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Abstract: In decentralised cognitive radio (CR) networks, establishing communication sessions between a communicating pair
requires them to meet each other on a common channel via a ‘rendezvous’ process. Devising distributed CR rendezvous
protocol is a challenging task as cognitive nodes are not necessarily synchronised, and may have different perceptions of
channel availability. In this study, the authors present M-Rendezvous, an order-optimal rendezvous protocol exploiting the
performance gain brought by having multiple radios at cognitive nodes. As a distinguished feature, M-Rendezvous is a unified
rendezvous protocol that can operate in both homogenous case where both of the rendezvous nodes are equipped with only
one radio or multiple radios, and heterogeneous case where one of the rendezvous nodes has single radio and the other has
multiple radios. In both cases, by rigorous analysis, the authors demonstrate that M-Rendezvous can guarantee rendezvous
over every channel with bounded and order-minimal delay even when rendezvous nodes have asynchronous clocks and
asymmetrical channel perceptions.

1 Introduction
Cognitive radio (CR) [1] has emerged in recent years as a
promising technology to enable more efficient spectrum utilisation
by allowing unlicensed cognitive users to access the spectrum of
licensed primary users (PUs) in an opportunistic way. In
decentralised CR networks (CRN), establishing communication
sessions between a communicating pair requires two nodes to meet
each other on a common channel via a rendezvous process.
Moreover, with a high probability, more than one communicating
pairs would stay on a common channel, which requires identifying
multiple available common channels for possible alternative if
collision happened. Therefore, multi-radio rendezvous is presented
as a natural scheme to alleviate the possible collision among
multiple communications pairs in which different radios act as
different roles, i.e. anchor radio or scan radio.

However, designing distributed channel rendezvous protocols is
a challenging problem under the opportunistic spectrum access
paradigm for the following reasons:

(1) Asymmetrical perceptions of channel availability: Two
communicating cognitive nodes may have different perceptions of
channel availability as the PU transmission may unpredictably vary
at different locations. Such channel perception asymmetry
increases the difficulty in finding a common rendezvous channel
free of PU signals.
(2) Lack of clock synchronisation: In decentralised CR systems, it
is difficult to maintain tight synchronisation among the local clocks
of cognitive nodes. Without clock synchronisation, rendezvous
protocols may fail when using pre-scheduled channel hopping
(CH) sequences.
(3) System scalability versus rendezvous delay: When the system
scales, a rendezvous pair (two nodes wishing to establish a
communication session) need to search through a large number of
channels before successfully achieving rendezvous, thus suffering
from significant rendezvous delay.

A widely adopted approach to facilitate the rendezvous process
in conventional multi-channel wireless networks is to deploy a
common control channel (CCC) that can be either static [2, 3] or
dynamic [4, 5]. However, rendezvous failure is inevitable when the
CCC is temporarily occupied by PU transmissions or when the
CCC becomes congested.

To mitigate the rendezvous failure in CCC-based approaches,
rendezvous protocols based on random CH have been proposed in
which each node hops randomly among the available channels to
rendezvous with others in an uncoordinated fashion [6, 7]. The
random CH-based rendezvous protocol fails to bound the worst-
case rendezvous latency (more precisely, the maximal time-to-
rendezvous, MTTR) and thus suffers from the long-tail rendezvous
latency problem in which two rendezvous nodes may experience
extremely long delay before rendezvousing on a common channel.

Recently, a number of sequence-based CH rendezvous
approaches (cf. [8–40]) have been developed to achieve bounded
MTTR for any pair of rendezvous nodes. However, the rendezvous
difficulty problem for the discovery of a common channel between
two rendezvous nodes still remains because they cannot exchange
any information regarding the asymmetric perceptions of channel
availability. Meanwhile, existing CH approaches incur a significant
rendezvous delay in terms of both average and worst-case
rendezvous delay when the number of channels for cognitive users
to scan becomes large.

1.1 Related works

With the rapid development of the wireless communication
technology and the significant decreasing prices of radios, it is
nowadays feasible to equip a wireless device with multiple radios,
each operating on a separated spectrum channel. Equipping all or
some nodes with multiple radios can significantly boost the
network capacity by enabling simultaneous operations over
multiple channels and mitigating interferences through proper
channel assignment.

Hence, multi-radio rendezvous has attracted many researchers
[33–40]. In [33, 34], the authors proposed a new rendezvous
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algorithm, called role-based parallel sequence (RPS), in which
nodes stay in a specific channel in one dedicated radio and hop on
the available channels with parallel sequences in the remaining
general radios. In [35], the authors proposed an adjustable multi-
radio rendezvous algorithm in which m radios of a node are
partitioned into two groups: k stay radios and (m − k) hopping
radios. In [36], the authors proposed a deterministic multi-grid-
quorum CH which exploits multiple overlapped grid quorums to
map the available channels at each device to its radios. In [37], the
authors followed a systematic approach by first proposing a role-
based algorithm that ensures maximum rendezvous diversity and
then extending it to a common strategy through the use of multiples
radios. In [38], the authors exploited the mathematical construction
of sunflower sets to develop a single-radio sunflower set-based
pairwise rendezvous algorithm and proposed an approximation
algorithm to construct disjoint sunflower sets. However, Yang et al.
[38] cannot provide guaranteed rendezvous when two users start
rendezvous process at the same time. In [39], the authors presented
a quorum-based CH system which can be used for implementing
rendezvous protocols in dynamic spectrum access networks that
are robust against link breakage caused by the appearance of
incumbent user signals. However, Li et al. [39] require that the
numbers of radios in different nodes are even. In [40], the authors
proposed a chinese remainder theorem based multi-radio
rendezvous (CMR) algorithm for heterogeneous CRNs. However,
CMR requires that there exist at least two different prime CH
sequence lengths.

