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Abstract

We prove that the terms of the derived series of a free solvable group are definable by
existential formulae. We use this result to prove some ‘model theoretic’ results about free solvable
groups. For example, we prove that if Hilbert’s 10th problem has a negative answer for the field
of the rationals, then the universal theory of a noncyclic free solvable group of class >3 1s
undecidable. © 1998 Elsevier Science B.V. All rights reserved.

AMS Clussification: 20F10; 20A15; 03C60; 20F16

1. Introduction and results

In 1960, Malcev [11] proved that a noncyclic free solvable group of class > 2 has
an undecidable theory. One of the crucial points of the proof of this result is that
we can define by a (first-order) formula of the language of groups . ={.,”'.1} the
derived subgroup of a free solvable group. More precisely, Malcev exhibits a sequence
(p(x))i>o of universal formulae of ¥ with one free variable such that if F is a
noncyclic free solvable group of class n > 2, then for k=1,...,n the kth term of the
derived series 0;F is defined by w,_i(x) (ie., F={g€F|F =u,—4(g)}). In this
paper, using results of [11, 2], we will prove the following result which allows us to
prove some ‘model theoretic’ results about free solvable groups and which answers a
question of G. Sabbagh.

Theorem A. There exists (and we will effectively construct) a sequence (0:x)); > ¢ of
existential formulae of & such that if F is a noncyclic free solvable group of cluss
n>2, then for k=1,...,n the kth term of the derived series of F is defined by 0, _;(x).
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Before stating some applications of this result let us note that a result of Rhemtuila
[18, Corollary 3] implies that the derived subgroup of a finitely generated solvable
group of class <3 is definable by an existential formula of the form

S,Vl e Vop X = [yl ) ,VZ] T [.,VZ])—— 15 ,le]a

where p is an integer which depends on the number of generators (the case of solvable
groups of class >4 is open). However, it is not possible to define in this way the
derived subgroup of a free solvable group of class >2 and infinite rank, neither the
second term of the derived series of a free solvable group of class >3 and rank >3
(see [23]).

One of the outstanding questions in the model theory of absolutely free groups is
whether two noncyclic free groups of finite rank have the same theory. It follows easily
from [11, Lemma] that two free solvable groups of class # > | and different finite rank
do not have the same V3V positive theory (see [20]); and using the result of Rhemtulla
quoted above it is easy to prove that two free solvable groups of class 1 <n <3 and
different finite rank do not have the same VI positive theory. Moreover, it is known
that two noncyclic free solvable groups of the same class have the same universal
theory (see [8]). Using Theorem A we will prove

Corollary B1. Two free solvable groups of class n>1 and different finite rank do
not have the same V3 theory.

We turn our attention to algorithmic problems. In [22], Roman’kov proved that there
is no algorithm which decides if a formula of the form

dxy...xy wlxy,....xs)=uv(a,b)

is true (or not) in a noncyclic free metabelian group where a and b are two free
generators. We will see that this result holds for free solvable groups of class 3 (using
the result of Rhemtulla and the fact that a canonical embedding between two noncyclic
free solvable groups of the same class is existentially closed). Whether this result holds
for solvable groups of class >4 seems to be open. Using Theorem A and the result
of Roman’kov we will prove

Corollary B2. Let F be a noncyclic free solvable group of class n>2 and let a and
b be two free generators of F. There is no algorithm which decides if a system of
max(1,2"73) equations with parameters a and b has a solution in F. In particular, in
the language of groups with two new constunts for two free generators, a noncyclic
free solvable group of class >2 has an undecidable universal (existential) theory.

In [5], we prove that a free metabelian group has a decidable universal theory (see
also [6]). We do not know if this result is false for noncyclic free solvable groups of
class > 3. Nevertheless, the following result gives a good information on this problem.
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Theorem C1. If the universal theory of the field of the rationals is undecidable, then
the universal theory of a noncyclic free solvable group of class >3 is undeciduble.

The problem of the decidability of the universal theory of the field of rationals is a
well-known open problem and it is equivalent to Hilbert’s 10th problem for the field
of the rationals (it is also equivalent to the problem of the decidability of the universal
theory of a noncyclic free nilpotent group of class >2 (see [21])). It seems sensible
to conjecture a negative answer (notice that some mathematicians conjecture a positive
answer; see [16, 14] for discussions on this problem).

