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INTRODUCTION

A free group has a decidable universal theory (see [13]). Moreover, it is
known (see [22]) that a noncyclic free nilpotent group of class 2 has a
decidable universal theory if and only if Hilbert’s tenth problem has a
positive answer for the field of the rationals (this problem is still open);
and it has been proved recently that if Hilbert’s tenth problem has a
negative answer for the field of the rationals, then a noncyclic free solvable
group of class > 3 has an undecidable universal theory (see [4]). This
paper was motivated by the following question: Is the universal theory of a
noncyclic free metabelian group decidable? We will prove that this ques-
tion has an affirmative answer and we will also prove that some other
solvable groups (left-iterated restricted wreath products of torsion-free
abelian groups) have decidable universal theories. This kind of problem
led us to compare universal theories and to study some properties of group
rings which are Ore domains. We can note that our decidability results
contrast with the large number of undecidability results that exist for non
abelian-by-finite solvable groups (see Section 4).

This paper is organized as follows. In the first section, we fix notation
and we recall a certain number of definitions and elementary facts about
logic and group theory. In the second section, we compare the universal
theories of certain solvable groups. We prove, in particular, that a non-
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cyclic free metabelian group has the same universal theory as the wreath
product of two nontrivial torsion-free abelian groups; this result is essen-
tial for the study of the universal theory of free metabelian groups. In the
third section, we study the following notions: Let G be a group; we define
a norm on the integral group ring ZG of G by [[Zn,gll = Lln,|, and we say
that G is a (recursively) bounded Ore group if ZG is an Ore domain and if
there exists a (recursive) function f of N* into N such that for all nonzero
elements @ and b of ZG there exist nonzero elements ¢ and d of ZG
such that ac = bd and such that |c|l < f(max(|lal,||bl)) and ||d| <
flmax(llall, [I15]1)). We give some “nontrivial” examples and we study systems
of equations and inequations in such group rings. In the last section, we
use the notions introduced in the third to give a general criterion to prove
that certain wreath products have decidable universal theories. With this
criterion, we obtain our decidability results. Note that the proof of the
decidability of the universal theory of a free metabelian group given in this
paper does not give an explicit description of this theory; we give such a
description in [5].

1. NOTATIONS AND PRELIMINARIES

Almost all the notions and notations of group theory and logic used in
this paper are classical. We refer the reader to [21] and [17] for group
theory, to [20] for group rings, and to [3] and [8] for logic ([17] especially
for varieties of groups and [8] especially for decidability and undecidability
problems). But, for the convenience of the reader and to be accessible to
both algebraists and logicians, we are going to recall a certain number of
definitions and elementary facts.

Let L be a first-order language, M a model of L, and P a property
pertaining to the sentences of L. The P-theory of M is the set of all the
sentences of L with the property P which are true in M. We say that M
has a decidable P-theory if there exists an algorithm which decides if a
sentence with the property P is in the P-theory of M. We say that M is
decidable if M has a decidable theory. Any sentence of L is equivalent to
a sentence ¢ of the form

Q]leZxZ ann ¢(xl""’xn)’

where &é(x,,...,x,) is a quantifier-free formula and where the Q, are
quantifier symbols 3 or V. If all the Q; are 3, then we say that ¢ is an
existential sentence; if all the Q, are V, then we say that ¢ is a universal
sentence. Clearly, two models of L have the same universal theory iff they
have the same existential theory; and M has a decidable universal theory
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iff it has a decidable existential theory. We say that ¢ is a V3 sentence if
¢ is existential or if there exists p € {1,...,n} such that Q, is V for
1 <i < p and such that Q, is A for i > p. If N is a submodel of M, then
we say that N is existentially closed in M if any existential sentence with
parameters in N true in M is true in N. If u is an ultrafilter we denote by
M" the ultrapower of M by u.

In this paper we will work most often with the language of groups:
L ={1, ',.} where 1 is a constant symbol for the identity, ~'is a unary
function symbol for the inverse, and . is a binary function symbol for the
multiplication. In this language any quantifier-free formula is (effectively)
equivalent (modulo the theory of groups) to a formula of the form

m i s,
V ( Aw (x.ox)=1A A w.(x,...x,)# 1),

i=1\j=1 j=t

where the w, ; are elements of the free group on x,,..., x,. Hence, any

existential sentence is (effectively) equivalent to a sentence of the form

" A s,
V (3x, '-~3x,,( /\ wi(x,nx)=1A A w(x,....x,)* 1)),

=1 j=1 j=t+1

and thus we see that a group G has a decidable universal theory iff there is
an algorithm which decides if a system of equations and incquations has a
solution in G or not.

Let G be a group. For every set X we denote by G’ the group of
functions f of X into G such that {x € X |f(x) # 1} is finite. If g,,..., g,
€ G, then we denote by (g,,...,g,> the subgroup of G generated by
g8, W g, h €G, then we put [g.hl =g "h 'gh and g" = h 'gh.
For any group H we denote by G = H the free product of G by H. If n is
a positive integer, we denote by 8,G the nth term of the derived series
(8,G =G ={[g hllg.h G, §,,,G={g hllg.h €5,G), and G is
called solvable of class < #n if 6,G = 1). We say that a group is metabelian
if it is solvable of class < 2. We denote by y,G the nth term of the lower
central series (y,G =G', v,,,G =g . hl|lg€ v,G, heG)). If Ris a
commutative ring, we denote by RG the group ring of G and we recall that
the augmentation ideal of RG is the kernel of the ring homomorphism &
of RG into R defined by &(Xa,-g) = La,. If R is a ring, then we denote
by R* the set of nonzero elements of R and, if X is a set, we denote by
R'Y) the R-module of functions f of X into R such that {x € X|f(x) # 0}
is finite. We say that R is a domain if R is without divisors of zero (even if
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R is not commutative), and we say that R is an Ore ring if for all
a,b € R* there exist ¢,,d|, ¢,,d, € R*such that ac, = bd, and c,a = d,b.

Let V' be a variety of groups. If » is a cardinal, then we denote by F.(})
the free group of V of rank r; if V is the variety of solvable groups of class
< n, we denote this group by F,(n). If r is a cardinal and if » is a positive
integer, we denote by M,(n) the group of 2 X 2 matrices («; ;) such that
a,€Fn—-1, a,,=0, a,, €Q, and a,, =1, where  is the free
ZF.(n — 1)-module on (A, |i € r); we call this group the Magnus group of
class n and rank r. If we denote by a; (i € r) free generators of F,(n) and
by a, free generators of F,(n — 1), then we define a homomorphism f of

F.(n) into M, (n) by
a o0
f(ai) = A 11

By a theorem of Magnus, f is a monomorphism (see {10] for a modern
exposition of this Magnus embedding).

