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Abstract 

We prove that the terms of the derived series of a free solvable group are definable by 
existential formulae. We use this result to prove some ‘model theoretic’ results about free solvable 
groups. For example, we prove that if Hilbert’s 10th problem has a negative answer for the field 
of the rationals, then the universal theory of a noncyclic free solvable group of class > 3 is 

undecidable. @ 1998 Elsevier Science B.V. All rights reserved. 

AM.‘? C’luss~ficution: 20FlO; 20A 15; 03C60; 20F 16 

1. Introduction and results 

In 1960, Malcev [ 1 l] proved that a noncyclic free solvable group of class 2 2 has 

an undecidable theory. One of the crucial points of the proof of this result is that 

we can define by a (first-order) formula of the language of groups 1/-’ = {.,-I , I } the 

derived subgroup of a free solvable group. More precisely, Malcev exhibits a sequence 

(~;(x)),~~, of universal formulae of _Y’ with one free variable such that if F is a 

noncyclic free solvable group of class n 2 2, then for k = 1,. , n the kth term of the 

derived series 6kF is defined by ,u,,_~(x) (i.e., 6kF = ((1 E F 1 F /= ,u,,_~(y)}). In this 

paper, using results of [ 11, 21, we will prove the following result which allows us to 

prove some ‘model theoretic’ results about free solvable groups and which answers a 

question of G. Sabbagh. 

Theorem A. There exists (and we will efSectisely construct) u .sequence (d,(x)), > o of 

existential ,formdue qf 6a such thcrt iJ‘ F is a noncyclic ,fiw solwhle goup of&s.s 

II > 2, then ,fi)r k = 1, , n the kth term of the derived series of F is &fined b~l t&-k (x ). 
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Before stating some applications of this result let us note that a result of Rhemtulla 

[ 18, Corollary 31 implies that the derived subgroup of a finitely generated solvable 

group of class 5 3 is definable by an existential formula of the form 

where p is an integer which depends on the number of generators (the case of solvable 

groups of class 24 is open). However, it is not possible to define in this way the 

derived subgroup of a free solvable group of class > 2 and infinite rank, neither the 

second term of the derived series of a free solvable group of class > 3 and rank > 3 

(see [23]). 

One of the outstanding questions in the model theory of absolutely free groups is 

whether two noncyclic free groups of finite rank have the same theory. It follows easily 

from [ 11, Lemma] that two free solvable groups of class n > 1 and different finite rank 

do not have the same V’3V positive theory (see [20]); and using the result of Rhemtulla 

quoted above it is easy to prove that two free solvable groups of class 1 5 II < 3 and 

different finite rank do not have the same ‘d3 positive theory. Moreover, it is known 

that two noncyclic free solvable groups of the same class have the same universal 

theory (see [8]). Using Theorem A we will prove 

Corollary Bl. Tuw ,fke solauble groups qf’ cluss n > 1 und d$zrent jinite runk do 

not huce the same W theory. 

We turn our attention to algorithmic problems. In [22], Roman’kov proved that there 

is no algorithm which decides if a formula of the form 

3x, . ..x., 14(x,, . . ,xs) = u(a, b) 

is true (or not) in a noncyclic free metabelian group where a and b are two free 

generators. We will see that this result holds for free solvable groups of class 3 (using 

the result of Rhemtulla and the fact that a canonical embedding between two noncyclic 

free solvable groups of the same class is existentially closed). Whether this result holds 

for solvable groups of class 2 4 seems to be open. Using Theorem A and the result 

of Roman’kov we will prove 

Corollary B2. Let F be u noncvclic j&e soluuble ~YXI~ of’ class n 2 2 und let a and 

b be twv ,free generators of’ F. There is no ulgorithm ulhich decides ij N system of’ 

max(l, 2”-‘) equutions bvith parameters a und b has u solution in F. In particulur, in 

the language oj’ groups with tu,o new constants ,for tvtv free generators, u noncyclic 

,fi-ee solvable group of’ cluss > 2 has un undeciduble unitlersul (existentiul) theory. 