Using Matiyasevich’s theorem [12, 13] (i.e., the negative answer of Hilbert’s 10th
problem for the ring of the integers), we will prove

Theorem C2. A noncyclic free solvable group of cluss >2 has an undecidable ¥
theory.

[t is possible to prove that a noncyclic free solvable group of class 2 or class 3 and
of finite rank has an undecidable V3 positive theory (see the last section, where it is
also explained why we can not prove Theorem CI for a free metabelian group).

Corollary B2, Theorems C1 and C2 generalize Malcev’s undecidability results on
free solvable groups. Let us make some comments. Let F' be a noncyclic free solv-
able group of class n > 2. Malcev gives an interpretation of the theory of the ring of
the integers using 3V formulae which involve two free generators (Z is realized as
the cyclic subgroup generated by a free generator, an other free generators is need
to define the multiplication). Then, Malcev invokes the essential undecidability of the
ring of the integers to obtain the undecidability of the theory of F without constants
in the language. Also, with Matiyasevich’s theorem we obtain that /° has an unde-
cidable V3 theory in the language of groups with two new constants for two free
generators. Using Theorem A we can prove that Malcev’s interpretation can be real-
ized with existential formulae. This gives the second part of Corollary B2, however,
we use Roman’kov’s result to obtain a more precise one. The main difference between
Theorems C1 and C2 and Corollary B2 and Malcev’s strategy is that we obtain (rela-
tive) undecidability results for the theory of F without constants in the language and
with good bounds on the alternation of quantifiers. To obtain Theorem C1 (respec-
tively, Theorem C2) we construct a universal (respectively, an existential) formula in
two free variables so that if it is satisfied by two elements g and 4 of F, then ¢ and
h are not to far from being two free generators of £ (respectively, of F’). In the case
of Theorem C2 we obtain the rationals (and not the integers) because ¢ and # are
(essentially) uncountrollable powers of free generators of F’. Moreover, The proof of
Theorem C1 (respectively, Theorem C2) do not gives an interpretation of the integers
(respectively, of the rationals): we give an algorithm which given a polynomial equa-
tion P(Xy,...,X;)=0 constructs a V3 (respectively, existential) sentence y of ¥ such
that P =0 has a solution in Z (respectively, in @) if and only if F = ¢.

This paper is organized as follows. In the next section, we recall some results which
are important for us. In Section 3, we prove the above results. Finally, in the last
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section, we make a few remarks. In particular, using Corollary B2 and a result of
Hartley on commutators in finite solvable groups we show that a noncyclic free solvable
group of class >2 is not l-residually finite for the equations. For any unexplained
notion or notation we refer the reader to [19, 15] for group theory and to [3, 7] for logic.

2. Preliminaries

A free solvable group of class n and rank r can be defined as the quotient of a free
group of rank r by the nth term of the derived series. From this it follows that if F
is a free solvable group of class #>2 and rank r>2 then (1) if | <m <an, F/0,F 15
a free solvable group of class m and rank r and §,,F is isolated in F; (ii) F' is a free
solvable group of class n—1 and infinite rank. But, the most important properties of free
solvable groups can be deduced from the Magnus—Remeslennikov—Sokolov embedding
(see [9, Ch. I and II], see also [15], and see [1] for an other point of view). Here we
recall five results which are essential for the proof of our resuits.

(a) A noncyclic free solvable group of class >2 has a trivial center (see [1] and
see also [9] and [15] for a proof which uses Magnus’ embedding).

(b) A free solvable group is an R-group, namely, if g°=#h" for an integer s#0 ,
then g =h. This is the corollary of Theorem 2 of [11] (see also [9]).

(¢) Let F be a noncyclic free solvable group of class »> 2. If g and & are elements
# 1 of F which commute, then either g, 4 € 8, |F or there exist two non zero integers
s and ¢ such that g* = h'. This result is stated in [11] after the proof of Theorem 1 and
it is a direct consequence of this theorem (see aiso [9, Theorem I1.1.14] for a proof
of this result which use the MRS embedding in the place of the results of [1]).