Let 4 and B be two groups; we denote by Awr B the (restricted)
wreath product of 4 by B. We recall that Awr B is the semi-direct
product of A®’ by B, in which the automorphism of A®’ produced by
an element b € B is given by f°(a) = f(ab™') for fe A'®. Suppose
that A4 = Z"" where r is a cardinal. If B is given by a presentation
(b, i € k|R) then it is easy (using simple computations) to see that
A wr B has a presentation

(a,, i€r;b,ic K|R;[af,a;'], X,yEB, i, je€ r)
and that any element of A wr B can be written in the form

b[al

ier

where b € B, f, € ZB, and we adopt the notation

a¥osmt = TT (b lapb)".

beB

In other words, A4 wr B is isomorphic to the group of 2 X 2 matrices (e, ;)
where a, | € B, @, , =0, a, | € (ZB)"), and «a,, = 1. In particular, we

see that M (n) is isomorphic to ZVwr F.(n — 1). If A,,..., A, is a finite
sequence of groups, then we denote by wr/_, A; the left-iterated wreath
product A, wr (A, wr(...(A,_,wrA,)...)). In general, A, wr

(A, wr A;) # (A, wr A,)wr A,
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2. COMPARING UNIVERSAL THEORIES

We begin by giving a manageable criterion to prove that two groups
have the same universal theory. For this, we generalize the notions of
discrimination and strong discrimination. We recall that if I is a variety of
groups and if r is a positive integer, F.(1/) discriminates V if for any finite
set of words w,(x,,...,x,), i = 1,..., n, that are not laws in V' there exist
b,,...,b, € F(V) such that w{b,,...,b) # | fori=1,...,n; and F(V)
strongly discriminates V' if for any finite set of words w(x,,...,
X ¥ia---s ¥ i =1,...,n, that are not laws in V there exist b,,...,b, €
F(V) such that w(b,....,b,a,,...,a,)# 1 for i=1,...,n, where
a,,...,a, are free generators of F.(V') (see [17, Sect. 17] and [9]).

DEerFINITION 2.1. (1) Let G and H be two groups and (X | R) a presen-
tation of G. We say that H discriminates G if for any finite set of words
on X,wl(x,,...,x,),i=1,...,n, that are not 1 in G and any finite set of
relations in R, r{x,,...,x,), i = 1,...,m, there exist h,,...,h, € H such
that w(h,,....,h)# 1 for i=1,....,n and rlh,,...,h) =1 for i =
1,...,m.

(2) Let G be a group, H a subgroup of G generated by Y, and
(X U Y|R) a presentation of G with X N'Y = J. We say that H strongly
discriminates G if for any finite set of words on X U Y,
wilx,, ... X, Vipee s ¥), i=1,...,n, that are not 1 in G and any
finite set of relations in R, rx,....x,y,....,») i=1....m
(where the x; € X and the y, € Y) there exist &,,....h € H such that
wlhy,....h y....;y)# Lfori=1,....mand rih,....¢h,y,...,y) =
[fori=1,...,m.

A consequence of the next lemma (and its proof) is that these defini-
tions do not depend on the presentations.

LEmMA 2.2, (1) Let G and H be two groups; if H discriminates G, then G
satisfies the universal theory of H.

(2) Let G be a group and H a-subgroup of G; if H strongly discriminates G,
then H is existentially closed in G.

Proof. We could prove, using Tietze transformations, that Definition
2.1 does not depend on the presentations and then we could prove (1) and
(2) using simple computations. To avoid any computation and to reconcile
logicians with Definition 2.1, we are going to use the compactness theorem
of first-order logic. Let G be a group with a presentation (X|R) and H a
group which discriminates G. To prove that G satisfies the universal
theory of H, we just have to embed G in a group H, with the same theory
as H. We consider the following set of formulas of the language of groups
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with a new constant x for each x € X,

={w(x,....x) # 1lw(x,,...,x;) # lin G}
{ %) =1|reR}.

Since H discriminates G, by compactness there exists a group H, with the
same theory as H and with for each x € X an element h, such that H,
satisfies A, if we substitute ¥ by 4, for all x € X. Now by definition of A
there exists a homomorphism f of G into H, (put f(x) = k, and apply
von Dyck’s theorem) which is a monomorphism. Now suppose that H is a
subgroup of G and that H strongly discriminates G (for a given presenta-
tion (X U Y| R)); then we can prove as above that there exists a group H,
which contains G and such that H, and H satisfies the same sentences
with parameters in H; this implies that H is existentially closed in G. |

Lemma 2.2 improves Theorem 1 of [9]. Indeed, let V' be a variety of
groups and let r be a cardinal. If F.(F) discriminates V, then for any
risry 2 r, F, (V) discriminates F, (V) and by Lemma 2.2, we see that for
any ri,r, 2 r, F,(V)and F, (V) have the same universal theory. If F.(J)
strongly discriminates v, then for any r,ry2r with r, <r), F(V)
strongly discriminates F, (V') under any canonical embedding (i.e., embed-
ding which maps free generators to free generators); by Lemma 2.2, for
any ry,r, > r with r, <r,, F.(V) is existentially closed in F, (V') under
any canonical embedding. ’

An immediate consequence of Theorem 2 of [11] is that F,(n) strongly
discriminates the variety of solvable groups of class < n, for any n > 2;
moreover, it is easy to see that F,(1) strongly discriminates the variety of
abelian groups. We obtain a result which is contained in [9].

PRrROPOSITION 2.3.  For any integer n > 1 and for any cardinals r\,r, > 2
(ri,ry 2z Vifn = D withry <r,, F(n) is existentially closed in F,(n) under

any canonical embedding; in pamcular F.(n) and F, (n) have “the same
universal theory.

We turn our attention to wreath products. It is announced in [25] that if
A, and A, are two groups with the same universal theory and B, and B,
are two groups with the same universal theory, then 4, wr B, and A, wr B,
have the same universal theory. Our next lemma is a particular case of this
result; however, we include a proof of this lemma for the sake of complete-
ness.