In [S], we prove that a free metabelian group has a decidable universal theory (see 

also [6]). We do not know if this result is false for noncyclic free solvable groups of 

class 2 3. Nevertheless, the following result gives a good information on this problem. 
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Theorem Cl. If the universal theory of’ the jield of’ the rcctiona1.s is undecidable, then 

the universal theory qf’u noncyclic free solvuble group of cluss > 3 is undecidable. 

The problem of the decidability of the universal theory of the field of rationals is a 

well-known open problem and it is equivalent to Hilbert’s 10th problem for the field 

of the rationals (it is also equivalent to the problem of the decidability of the universal 

theory of a noncyclic free nilpotent group of class > 2 (see [21])). It seems sensible 

to conjecture a negative answer (notice that some mathematicians conjecture a positive 

answer; see [16, 141 for discussions on this problem). 

Using Matiyasevich’s theorem [12, 131 (i.e., the negative answer of Hilbert’s 10th 

problem for the ring of the integers), we will prove 

Theorem C2. A noncyclic ,fiee solvuhle group of cluss > 2 IIUS an undeciduhle E 

theor?>. 

It is possible to prove that a noncyclic free solvable group of class 2 or class 3 and 

of finite rank has an undecidable El positive theory (see the last section, where it is 

also explained why we can not prove Theorem Cl for a free metabelian group). 

Corollary B2, Theorems Cl and C2 generalize Malcev’s undecidability results on 

free solvable groups. Let us make some comments. Let F be a noncyclic free solv- 

able group of class 17 > 2. Malcev gives an interpretation of the theory of the ring of 

the integers using 3V formulae which involve two free generators (Z is realized as 

the cyclic subgroup generated by a free generator, an other free generators is need 

to define the multiplication). Then, Malcev invokes the essential undecidability of the 

ring of the integers to obtain the undecidability of the theory of F without constants 

in the language. Also, with Matiyasevich’s theorem we obtain that F has an unde- 

cidable El theory in the language of groups with two new constants for two free 

generators. Using Theorem A we can prove that Malcev’s interpretation can be real- 

ized with existential formulae. This gives the second part of Corollary B2, however. 

we use Roman’kov’s result to obtain a more precise one. The main difference between 

Theorems Cl and C2 and Corollary B2 and Malcev’s strategy is that we obtain (rela- 

tive) undecidability results for the theory of F without constants in the language and 

with good bounds on the alternation of quantifiers. To obtain Theorem Cl (respec- 

tively, Theorem C2) we construct a universal (respectively, an existential) formula in 

two free variables so that if it is satisfied by two elements ~1 and h of F, then ~1 and 

h are not to far from being two free generators of F (respectively, of F’). In the case 

of Theorem C2 we obtain the rationals (and not the integers) because $1 and h are 

(essentially) uncountrollable powers of free generators of F’. Moreover, The proof of 

Theorem Cl (respectively, Theorem C2) do not gives an interpretation of the integers 

(respectively, of the rationals): we give an algorithm which given a polynomial equa- 

tion P(X,, . ,X7) = 0 constructs a V’3 (respectively, existential) sentence $ of W such 

that P = 0 has a solution in Z (respectively, in Q) if and only if F /= (i’,. 

This paper is organized as follows. In the next section, we recall some results which 

are important for us. In Section 3, we prove the above results. Finally, in the last 



section, we make a few remarks. In particular, using Corollary B2 and a result of 

Hartley on commutators in finite solvable groups we show that a noncyclic free solvable 

group of class 2 2 is not l-residually finite for the equations. For any unexplained 

notion or notation we refer the reader to [19, 151 for group theory and to [3, 71 for logic. 

