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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 62, Number 1, March 1997 

V-FREE METABELIAN GROUPS 

OLIVIER CHAPUIS 

?1. Introduction. In 1965, during the first All-Union Symposium on Group The- 
ory, Kargapolov presented the following two problems: (a) describe the universal 
theory of free nilpotent groups of class m; (b) describe the universal theory of free 
groups (see [18, 1.28 and 1.27]). The first of these problems is still open and it is 
known [25] that a positive solution of this problem for an m > 2 should imply the 
decidability of the universal theory of the field of the rationals (this last problem is 
equivalent to Hilbert's tenth problem for the field of the rationals which is a difficult 
open problem; see [17] and [20] for discussions on this problem). Regarding the 
second problem, Makanin proved in 1985 that a free group has a decidable universal 
theory (see [15] for stronger results), however, the problem of deriving an explicit 
description of the universal theory of free groups is open. To try to solve this 
problem Remeslennikov gave different characterization of finitely generated groups 
with the same universal theory as a noncyclic free group (see [21] and [22] and also 
[11]). Recently, the author proved in [8] that a free metabelian group has a decidable 
universal theory, but the proof of [8] does not give an explicit description of the 
universal theory of free metabelian groups. 

The aim of this paper is to describe the groups with the same universal theory 
as a noncyclic free metabelian group (we call these groups V-free metabelian) and 
to give an explicit description of the universal theory of noncyclic free metabelian 
groups (two noncyclic free metabelian groups have the same universal theory). This 
is done in Sections 3 and 4: we state our main theorem in Section 3 and we prove it 
in Section 4. We then obtain a new proof of the decidability of the universal theory 
of a noncyclic free metabelian group which is more natural for a logician than the 
"combinatorial" proof of [8] (this paper does not use the results of [8]). Moreover, 
we obtain an abstract version of the so called Magnus embedding. In Section 5, 
we give some applications of the main theorem of Section 3: we characterize V-free 
metabelian groups in terms of residual properties, we prove that noncyclic parafree 
metabelian groups are V-free metabelian and we study 2-generator subgroups of 
V-free metabelian groups. In the last section of this paper we make a few remarks. 
In Section 2, we recall some notations and elementary facts from group theory. 

We proved in [7] that if the field of the rationals has an undecidable universal 
theory, then a noncyclic free solvable group of class > 3 has also an undecidable 
universal theory. So, the problem of deriving an explicit description of the universal 
theory of free solvable groups of class m, for m > 3, is either impossible or a 
very difficult task. Moreover, we have recently studied the universal theory of free 
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160 OLIVIER CHAPUIS 

metabelian groups from the point of view of "model theoretic algebra" (see the last 
paragraph of the last section). 

To conclude this introduction I would like to thank Professor G. Sabbagh and the 
referee for their useful comments. I thank also the Equipe de Logique mathematique 
of the University Paris VII for its hospitality. 

?2. Preliminaries and notations. Our notation is consistent with [6] for logic 
and with [23] for group theory and we refer the reader to these books for any 
unexplained notion (see also [19] for group theory and [9] for logic). The knowledge 
of logic needed for this paper is elementary and does not exceed compactness and 
completeness theorems and basic properties of universal formulas. We work most 
often with the language of groups: Sgp = {.,-1 , 1 }. If q (x) is a formula with one 
free variable and if G is a model then we denote by 0(G) the set {g E G I G l= (g)}. 
We say that a sentence is universal if its prenex form is a universal sentence; such a 
sentence in 2gp is equivalent modulo the theory of groups to a sentence of the form 

n ksIs 

Vx1 ..VXr( nA( VWij(xi,. ,Xr) v V Wij/ ( ,Xr) i)) 
i=l j=l j=ki+l 

where the wij are elements of the free groups on x1,.. ., x,. A group G has a 
decidable universal theory if there is an algorithm which decides whether or not a 
universal sentence is true in G. This is equivalent to decide whether a system of 
equations and inequations in Sgp (without parameters from G) has a solution in 
G. 

Let G be a group. If gj, . .. , gn are elements of G, then we denote by (gi. * n) 

the subgroup of G generated by gl,... , gn. We say that G is an n-generator group 
if there exist g, ... , gn E G such that G = (gi, ... , gn)4 We denote by Fit(G) the 
Fitting subgroup of G. We recall that Fit(G) is the subgroup of G generated by 
all the nilpotent normal subgroups of G (see [23, Chapter 5]). If H is a subgroup 
of G, H is said to be isolated in G if, for all g E G, g E H whenever gn E H for 
some integer n > 1. If H is normal in G, H is isolated in G iff G/H is torsion-free. 
For every set X we denote by G (x) the group of functions f from X into G such 
that {x E Xjf(x) 74 1} is finite. We denote by Z[G] the integral group ring of G. 
Let A and B be two groups, we denote by AwrB the (restricted) wreath product of 
A by B. We recall that AwrB is the semidirect product of A(B) by B, in which the 
automorphism of A (B) produced by an element b E B is given by: f b (X) = f (xb- 1) 
for f E A(B). If L is a right Z[A]-module we put 

M(A, L) = a 1 )IforaEAandvEL}. 

M(A, L) is a group under matrix multiplication, and this group is of course the 
usual semidirect product of L by A. We denote by (a, v) the element (V a) of a 
group of the form M(A, L). A few moments of thought will convince the reader 
that if A - Z(r) where r is a cardinal, then AwrB is isomorphic to M(A, L) where 
L is the free Z[A]-module of rank r. 