LeEMmMma 2.4, If B, and B, are two groups with the same universal theory
and if A, and A, are two nontrivial torsion-free abelian groups, then A, wr B,
and A, wr B, have the same universal theory.
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Proof. Let A be a nontrivial torsion-free abelian group and B a group.
Let b,f,,..., b,f, be a finite set of clements of 4 wr B where the b, € B
and where the f, € A% (b,f,,...,b,f,> is contained in
{by,....b,. fi,..., f,7. Since there is a finite number of elements of A not
equal to 1 in the image of each f,, and since a finitely gencrated
torsion-free abelian is isomorphic to a frec abelian group, we see that
there exists an integer & such that {b,f,,...,b,f,> can be embedded in
Z'® wr B. Hence any finitely generated subgroup of A wr B can be embed-
ded in Z®'wrB and thus AwrB satisfies the universal theory of
Z®) wr B. Moreover, since A is torsion-free and nontrivial, Z wr B can be
embedded in A4 wr B. We see that to prove the lemma, we just have to
prove that if B is a group, then Zwr B and Z®™" wr B have the same
universal theory and that if B, and B, are two groups with the same
universal theory, then Zwr B, and Z wr B, have the same universal theory.

We first show that if B is a group, then Zwr B and Z*% wr B have the
same universal theory. By Lemma 2.2 and since Z wr B can be embedded
in Z* wr B, we just have to prove that Zwr B discriminates Z®" wr B.
Let (b, i € «|s{b), i € 6) be a presentation of B, then Zwr B has a
presentation

(a.b,.i € «|si(b),i€ 9;[a",a"],x,y€ B)
and Z'® wr B has a presentation
(ai, €N, b, i € K|s,(77), ief; [a,",a;}'], X, yEB,I,jE r).

Let wi(b,,....b,a,,....,a), i =1,....n, be a finite set of words not
equal to | in Z* wr B; for i = 1,...,n we have

t
wi(by.....b,ay,....,a,) = 1',(b,,,...,b‘)l‘]—1a{,‘v',

;=0

where the f, ; € ZB and where the ¢; are words on b, ..., b, If we find
integers m,, ..., m, such that w(b,,...,b,a", ...,a") # 1 in Zwr B for
all i = 1,..., n, then we can conclude that Z wr B discriminates Z®™* wr B
because all the relations satisfied by b,...,b,,a,,...,a, are satisfied by
by,....b,a™,...,a™. To find these integers, it is clear that we may
suppose that v,(b,,...,b) = 1forall i = 1,...,n and we will proceed by
induction on n. But before that we note that

ot
wi(by,..., b, a™, . ..,am) =a™ il

in ZwrB for all i =1,...,n Thus we have to show that there exist
integers m,, ..., m, such that m,f, ; + --- +mf, , # Oforall i =1,...,n.
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If n =1, since w, # 1 there exists j € {0,...,} such that Sy # 0 and we
take m, = 1 and m; = 0 for k # j. If n > 2, then by induction hypothesis
there cxist integers i, ..., m',, my, ..., m, such that

myfo;+ - +mf,  #0 fori=1,...,n—1

and

myfo .+ o tmf, , #0.
If miyf,, + - +m,f, , # 0then it is not difficult to see that there exists
an integer p such that (pmy, + m)f, . + - +(pm, + m))f, ; # 0 for i =
1,...,n. We have proved that Z wr B discriminates Z® wr B.

Let B, and B, be two groups with the same universal theory; we have to
prove that Zwr B, and Z wr B, have the same universal theory. By Lemma
2.2 and by symmetry, we just have to show that Zwr B, discriminates
Zwr B,. If B, has a presentation (b;,, i € k|R), then Zwr B, has a
presentation

(a,b;,i € k|R,[a*,a’], x,y € B,).

Let wib,,....b,a),i=1,...,n,be a finitc set of words not equal to 1 in
Zwr B, and r(b,,...,b), i =1,...,m, be a finite set of relations in R.
For i =1,...,n, we have

£
wi(by,....b,a) = "i(bns---’b.\-)af' with f, = 2 €c.iti i(bys-- b))
k=1

where the ¢, , = +1 and where the ¢, ; are words on b,..., b,. We are
going to construct an existential sentence of the language of groups. Let
iefl,....n}. If ovdb,,...,b) # 1, then we put ¢{x,,...,x,) =
(e, ...,x)#= D If vdby,....,b)=1, then f,+0. If f, is not in
the augmentation ideal of Z B, then we put ¢, = (x, = x,); if f; is in the
augmentation ideal of Z B, then there exists a formula ¢,(x,, ..., x,) of the
form

AV U i Xgs oo X)) # 0 (X, X))

such that if G is a group

l;
7ZG = 3x, - x, €G Z ety i(xgse,x) #0
k=1
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if and only if
GE3Ax, - x, ¢(xgs.0.0%).

We denote by ¢ the formula

m n

By x| Ardxgnx) =1A A e(xg,..x)]

i=1 i=1

By construction of ¢, B, = ¢ and, since B, satisfies the universal theory
of B, B, E ¢. Thus if we put Zwr B, = {a’') wr B,, then there exist
by, ..., b, € B, such that

w(by,...,blya’y =1 and  r(b,....B) =1

forall i =1,...,n and for all j = 1,..., m. We see that Zwr B, discrimi-
nates Zwr B,. |

The main result of this section is

THEOREM 2.5. (1) If A,,..., A, and B,,..., B, are two finite sequences
of nontrivial torsion-free abelian groups, then wr/_ | A, and wr/_ | B, have the
same universal theory.

(2) If ry and r, are cardinals > 2 and if A and B are two nontrivial
torsion-free abelian groups, then F,(2), M, (2), and A wr B have the same
universal theory.

(3) If risa cardinal = 2 and if A, A,, A, are three nontrivial torsion-free
abelian groups, then M (3) and wr;_, A, have the same universal theory.