2. Preliminaries 

A free solvable group of class n and rank r can be defined as the quotient of a free 

group of rank r by the nth term of the derived series. From this it follows that if F 

is a free solvable group of class II 2 2 and rank Y > 2 then (i) if 1 5 m <n, F/d,F is 

a free solvable group of class m and rank Y and S,,,F is isolated in F; (ii) F’ is a free 

solvable group of class IZ- 1 and infinite rank. But, the most important properties of free 

solvable groups can be deduced from the Magnus-RemeslennikovSokolov embedding 

(see [9, Ch. I and II], see also [ 151, and see [1] for an other point of view). Here we 

recall five results which are essential for the proof of our results. 

(a) A noncyclic free solvable group of class > 2 has a trivial center (see [ 1 ] and 

see also [9] and [15] for a proof which uses Magnus’ embedding). 

(b) A free solvable group is an R-group, namely, if 9” = h” for an integer s # 0 , 

then y= h. This is the corollary of Theorem 2 of [I I] (see also [9]). 

(c) Let F be a noncyclic free solvable group of class n > 2. If g and h are elements 

# 1 of F which commute, then either 9, h E 6,,_ 1 F or there exist two non zero integers 

s and t such that 9’ = h’. This result is stated in [ 1 l] after the proof of Theorem 1 and 

it is a direct consequence of this theorem (see also [9, Theorem 11.1.14] for a proof 

of this result which use the MRS embedding in the place of the results of [l]). 

(d) We define by induction on i a sequence (/ii(x))’ ~ , > 1 of universal formulae of 2 by 

,U&) N.X = 1, 

P;+l(X) mvY~+I ,4([%x”‘+‘l). 

By [1 1, Lemma], if F is a noncyclic free solvable group of class n 2 2, then for 

k = 1,. , n the kth term of the derived series of F is defined by P,~--~(x). This result 

is a consequence of (c). 

(e) Let F be a noncyclic free solvable group of class n 2 2. If y E a,,_] F and if 

9 # 1, then the normal closure of g in F is a free Z(F/;S,_IF)-module. This result is 

a direct consequence of [2, Theorem 71. 

3. Proof of the results 

3.1. Proof’ of’ Throrem A 

We define by induction on i a sequence (O,(x)); 2 0 of existential formulae of Y’ by 

Q&)-x= 1, 

Oi+l(X) rv 3Z,+l ((O,([X,X”+‘]) A 7Pi([~tZi+l])) V”f(X)). 
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It is easy to see that the formulae Bi are (logically equivalent to) existential formulae. 

Let F be a noncyclic free solvable group of class n > 2. We have to prove that if 

kE{l,..., n}, then y E dkF iff F k U,,_,(g). Or, equivalently that if k E (0,. .,/I - 1 }, 

then g E b,_kF iff F + ok(q) (note that for k = 0 this is obvious). 

First, we show by induction on k that if CJ E B,,_k-F, then F b Ok(y). The case k = 0 

is obvious. We assume that 1 5 k 5 n - 1 and that 9 E &_kF. If .c! 6 &_I ,F, then, 

by induction, F + Ok_l(y) and by definition of Ok we have that F /== Ok(g). Thus, we 

assume that g 4 6,-(k_I,F and we consider the quotient p= F/cS,,_,k_l,F which is a 

noncyclic free solvable group of class n - (k - 1) > 2 (we denote by X the image in F 

of an element x of F). Then, .Y # 1 and j E fi,,_kF. Since F has a trivial center we have 

a h E F such that [j,h] # 1. Thus, [y, h] 6 &_t IF and since cj,~_-(k~,,F=~lk_,(F), 

we have that F b lpk_~([g,h]). Moreover, since ii,,_kF is abelian and normal in F, 

we have that [g,$] = 1. Thus, [y, $1 E 6,_(k_t~F and by the induction hypothesis 

F + U,_l([g,yh]). We have found a h E F such that F b O~__~([LJ,~~])A -ph._l([cq,h]). 

This completes the induction. 