(d) We define by induction on i a sequence (g;(x)); > of universal formulae of & by

po(x) ~x =1,
Wi (X))~ Vyipr p([x, x5 1]).

By [11, Lemma], if F is a noncyclic free solvable group of class n>2, then for
k=1,...,n the kth term of the derived series of F is defined by y,_x(x). This result
is a consequence of (c).

(e) Let F be a noncyclic free solvable group of class n>2. If g€ o, F and if
g # 1, then the normal closure of g in F is a free Z(F/0,—F)-module. This result is
a direct consequence of [2, Theorem 7].

3. Proof of the results
3.1. Proof of Theorem A
We define by induction on i a sequence (0;(x)); > ¢ of existential formulae of .# by
Oo(x)y~x =1,
i1 () ~ Fzimr ((Oi([x. X DA —pi(x, 2 D) VOi(x).
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It is easy to see that the formulae 0; are (logically equivalent to) existential formulae.
Let F be a noncyclic free solvable group of class »>2. We have to prove that if
ke{l,...,n}, then g € §;F iff F =0, 4(g). Or, equivalently that if k€ {0,....n — 1},
then g € 0, F iff F[=6i(g) (note that for k=0 this is obvious).

First, we show by induction on & that if g €9, F, then F |=0;(g). The case k=0
is obvious. We assume that 1 <k <n — 1 and that g€ 0, +F. If g€ d,_4—1,F, then,
by induction, £ = 0;_(g) and by definition of )y we have that F =0,(g). Thus, we
assume that g ¢ d,__1)F and we consider the quotient F’:F/<5,,~(k_|)F which is a
noncyclic free solvable group of class n — (k — 1) > 2 (we denote by x the image in F
of an element x of ). Then, §# 1 and § € ,_+F. Since F has a trivial center we have
a heF such that [g, ]7é1 Thus, [¢,h] & p——1)F and since O,k 1)\F = - |(F)
we have that F'|= - _1([g,/]). Moreover, since J,_ +F is abelian and normal in £,
we have that [§,§"]=1. Thus, [g¢,g "1 €3, _1)F and by the induction hypothesis
F=0c-1([9.9"]). We have found a h € F such that F = 0;_,([g.¢"]) A —ps—1([g. h]).
This completes the induction.

Now, we show that if F }:Hl(g) then g € (5,, |F Obviously, we may assume that
there exists a # € F such that [g,¢"] =1 and [g,h] # 1. By (c) of Section 2, we have
two nonzero integers s and ¢ such that ¢ :(g )’. We suppose that g ¢ 6, F. Thus,
g € OuF\Op s F for an integer m such that 0 <m <n — 2. We set F =F/5,1F which
is a noncyclic free solvable group of class m + 1 (note that §# 1). If m =0, then F is
a free abelian group and the equality g* = (g")’ implies that s =1¢; thus ¢g* = (¢")* and
since F is an R-group we obtain g=g"; this implies that [g,h]=1, a contradiction.
Thus, we may assume that m + 1 >2. In this case we may apply (e) of Section 2
with F and § and the equality g*=(g") implies that s — 4.t =0 in the group-ring
Z(F6,F). 1t follows that s=¢ and we obtain g°=(¢")*. As in the case m=0 we
obtain a contradiction.

To complete the proof of the theorem we show by induction on & > 1 that if F |=6;
(g), then g€, +F. The case k=1 has already been settled and thus we assume that
2<k<n-1. Let g€ F such that F =6;(g). If Fl=0,_1(g), then, by the induction
hypothesis, g € d,— k-1, F C 0,4 F. Thus, we may assume that there exits a 2 € F such
that F = 0;_1([¢, 9" 1) A =1 —1([g, #]). By (d) of Section 2 and the induction hypothesis,
this says that [g,¢"] € 0, _1)F and that [g, 4] & 8,1\ F. Moreover, F =F/d, 4 ,F
is a noncyclic free solvable group of class n — (k — 1) > 2. Then, (d) of Section 2 and
the first induction in the proof show that F |=6,(j). The paragraph above implies
that § &6, ;F. Thus g =g,g, with g, €,_F and g, € On—k—1F and we obtain that
g € 9,_1F. This completes the proof of Theorem A. [