Proof. It is well known that two nontrivial torsion-free abelian groups
have the same universal theory. Thus the first part of Theorem 2.5 is a
direct consequence of Lemma 2.4. If r is a cardinal > 2, then M, (2) =
Z'"'wrZ'; thus by Lemma 2.4, Proposition 2.3, and the first part of
Theorem 2.5, to prove the second part of Theorem 2.5 we just have to
prove that F,(2), M,(2), and ZwrZ have the same universal theory. By
Lemma 2.4, M,(2) and Z wr Z have the same universal theory. Since F,(2)
can be embedded in M,(2) every universal sentence true in M,(2) is true
in F,(2). By [1, Corollary 3], ZwrZ can be embedded in F,(2) and thus
every universal sentence true in F,(2) is true in ZwrZ. Since M,(2) and
Zwr Z have the same universal theory, the second part of Theorem 2.5 is
proved. If r is a cardinal > 2, then M,(3) = Z") wr F(2); thus by Lemma
2.4 and by Proposition 2.3, to prove the last part of Theorem 2.5 we just
have to prove that M,(3) and Z wr(Z wr Z) have the same universal theory.
By the second part of Theorem 2.5, ZwrZ and F,(2) have the same
universal theory and we can apply Lemma 2.4. |
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The second part of Theorem 2.5 led us to study in a systematic manner
the groups with the same universal theory as F,(2). In [5] we give a
description of the universal theory of F,(2) and we prove that if G is a
nonabelian group, then G has the same universal theory as F,(2) iff for all
81s---- 8, € G there exist k,r € N such that {g,...,g,> can be embed-
ded in ZX wr 7",

REMARK 2.6. A free noncyclic solvable group of class 3 and Z wr(Z wr Z)
do not have the same universal theory. Indeed, we consider the formula ¢

3W1)’2212223[[X’xz']a[x’xz']::] #1A [[YU}’Z]’[)’IsJ’z]:"]

# 1A [yl Dy ] = 1

We put F = F,(3). Assume that F satisfies ¢; then there exist a, b, b, € F
such that if we put b = [b,, b,], we have [b, b*] = 1 and then we have, by
the lemma of [14], a € F — F' and b € F' — 8,F. By [14, Theorem 1]
there exist two nonzero integers n and m such that b" = 5™ and if we
apply {1, Theorem 7] we obtain n = ma in Z(F/F’). This is absurd, thus F
does not satisfy ¢. Moreover, it is not very difficult to see that Z wr(Z wr Z)
= .

3. BOUNDED AND RECURSIVELY BOUNDED ORE
GROUP RINGS

Let G be a group; we say (by “abus de langage”) that G is Ore if ZG is
a domain and if for any a,b € ZG* there exist ¢,d € ZG* such that
ac = bd. We define a norm || || on ZG: if Yn,g € ZG then we put
IXn, gl = Xlnl

DerINITION 3.1, Let G be a group. We say that G is a bounded Ore
group if ZG is a domain and if there exists a function f of N* into N such
that for any a,b € ZG* there exist ¢,d € ZG* such that ac = bd and
such that licll < fimax(llall, [[6])) and [|d]l < fimax(||all, [[6]D). Further, if f
can be taken recursive we say that G is a recursively bounded Ore group.

In our Definition 3.1 we impose the right Ore condition, but for group
rings the left Ore condition and the right Ore condition are equivalent;
moreover, this equivalence preserves our function f (this is because we
have the antiautomorphism (En,g)* = En,g~'). Moreover, if G is tor-
sion-free abelian, then ZG is a domain and it is then clear that G is a
recursively bounded Ore group.
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LEMMA 3.2.  Let G be a bounded Ore group with a function f. If a group
satisfies the universal theory of G, then it is bounded Ore with f.

Proof. Let G, be a bounded Ore group with a function f. If H is a
subgroup of G, then ZG, is a free right ZH-module on a left transversal
of H in G, (see [20, 1.1.3]). With this elementary fact (and its proof) it is
easy to see that if H is a subgroup of G, then H is a bounded Ore group
with the same function f. So, by [3, 5.2.2] or by [3, Sect. 3.2}, to prove the
lemma it suffices to prove that if G is a bounded Ore group with a
function f, then if a group G, satisfies the theory of G it is bounded Ore
with f. Let G be a bounded Ore group with a function f. If (n, m) € N*
x N* then we denote by ¢, ,, the sentence

VX. X, Vyl ey

n

n-n

A [(elx] + - +e,x, 0 A€y + - +e€y, #0)

e.ecl,

m

= (32' ez, 3[1 e

\/ ((elxl + o +€an)(ellzl + - +e;nzm)
e.e'sl,

= (Elyl + o +€nyn)(€,|tl + o +€l’ntm)

>

Aez, + o te,z, #ONet + o te,z, #F 0))

m=m

where [, = {(e,,...,e.) e, €{—1,0,1}, (e},...,¢) # (0,...,0)}. It is not
difficult to see that this sentence is equivalent to a sentence in the
language of groups. By hypothesis on G, for all n € N*, G F ¢, /)
Moreover, it is clear that there is a set of (universal) sentences of the
language of groups which say that ZG is a domain. Hence, if a group G,
satisfies the theory of G, then ZG, is a domain and since G, = ¢, g, for
all n € N*, G, is bounded Ore with f. 1

The following lemma is an application of the compactness theorem (of
first-order logic); [ thank Zoé Chatzidakis who suggested it.

LEMMA 3.3. Let G be a group such that every group which satisfies the
(universal) theory of G is Ore. Let a(x) be an element of Z X where X is a free
group on x,, ..., x, and let b(y) be an element of ZY where Y is a free group
ony,,...,y, Then there exists a finite set of couples {(c(x,y),d(x,y))}; -,
where the ¢, and the d, are clements of ZX =Y such that for all
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Bise s 8uhys- b, €G, if a(@) # 0 and b(h) # 0 then a(g)c(g,h) =
b(h)d (g, h),c{g,h) # 0, and d(g,h) # 0 forai € p.

Proof. Let G be a group such that every group which satisfies the
(universal) theory of G is Ore. Let a(x) be an element of Z X where X is a
free group on x,,..., x, and let b(y) be an element of ZY where Y is a
free group on y,,...,y,. We consider the infinite sentence

Vx Vy[(a(x) # 0 A b(y) # 0)
= (V(a(x)e(x,y) = b(y)d(x.y) Ac(x.y) # 0 Ad(x,y) #0))]

where the disjunction is taken over the set ZX *Y X ZX =Y. It is easy to
see that this infinite sentence can be written in the language of groups. We
denote by ¢ this sentence. Let H be a group which satisfies the (universal)
theory of G. Then by hypothesis H is Ore. Let g,,...,8,.h,,...,h, €H
such that a(g) #+ 0 and b(h) # 0; by Lemma 3.2,{g,,..., &,, h\s.... h, ) is
an Ore group, so there exists (c(x,y),dx,y)) € ZX+Y X ZX*Y
such that a(g)c(g, h) = b(h)d(g, h), c(g, h) # 0, and d(g, h) = 0.
Thus H & ¢. We have proved that any group which satisfies the (universal)
theory of G satisfies ¢. Hence, by compactness, there exists a ftinite
subset {(c,(x,y), d(x,y))},c , of ZX*Y X ZX %Y such that G satisfies
the sentences

VxVy|(a(x) = 0 A b(y) #0)

= ( V (a(x)c,(x,y) = b(y)d(x,y) A ci(x,y) #0 A d(xy) # O)) . 1

iep

With these two lemmas we can prove the next theorem which will allow
us to give “nontrivial” examples of (recursively) bounded Ore groups.