Let g and h be two elements of a group G, we put [g,h] = g-1h-gh and 
gh 

- h-gh. The derived subgroup G' of G is the subgroup of G generated by all 
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the [g, h]. G is abelian iff G satisfies the identity Vxy [x, y] = 1. G is metabelian 
(i.e., solvable of class < 2) iff G satisfies the identity Vxyzt [[x, y], [z, t]] = 1. More 
concretely, G is metabelian iff G has an abelian normal subgroup H such that 
G = G/H is abelian. Then, H is a Z[G]-module where the action of Z[G] on H is 
(well) defined as follows: if g E G and v E H, v.g = g9-vg = O. So, adopting a 
multiplicative notation, if E ngg 2E [G] and if v E H then 

V. ng 
- 

= vygg - flg-Ivnkg 

As examples of metabelian groups, we have the groups of the form M (A, L) where A 
is an abelian group and where L is a Z[A]-module. Identifying L with the matrices of 
the form (1, v), L is an abelian normal subgroup of M(A, L) and M(A, L)/L - A 
(of course in this case we use an additive notation for L). Notice that there are 
only No metabelian groups on a finite number of generators (this follows from [23, 
15.3.1]). But, if G is metabelian on a finite number of generators, then, in general, 
G contains subgroups which are not finitely generated, and G may contain 2'0 
nonisomorphic subgroups (see [4]). 

A variety V of groups is the class of models of a theory in Sgp consisting of 
the axioms of groups and of sentences of the form Vx& wj (3c) = 1 where the w; 
are terms of Sgp (i.e., elements of the free group on the variables xi). The w; 
are called the laws of V. Let r be a cardinal. We say that G is a free group of 
V of rank r if G E V and if G has a generating system {ai}iCr such that for all 
H E V, any function from {ai}jir into H can be extended to a homomorphism 
from G into H. Then, we say that the ai are the free generators of G. Such 
a group exists and it is unique up to isomorphism. If W is the set of laws of 
V then the free group of rank r of V is isomorphic to Fr! W(Fr) where Fr is 
the (absolutely) free group of rank r and where W(Fr) is the normal subgroup 
(w (g) w E W and gi E Fr). For example, the free abelian group of rank r is 
Z(r). We refer the reader to [19] for an introduction to the theory of the varieties of 
groups. 

The class of metabelian groups is a variety of groups. We denote by Fr(i2) 
the free metabelian group of rank r. A fundamental result on free solvable groups 
is the existence of the Magnus embedding that we now define in the context of 
free metabelian groups. Let r be cardinal number. We denote by ai, i E r, free 
generators of Fr (S2). Then, the quotient of Fr (Sj2) by its derived subgroup is a 
free abelian group on r generator, freely generated by the images ai of the ai. We 
denote this quotient by Fr(W). Let L be the free Z[Fr(sl)]-module on {Vi}iCr. 
The function f from {ai}ier into the group M(Fr(W),L) - Z(r)wrZ(r) defined 
by 

f (ai) (ai 0) 

can be extended to a monomorphism f from Fr (Sj2) into M(Fr (sV) L). f is 
called the Magnus embedding and the most important properties of free meta- 
belian groups can be deduced from it. For example, with this result it is easy 
to prove that a free metabelian group has a decidable word problem and more 
work allows us to prove that if r > 2, then Fit(FrGV2)) - F (j2)/ We refer 
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the reader to [12, Chapters I and II] for a complete treatment of Magnus embed- 
ding. 

Let G be a group, let (el,... , en) be a sequence on {-1, 1} and let gi, , * * ,gn E 

G. If Zn I e2 74 0, then elgl + + engn 74 0 in Z[G]. If En" ej = 0, then 

elgl ? .+engn = 0 in Z[G] iff there exists a partition of { 1, . . . , n } into two elements 
set {il jl}, .. ,{in n I }such that gik = gj, and ek =-ejk for k = 1, .. Thus, 
we can express in Sgp the equality eig, + + engn = 0 in Z[G]: if EZn ej 74 0 
then we consider the formula g, 74 gi and if En> ej = 0 then we consider the 
formula 

V A g9g7i=1 
lEt {i,j}EI 

where f' is the set of partitions of { 1, . . . , n } into two elements set {i, j } such that 
e= -e (since En I ej = 0, f' is not empty). 

?3. Main theorem. It is known that two noncyclic free metabelian groups have 
the same universal theory (see [10] or [8, Section 2]). With this fact in mind, we 
say that a group is a V-free metabelian group if it has the same universal theory as a 
noncyclic free metabelian group. An important fact for our propose is that if A and 
B are two nontrivial torsion-free abelian groups, then AwrB is a V-free metabelian 
group (see Lemma 4.1 below or [8, Section 2]). 

We setfitv(x) Vt [x, xt] = 1 andfit3(x) 3t [x, xt] = 1 A [x, t] 74 1. These 
formulas will define the Fitting subgroup. We denote by 2 the following set of 
universal sentences of Sgp 

01 - (Vxyz (xy)z = x(yz)) A (Vx lx = x) A (Vx xlx = 1) 

02 Vxyzt [[x, y], [z, t]] = 1 
03(n) Vx (xn = I) i (x = 1) foralln > 2 

04 -Vxyz ([x, y] = 1 A [y, z] = A y 74 1 ) = ( [x, z] = 1) 

05(n) Vx (fit3 (x)) ?=> (fit (x) ) for all n > 2 

06(e) - Vxyl Yn (fit3(x) A Xelyl ... XenYn = 1 ) ? 

