for T0 if M |= T0 and if for
every existential sentence ϕ with parameters in M , if there is a model N of T0 such that
M ≤ N and N |= ϕ thenM |= ϕ. We refer the reader to [14, Chap. VIII].
2We recall that acl(X ) = {a ∈ M | a is in some finite X -definable set}. A pregeometry

is a set M with a closure operation cl : P(M ) −→ P(M ) which satisfies some natural
properties (see [14, Chap. IV]).
3A type is regular if a well behaved dimension theory can be developed for the set of its

realizations (we refer the reader to [16, Chap. VII] or [21, Chap. XIX]).
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we can interpret algebraically closed fields in such a way that the group is
interpretably embeddable in a direct product of algebraic groups over the
interpretable fields (see [6, Chap. IX]). Here, an obstruction is the problem
of the existence of a bad field: a field (K,Γ) of finite Morley rank with a
predicate for a nontrivial proper subgroup Γ of K ∗. If such a field exists,
then an exotic solvable centerless group of finite Morley rank is obtained
by considering the natural semidirect product Γ ∝ (K,+). At the level of
infiniteMorley rank we have “bad fields”; for example, ifK is a differentially
closed field with field of constants k, then (K, k∗) isù-stable since a differen-
tially closed field is. Also, Zil’ber [28] proved the ù-stability of (C,U) where
U is the multiplicative group of roots of unity and Grünenwald and Haug
[11] used this result to construct “small” superstable metabelian centerless
groups of infinite rank. Moreover, Pillay in [20] considered structures of the
form (K,Γ) where K is an algebraically closed field and Γ is a “finite rank”
subgroup of a semiabelian variety over K .

§2. Presentation of the results. A group G is called metabelian (or solv-
able of class ≤ 2) if it has an abelian normal subgroup H such G/H is
abelian. The class of metabelian groups is a variety of groups4, thus it has
free objects: for all cardinals r we have a metabelian group (unique up to
isomorphism)Mr generated by elements ai , i ∈ r, such that every function
from {ai}i∈r into a metabelian group G can be extended to a homomor-
phism from Mr into G . In [7] we provide simple explicit axioms for the
universal theory of free metabelian groups which we denote by A or by A(2)

and we describe the finitely generated models of this theory, obtaining in
this way an analogue of the classification of torsion-free finitely generated
abelian groups. We recall the main result of [7] in Section 3. In Section
4, we describe a complete and decidable theory T(2) = T which plays the
same role for A as T(1) does for A(1). T is not a model companion of A

but we are able to describe the e.c. models of A. Here the situation is
similar to Sabbagh’s description [25] of e.c. modules over a noncoherent
ring and we introduce the notion of quasi-model companion to unify the
two situations. In Section 5, we state the stability properties of T. T is
ù-stable of Lascar U -rank ù + 1 and we have two classes of regular types
for nonorthogonality (i.e., T is bidimensional, a notion which generalizes
categoricity). Moreover, T is modular and it follows that we cannot inter-
pret an infinite field in a model of T. Note that we have here something
that looks like the situation described by Baudisch in [1, 2] for the infinite
free nilpotent groups of class c and exponent pn (p a prime number and
2 ≤ c < p). In the last section of this paper we explain how to generalize

4i.e., a class of group closed for the operation of subgroup, homomorphic image and
cartesian product or equivalently the models of an equational theory of Lgp.
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the previous situation to some theories T(m) of solvable groups of class m
for arbitrary m. The theories T(m) are related to recent work of Delon and
Simonetta [27, Chap. IV] which had helped the author, in particular for the
theories T(m) when m ≥ 3, but our point of view is different. We obtain
with the theories T(m), when m ≥ 3, ù-stable connected centerless solvable
groups which are far from being linear and nilpotent-by-abelian (but, for
m ≥ 3, T(m) does not give a completion for the universal theory of free
solvable groups of class m). Notice that an ù-stable connected centerless
solvable groups of U -rank < ù interprets an infinite field and is nilpotent-
by-abelian. So, ù-stable centerless solvable groups of infinite rank are really
different from those of finite rank. Moreover, the groups of the theoriesT(m)
give natural and purely group theoretic examples for Berline-Lascar’s theory
[5] of superstable groups and for Hrushovski’s theory [15] of locally modular
types.