Now, we show that if F /= d,(g), then g E 6,,_t F. Obviously, we may assume that 

there exists a h E F such that [cl, gh] = 1 and [y, h] # 1. By (c) of Section 2, we have 

two nonzero integers s and t such that y” = (s’)‘. We suppose that g e ~,,_IF. Thus, 

y E (i,F\6,,,1 F for an integer m such that 0 < m 5 n - 2. We set F = F/C&I F which 

is a noncyclic free solvable group of class m + 1 (note that g # 1). If m = 0, then F is 

a free abelian group and the equality g” = (gh)’ implies that s = t; thus g’ = (y”)” and 

since F is an R-group we obtain g = gh; this implies that [g,h] = 1, a contradiction. 

Thus, we may assume that m + 1 > 2. In this case we may apply (e) of Section 2 

with F and J and the equality g” = (@)I implies that s - h.t = 0 in the group-ring 

Z(F/6,,$). It follows that s = t and we obtain gs = (~1~)“. As in the case m = 0 we 

obtain a contradiction. 

To complete the proof of the theorem we show by induction on k > 1 that if F b 0~ 

(cJ), then g E i$_kF. The case k = 1 has already been settled and thus we assume that 

2 5 k < n - 1. Let y E F such that F k d,(g). If F b O_,(~J), then, by the induction 

hypothesis, 6~ E cS,_(k_ljF (I i&F. Thus, we may assume that there exits a h E F such 

that F k 0_l([y,y”]) A ~pk_1 ([y, h]). By (d) of Section 2 and the induction hypothesis, 

this says that [g, gh] E (Sn-+ t ,F and that [y, h] $ iS,,_(k_ 1 ,F. Moreover, F = F/d,,_,n_ 1 ,F 

is a noncyclic free solvable group of class n - (k - 1) 2 2. Then, (d) of Section 2 and 

the first induction in the proof show that F k tit(g). The paragraph above implies 

that ,Y E a,_,F. Thus g = yt y2 with gt E 6,_kF and 92 E (S,,_(k_ 1 ,F and we obtain that 

Q E d,,_kF. This completes the proof of Theorem A. 0 

3.2. Proof of Corollury BI 

Let F, and F2 be two free solvable groups of class n > 1 and of different finite 

rank rI and r2 respectively. We may suppose that 2 I r1 < r2. FIIF[ and FZ jFi are 

free abelian group of rank r1 and r2, respectively, thus we know [25] that there exists 



18 0. Chupuisl Journul o/ Pure and ApplicJd Alyrbru 131 (1998) 13-24 

a sentence cp of 9 of the form 

vu I... u,Ju I... lJt Vw,(ii,lt)=l, 
PI 

where the wi are terms of Y such that F,IF( k cp and FI/F~ /= lcp (we can take for 

the sentence cp the sentence V’ui .z.Q~ +I 3c Vii, uiU,c2 = 1 ). Thus, we may suppose 

that IZ > 2 (if n = 1 then F,’ = Fi = 1). By Theorem A, we have an existential formula 

O(x) which define F: for i = 1,2. We consider the following sentence: 

* c-v vu, . . . UJV, . . c’t (/I H(w;(ii, a>>. 
i=l 

Since 0 is existential, $ is (logically equivalent to) a El sentence. Then we have 

F, k $ and F2 /= -$. This completes the proof of Corollary Bl. 0 

3.3. Proof of Corolluuy B2 

If IZ = 2 the result follows from the result of [22] (see Section 1). Now, we proceed 

by induction on n. Let F be a free solvable group of class 3 and let a and b be two 

free generators of F. We are going to prove that we have no algorithm for solving 

equations of the form w(xi,. ..,xs)= ~(a, b). Since (a, b) is existentially closed in F 

we may suppose that F is free on a and b (see [8] or [5, Section 21). Then, by [18, 