( ely, + + enYn = O in Z[ ffitv] ) 
for all finite sequence e on { -1, I}. 

The right hand side of the sentences 06(e-) is an abbreviation for a formula of the 
form yi 14 yI or of the form V Afitv(yiy.l) as explained in the end of Section 2. 
Note that 04 says that the relation "commute" is an equivalence relation on G\{ 1 }\ . 
This is a strong condition and it implies that a nonabelian subgroup of a model of 
2 has a trivial center. An important fact for understanding the signification of the 
sentences 055(n) and 066(e) is that if G is a model of 2, then Fit(G) = fitv(G) and 
if G is a nonabelian model of 2, then Fit(G)\{l I} = fit3 (G). These follow from the 
Main Theorem and its proof (Lemmas 4.5 and 4.7). To stress the signification of 
the set of sentences 2 we introduce the following terminology: we say that a group 
G is a p-group if (i) G is a torsion-free metabelian group; (ii) the Fitting of G, 
Fit(G), is abelian and isolated in G; (iii) Fit(G) is torsion-free as a,2[G]-module, 
where G = G/Fit(G) (i.e., if v E Fit(G) and a E Z[G], then v.a = 1 implies 
a = 0). 

We are now ready to state our main result. 
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MAIN THEOREM. Let G be a group. The following properties are equivalent: 
(1) G satisfies the universal theory of a noncyclic free metabelian group; 
(2) G is a subgroup of a group of the form M(A, L) where A is a torsion-free 

abelian group and L is a torsion-free Z [A]-module, 
(3) G satisfies 2(; 
(4) G is a p-group; 
(5) for all gi, .. , gn E G there exist k, r E N such that the group (gI . . -* gn,) 

can be embedded in Z (k)7wrZ (r). 

Moreover, if G is a nonabelian group satisfying one of the properties above, then G 
is a V-free metabelian group. 

We prove this result in the next section. For finitely generated groups we obtain 

COROLLARY 3.1. If G is a finitely generated nonabelian group, then G is V-free 
metabelian iff there exist k, r E N such that G can be embedded in Z (k)wrZ (r). -H 

One can see the result above as a metabelian analogue of the classification of 
torsion-free abelian groups. Moreover, we obtain a generalization of the Magnus 
embedding (see Lemma 4.8 and its proof). 

We put 2+ = 2 U {3xy [x, y] 74 1}. By the Main Theorem, if G is a group, 
we have: G l= 2+ iff G is a V-free metabelian group. Thus, by the completeness 
theorem, if q is an existential or a universal sentence, then 2+ H- q or 2+ H- -'q5. 
Since 2+ is a recursive set of sentences, we obtain a new proof of the decidability of 
the universal theory of a noncyclic free metabelian group. 

COROLLARY 3.2. %(+ is completefor the universal sentences. The universal theory 
of a noncyclic free metabelian group is decidable. -H 

We remark that in the language of groups with two constants for two free genera- 
tors the universal theory of a noncyclic free metabelian is undecidable (this follows 
from [24]); and that the V3 theory of a noncyclic free metabelian is undecidable (see 
[7]). 

?4. Proof of the main theorem. We decompose the proof of the Main Theorem 
in a sequence of lemmas. Through this section G will be a group and then we set 
Fit = Fit(G) and G = G/Fit. 

The following lemma is contained in [8, Section 2]. 

LEMMA 4. 1. If A and B are two nontrivial torsion-free abelian groups, then AwrB 
is a V-free metabelian group. 

PROOF. In [27] Timoshenko proved that if AI and A2 are two groups with the 
same universal theory and if B1 and B2 are two groups with the same universal 
theory, then A1 wrBI and A2wrB2 have the same universal theory Moreover, it is 
well known that two nontrivial torsion-free abelian groups have the same universal 
theory Thus, to prove the lemma it suffices to prove that every universal sentence 
true in F2(SV2) is true in ZwrZ and that every universal sentence true in Z(2)wrZ(2) is 
true in F2 (SV2). These follow form the fact that ZwrZ can be embedded in F2 (SV2) 
(see [1, Corollary 3]), and from Magnus embedding which implies that F2(SV2) can 
be embedded in (2) wrZ(2). -H 
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LEMMA 4.2. If G satisfies the universal theory of ZwrZ, then there exist a torsion- 
free abelian group A and a torsion-free Z [A]-module L such that G can be embedded 
in M(A, L). 

PROOF. The proof is a standard application of compactness theorem, hence we 
just give the idea of the proof (morever if we just want to prove that the properties (1), 
(3), (4) and (5) of the Main Theorem are equivalent we do not need Lemma 4.2). 
We consider a (two-sorted first-order) language: {(PA, .,-l, 1), (PL, +, -, 0), *}, 

where PA and PL are unary relation symbols and where * is a function symbol for 
a function from PL X PA into PL. In this language we have a theory 10 which says 
that PA is a torsion-free abelian group and that PL is a torsion-free Z[PA]-module. 
Now for each g E G we introduce two new constants (symbol) ag and vg and we 
consider the following set of sentences 

1 = { PA(ag) A PL(vg) I g E G} 
U { agah = agh A *(vg, ah) + Vh = Vgh I g, h E G } 
U {agah7 af V *(vg, ah) + Vh Vf I g, h, f E G with gh 7 f }. 