§3. The universal theory of free metabelian groups. In this section we recall
the main result of [7]. Let G be group. We denote by Fit(G) the Fitting
subgroup of G . We recall that Fit(G) is the subgroup of G generated
by all the nilpotent normal subgroups of G (see [23, Chap. V]). Let H
be an abelian normal subgroup of G and set Ḡ = G/H . Then H is a
module over the integral group ring Z[Ḡ], where the action of Z[Ḡ] on
H is (well) defined as follows: if g ∈ G and v ∈ H , v.ḡ = g−1vg. So,
adopting a multiplicative notation, if

∑

nḡ ḡ ∈ Z[Ḡ] and if v ∈ H then
v.

∑

nḡ ḡ = v
�
nḡg =

∏

g−1vnḡg .
The theory A is a (recursive) universal theory of Lgp which says the fol-
lowing of a model G : (a.1) G is a metabelian torsion-free group; (a.2) the
relation “commute” is an equivalence relation on G \ {1} (it follows that
Fit(G) is abelian and that if G is nonabelian, G is centerless); (a.3) the
quotient G/Fit(G) is torsion-free (and abelian since G is metabelian); (a.4)
Fit(G) is torsion-free as a Z[Ḡ]-module where Ḡ = G/Fit(G) (this makes
sense since Fit(G) is normal and abelian). Notice that in a group which
satisfies (a.2) the Fitting subgroup is definable by a universal formula and
this allows one to express (a.3) and (a.4) by universal sentences.

If A is a group and if L is a right A-module (i.e., a Z[A]-module), we

denote by M (A,L) the set of matrices

(

a 0
v 1

)

where a ∈ A and v ∈ L.

M (A,L) is a group under matrix multiplication, and this group is, of course,
the usual semidirect product A ∝ L of L by A. In particular, if A is a
free abelian group on {Xi}i∈r and if L is the free module of rank k over
the ring of Laurent polynomials Z[X ±1

i ]i∈r then M (A,L) is isomorphic
to the standard restricted wreath product Z(r)wrZ(k). In [7] we prove the
following
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Theorem 3.1. Let G be a group. The following properties are equivalent:
(1) G satisfies the universal theory of a noncyclic free metabelian group; (2) G
satisfies A; (3)G is a subgroup of a group M (A,L) where A is a torsion-free
abelian group and L is a torsion-free Z [A]-module; (4) for all g1, ... , gn ∈
G there exist k, r ∈ N such that the group 〈g1, ... , gn〉 can be embedded
in Z (k)wrZ (r). Moreover, if G is a nonabelian group satisfying one of the
properties above, then G has the same universal theory as a noncyclic free
metabelian group.

As a corollary we see that the theory obtained by adding to A the axiom
which says that G is not abelian is complete for universal sentences and that
the universal theory of a free metabelian group is decidable. Note that a
noncyclic free metabelian group is unstable, has an undecidable ∀∃ theory
and an undecidable universal theory if we allow constants in the language
(see [17, 8, 24]).

§4. Metabelian Q-vector spaces. If (r1, r2) is a pair of cardinals, then we
denote by E(r1, r2) the group M (D,V ) where D is a multiplicatively noted
Q-vector space of dimension r1 and where V is a vector space of dimension
r2 over the field of fractions of the commutative domain Z[D] (V is a D-
module via the multiplication of the ring Z[D]). The groups E(r1, r2) arise
naturally: whenever A is a torsion-free abelian group and L is a torsion-free
Z [A]-module there exists a couple of cardinals (r1, r2) such that M (A,L)
can be embedded in E(r1, r2).
The theoryT is a ∀∃ theory consisting ofA and sentences which say: (a.5)
G is nonabelian; (a.6) G/Fit(G) is divisible; (a.7) Fit(G) is Z[Ḡ]-divisible
where Ḡ = G/Fit(G); (a.8) for all g ∈ G \ Fit(G), G ' CG(g) ∝ Fit(G),
where CG(g) is the centralizator of g in G . Then, we have the suggestive

Lemma 4.1. G |= T iff there exists cardinals r1, r2 > 0 such that G '
E(r1, r2).