THEOREM 3.4. Let G be a group.

(1) G is bounded Ore iff every group which satisfies the (universal)
theory of G is Ore.
(2) If G can be embedded in a bounded Ore group with a decidable

universal theory, then G is recursively bounded Ore (we can compute the c,
and the d; of Lemma 3.3).
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Proof. The first part of Theorem 3.4 is an immediate consequence of
Lemmas 3.2 and 33. By Lemma 3.2, to prove the second part of
Theorem 3.4, it suffices to prove that a bounded Ore group with a
decidable universal theory is recursively bounded Ore. Let G be a bounded
Ore group with a decidable universal theory. Let n be an integer > 1. We
denote by X, the free groups on x,,...,x, and by Y, the free groups on
¥Yis.--» ¥, We denote by E, an effective enumeration of ZX, *Y, X
ZX,*Y,, and if m is an integer > 1, then we denote by E,(m) the m first

n’

elements of E,. We define a function f, of N* into N by
£,(m) = max{max({llcll, Idll} | (¢,d) € E,(m)}.

If m is an integer > 1, we denote by ¢, ,, the following sentence which is
equivalent to a universal sentence in the language of groups:

Vo, »x, Yy, oy,

non

A [(elxl + - +e,x, #0A €y, + - +e,y, #0)

eec/,

= ( V ((61)(1 + - +e,,x,,)c(x,y)

c.deE,(m)

= (elyl o +€nyn)d(x’y)

Ac(x,y) # 0 A d(x,y) # 0))

where I, = {(e),...,e,) |e; € {—1,0,1}, (e,,...,e) #(0,...,0)}. Now we
define a function f of N* into N by

f(n) = f, (smallest m € N* such that G = ¢, ,,).

Since G is bounded Ore, by the first part of Theorem 3.4 and by
Lemma 3.3, f is well defined. Since G has a decidable universal theory,
since the E, are effective enumerations and since the ¢, ; are (effective)
universal sentences, f is a recursive function. By construction of f, G is a
bounded Ore group with f. I

~ Using Theorem 3.4 and classical results we obtain

CoROLLARY 3.5. (1) A right orderable solvable group is a bounded Ore
group. (2) Any subgroup of the wreath product of two torsion-free abelian
groups is a recursively bounded Ore group.

Proof. By [20, 13.1 and 13.3.6], if G is a right orderable solvable group,
then KG is an Ore domain for any commutative field K. Since being a
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right orderable group is a first-order property in the language of groups
(use [2, 7.1.1]), we can apply Theorem 3.4 to prove the first part of
Corollary 3.5.

By Theorem 2.5 and by Lemma 3.2, to prove the second part of
Corollary 3.5 we just have to prove that ZwrZ is a recursively bounded
Ore group. Zwr Z can be embedded in the group G of triangular 2 X 2
matrices (ea; ;) where «,, €R**, a,,=0, a,, €R, and a,,=1.
Clearly G is a torsion-free solvable group; moreover, G is an orderable
group (take {(a, ;) € G la;; > 1 or @, ; = 1 and @, > 0} for the set of
positive elements of G). Thus G is a bounded Ore group, and since R is a
decidable field (see [8, Corollary 2.4.2]) it is not difficult to see that G is a
decidable group. We can apply Theorem 3.4. |

Free solvable groups and iterated unrestricted wreath products of tor-
sion-free abelian groups are examples of right orderable groups (see [2,
2.47 and 7.3.2]). Anyway, it has been proved recently that if G is a
torsion-free elementary amenable group (see [6] for this notion) and if K
is a division ring, then KG is an Ore ring (see [12]); using this deep result
and Theorem 3.4 we see that if G is a torsion-free group such that G, is
clementary amenable for any group G, which satisfies the theory of G,
then G is bounded Ore. For example, we can prove that a torsion-free
solvable-by-finite group is bounded Ore. Moreover, very recent results of
Delon and Simonetta imply that a left-iterated wreath product of torsion-
free abelian groups can be embedded in a decidable orderable solvable
group (see [24]). With the above results this implies that a left-iterated
wreath product of torsion-free abelian groups is recursively bounded Ore.
We will prove this last statement, in the next section, without using the
results of [24].

As we will see, it is not very difficult to construct an Ore group which is
not a bounded Ore group, but we have not been able to construct a
bounded Ore group which is not a recursively bounded Ore group.

EXAMPLE 3.6. There exists an Ore group which is not a bounded Ore
group (the group of the example is locally nilpotent and orderable).

Proof. Let F be a free group on a and b. If n is an integer > 1 then
we put G, = F/v,, F and we denote by a, and b, the image of a and b
in G,; G, is a free nilpotent group of class n on a,, and b,. We denote by
G the direct product of the G, and we identify G, and its image in G.
Clearly G is locally nilpotent and torsion-free, thus G is orderable (see [2,
1.3.2(c) and p. 37]). By [20, 13.1 and 13.3.6] G is an Ore group. Let u be a
nonprincipal ultrafilter on N*; we put H = G* By the fundamental
theorem of ultraproducts, H and G have the same theory; moreover, it is
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well known that F is not an Ore group (see [20, p. 598)). Thus, by Lemma
3.2, to prove that G is not a bounded Ore group it suffices to prove that H
contains a group isomorphic to F. Let x and y be the elements of H
defined by the sequences (a,), ., and (b,), . ,. Let w(x, y) be a word on x
and y. If w(x, y) = 1, then clearly {n > 1|w(a,b) € v,, | F} € u. Since u
is not principal we have w(a,b) € N, .,v,,, F. But a free group is
residually nilpotent (i.e., N ,. 7., F = 1; see [21, 6.1.10]), thus w(a, b) =
1. We see that x and y freely generate a free group. 1

Let R be an Ore domain. We define an cquivalence relation ~ on
R X R* by (x,y) ~ (z,1) iff there exist u,rr € R* such that xu = zr and
yu = tr. With this equivalence relation we obtain the right ring of quo-
tients of R: R X R*/~, which is a division ring (in a similar way we
obtain the left ring of quotients of R). Using this equivalence relation, we
can see that systems of equations in an Ore domain are really tractable
(see [19)).