Corollary 31, we have an integer p (which we can compute) such that g E F’ iff there 

exist gi, . , gzP E F with g = [gi, g2]. .[~2~- i, g+]. Moreover, F’ is a free metabelian 

group of infinite rank and [a, b] and [a, b]” are free generators of F’. Let F, be a free 

metabelian group on ai and b,. Using the fact that the homomorphism of F, into F’ 

which maps ai to [a, b] and b, to [a, b]” is existentially closed, we see that 

FI b3xi . ..x. w(x ,,..., x,y)=tl(a,,b,), 

if and only if 

Fb3x1,1 . ..x1.2~...xs,1 . ..x.c2/. w(y,,...,y,)=v([a,bl,[a,bl”), 

where yi = [xi,~,xi,2] . . [xi,2p- 1 ,xi,2p]. Thus an algorithm for solving equations of the 

form w(xi,. . ,xs) = ~(a, b) in F yields an algorithm for solving equations of the form 

w(xI,...,x,)=tl(al,bl) in F,. We can use the result of [22]. 

Now, we suppose that n > 4. Let F be a free solvable group of class n and let a 

and b be two free generators of F. By the induction hypothesis we have no algorithm 

which decides if a sentence of the form 

3x, . ..xs A,;(, I,..., x.,,ii,b)- 1, 
i=l 

(*I 



where t = 2”--4. is true in FJii,,_l F. Theorem A and its proof show that g E ii,,_ ,F 

iff <I= 1 or there exists h E F such that [(/,9”] = I and [cj,h] # 1. This implies that 

c! E ii,,,. 1 F iff [M,</“] = I and [g. yh] = I. Thus, a sentence of the form (*) is true in 

F/d,,__, F iff the sentence 

is true in F. This completes the proof of Corollary B2. Cl 

We need the following lemma. 

Proof. Let F be a noncyclic free solvable group of class II > 3. By Theorem A, we 

have an existential formula O’(x) which defines F’. By (d) of Section 2, we have an 

universal formula ,N’(.u) which defines F’ and we have an universal formula $‘(_v) 

which define F”. We take for $(x. _I)) the formula 

&.x-.J,) is (logically equivalent to) an existential formula. It is clear that (i) and (ii) are 

equivalent and that (iii) implies (ii). Let us prove that (ii) implies (iii). Let q.17 E F 

such that (IE F’\F” and h E F\F’. Since $1 and (jil are in F’, q and 61’ generate an 

abelian group modulo F”. Suppose that there exist s, t E Z with (.s, t) # (0.0) such that 

(1’ = (61”)’ mod(F”). Since y E F’\F”, we can use (e) of Section 2 to prove that .Y = t/r 

in H(F!F’). Since h is not in F’ we obtain a contradiction. Hence 61 and $jI” are linearly 

independent modulo F”. c! 

Let F be a noncyclic free solvable group of class n > 3. By Theorem A, we have an 

existential formula (I(X) which defines F”. Moreover. we have an existential formula 

C/)(.X, J.) with the property described in Lemma I. 

It is well-known that (Q, +, .,O, 1) has a decidable universal theory iB there is an 

algorithm which decides if a homogeneous polynomial in several variables and with 

its coefficients in Z has a nontrivial zero in Z (see, for example, [ 16, Section 91 for 

a proof). Thus. to prove Theorem C 1, it suffices to associate (in an effective way) 

to each homogeneous polynomial P(i) in several variables and with its coefficients 

in L, an existential sentence li/ of Y such that P(z) has a nontrivial zero in Z ifl 

F i_ $. 
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Now following the proof of Theorem 3 

+ (4 _YJ) N @V- ), 

x(x, y,z, 2, /II) N !lutAv (z& = X?, 
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of [ Ill, we set 

l(X,x)~X=X, 

O(x)wx= 1. 