Unfortunately, T is not model complete, the reason for this is that we have
bad embeddings betweenmodels ofT, for example, if r is an infinite cardinal
we can embed E(r, r) in E(r, 1). So, we have to work in a new language.
We consider the language Lmc consisting of Lgp and for all m ≥ 1 and all
n ≥ 2 a new relationRm,n(x1, ..., xn). Then, we consider a set of sentencesD
consisting of all sentences of the form ∀x1...xn Rm,n(x̄)↔ än,m(x̄), where the
formulae än,m(x̄) are universal formulae ofLgp which are satisfied by elements
g1, ..., gn of amodel ofA iff g1, ..., gn are elements ofFit(G) which are linearly
independent for the elements of Z[Ḡ] of norm ≤ m (if

∑

ngg ∈ Z[X ] then
‖
∑

ngg‖ =
∑

|ng |). D is a universal expansion by definition of Lgp. Then,
we have
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Theorem 4.2. The theory T ∪ D is model complete (in Lmc). Thus, every
formula ϕ(x̄) of Lgp is equivalent modulo T to a ∀∃ formula of Lgp and to a
∃∀ formula of Lgp.

Corollary 4.3. (1) E(1, 1) is an elementary prime model for T and thus
T is complete and decidable. (2) The e.c. models of A are exactly the groups
E(r, 1)where r is a nonzero cardinal. Thus, two e.c.models ofA are elementary
equivalent and A has no model companion.

The second part of the corollary implies that for every cardinal r ≥ ℵ1 we
have a unique e.c. model of A of cardinal r and that we have ℵ0 countable
e.c. models of A, one for each nonzero cardinal ≤ ℵ0 which represents its
“dimension”. So, the class of e.c. models of A looks like the class of models
of an ℵ1-categorical theory (we lose a dimension in the sense of Section 5).
The situation above and the description of e.c.modules over a noncoherent
ring led us to the following definition. Let T0 be an inductive theory in L.
We say that T0 has a quasi-model companion if there exists a theory T of
L such that: (i) T0 and T have the same universal consequences; (ii) every
e.c. model of T0 is a model of T ; (iii) there exists a universal (or existential)
expansion by definition ∆ such that T ∪ ∆ is model complete5. Then, we
say that (T,∆) is a quasi-model companion of T0. (T,D) is a quasi-model
companion of A and it follows from [25] that if R is a ring, then the theory
of R-modules has a quasi-model companion (with ∆ as the pp-formulae).

Proposition 4.4. We suppose that T0 has a quasi-model companion (T,∆).
(1) If T ec0 is the theory of the e.c. models of T0, then (T

ec
0 ,∆) is a quasi-model

companion of T0 and T ⊆ T ec0 ; (2) the class of e.c. models of T0, the class
of infinitely generic models of T0 and the class of finitely generic models of T0
coincide; (3) the following properties are equivalent: (i) T0 has the J.E.P. in L,
(ii) T0 has a complete quasi-model companion.

We refer the reader to [12] for finitely and infinitely generic models. We
can use the proposition above and known results to show that some theories
do not have a quasi-model companion. For example, the following universal
theories do not have a quasi-model companion: the theory of groups, the
theory of (torsion-free) nilpotent groups of class m, for any m ≥ 2 and the
theory of solvable groups of class 2 (all these theories have the J.E.P and have
non-elementary equivalent e.c. models; one may consult [13] for references
and proofs). In contrast, there are a lot of model complete metabelian
groups of the form (K ∗, .) ∝ (K,+), where K is a field (see [27, Chap. I]).

5I do not know if T must be unique. One can define various notions of minimality for ∆
but, at the present time, I have no substantial results.



90 OLIVIER CHAPUIS

§5. Stability properties of T. In a countable language a theory T is ù-
stable (superstable) iff the Morley rank (the U -rank) of any type for T is
an ordinal. We use Lascar U -rank6. This is a good rank to consider in the
study of ù-stable (superstable and finite Morley rank) groups because, for
example, this rank has good additivity properties. TheU -rank does not rank
formulae but types; however, we can define theU -rank of a superstable group
G (or of a subgroup or of a quotient with all the structure which comes from
G) as theU -rank of one of its generic types (i.e., a 1-type of maximalU -rank
pertaining to the group, subgroup or quotient). A group G is connected if
it has no proper definable subgroup of finite index (or equivalently for an
ù-stableG if it has a unique generic type). The regular types are the building
blocks for the classification of the models of a “classifiable” theory. In our
context, a regular type is strongly regular and two regular types p1 and p2
over a modelM are nonorthogonal if there are RK -equivalent; that is, if ā
realizespi , then pj is realized in the primemodel overM� ā for (i, j) = (1, 2)
and (2, 1).