We put I = 10 U EI (note that I implies that vg + Vh = Vgh). Since G satisfies 
the universal theory of ZwrZ and ZwrZ - M((X), 7[X, X-l]), by compactness, I 
has a model (A, L). Then, by definition of El, the function which maps g E G to 
(ag, vg) E M(A, L) is a monomorphism of groups. -i 

LEMMA 4.3. If A is a torsion-free abelian group and if L is a torsion-free right 
Z [A]-module, then M (A, L) I= 2. 

PROOF. Let e = (el, . . . , en) be a sequence on {-1, 1}, let x = (a, v), y = (b, w), 
Yi = (al, VI), ... ,yn = (an, Vn) be elements of M(A, L), and let n be an integer 
> 2. Since A is abelian we have 

[x,y] = (1,v(b -1)- w(a -1)) 
n (an v(an-1 + ?a? 1)) 

[x, xy] = (1, (v(b -1) -w(a -1)) (a -1)) 
[x") XnY] = (1, (v(b -1)- w(a - 1))(an - 1)(a- + ? *+ a + 1)) 

if a = 1, xelyl . .. XenYn = (1, v(elal + . ?+ enan)). 

Now, since A is torsion-free, since Z[A] is an integral domain (see [23, 15.3.10]), 
and since L is a torsion-free right Z[A]-module, simple computations show that 
M(A, L) satisfies A. -H 

LEMMA 4.4. Assume that G satisfies 04. Then, all the nonabelian subgroups of G 
have a trivial center and all the nilpotent subgroups of G are abelian. 

PROOF. Since 04 is a universal sentence and since a nilpotent group has a nontriv- 
ial center, it suffices to prove that a nonabelian group which satisfies 04 has a trivial 
center. Let G be a nonabelian group with G 1= 04. There exist g, h E G such that 
[g, h] :& 1. Let f be an element of Z(G), we have [g, f] = 1 and [f, h] = 1. Since 
G l= 04,if f : 1, then [g,h] = 1,thus f = 1. H 

LEMMA 4.5. If G l= A, then G is a p-group. 
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PROOF. We suppose that G l= A. It is clear that G is a torsion-free metabelian 
group (sentences 41, 0)2 and 03(n)). Obviously we may suppose that G is nonabelian. 

By Fitting's Theorem (see [23, 5.2.8]), Fit is locally nilpotent (i.e., all the finitely 
generated subgroups of Fit are nilpotent). Since G t= 04, Lemma 4.4 shows that 
Fit is abelian. Then,fitv (G) = Fit. Indeed, if g E fitv (G), then the normal closure 
of g is abelian thus g E Fit. If g E Fit, then the normal closure of g is contained in 
Fit and so is abelian. It follows that g . fitv (G). 

Let g E G such that gn E Fit for n > 2. If gn = 1, then since G is torsion-free 
g E Fit. If gn i 1, then, since G is nonabelian, by Lemma 4.4, there exists h E G 
such that [gn, h] 74 1, moreover, sincefitv(G) = Fit we have [gn,gnh] = 1. Thus, 
G l= fitl (gfl) and the sentence 05 (n) implies that g E Fit. 

Let g E Fit with g 74 1. As above G l= fits (g). Since G satisfies the sentences 
4)6(e) (and sincefitv(G) = Fit), if we have v E 2[G] such that gv . 1 then v = 0. H 

The following lemma is well known. 

LEMMA 4.6. If G is a metabelian, then for all gi, g2, g3 E G we have 

[gl1, g2]g3 '[91 [gl g3] (g 1) [92, g3]gI - 1 = 1 . 

PROOF. It is easy to see that the identity of the lemma holds in ZwrZ. Lemma 4.1 
implies that the identity of the lemma holds in any metabelian group. H 

LEMMA 4.7. If G is a p-group, then G l= A. 

PROOF. Let G be a group a p-group. Clearly G satisfies 41, 02 and 03(n) for all 
n > 2. 

Let g, h E G with [g, h] I4 1 and [g, gh] = 1. We have I = [g, gh] - [g, h]-gl . 
Since Fit is a torsion-free Z[G]-module, g E Fit. Thus, fit3 (G) c Fit\{l} 1. Also, 
since Fit is abelian we have Fit = fitv (G) (see the proof of Lemma 4.5). It is then 
easy to prove that G satisfies the sentences 45 and 06 (e). 

It remains to prove that G 1= 04. First, note that since G is metabelian, G' < Fit. 
Let g, h, f E G such that [g, h] = 1, [h,f] = 1 and h 5 1. We suppose that 
[g, f ] $& 1. By Lemma 4.6, we have 

[gh]f-1[g, f]-'+l[h, f]9l 1, 

thus [g, f]h?1 - 1 and since Fit is a torsion-free Z[G]-module we have h E Fit. 
Since 1 = [g, h] - h -+1 and since h 74 1 we see that g E Fit. In the same way we 
see that f E Fit. Since Fit is abelian, we obtain [g, f] = 1. This is absurd and we 
have proved that G F= 04 . 

The following lemma is one of the key results of the proof of the Main Theorem. 