3.2. Proof of Corollary Bl

Let /7, and £, be two free solvable groups of class #>1 and of different finite
rank | and r, respectively. We may suppose that 2 <r; <r,. F|/F| and F3/F} are
free abelian group of rank | and r, respectively, thus we know [25] that there exists
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a sentence @ of ¥ of the form

i
Yuy...ugdv) ...y, \/w,-(ii, =1,

i=1

where the w; are terms of . such that F/F| = ¢ and F>/F} =-¢ (we can take for
the sentence ¢ the sentence Vu, ...uy 13dv \/i#j u,-ujv2 =1 ). Thus, we may suppose
that n>2 (if n=1 then F| =F; =1). By Theorem A, we have an existential formula
O(x) which define F] for i =1,2. We consider the following sentence:

!
YoVur . ugdoy v\ 0w, B)).

i=1

Since 0 is existential, ¢ is (logically equivalent to) a V3 sentence. Then we have
Fi =y and F> = —. This completes the proof of Corollary Bi. [

3.3. Proof of Corollary B2

If n =2 the result follows from the result of [22] (see Section 1). Now, we proceed
by induction on n. Let F be a free solvable group of class 3 and let a and b be two
free generators of F. We are going to prove that we have no algorithm for solving
equations of the form w(x,,...,x;)=v(a,b). Since {(a,b) is existentially closed in F
we may suppose that F' is free on a and b (see [8] or [S, Section 2]). Then, by [18,
Corollary 3], we have an integer p (which we can compute) such that g € F’ iff there
exist gi,...,92, € F with g=[g1,92]- - -[g2p—1,92p]. Moreover, F’ is a free metabelian
group of infinite rank and [a, b] and [a, b]* are free generators of F’. Let F; be a free
metabelian group on a; and b;. Using the fact that the homomorphism of F| into F’
which maps a; to [a,b] and by to [a,b]® is existentially closed, we see that

Fl ':Bxl "'xS W(x],...,xs):U(al,b]),
if and only if
FlEIx oxiop.. X Xs2p W(i.. ... vs)=0([a,b],[a, b]"),

where y; =[x;1,%2] ... [xi2p—1,%i2p]. Thus an algorithm for solving equations of the
form w(xy,...,x;)=v(a,b) in F yields an algorithm for solving equations of the form
w(xy,...,xs)=v(ay, b)) in F). We can use the result of [22].

Now, we suppose that #>4. Let F be a free solvable group of class n and let a
and b be two free generators of F. By the induction hypothesis we have no algorithm
which decides if a sentence of the form

t
3x;...x; /\w,-(xl,...,xx,d,l;):l, ()
i=1
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where t=2""%is true in F/d,_F. Theorem A and its proof show that g€, |F
iff y=1 or there exists # € F such that [g,¢"] =1 and [g,h]# 1. This implies that
G €y F iff [g,9"]1=1 and [¢g.g"] = 1. Thus, a sentence of the form (x) is true in
F/o,_(F iff the sentence

H
Ay Xy /\([w,(f,a,b). wil®,a. b)) =1 A[wiX a.b),wiF a.b)|=1)

i1

is truc in £. This completes the proof of Corollary B2. []

3.4. Proof of Theorem Cl
We need the following lemma.

Lemma 1. Let F be a noncyclic free solvable group of cluss n > 3. There exists (and
we will exhibit) an existential formula $(x, v) such that the following properties are
equivalent (i) F = ¢(y,h); (i) g € F'\F" and h¢ F'; (iii) g and " freely generate a
free abelian group modulo F"', g€ F'\F" and h¢ F'.

Proof. Let F be a noncyclic free solvable group of class » > 3. By Theorem A, we
have an existential formula /'(x) which defines . By (d) of Section 2, we have an
universal formula j/(x) which defines F’ and we have an universal formula p/(x)
which define . We take for ¢(x, y) the formula

Py A= (x) A= ().