Theorem 5.1. Let G be a model of T. Then G is a connected ù-stable
group of Lascar U -rank ù + 1, G/Fit(G) is strongly minimal and Fit(G) is
connected ofU -rank ù. Furthermore, T is bidimensional: we have two classes
of regular types (for nonorthogonality), one represented by the generic type of
G/Fit(G), the other represented by the generic type of Fit(G).

We can use this analysis to prove results on the groups E(r1, r2). For ex-
ample, the groups E(r1, r2) = E are “d

2-simple”: we have a unique definable
normal subgroupH (the Fitting subgroup) such thatH and E/H are defin-
ably simple as structures interpreted in E (it follows that the other definable
subgroups are the centralizers of an element not in the Fitting subgroup).
In another direction, G is an ù-stable model of A iff G is a model of T.
Moreover, the proof of Theorem 5.1 gives the following.

Corollary 5.2. The theory T is modular. It follows that we can interpret
neither an infinite field nor an infinite simple group in a model of T.

LetK be an algebraically closed field of characteristic 0 and Γ a subgroup
of K∗. If Γ is finitely generated as a Q-group, then it follows from [20] and
results of number theory that the expanded field structure (K,Γ) is stable
and so is the semidirect product Γ ∝ K . In the case where Γ is Q-generated
by algebraically independent elements overQ, we obtain a group of the form
E(r1, r2). So, the result above shows that, in general, the structures (K,Γ)
and Γ ∝ K in Lgp are different.

6The U -rank is always ≤ the Morley rank. Note that if a group G is ù-stable of finite
U -rank then the Morley rank of G is equal to its U -rank.
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§6. Generalizations. We define groups E(r1, ..., rm) by induction on m
where r1, ..., rm are nonzero cardinals. E(r1) is the Q-vector space of dimen-

sion r1, this group is an abelian orderable group. Assume thatE(r1, ..., rm)
def
=

Em has been defined and that it is an orderable solvable group of class m.
Then, by [19, Chap. XIII], Em is an Ore group and thus Z[Em] has a di-
vision ring K of fractions. Then, if rm+1 is a nonzero cardinal we define

E(r1, ..., rm, rm+1)
def
= Em+1 to be the natural semidirect product Em ∝ V

where V is a vector space of dimension rm+1 over K . Then, Em+1 is of class
exactly m + 1 and Em+1 is orderable.
Here one can apply the generalmachinery ofDelon andSimonetta to prove
that the groups E(r1, ..., rm) have a decidable theory. More precisely, Delon
and Simonetta give an Ax-Kochen-Ershov principle for specific structures
of the form ((A,+, 0), (B, ., 1,≤), ∗, v) where A is an abelian group, B is an
ordered group, ∗ is an action of B on A and where v is a valuation and
obtain results for groups of the form B ∝∗ A. In particular, they obtain
new decidable groups (see [27, Chap. IV]). Using our techniques and [27,
Chap. IV] it is not very difficult to show that all the groups E(r1, ..., rm) are
connected and ù-stable; also Simonetta put this in a more general setting in
[26]. If m ≥ 3, then the groups E(r1, ..., rm) are far from being nilpotent-
by-abelian: they generate the variety of solvable groups of class m and are
typical nonlinear groups (if the ri ≥ 2, they contain a noncyclic free solvable
group of class m). This contrast with the fact that a connected solvable
group of finite Morley rank is nilpotent-by-abelian (see [22, Sect. 3.e], and
[18] and [3] for generalisations). Moreover, the existence of such groups
answer the main question of [3].
We can define by induction ∀∃ theories T(m) of Lgp with the following
properties (some lemmas of [27, Sect. IV.7] helped the author to construct
the theoriesT(m) form ≥ 3): (1)G |= T(m) iff there exists a m-tuple of nonzero
cardinals (r1, ..., rm) such that G ' E(r1, ..., r2); (2) T(m) has a universal ex-
pansion by definition which is model complete; (3) E(1, ..., 1) is an elementary
prime model for T(m), thus T(m) is complete and decidable; (4) T(m) is ù-stable.
If G |= T(m), then G is connected of U -rank ùm−1 + ... + ù + 1, Fit(G) is
connected of U -rank ùm−1 and T(m) is m-dimensional; (5) T(m) is modular.
Now we set A(m) = Th∀(wr