These formulae are (logically equivalent to) existential formulae. Let 9, h E F such 

that F k 4(g,h) and let x1,X2,X3 E F such that Xiy = c/xi and x, # 1 for i= 1,2,3. We 

know that y is not in ci,,_t F, thus by (c) of Section 2, there exist SI,S~,SJ E Z* and 

tl, t2, t3 E z* such that x”~ = 6~‘) for i = 1,2,3. 

We claim that (i) F b + (X1,x2,x3) iff tl/sl + tI/s2 = t3/s3; (ii) if F bx(.?,.rl,h) then 

tl t2/sls2 = t3/s3; and (iii) if tl t2/sIs2 = tj/s3 and si 1 t, for i = 1,2,3 then F k x(x, ,.q,,q. 

g, h). We just prove (ii). Suppose that F bx( x1 ,x2,x3,9, h), then we have ~1, C, w E F 

such that uxgh = xg”u, ogh = <J~u, wygh = &‘w, yc = w mod(F”) and u = cz mod(F”). 

Using (c) of Section 2, we see that there exist II, 12,13 E H* and kl, k2, k3 E Z such that 

z&I = (xgh)kl ) v’: = (gh)k2 and VV” = (+J~)~;. Since F” is isolated in F we have 

(Yz,)PI+ = ,&Jli mod(F”) and uS~.Y~~~/? = (@I\“~I[~ mod(F”), 

Since all our elements are in F’ we obtain 

gtZ+Jh)~?.?& = (Ygh)kl/% mod(F”), 

.L/ 
t,k,Sl/~(yh)k,.~,\-iiz =(yh)k~,S,.S,/,gt;S,/,/~ mod(F”). 

Since g and gh are linearly independent modulo F “, it is then easy to obtain tl tl/sIs2 = 

t3b3. 

Then, if P(Xt, . . ,X,) is a homogeneous polynomial with its coefficients in 77, we 

can construct, by induction on the complexity of P(Xt , . . ,X,) and using the formulae 

+ (x,y,z), x (x, y,z, %,/?I), 1(x, a) and O(x), an existential formula $‘(r,P,~r,. ,x,.) 

such that if we consider the existential sentence $ 

then F k II, iff P(y) has a nontrivial zero in L (by construction of $ if P has a 

nontrivial zero in Z then F /= $; if F k I/I, then P has a nontrivial zero in Q and since 

P is homogeneous, P has a nontrivial zero in Z). We have proved Theorem Cl. 0 

3.5. Proof’ qf’ Throrem C2 

First, we show that we may restrict ourselves to noncyclic free metabelian groups. 

Let F be a noncyclic free solvable group of class n > 3 and cp a El sentence. By 
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(d) of Section 2 and Theorem A, we have an universal sentence p(x) and an ex- 

istential sentence H(x) which define F ” in F. To q, we associate the sentence (p’ 

which is obtained from cp by replacing each atomic subformula of cp of the form 

wl (x’) = MQ(.?) by H(wt (.?)w~(.?-’ ) and each negation of atomic subformula of (I, of 

the form WI(?) # wl(?) by ~~(wI(Qv~(.?-‘). Then cp’ is logically equivalent to a V’3 

sentence and we have F b cp’ iff F/F” b cp. Since F/F” is a free metabelian group of 

the same rank as F, we see that if F has a decidable El theory then the free metabelian 

group of the same rank as F has a decidable El theory (40’ can be effectively con- 

structed from cp). Note that a similar argument (with the fact that two noncyclic free 

solvable groups of the same class have the same universal theory) shows that if a 

noncyclic free solvable group of class > 3 has a decidable universal theory, then every 

free solvable group of class <n has a decidable universal theory. 

To prove Theorem C2 for free metabelian groups we need the following lemma. 

Lemma 2. Thercj rxists (und NV +vill exhibit) on uniorrsul _fiwn~ub c/+(x, ~3) SUCII thut 

$’ F is N noncydic $‘w met&km yroup und f y, h E F. thm F k (p’(,cl, h) $f 11 cd 

h ure lineurl~~ independent nmdulo F’. 