P(x, v) is (logically equivalent to) an existential formula. It is clear that (i) and (1) are
cquivalent and that (ii1) implies (i1). Let us prove that (ii) implies (iii). Let g.h € F
such that g€ F\F" and he F\F'. Since ¢ and ¢" are in F’, ¢ and ¢" generate an
abelian group modulo F'. Suppose that there exist 5,7 € Z with (s,£) #(0,0) such that
¢ =(¢"Y mod(F"). Since g € F'\F", we can use (e) of Section 2 to prove that s = th
in Z(F/F'"). Since / is not in F' we obtain a contradiction. Hence ¢ and ¢" are linearly
independent modulo F”. [0

Let F be a noncyclic free solvable group of class » > 3. By Theorem A, we have an
existential formula #(x) which defines F”. Moreover, we have an existential formula
¢(x, v) with the property described in Lemma 1.

It 1s well-known that (Q,+,.,0,1) has a decidable universal theory ifl there is an
algorithm which decides if a homogeneous polynomial in several variables and with
its coefficients in Z has a nontrivial zero in Z (see, for example, [16, Section 9] for
a proof). Thus, to prove Theorem Cl, it suffices to associate (in an effective way)
to cach homogeneous polynomial P(X) in several variables and with its coefficients
in Z, an existential sentence ¥ of ¥ such that P(/?) has a nontrivial zero in Z iff

Fiy.
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Now following the proof of Theorem 3 of [11], we set

+(x, y2) ~ 0z,

X(x, y,z,%, ) ~ Juvw (uxa’ = xalu nvo = o v Awanl

= aoPwA OQvow YA Ouv 127 1),

I(x,2)~x=12,
O(xy~x=1.

These formulae are (logically equivalent to) existential formulae. Let g,2€ F such
that F = ¢(g, k) and let x|, x2,x3 € F such that x;g=¢gx; and x; #1 for i=1,2,3. We
know that ¢ is not in J,_F, thus by (c) of Section 2, there exist s,57,53 € Z* and
t,t,t3 € Z* such that x* =¢g" for i=1,2,3.

We claim that (i) F =+ (x),x,x3) iff 11/s) + f2/52 =t3/s3; (i1) if F=x(X,g,h) then
Lita/s1s2 = t3/s3; and (iil) if t162/s15; = ¢t3/53 and s; | ¢; for i =1,2,3 then F | x(x),x2,x3,
g,h). We just prove (ii). Suppose that F =x(xi,x2,x3,9, k), then we have w,v,we F
such that uxg" =xg"u, vg" = g"v, wgg" = gg"w, yo =wmod(F") and u—= vz mod(F").
Using (c) of Section 2, we see that there exist /., [>, /3 € Z* and k), ky,k3 € Z such that
ult = (xg"", v =(¢")¥ and w’ =(gg¢")*. Since F” is isolated in F we have

(yv)xglzl] :WS3]313 mod(F//) and ué‘\.\'}[]/; :(UZ)M,\';/M; mod(F//).
Since all our elements are in F’ we obtain

geRh(g"Ek = (gg")" " mod(F7),

qf|/ﬂ51/:(qh )"\‘\»VlS,w/z _ ((Jh )k:.\'wﬁll qu»VI hiy mod(F”).

Since ¢ and ¢" are linearly independent modulo F”, it is then easy to obtain #t2/s152 =
t3/S3.

Then, if P(X|,...,X,) is a homogeneous polynomial with its coefficients in Z, we
can construct, by induction on the complexity of P(X),...,X,) and using the formulae
+(x0z), x(x,y,z,%8), 1(x,) and O(x), an existential formula ¥'(, f.x1,....x,)
such that if we consider the existential sentence

Jopxr...xe (o BYA i =20 A =00e ) A (2 Boxs o)),

i=1

then F =y iff P(X) has a nontrivial zero in Z (by construction of v if P has a
nontrivial zero in Z then F =; if £ =, then P has a nontrivial zero in @ and since
P is homogeneous, P has a nontrivial zero in Z). We have proved Theorem C1. [