m
i=1Z) and A

+
(m) = A(m) ∪ Th∃(wr

m
i=1Z) where

wrmi=1Z is the left-iterated restricted wreath product of m copies of Z. Then,
A(m) is the set of universal consequences of T(m) and we can prove that T(m)
is a quasi-model companion of A(m) and that the e.c. models of A(m) are the
groups E(r, 1, ..., 1).
Assume that m ≥ 3. A direct proof of the decidability of A

+
(m) can be

found in [9]. But, at the present time, I do not have an elegant description
of this theory. Notice thatA(m) does not axiomatize the universal theory of a
noncyclic free solvable group of classm (it is known [8] that the decidability
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of the universal theory of a noncyclic free solvable group of class m ≥ 3
implies a positive answer to Hilbert’s tenth problem for the field of the
rationals: a difficult open problem).

REFERENCES

[1] A. Baudisch, Decidability and stability of free nilpotent lie algebras and free nilpotent
p-groups of finite exponent, Annals of Mathematical Logic, vol. 23 (1982), pp. 1–25.
[2] , On Lascar rank in non-multidimensional theories, Logic colloquium ’85 (The

Paris Logic group, editors), North-Holland, Amsterdam, 1987, pp. 33–51.
[3] A.Baudisch and J. S.Wilson, Stable actions of torsion groups and stable soluble groups,

Journal of Algebra, vol. 153 (1992), pp. 453–457.
[4] Ch. Berline, Superstable groups; a partial answer to a conjecture of Cherlin and Zil’ber,

Annals of Pure and Applied Logic, vol. 30 (1986), pp. 44–61.
[5] Ch. Berline andD. Lascar, Superstable groups,Annals ofMathematical Logic, vol. 30

(1986), pp. 1–43.
[6] A. Borovik and A. Nesin, Groups of finite Morley rank, Oxford Science Publication,

Oxford, 1994.
[7] O. Chapuis, ∀-free metabelian groups, The Journal of Symbolic Logic, to appear.
[8] , On the theories of free solvable groups, submitted for publication.
[9] ,Universal theory of certain solvable groups andboundedOre group-rings, Journal

of Algebra, vol. 176 (1995), pp. 368–391.
[10]G. Cherlin, Groups of finite Morley rank, Annals of Mathematical Logic, vol. 17

(1979), pp. 1–28.
[11] C.Grünenwald andF.Haug, On stable groups in some soluble group classes, Proceed-

ings of the 10th easter conference on model theory (Weese, Martin, et al., editors), Wendisch
Rietz, 1993, pp. 169–176.
[12] J. Hirschfeld andW.Wheeler, Forcing, arithmetic, and division rings, LectureNotes

in Mathematics, vol. 454, Springer-Verlag, Berlin, 1975, pp. 169–176.
[13]W. Hodges, Building models by games, London Mathematical Society, Cambridge,

1985.
[14] ,Model theory, Cambridge University Press, Cambridge, 1993.
[15]H. Hrushovski, Locally modular regular types, Classification theory (J. Baldwin,

editor), Lecture Notes in Mathematics, vol. 1292, Springer-Verlag, Berlin, 1985, pp. 132–
164.
[16]D. Lascar, Stability in model theory, Longmann, Avon, 1987.
[17] A.I. Malcev, On free solvable groups, Soviet Mathematics Dolkady, vol. 1 (1960),

pp. 65–68.
[18] A. Nesin, On sharply n-transitive superstable groups, Annals of Pure and Applied

Algebra, vol. 69 (1990), pp. 73–88.
[19]D. Passman, The algebraic structure of group-rings, Kriger, Malabar, 1977.
[20] A. Pillay, The model-theoretic content of Lang’s conjecture, preprint.
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