Proof. We have an existential formula O’(x) which defines the derived subgroup of 

any noncyclic free metabelian group (Theorem A). We take for @(x. _v) the formula 

4(x)r\ 4l’(.v)A (~‘cX,yl(([x,xll = 1 A [?...wl 

= 1 Ax, # 1 Ayt # 1 AO’(c)Ac# 1) 

* ([XI?(.l #bl.~l))). 

It is clear that #‘(x, y) is logically equivalent to an universal formula. Let F be a free 

metabelian group and y, h E F. 

Suppose that F b $‘(g, h). We assume that there exist s, t E Z such that 8’ = I+CI 

with ~‘1 E F’ and (s, t)#(O,O). Since 9 and h are not in F’ and since F’ is isolated 

in F we may suppose that s and t are not equal to 0. Let c’ E F’ with c # 1; we put 

XI ==y,’ and yt =h’. Then [y,xl]= 1, [h,_v~]= 1, XI # I and ~1 # 1; moreover, 

[XI. c] = [h’c,,c] = [h’, c][[h’,c], cl][cl ,c] = [h’,c]. 

Hence, we obtain [XI ,c] = [yt, c] and this is absurd. 

Conversely, we suppose that y and h are linearly independent modulo F’. It is ob- 

vious that Q and h are not in F’. Let c E F’\{ I } and XI,.VI E F such that [~/,sI] = 1, 

[h,yl] = 1, 1-1 # 1 and y1 # 1. Then, by (c) of Section 2, there exist .sl,s?, tl, t? E Z* 

such that xs’ = 6~~’ and y’;’ = h”. We suppose that [xl, c] = [yl, c]. Then L.-.“+’ = Y “I* ’ : 

since c E F’\{ I}, it follows from (e) of Section 2 that -XI + 1 = ~ yl + I in Z(F/F’); 

thus xl = yl mod(F’) and this implies that l_~‘l’? = h“” mod(F’). This is absurd so 

F I= @(.y,h). 0 
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Let us now prove Theorem C2 for free metabelian groups. Let F be a noncyclic 

free metabelian group. By Theorem A, we have an existential formula O’(x) which 

define F’; moreover, we have a formula I$‘(x, y) with the property of Lemma 2. By 

Matiyasevich’s theorem, to prove that F has an undecidable El theory, it suffices 

to associate (in an effective way) to each polynomial P(z) in several variables and 

with its coefficients in Z a E sentence $ of 9 such that I’(/?) has a zero in Z iff 

F +I). Let P(Xt,..., X,.) be such a polynomial. As in the proof of Theorem Cl, we 

can construct, by induction on the complexity of P(Xr , . . ,A’,), an existential formula 

$‘(% BJI , . . . ,x,.) corresponding to P, where we put O’(x) in the place of O(x) and 

p in the place of XB in the definition of +(x’) and x(x’, x,p). Then we consider the 

sentence $ 

Since 4’ is universal $ is a El sentence. Using the proof of Theorem Cl, it is easy to 

prove that if P has a zero in Z, then F + $. Suppose that F k $. Let g and h be two 

free generators of F. Then, g has no roots in F and g and II are linearly independent 

modulo F’. By hypothesis and Lemma 2 we have 

F +3x, . ..x. ii Xig=yX,AIC/‘(g,h,Xl,...,-~r) 

I=1 

Since g has no roots in F, if xg=gx then, by (c) of Section 2, we have s E Z such 

that x = 9’. Then, it follows from the proof of Theorem C 1 that P has a zero in 

This completes the proof of Theorem C2. 0 

4. Remarks 

4.1. Let F be a free solvable group of class < 3 and of finite rank r. The result 

[ 181 implies that there exists a pl (which depends on r) such that F’ is definable 

the formula 

z. 

of 

bY 

3?;l Y2p, .~=[vl~Yzl ~..b2p,-l,Y2,~,1. 