LEMMA 4.8. If G is afinitely generated p-group, then there exist two positive integers 
k and r such that G can be embedded in Z (k) wrZ (r) 

PROOF. Let G be a finitely generated p-group. We set R = Z[G]. By hypothesis 
G is metabelian, thus G' < Fit and G is abelian. By hypothesis Fit is isolated in 
G and G is finitely generated, thus G is a torsion-free finitely generated abelian 
group. Thus, there exists r E N such that G 2(r). If r = 0, the lemma is 
obvious, thus we suppose that r > 1. Let a,,... ,ar c G be such that G = 
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(ail ... , ,r). Since G is metabelian, G satisfies max-n (see [23, 15.3.1]), thus Fit 
is the normal closure of a finite number of elements of Fit. This implies that 
Fit is a finitely generated R-module. Thus, there exist v1, .. ., vs E Fit such that 
Fit = (vl,... , Vs) R. Since G D (r), R is isomorphic to the ring of Laurent 
polynomials Z[XI, ... , Xr, Xl-1,.. , Xr-I] (see [13, 2.2.6]), which is a commutative 
domain. We put S = 2[X1,.. ,Xr, X , ...,r 

Let us give a presentation of G. We have G = (al,... , ar,vl,... ,vs) and we 
want a presentation on a1, .. ., ar, Vi, ... ., Vs. Let i, j E {1, .. . , r} with i < j, then 
[ai, aj] E Fit and thus there exist Pij,1, ... I, Pies E S such that 

[ai, aj] = VI ..*.* Vsis - Uij) 

And we set 

TI = { [ai,aj] = ui,j I 1 < i < j < r 

Note that if r = 1, then T1 is empty. Since G is metabelian we set 

[vi (), )] = < < j < s and P, Q E S}. 

Fit is an R-module generated by vI,... , vs, thus Fit has a presentation of the form 

( Qi~ 1 a/ = 1 j E J 

where J is a set of positive integers and where the Qjj C S (since R is noetherian 
we can take J finite, but this is of no importance here). We put 

T3 = {FtIvQsi(a)=1 j }E 

Now, it is not difficult to prove that G has the presentation 

( al, ... ., ar, VI, - . ., Vs I TI, T2, T3 )- 

Since Fit is a finitely generated torsion-free module over a commutative integral 
domain, Fit can be embedded in a free R-module of finite dimension k (we may 

suppose that k > 1). Since R 5, S we may suppose that Fit < el1 s L. We 
are going to prove that G can be embedded in 2(k)wrZ(r). We denote by A the free 
abelian group on XI,-.. , Xr. We have 7(k)wr7(r) _ M(A, L) and so we identify 
7(k) wrZ(r) and M(A, L). 

IfYl,... ,Yr c Landifz C Lwithz = (zl,... ,zk) and zl O.. .., Zk ? O ,then 
we define a function f yz from {al, ... , ar, V1,I.. , vS} into M(A, L) by 

fz (ai) = (Xi,yi) for 1 < i < r and fyz(v;) = (1,vi.z) for 1 < i < s 

where vi.z = (Vij. , Vi,k).(ZI, . . ., Zk) = (Vi,IZI, . . ., VickZk). It is clear that f yz 
can be extended to a monomorphism from Fit into L. Thus, by von Dyck's theorem, 
we see that f ,, can be extended to a homomorphism from G into M(A, L) iff 
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Hence, we can construct a homomorphism of the form f , if we can solve in S 
the following system of equations and inequalities 

( Zn7?0 forn=1,... ,k 
( Yi~n(Xj - 1) -Yjn(Xi - 1) -Uijnzn = 0 for 1i < i<j < r 

and 1 < n < k 

where we have put ui,j = (Ui,j,1, ... , Uij,k) and where the unknowns are the Zn and 
the yin. In general it is not possible to solve (*), but here we have some relations 
between the Uijn: by Lemma 4.6, if r > 3 and if 1 < i < j < 1 < r, then 

Uijn(XI- 1) - Uiln (X- 1) + uj,l,n(Xi - 1) = 0 for n = 1, . . . ,k. 

For solving (*) it suffices to solve the k systems (*I), ... , (*k) where 

(*n) Zn 7& ? 

Yiyn (Xj - 1) - yjn(X - 1) - UijnZn = 0 for 1 < i < j <r. 

Let n c {1, ... , k}, we set z = Zn, xi = Yi,n and aij = Ui,,n. Let us solve (*n). If 
r = 1, then we have to solve z 7 0 and we can take z = 1. If r = 2, then we have to 
solve the system 

{ (X2-1)-X2(XI-1))-0a,2Z = O. 

If a1,2 = 0, then we can take xi = X2 = 0 and z = 1. If a1,2 + 0, then we can take 
X =X2 = al,2 andz = X2 -AXI. Nowwesupposethatr > 3. Let i,j c {2,... ,r} 
with i < j. We denote by (*i,j) the following subsystem of (*n) 

I (x(i -1) -xi (XI 1) - al,iz = 

xi x(Xj 
- 1) -xj (Xi 1) -? ijz =O 

xi (Xj -1) -xj (Xi -1) - i,jz= 0. 

Clearly (*i,j) is equivalent to the system 

xi (Xi - 1) (Xj - 1 )-xi (Xi - 1) (Xj - 1 )- ali (Xj -l )z = O (1 ) 
x l(Xj - 1)(Xi - 1) - xj(Xi - 1)(Xi - 1) - aij (Xi - 1)z = 0 (2) 

xi (X - 1)(Xi - 1)-xj(Xi - 1)(Xi -1) - ai(Xi - 1)z = 0 (3) 

and we have 

(1) - (2) + (3) X (-aij (Xj - 1) + ai ,(Xi - 1) - aij (X1 - 1))z = 0 (3'). 