3.5. Proof of Theorem C2

First, we show that we may restrict ourselves to noncyclic free metabelian groups.
Let F be a noncyclic free solvable group of class n>3 and ¢ a V3 sentence. By
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(d) of Section 2 and Theorem A, we have an universal sentence u(x) and an ex-
istential sentence 0(x) which define F” in F. To ¢, we associate the sentence ¢
which is obtained from ¢ by replacing each atomic subformula of ¢ of the form
wi(¥) = wa(X) by O(w(X)wy(¥)~") and each negation of atomic subformula of ¢ of
the form w1 (¥) # wy(¥) by —~u(w(X)wr(¥)~!). Then ¢’ is logically equivalent to a ¥3
sentence and we have F = ¢’ iff F/F" = ¢. Since F/F" is a free metabelian group of
the same rank as F', we see that if F has a decidable V3 theory then the free metabelian
group of the same rank as F has a decidable V3 theory (¢’ can be effectively con-
structed from ¢). Note that a similar argument (with the fact that two noncyclic free
solvable groups of the same class have the same universal theory) shows that if a
noncyclic free solvable group of class >3 has a decidable universal theory, then every
free solvable group of class <» has a decidable universal theory.
To prove Theorem C2 for free metabelian groups we need the following lemma.

Lemma 2. There exists (and we will exhibit) an universal formula ¢'(x, y) such that
if Fis a noncyclic free metabelian group and if g, h € F, then F = ¢ (g, h) iff g and
h are linearly independent modulo F'.

Proof. We have an existential formula 6'(x) which defines the derived subgroup of
any noncyclic free metabelian group (Theorem A). We take for ¢'(x. v) the formula

(YA (VYA Ve yil([x,x] = LAy, vi]
= 1A ZLAWAIAY(ACE])
= ([x1,c] # [yvi.e)))

It is clear that ¢'(x, y) is logically equivalent to an universal formula. Let F be a free
metabelian group and g, A € F.

Suppose that F = ¢'(g,h). We assume that there exist s,7 € Z such that ¢* =h'c,
with ¢; € F' and (s,1)#(0,0). Since ¢ and 4 are not in F’ and since F’ is isolated
in F we may suppose that s and ¢ are not equal to 0. Let ¢ € F/ with ¢# 1; we put
x1=g¢* and y, =H#". Then [g,x;]=1, [ v ]=1, x; # 1 and y| # 1; moreover,

[xi.cl=[Her.el =1, N[l el elller.c] = [H'.¢].

Hence, we obtain [x;,c] ={[y,c] and this is absurd.

Conversely, we suppose that g and /4 are linearly independent modulo F”. It is ob-
vious that ¢ and 4 are not in F’. Let c€ F’\{1} and x,, y| €F such that [g.x/]=1,
[, vi]=1, x;#1 and y; #1. Then, by (c) of Section 2, there exist s,,52,1,.t- € Z*
such that x}' =¢" and y)* = h*. We suppose that [x;,c] =[vi,c]. Then ¢ " = ¢ 071
since ¢ € F"\{1}, it follows from (e) of Section 2 that —x; + 1= — y, + | in Z(F/F’);
thus x; = y; mod(F’) and this implies that g"%: =A™ mod(F'). This is absurd so
FEd'(g.h). O
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Let us now prove Theorem C2 for free metabelian groups. Let /' be a noncyclic
free metabelian group. By Theorem A, we have an existential formula 6'(x) which
define F’; moreover, we have a formula ¢’(x, y) with the property of Lemma 2. By
Matiyasevich’s theorem, to prove that F has an undecidable V3 theory, it suffices
to associate (in an effective way) to each polynomial P(X) in several variables and
with its coefficients in Z a V3 sentence i of % such that P(X) has a zero in Z iff
FEy. Let P(X),...,X,) be such a polynomial. As in the proof of Theorem CI, we
can construct, by induction on the complexity of P(Xi,...,X,), an existential formula
' (a, B,x1,...,x.) corresponding to P, where we put #'(x) in the place of 0(x) and
B in the place of #* in the definition of +(¥) and X (¥, ). Then we consider the
sentence

i=1

Yaf ((j)’(oc,[f) = (Hx] Xy /\x,»fx:aoc,-At//’(a,lf,xl,...,x,)>> .