Moreover, it is possible to prove (using the ideas of [IS]) that there exists a p2 which 

depends on r, such that y3F, the 3th term of the lower central series, is definable by 

the formula 

(see also [4, Ch. I] for some generalizations). Since it is not difficult to prove that 

if g,h E F and [y,h] # I mod(ysF) then g and h are linearly independent modulo F’, 

we can prove exactly as in the proof of Theorem C2 (without using the reduction to 

free metabelian groups), but using the previous formulae, that F has an undecidable 
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V’3 theory. In this case, since the above formulae are positive, it is easy to see that we 

obtain the undecidability of the El positive theory of F. 

4.2. It follows from [15, Theorem 42.551 that the property (iii) of Lemma 1 is equiv- 

alent to (iii’) g and gh freely generate a free solvable subgroup of F of class II ~ I. 

The same result implies that in Lemma 2, F b qb’(y,h) iff g and h freely generate a 

free metabelian subgroup of F. Moreover, in [5] we prove that if F is a noncyclic free 

metabelian group there is no existential formula cp(x,~‘) consistent with F such that if 

F + C&J, h), then g and h are linearly independent modulo F’. This explains why our 

proof of Theorem Cl does not work for free metabelian groups. 

4.3. In [6], we show that the universal theory of free metabelian groups and the 

groups with the same universal theory as a noncyclic free metabelian group have a 

lot of remarkable properties. Theorem Cl seems to prevent full generalization for free 

solvable groups of class 2 3; however, we can hope that some of these properties 

can be extended to free solvable groups of class > 3. For example, it is possible to 

describe the groups on two generators with the same universal theory as a noncyclic 

free solvable group of class n > 3; these groups are the free solvable group of class II 

and rank 2 and the (n - 1)-solvable verbal wreath product of two infinite cyclic groups 

(see for example [24] for the notion of verbal wreath product, and see [6] for n = 2). 

In an other direction we ask the following question: let F be a free solvable group of 

class > 3; for each infinite set of words on a fix number of variables {wl(xi, ..I+,~)}, E, 

does there exist a finite subset J of I such that for all gt, , yn E F, w;(?j) = 1 for all 

i E I iff w&j) = 1 for all i E J? This question arose during discussions with Myasnikov 

and it was motivated by the will to prove analogues of the main result of [ 171 for free 

solvable groups of class > 3 (see [6] for free metabelian groups). 

4.4. Let n be an integer 2 1. We say that a finitely generated group G is n-residually 

finite for the equations if for every system (*) of n equations with parameters from 

G, (*) has a solution in G iff for every finite image H of G (the image of) (*) has 

a solution in H. It is easy to see that G is n-residually finite for the equations iff for 

every system (*) of n equations with parameters from G, if (*) has a solution in the 

profinite completion of G then (*) has a solution in G. If G is a finitely presented 

group in a variety defined by a law which is n-residually finite for the equations, then 

a classical argument shows that there exists an algorithm which decides if a system of 

n equations with parameters from G has a solution in G. Thus, Corollary B2 implies 

that a noncyclic finitely generated free solvable group of class m is not max( 1,2N’--3 )- 

residually finite for the equations. In fact using [lo, Theorem 31, we can prove that 

a noncyclic finitely generated free solvable group is not l-residually finite for the 

equations. Indeed, let F be a free solvable group of class m > 4 and finite rank r 2 2. By 

[lo, Theorem 31, we have an integer p such that for every finite image H of F, every 

element of H’ can be written as product of p commutators. If every element of F’ can 

be written as product of p commutators, then we can prove using the proof of Corollary 
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B2 that there is no algorithm which decides if an equation of the form w(Y) = ~(a,b) 

has a solution in F. If not, then we have gl.. . . , LJ~(~,+I) E F such that the equation 

~~I,~21...~~2,‘-I,~2yl=~~l,Y21...~~~2,~+l,Y2(,’+I)1 

has no solution in F; and this equation has a solution in every finite image of F. 
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