The relevance of Definition 3.1 for systems of equations and incquations
is contained in

THEOREM 3.7. Let G be a bounded Ore group. Then there exists a
Sunction fof N* X N X N X N* into N such that if

a  X| + - +a X, =0, i=1,....t .
B X+ +B,X #0, i=1,...,s, (*)

is a nontrivial left-hand system of equations and inequations in 7G with a
solution, then (=) has a solution (x,,...,x,) in ZG such that

xdl < f(r,t,s,1) fori=1,..,r

where | = max{1, |, M|fori=1,...,candj=1,...,r}. Furthermore, if G
is a recursively bounded Ore group then f can be taken recursive.

Proof. Let G be a bounded Ore group. We have a function f of N*
into N such that for any a,b € ZG* there exist ¢,d € ZG* with ac = bd
and [lcll, 14|l < f(max(llall, Ib1)). We define f by

f(r,0,s,0) =1 forany r,/ > landany s > 0
f(r,t,0,1y =0 torany r,t,1 > 1
f(r,1,4,1) =2rf(1)  foranyr,l > 1
FOrot + 110) = f(ro, 120 () f(rf(ro0,1,20(1)))
forany r.t,l > 1

flrotos + 1,0y = (s + D) f(r.t,8,0) + f(r,t,1,1)

forany r,t,s,{ > 1.
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We see that if f is recursive, then f is also recursive. Let (*) be a system
of equations and inequations as in Theorem 3.7. We suppose that (+) has
a solution. If 5 =0 or if ¢ =0 there is nothing to prove. We begin
by supposing that s =1 and that ¢+ > 1 and we are going to prove
Theorem 3.7, in this case, by induction on ¢.

If ¢+ = 1, then we can write {*) in the form

a X+ ta,X, =0
*

BIXI +“'+B/7X[1+B[1+1Xp+l ++BrXr:#O ( )

with @, #0,...,a,#0and | <p <r. If p =1, since ZG is a domain

there is no problem. Thus we suppose that p = 2. Since a, # 0 for

i = 1,..., p there exist a,, b,,...,4,,b, € ZG such that a,a; = a;b; and

lal Ib,]l < f(I) for i = 2,..., p. We put

X, =(—a,— " —a

x,=(—a;,— " —2a,— " ~a bl,...,2br,...,bl,,(),...,O)

for i = 2,..., p. It is clear that x,...,x, are solutions of the equation of
(). If one of the x; is a solution of the inequation of (), then we have a
solution (c,,...,¢,) of (x) in ZG such that |ic,ll < 2rf(1) = f(r, 1, 1,1) for
i=1,...,r. We thus suppose that none of the x; is a solution of the
inequation of («) and we are going to prove that if (¢,...,c,) is a solution
in ZG of the equation of (*) then B,c, + -+ +B,c, = 0; this implies that
(#) has a solution of the form (0,...,0,1,0,...,0) and the case s = =1
will be settled. None of the x; is a solution of the inequation of (*), thus

( Brby — Biay) + - +(ﬁjbj - Blaj) + o +(ﬁpbp - Blap) =0
( B2by — Biay) + - +2(Bb, — Bya;) + - +(pr,, - Blap) =0

for i = 2,..., p. Since ZG is a domain, these equations give B8,;b, = 8,4,
for i = 2,..., p. If one of the B;, for i = 1,..., p, is equal to zero, then
since the @, and the b; are not equal to zero all of the B, for i =1,..., p,
are equal to zero and we obtain what we want. We thus suppose that
B;#0 for i=1,...,p. We have a;b; = a,a, for i=2,...,p. Thus
(B.a)~(B,a)fori=2...,p where ~ isthe equivalence relation
on ZG x ZG* with which we define the right ring of quotients of an Ore
ring. Since ~ is an equivalence relation, we have (8, ;) ~ (8;, @) for
all i, € {1,..., p}. We are going to prove, by induction on £ € {1,..., p},
that there exist 6, ,, 6, , € ZG*suchthat 8, , o, = 8, , B, fori=1,... k.
If kK = 1, then since G is an Ore group and since B, # 0 and «, # 0 there
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exist 6, |,6,, € ZG* such that 6, ,a; = 6, ,B,. If k> 2, then by the
induction hypothesis we have 6, =6, , , and 6, =6, ,_, such that
O,a;,= 8,08 fori=1,...,k~ 1. We consider the system

0o Xy + 0,0, X, =0(a) (+)
o, Bk—le—l + 0, B, X, = O(b)-

Let ¢,,¢, € ZG* such that 6,a,_,¢, = 6, a,c,. It is clear that

(02 Bi-1¢1, 0104 1¢;) ~ (0, Bi i, 0104 y)
and (0, Bic,, 0, a,0,) ~ (0, By, 0, ).

Since (B,_,, a,_,) ~ (B;, a,), we have (8, B, 0,a,_ ) ~ (8, B;, 6,;)
and thus we obtain

(62 B (cis 0y 1) ~ (8, Brcy, 0, 40h).
Thus we have u,,u, € ZG* such that
02 B 1ciity = 8 Bycou,y and 0y, _jc\uy = 0,0,0:u,.

Since B,a,_,¢; = 0,a,c,, we have u, = u, and then clearly 6, B, ¢, =
6, B, c,. We have proved that any nontrivial solution of (a) is a solution of
(b) and moreover that the coefficients of (x’) are not equal to zero; thus,
by [19, pp. 471-473), the left-hand Ore determinant of (+’) is not equal to
zero and thus there exist v, v, € ZG™* such that v,6,a, | = 1,8, B, _,
and v,0,a, = 0,6, B,. We just have to put 6, , = v,8, and 0, , = v,0,.
Now, for k = p, we have 6, .8, , € ZG* such that 8, ,a;, = 6, ,; for
i=1,...,p. Wesee that if (c,,...,c,) is a solution in ZG of the equation
of () then B,c, + -~ +B,c, = 0. We have proved Theorem 3.7 in the
case where s =t = 1.