By Lemma 4.6, the left-hand side of (3') is equal to zero, thus 

f x i- 1)-xi(X -1)- aiz =0 

xi (Xj-1)-xj(Xi-1)-aij z= 0, 

it follows that 

x1(X, -1)-xi(X1-1)- aijz =0 2< i <r. 
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If all the a1ij are equal to zero, to solve (*,) we can take x = =Xr = 0 and 
z = 1. Thus we suppose that there exists io E {2, ... , r} such that a i,0o y 0 and we 
put I = {2,... , r}-{io}l. We have 

(*n) X < ?~aio z = xi(XMO - 1) -xio(XI - 1) 
xialio(Xj - 1) - xiaijo(Xj - 1) - ijaioz = 0 (i) i c IL 

If i E I, then we have 

(i) X XI (aio,(Xi - 1) - ai o- 1)) + xi0oij(Xi - 1) - xiaio (X - 1) = 0. 

If io < i, by Lemma 4.6, we have 

aio (Xi - 1) - aij (Xio - 1) = -aio,i (XI - 1) 

and we obtain 

(i) ? - xaia0,(XA - 1) + xioal,i(XA - 1) - xi -ijo(X -1) = 0 

x1ai -xi ,i + xix ? 1,io = 0. 

If io > i, as above we obtain 

(i) ? xlaio,i + xi0aI, -xia io = 0. 

It follows that 

z #O 

(n) aij z = xiMO(Xj - 1) - xio(xi - 1) 

x~jj- xi0aij ? xiaij0 = 0 for io < i < r 

xla?io,i + x0aij, - xiaiO = 0 for 2 < i < io. 

It is then easy to solve (*n): we can take xi = xio= aio, xi = aij - aio for 

io < i < r, xi = a0j + aio i for 2 < i < io and z = Xio - X1. 
We have solved (*n) for each n C {1, .. ., k} and thus we can solve (*) in S. It 

follows that there exist Y1,... , Yr c L and z C L such that f yz can be extended 
to a homomorphism f from G into M(A, L). It remains to prove that f is a 
monomorphism. It is clear that the restriction of f on Fit is a monomorphism. 
Hence ker(f ) n Fit = 1, and since G is solvable, by [23, 5.4.4], ker(f ) = 1. H 

LEMMA 4.9. Let G be a p-group. If g belongs to G\Fit and if h belongs to Fit\{ 1}, 
then (g, h) 7 ZwrZ. 

PROOF. For all n E Z we set Hn = (g -nhgn). Since G is torsion-free, Hn is infinite 
cyclic. We set H = (Hn I n C 2). Since Fit is abelian, H is'abelian. Moreover, since 
Fit is a torsion-free 2[G]-module, it is clear that Hn n Hm = 1 for all n, m c Z with 
n + m. Thus H is the direct sum of the Hn. By definition, H is normal in (g, h). 
Since Fit is isolated in G, it is clear that (g) n H = 1. Thus (g, h) is the semidirect 
product of H by (g) and it follows that (g, h) - ZwrZ. H 

PROOF OF THE MAIN THEOREM. Let G be a group. If G satisfies (1), then, by 
Lemma 4.1, G satisfies the universal theory of ZwrZ, and by Lemma 4.2, G satisfies 
(2). Since 2t is a set of universal sentences, by Lemma 4.3, the implication (2) == (3) 
holds. The equivalence of the properties (3) and (4) follows immediately from 
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Lemmas 4.5 and 4.7. Let us prove that (4) implies (5). Suppose that G is a p- 
group. By Lemma 4.7, G F 2t and since 2t is a set of universal sentences, every 
subgroup of G satisfies 2t. Thus, by Lemma 4.5, every finitely generated subgroup 
of G is a p-group. By Lemma 4.8, G satisfies (5). Let us prove that (5) implies (1). 
Suppose that G satisfies (5). Then, every finitely generated subgroups of G satisfies 
the universal theory of a noncyclic free metabelian group (Lemma 4.1). It is then 
easy to prove that G satisfies the universal theory of a noncyclic free metabelian 
group. 

We have proved that the five properties of the Main Theorem are equivalent. It 
remains to prove (for example) that a nonabelian p-group is V-free metabelian. Let 
G be a nonabelian p-group. By the first part of the Main Theorem, G satisfies the 
universal theory of a noncyclic free metabelian group. Thus, to prove that G is 
V-free metabelian, it suffices to prove that G contains a group isomorphic to ZwrZ 
(Lemma 4. 1). Since G is metabelian there exists h c Fit with h :& 1. Since Fit is a 
torsion-free module, Z(G) = 1. Thus there exists g E G such that [g, h] :& 1. Since 
Fit is abelian, g E G\Fit. By Lemma 4.9, (g, h) 7 ZwrZ. This completes the proof 
of the Main Theorem. H 

?5. Some applications of the main theorem. Let Z be a class of groups and n an 
integer > 1. We say that a group G is n-approximable by (respectively, n-residually 
a) X-group if for all h1, . .. , hn G\{ 1 } there exists a homomorphism f from G 
into (respectively, onto) a group H E Z such that f (hl) y? 1, ... ,f (hn) Y 1. We 
say that a group G is 1o-approximable by (respectively, 1o-residually a) X-group if 
G is n-approximable by (respectively, n-residually a) X-group for all n > 1. If Z is 
a class of groups closed with respect to forming subgroup (for example if X is the 
class of free groups), then the previous two notions coincide. Remeslennikov proved 
in [21] that a finitely generated nonabelian group has the same universal theory as 
a noncyclic free group if it is 1o-approximable by free groups (respectively, by 
noncyclic free groups). The Main Theorem implies that if a nonabelian group 
satisfies the universal theory of a noncyclic free metabelian group, then it is V-free 
metabelian. We use this fact to prove 

COROLLARY 5. 1. Let Z be a nonempty class of V-free metabelian groups. A non- 
abelian finitely generated group is V-free metabelian if it is 1 o-approximable by X- 
group. 