Since ¢’ is universal  is a V3 sentence. Using the proof of Theorem Cl, it is easy to
prove that if P has a zero in Z, then F =. Suppose that F' |=y. Let g and & be two
free generators of F. Then, g has no roots in F and ¢ and / are linearly independent
modulo F’. By hypothesis and Lemma 2 we have

FE3x...x (/\xl-y =gx; A (g, hxi, . ,xr)> :
i=1

Since g has no roots in F, if xg=gx then, by (c) of Section 2, we have s € Z such
that x =¢g*. Then, it follows from the proof of Theorem C| that P has a zero in Z.
This completes the proof of Theorem C2. [

4. Remarks

4.1. Let F be a free solvable group of class <3 and of finite rank r. The result of
[18] implies that there exists a p; (which depends on r) such that F’ is definable by
the formula

vy x=[yiy2] [V -1 e |-

Moreover, it is possible to prove (using the ideas of [18]) that there exists a p, which
depends on r, such that y3F, the 3th term of the lower central series, is definable by
the formula

Avie vz x=[yvab sl yap -2, Yapa—i)s Yapa ]

(see also [4, Ch. 1] for some generalizations). Since it is not difficult to prove that
if g heF and [g,h]# | mod(y;F) then g and 4 are linearly independent modulo F,
we can prove exactly as in the proof of Theorem C2 (without using the reduction to
free metabelian groups), but using the previous formulae, that 7 has an undecidable
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3 theory. In this case, since the above formulae are positive, it is easy to see that we
obtain the undecidability of the V3 positive theory of F.

4.2. It follows from [15, Theorem 42.55] that the property (iii) of Lemma 1 is equiv-
alent to (iii’) ¢ and g" freely generate a free solvable subgroup of F of class n — 1.
The same result implies that in Lemma 2, F = ¢'(¢,h) iff ¢ and & freely generate a
free metabelian subgroup of F. Moreover, in [5] we prove that if 7 is a noncyclic free
metabelian group there is no existential formula ¢(x, v) consistent with F* such that if
F = ¢(g,h), then ¢ and & are linearly independent modulo F’. This explains why our
proof of Theorem C1 does not work for free metabelian groups.

4.3. In [6], we show that the universal theory of free metabelian groups and the
groups with the same universal theory as a noncyclic free metabelian group have a
lot of remarkable properties. Theorem C1 seems to prevent full generalization for free
solvable groups of class >3; however, we can hope that some of these properties
can be extended to free solvable groups of class >3. For example, it is possible to
describe the groups on two generators with the same universal theory as a noncyclic
free solvable group of class n > 3; these groups are the free solvable group of class »
and rank 2 and the (n — 1)-solvable verbal wreath product of two infinite cyclic groups
(see for example [24] for the notion of verbal wreath product, and see [6] for n=2).
In an other direction we ask the following question: let * be a free solvable group of
class > 3; for each infinite set of words on a fix number of variables {w;(x),...,x,)}ic/
does there exist a finite subset J of I such that for all gy,...,¢, € F, wi(g)=1 for all
i€l iff wi(g)=1 for all i €J? This question arose during discussions with Myasnikov
and it was motivated by the will to prove analogues of the main result of [17] for free
solvable groups of class >3 (see [6] for free metabelian groups).

4.4. Let n be an integer > 1. We say that a finitely generated group G is n-residually
finite for the equations if for every system (*) of n equations with parameters from
G, (*) has a solution in G iff for every finite image H of G (the image of) (x) has
a solution in H. It is easy to see that G is n-residually finite for the equations iff for
every system (*) of n equations with parameters from G, if (*) has a solution in the
profinite completion of G then (*) has a solution in G. If G is a finitely presented
group in a variety defined by a law which is n-residually finite for the equations, then
a classical argument shows that there exists an algorithm which decides if a system of
n equations with parameters from G has a solution in G. Thus, Corollary B2 implies
that a noncyclic finitely generated free solvable group of class m is not max(1,2"%)-
residually finite for the equations. In fact using [10, Theorem 3], we can prove that
a noncyclic finitely generated free solvable group is not I-residually finite for the
equations. Indeed, let F be a free solvable group of class m >4 and finite rank r > 2. By
[10, Theorem 3], we have an integer p such that for every finite image H of F, every
element of A’ can be written as product of p commutators. If every element of F' can
be written as product of p commutators, then we can prove using the proof of Corollary
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B2 that there is no algorithm which decides if an equation of the form w(X)=v(a,b)
has a solution in £ If not, then we have ¢....,¢x,+1) € F such that the equation

[x1,%2] ... [x2p—1.x2p) = [g1, 921 - . [g2p1, G20 p+1)]

has no solution in F; and this equation has a solution in every finite image of F.
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