Now we suppose that r > 2 (and that s = 1). We can suppose that (*) is
of the form

a, X, + - +a, X, =0, i=1,...,¢
BIXI + +ﬁrXr + 0

with a, ; # 0. Let i € {2,...,t}; if a, | # 0, then there exist a,, b, € ZG*

such that a,a; ; = b;a, | and such that lla,|| 1|l < f(/), and we denote by
(i) the equation

(a0, —bia )X, + - +(a,0,, — b, )X, = 0;

if a, | =0, then we denote by (i) the equation @, , X, + - +a, , X, = 0.
If B, # 0, then there exist ¢,d € ZG* such that ¢B8, =da,,, and we
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denote by (¢ + 1) the inequation
(cBy —da, )) Xy + - +(cB, —day )X, # 0;

if B, , =0, then we denote by (¢ + 1) the inequation B, X, + --- +8,X,
# 0. We have

a Xy = —a Xy - —a X,
(%) e (i) i=2,...,t
(t+1),

and we denote by (* ') the system

(i) i=2,...,t
(r+1).
Since (*) has a solution in ZG, (*') has a solution in ZG; thus by the

induction hypothesis we have a solution (x,,...,x,) of (+') in ZG such
that

lx, Il < f(r,t = 1,1,2if(1)).

It is then clear that x = (—a; (@, ,x; + =+ +a; ,X,), X5,...,%,) is a
solution of () in the left ring of quotients of ZG. If a; ,x, + - +a ,x,
= (), then x is a solution of (%) in ZG and clearly this solution satisfies the
required increase. If o ,x, + - +a, ,,x, # 0, then there exist u, A €
ZG* such that

(% + o +a) ,x,)p=a ;A
and such that || ull, | All < f(rif(r, ¢ — 1,1,21f(1))). Then
(X .,x) = (— @, x4, ., x,A)

is a solution of (x) in ZG such that

ol < f(roe = L2 f(rdf(r,t = 1,1,20(1))) = f(r,2,1,10)

forall i € {1,...,r}.

We have now to prove Theorem 3.7 for ¢ > 1 and s > 1. We proceed by
induction on s. The case s = 1 has already been settled; thus we suppose
that s > 2. By the induction hypothesis, we have a solution (x,,..., x,) in
ZG of

a X+ +a,, X, =0 i=1,...,1¢
B X+ +8,X.#0 i=1,....,5—1

such that ||x,| sf(r, t,s — 1,01) for i =1,...,r; and we have a solution
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(vis...,¥)in ZG of

such that fyll < f(r,e,1,1) for i = 1,...,r. Now it is not very difficult to
see that if (x,..., x,) is not a solution of (), then there exists an integer
n € {0,..., s} such that (nx, + y,,..., nx, + y,) is a solution of (). We see
that we have a solution (z,,..., z,) of (%) such that

Wzl < sf(r.t.s — 1,1) + f(r,t,1,1)

fori=1,...,r. |}

4. SOME DECIDABLE UNIVERSAL THEORIES

Malcev proved that a noncyclic free solvable group has an undecidable
theory (see [14]). More recently, Noskov in [18] proved that a finitely
generated solvable-by-finite group is decidable iff it is abelian-by-finite.
This implies that the wreath product of a nontrivial finitely generated
solvable group by an infinite finitely generated solvable group has an
undecidable theory.

Matiyasevich’s theorem (sce [16]) implies that there is no algorithm
which decides if a diophantine equation has a solution or not (ie.,
Hilbert’s tenth problem for the ring of the integers has a negative answer);
using this theorem it is possible to obtain undecidability results for the
universal theories of certain algebraic structures. Roman’kov proved in
[22] that there exists a finitely generated metabelian nilpotent group with
an undecidable universal theory and that the decidability of the universal
theory of a noncyclic free nilpotent group of class 2 is equivalent to the
decidability of the universal theory of the field of the rationals (this last
assertion is equivalent to Hilbert’s tenth problem for the field of the
rationals which is open, and it is possible to prove that the same result
holds for any class > 2). As has been remarked by Ershov in [7], it is not
difficult to deduce from [15] that the universal theory of a noncyclic free
nilpotent group of class > 2 with two constants for two free generators is
undecidable. Roman’kov proved in [23] that there is no algorithm which
decides if a formula of the form Jx,...,x, w(x,,...,x,) = v(a, b) is true
or not in a noncyclic free metabelian group where a and b are two free
generators. In [4], we prove some undecidability results for free solvable
groups: (i) the universal theory of a noncyclic free solvable group of class
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> 2 with two constants for two free generators is undecidable; (i) a
noncyclic free solvable group of class > 2 has an undecidable V3-theory;
(iii) if the universal theory of the field of the rationals is undecidable, then
the universal theory of a noncyclic free solvable group of class = 3 is
undecidable.

A free solvable group and an iterated wreath product of free abelian
groups have a solvable word problem (for free solvable groups see [10,
Corollary 2.2] for example). This implies (with Proposition 2.3) that there
exists an algorithm which decides if a formula ¢ of the form, Vx, -
x,wlx,,....x,a;,....a;) = lis true or not in a given free solvable group
F(n) where the a,, i € r, are free generators. Indeed, by Proposition 2.3,
we have F(n) E ¢ iff Fi(n) E ¢ (we may suppose that r > 2); there exist

free generators of F(n), a;,...,a;, such that {a,,...,a;} N {a,,...,a;)
= (. Since F(n) is a relatlvely free group, we have Fy (n) = <p lff
F () Eewla,,...,a;,a;,,...,a,) =1 and since Fy(n) has a solvable word

problem we can conclude.
All our decidability results are based on the next theorem which can be
seen as a corollary of Theorem 3.7.

THEOREM 4.1.  If A is a torsion-free abelian group and if B is a bounded
Ore group with a decidable universal theory, then Awr B has a decidable
universal theory.