In particular, a nonabelian finitely generated group is V-free metabelian if it is 
1o-approximable by a free metabelian group of rank 2 (respectively, 1%-residually a 
finitely generated subgroup of a free metabelian group of rank 2). 

PROOF. Let Z be a nonempty class of V-free metabelian groups and G a non- 
abelian finitely generated group. 

We suppose that G is V-free metabelian. Since finitely generated metabelian 
groups satisfymax-n (see [23, 15.3. 1]), G hasafinite presentation( gl,... , gs I rl (k), 
... , rk (g) ) in the variety of metabelian groups. Let us prove that G is o0- 
approximable by k-group. Let n be an integer > 1 and let h1, ... , hn be elements 
of G not equal to 1. We have h1 = wi (), .. , hn = wn (9) where the wi are words 
of the free group on xl, . . ., xs. Clearly G satisfies the following existential sentence 
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in the language of groups 

n k 

X Xi... ,xs ( A i(3) ?1A A ri(3) = 1) 
i=1 i=1 

Let H E Z. By hypothesis H F X, and there are a, ... as E H such that 
wi (a) y 1 for i = 1, ... , n and ri (a) = 1 for i = 1, . . . ,k. By von Dick's theorem, 
we define a homomorphism f from G into H, by setting f (g1) = ai for i = 1,... , s. 
Clearly, we have f (hi) 7& 1 for i = 1,... , n. 

Conversely, suppose that G is 1%-approximable by k-group. Since G is non- 
abelian, by the Main Theorem, to prove that G is V-free metabelian it suffices to 
prove that a noncyclic free metabelian group satisfies the existential theory of G. 
Let F be a noncyclic free metabelian group. Let X be an existential sentence true in 
G. We may suppose that X is in the form 

n k 

3~Xj... Xs( A wi (xT) y-1 AA vi(xT)=1). 
i=l i=l 

By hypothesis on G there exists H E X such that H F q. Since H is V-free 
metabelian we have F l q. H 

The Main Theorem implies that if A is a torsion-free metabelian group and if L 
is a torsion-free Z[A]-module, then any nonabelian subgroup of M(A, L) is V-free 
metabelian. We can use this fact to prove that certain groups which are close from 
being free metabelian groups are V-free metabelian. 

We recall that a group G is termed parafree metabelian if G is residually nilpotent 
and if G has the same lower central sequence as some free metabelian group (see 
[2] for the existence of nonfree parafree metabelian groups). Baumslag shows in 
[3] that many properties of free metabelian groups persist in parafree metabelian 
groups. Here we obtain 

COROLLARY 5.2. A noncyclic parafree metabelian group is V-free metabelian. 

PROOF. The proof of [3, Theorem 3.2 and its corollary] shows that a parafree 
metabelian group can be embedded in a group of the form M(A, L) where L is 
the ring of power-series (over 2) in the variables ai,2 (i = 1, 2 and A C A), where 
A is the multiplicative subgroup of L generated by the elements 1 + a2,2 (A C A), 
and where A is a well-ordered set. Now it is easy, using simple computations, to 
prove that the natural morphism between 2[A] and L is an embedding. Since L 
is an integral domain, it follows that L is a torsion-free 2[A]-module. Moreover, 
A is torsion-free and a noncyclic parafree metabelian group is nonabelian. Thus 
Corollary 5.2 follows from the Main Theorem. H 

We remark that Gaglione and Spellman proved in [11] that there exists a (abso- 
lutely) parafree group which does not statisfy the universal theory of (absolutely) 
free groups. 

Let 7r be a set of prime numbers. We say that a group G is a D,-group if for 
all p c 7r and all g c G there exists a unique h c G such that hP = g. A group 
G is D7-free metabelian if it is free in the class of metabelian D,-groups (see [14]). 
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Ledlie proved in [14] that a Dr-free metabelian group can be embedded in a group 
M(A, L) where A is a divisible torsion-free abelian group (written multiplicatively) 
and where L is a vector space over the quotient field of 2[A]. Hence, a D,-free 
metabelian group of rank > 2 is V-free metabelian. 

It is known that a nonabelian 2-generator subgroup of a (para)free metabelian 
group is either F2(.W2) or ZwrZ (see [3, Theorem 4.3 and pp. 525]). We can prove 
this for V-free metabelian groups. 

COROLLARY 5.3. A nonabelian 2-generator subgroup of a V-free metabelian groups 
is either F2 (.2) or ZwrZ. In particular, a 2-generator V-free metabelian group is 
either F2(s2) or ZwrZ. 

It is probably "well known" that a nonabelian 2-generator subgroup of a wreath 
product of the form 2(k) wr7/(r) is either F2 (V2) or ZwrZ. With this fact, Corollary 
5.3 is an immediate consequence of the Main Theorem. That may be, since we do 
not find any complete proof in the literature, we will prove Corollary 5.3. 

PROOF. Let G be a V-free metabelian group and let H = (g, h) be a nonabelian 
subgroup of G. By the Main Theorem, H is a p-group. We put Fit(H) = Fit and 
H = H/Fit. 

We begin by supposing that g and h are linearly independent modulo Fit. Let 
F be a free metabelian group on a and b. Since H is metabelian, we define an 
epimorphism f from F onto H, by f (a) = g and f (b) = h. Let us prove that f 
is an isomorphism. Let x be an element of F such that f (x) = 1. We can write 

x = a bbm J7J[a b]njamli bm2i 

i=1 

where n, m, ni, mkj E 2 and where (miJ, M2i) ? (mIJ, Mi2,j) for i y j (clearly 
x = anbm mod(F') and use [23, 5.1.5] to prove that F' is generated by [a, b] as an 
F/F'-module). We have 

f (x) = gn hm J7J[g, h]nigmlihm2ji 

i~=1 

Hence, since H' < Fit, we have gnhm = 1 mod(Fit). By hypothesis on g and h, it 
follows that n = m = 0. Clearly, [g, h] y& 1. Since Fit is a torsion-free 2[H]-module 
we have 

Enigm1lihm2i = 0 in 2[H]. 
i= 1 

But, by hypothesis on the mkjg and on g and h we have gmlihm2i y gmli~m2,i 

mod(Fit), for i y j. Hence, we must have n1 = =n= = 0. Thus x = 1 and f is 
an isomorphism. 

Now we suppose that g and h are not linearly independent modulo Fit and we 
are going to prove that (g, h) - ZwrZ. By Lemma 4.9, it suffices to prove that there 
exist u, v E H such that H = (u, v), u E H\Fit and v E Fit. For this, we need the 
following well-known lemma. 
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LEMMA 5.4. If H is a 2-generator group and if A is a normal subgroup of H such 
that H/A is infinite cyclic, then there exist u, v E H such that H =(u, v) and v E A. 

PROOF. The following proof has been communicated to me by Oger. By hypoth- 
esis there exists u c H such that H = (u, A) and there exist X1, X2 E H such that 
H = (Xl, X2). We have xi = unlx' and x2 = un2x1 where xl, x2 E A and nj, n2 E 2. 
We can choose xI, x2 so as max{In, 1, jn2 } is minimal, and then we may suppose 
that nl > 0 and n2 > 0. If ni or n2 is equal to zero, then we obtain what we 
want. So, we may suppose that 1 < n, < n2. We put yi = xl and Y2 = x2x. I 

Clearly H = (Y1,Y2), and we have Yi = um'yj and Y2 = utm2y2 where Y1Y2 E A 
and ml,m2 E 2. Since H/A is infinite cyclic, ml = nl and m2 = n2 - n11. Then 

max{Imi |, Im2I} < max{InI 1, In2I}. This contradicts the choice of xi and x2. H 

We come back to the proof of Corollary 5.3. By Lemma 5.4, it remains to prove 
that H/Fit is infinite cyclic. By hypothesis on g and h, there exist n, m C Z with 
(n, m) y (0,0 ) such that g'hm = 1 mod(Fit). Since Fit is isolated in H, we may 
suppose that n y 0, m y 0 and that g.c.d (n, m)= 1. Thus there exist t, s c Z such 
that nt + ms = 1. Then, it is easy to see that H/Fit = (g-shtFit). So, H/Fit is 
infinite cyclic. H 

In the class of V-free metabelian group we can distinguish the groups whose 2- 
generator nonabelian subgroups are isomorphic to ZwrZ. We can prove that if G is 
finitely generated the following properties are equivalent: (1) G is V-free metabelian 
and the 2-generator nonabelian subgroups of G are isomorphic to ZwrZ; (2) G is 
a p-group and G/Fit(G) is infinite cyclic; (3) G - M((X), L) where L is a non- 
trivial torsion-free 2[X, X-']-module. Moreover, using [4], we can prove that (1) 
is equivalent to (4) G is V-free metabelian and contains at most to nonisomorphic 
subgroups. Moreover, since 2[X, X-I] contains 10 ideals on 2 generators which 
are not isomorphic as Z[X, X- ']-modules, we have to nonisomorphic 3-generator 
V-free metabelian groups. 

?6. Remarks. We can deduce from [5] that there is an algorithm which decides 
whether or not a given finitely generated metabelian group is a p-group (we thank 
the authors of this paper for their helpful comments on [5]). Hence, by the Main 
Theorem, we have an algorithm which decides whether or not a given finitely 
generated metabelian group is a V-free metabelian group (respectively a subgroup 
of a group of the form 2(k) wr2(r)). 

If A1,... , Am is a finite sequence of groups then we denote by wrml Ai the left- 
iterated wreath product Alwr(A2wr(... (Am-IwrAm) ... )). In [8] we proved that 
if the Ai are torsion-free abelian groups then the universal theory of wr7_LAi is 
decidable (if the Ai are nontrivial and if B1, . . . , Bm are nontrivial torsion-free 
abelian groups, then wr7LIAi and wr7 I Bi have the same universal theory); but if 
m > 3 and if the Ai are nontrivial we do not have an explicit description of the 
universal theory of wrm LAi. It will be interesting to obtain such a description. 
Notice that if m > 3 then wr717Z does not have the same universal theory as a 
noncyclic free solvable group of class m (see [8, Section 2]). 

We have recently studied the theory 2t from the point of view of "model theoretic 
algebra." We have described explicitly the existentially complete models of 2t and 
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we have found a natural complete theory T which is decidable and classifiable (w- 
stable and bidimensional) such that every existentially complete model of 2t is a 
model of T (in particular all the existentially complete models of %l are elementarily 
equivalent). Unfortunately the theory 2t has no model companion, but the theory 
T is a natural extension of the theory A: T and 2t are cotheory and any formula of 
Ygp is equivalent modulo T to a V] formula. Notice that this gives another point of 
view on a recent work of Delon and Simonetta (see [26, Chapitre 4]) which is also 
connected with the question of the above paragraph. We consider these and other 
questions in a future paper. ' 
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