Proof. Let B be a bounded Ore group with a decidable universal
theory. By Theorem 3.4, B is recursively bounded Ore. By Lemma 2.4, to
prove the theorem we just have to prove that Zwr B has a decidable
universal theory. By Theorem 3.7, since B is a recursively bounded Ore
group, we havce a recursive function f with the property described in
Theorem 3.7. Since B has a decidable universal theory, to prove
Theorem 4.1 we just have to give a uniform procedure which associates to
any cxistential sentence ¢ of the language of groups an existential sen-
tence 6 of the language of groups such that Zwr B = ¢ iff B = 6. Let ¢
be an existential sentence of the language of groups; we can suppose that
¢ is of the form

m !

e, x| Awdx,oox)=1A A wi(x,,...,x,) = 1].

i=1 i=m+1

If we use the matrix representation of Zwr B, we can write any elements
of Zwr B in the form (b, /1) where b € B and & € ZB and we have

1 =(1,0) and (b, h))(by,hy) = (bby, h by + hy).
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Thus Zwr B & ¢ itf 3b,,...,b, € B 3h,,...,h, € ZB,

nt

Awi((bhh])"' bn’hn))

i=1

=(1,0) A /\ w,((bi.hy),...,(b,, h,)) # (1,0).

i=m+1

We can effectively compute (formally) some words u; , of ZX where X is

the free group on x;,...,x, such that ZwrB & ¢ iff 3b,,....b, € B
3h4,,...,h,€ZB

A wWilbyooo b)) g (b, b)) + - +hu, (b, b))

/
=(1,0) A A (wi(b,,....b,), Ry, (by,....b,) + -

i=m+1

+hnui,n(b]>"" n)) * (1 0)
and thus Zwr B &= ¢ iff 3b,,...,b, € B, 3h,,...,h, € ZB,

n

A (Wb, b)) =1 AR, (b,,....b,) + - +h Wi n(Byy. b)) =0)

i=1

!
AN (wi(by,....b,) # 1

i=m+1

Vi, (by,....b,) + - +hu; (b,,....b

uwi.n

) #0).

>™hn

We see that the truth of ¢ in Zwr B depends only on the truth of a finite
number of sentences of the form

3by,....b, € B Ihy,....h, € ZB[( A wi(b) =1) A ( Awi(b) + 1)

t
/\ hya; (b) + - +h,a; (b) = 0)

i=1
/\( Ay hlBi.](b) + o +hn Bi,n(b) # 0)]
i=t+1

where the «; ; and the B, ; are words of Z X; we denote this sentence by
¢'. If we put k = max{1, (la, M and p = fln, ¢, s, k); then, by Theorem
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3.7, ¢’ is true iff the following formula is true:

3b,....,b,€B3c, |,....c, |s...s ¢ 4y, C, ,EB

b [).l’ » p.n

[(( A wi(b) = 1) A ( A wi(b) # 1))

=

Z ej‘ an.n) ai,n(b) = O)

j=1

2. ej,ncj,n)Bi.n(b) * 0)”

j=1

/\( V (( /l\ ( iej.lcj.l)ai.l(b) + ot

i=1\j=1

]

/\( /\S ( X ej.ICJ.I)Bi,I(b) + o+

i=t+1 \j=1

where the disjunction is taken over the set
{(el.l"“’ep.l""’el.n""’ep,n) |ei.j € {—1’0*1}}

(here we have a right-hand system, but since we have the antiautomor-
phism * of ZB: (£n,g)* = Ln,g¢"', we can apply Theorem 3.7). Now it is
not difficult to see that the previous sentence is equivalent to an existential
sentence in the language of groups, and thus we have an existential

sentence ¢” such that ¢’ is true iff B k& ¢". Since the function f is
recursive, the formula ¢” can be effectively constructed. |}

A trivial group has a decidable universal theory, and a left-iterated
wreath product of the torsion-free abelian group is orderable (see {2,
2.1.1]). Hence, using Theorem 3.4, Corollary 3.5 (1), Theorem 4.1, and an
induction, we obtain

THEOREM 4.2. If A|,..., A, Is a finite sequence of torsion-free abelian
groups then the left-iterated wreath product wi'_| A, has a decidable universal
theory (and any subgroup of wr/_ | A, is recursively bounded Ore).

Using Theorem 2.5, we solve our original problem (of course we can
extract an “elementary” proof of this result).

THEOREM 4.3. A free metabelian group has a decidable universal theory
(and a Magnus group of class 3 has a decidable universal theory).

Of side interest to these results is the fact that if G is a subgroup of a
left-iterated wreath product of torsion-free abeian groups (for example, if
G is a free solvable group) then we can compute the ¢; and the d, of
Lemma 3.2.

Let us have a slight disgression. We put F = F,(2). We have an
existential formula #(x) such that a € y,F iff FE 6(a) (see [23] for
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example); thus using Theorem 4.3, if we can find a universal formufa ¢(x)
such that @ € y,F iff F &= ¢(a), then we can easily prove the decidability
of the universal theory of a free nilpotent group of class 2 and rank 2 (by
the proposition of [22] this last assertion implies the decidability of the
universal theory of the field of the rational numbers). Moreover, if there
existed an existential formula ¢(x,y) consistent with F such that if
F = ¢(a, b) then a and b are linearly independent modulo F’, then, using
Theorem 4.3, we could prove (with a nontrivial but classical argument) the
decidability of the universal theory of the field of the rational numbers. To
reassure the reader, we will prove

PropPOSITION 4.4. Let r be a cardinal > 2.

(1) There is no universal formula ¢(x) such thata € y,FQ2) iff F(2) &
¢la).

(2) There is no existential formula ¢(x, y) consistent with F,(2) such that
if F(2) = ¢(a, b), then a and b are linearly independent modulo F(2).

Proof. We put F = F{(2). Suppose that there exists a formula ¢(x)
such that a € y,F iff FE ¢(a). We denote by ¢(x,y) the formula
- P x, y]. Clearly ¢(x, y) is consistent with F. If we have a,b € F such
that F &= ¢(a, b), then [a, b] # 1 in F/y,F and it is then easy to see that
a and b are linearly independent modulo F'. If ¢ is universal then ¢ is
existential, thus the second part of Proposition 4.4 implies the first part.

We suppose that we have an existential formula ¢(x, y) consistent with
F such that if F & ¢la, b), then a and b are linearly independent modulo
F'. Since ¢(x, y) is consistent with F, we have F = 3x3y ¢(x, y). Let q,
and a, be two free generators of F. By [1, Corollary 3], the subgroup
G ={ayla,,a,]) of F is isomorphic to ZwrZ. By Theorem 2.5, G &=
Jx3y ¢(x,y) and thus we have «,b € G such that G E ¢(a, b). Since
¢o(x, y) is existential, F = ¢(a, b) and a and b are linearly independent
modulo F’. But this is absurd because a = ajc, and b = a’c, for some
integers n and m and for some c¢,c, € F'. |}
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