In addition, Banerjee et al. [41] studied an energy harvesting
(EH) based two-hop relay assisted CR system with minimising
secrecy outage probability under some constraints. Banerjee and
Maity [42] studied a residual energy maximisation problem on a
two-hop decode-and-forward relay-assisted CRN with an
eavesdropper. Banerjee et al. [43] studied the maximisation
problem of the sum secondary throughput in a cooperative CRN
with an eavesdropper as well as EH capability.

1.2 Major contributions

In this paper, we propose an order-optimal multi-radio CR channel
rendezvous protocol, called M-Rendezvous only requiring different
IDs for different nodes [14], by exploiting the benefits brought by
the rendezvous diversity created by multiple radios in minimising
the rendezvous delay and increasing the rendezvous robustness. As
a notable feature, M-Rendezvous is a unified channel rendezvous
protocol that can operate in both homogenous case where both of
the rendezvous nodes are equipped with only one radio or multiple
radios, and heterogeneous case where one of the rendezvous nodes
has single radio and the other has multiple radios. In both cases, by
rigorous analysis, we demonstrate the following properties of M-
Rendezvous.

Guaranteed rendezvous in fully decentralised environments: M-
Rendezvous operates in a fully decentralised fashion without any
CCC, and ensures that any two nodes can rendezvous within a
finite number of time slots.

Maximum rendezvous diversity: M-Rendezvous guarantees
rendezvous over each channel. The ability to rendezvous over all
channels minimises the probability of rendezvous failures that are
caused by the unpredictable presence of PU signals.

Minimal worst-case rendezvous delay: The worst-case
rendezvous latency of M-Rendezvous is linear to the number of
channels in the system and decreases squarely with the number of
radio per node. Note that the linear rendezvous delay is the optimal
bound for any channel rendezvous protocol achieving full
rendezvous diversity.

Robustness against asymmetrical channel perceptions: M-
Rendezvous does not require cognitive nodes to have the same
view on the accessible channel set and the channel index and can
guarantee rendezvous even when the rendezvous nodes have only
one commonly accessible channel and asymmetrical channel index
mappings.

Robustness against clock drift: M-Rendezvous achieves the
same rendezvous performance even when the clocks of two
rendezvous nodes are not synchronised.

The above properties make M-Rendezvous especially suitable
for the decentralised CR environment. To see this more formally,
consider a rendezvous pair a and b who can access a set N of
channels. Due to PU activity, the accessible channel set at node i
(i ∈ {a, b}) is Ni = N Pi with Pi being the set of channels
occupied by PU at node i, and hence Ni being the set of channels
available for node i's access. M-Rendezvous guarantees rendezvous
on every channel h ∈ Na⋂Nb as long as Na⋂Nb ≠ ∅.

Compared to [33–40], our proposition M-Rendezvous is a
unified channel rendezvous protocol that can operate in both
homogenous case and heterogeneous case. Moreover, M-
Rendezvous can guarantee full rendezvous diversity and is robust
against both channel perception asymmetry on both accessible
channel set and channel index.

One point worth commenting is that a naive rendezvous
solution of using a single-radio rendezvous protocol for single-
radio nodes and a multi-radio rendezvous protocol if multiple
radios are available cannot solve the rendezvous problem because
this approach either fails to provide bounded rendezvous delay or
cannot achieve full rendezvous diversity.

1.3 Paper organisation

The rest of the paper is organised as follows. Section 2 describes
the system model and formulates the optimal channel rendezvous
problem. Section 3 establishes the performance bound for any
channel rendezvous protocol by relating the two important
performance metrics, rendezvous delay and diversity. Section 4
presents the design of M-Rendezvous for multi-radio and performs
a theoretical analysis on its performance in both homogenous and
heterogeneous cases. Section 5 further investigates M-Rendezvous
under the more challenging environment where rendezvous nodes
have asymmetrical channel perceptions. Section 6 presents the
simulation results. Section 7 concludes the paper.

2 System model and problem formulation
In this section, we describe the system model and introduce the
performance metrics, based on which the optimal channel
rendezvous problem is further formulated.

2.1 System model and design metrics

We consider a time-slotted CRN operating on a set N of N licensed
orthogonal channels. Each cognitive node i is equipped with ri ≥ 1
radios allowing it to exploit ri channels simultaneously. In such
dynamic and opportunistic spectrum sharing paradigm, channel
rendezvous is a crucial process that enables a communication pair
to meet each other on a common channel before any effective data
exchange.

We are interested in devising channel rendezvous protocols that
can enable pairwise rendezvous on every available channel for any
asynchronous pair with the minimal worst-case rendezvous delay.
In what follows, we introduce three relevant performance metrics
to access any CR rendezvous protocol, based on which we
formulate the optimal channel rendezvous problem.

2.2 Optimal channel rendezvous problem formulation

A commonly adopted rendezvous solution is CH where each node
hops its radios across different channels based on random or
specific CH patterns so as to rendezvous with its peers. A CH
sequence determines the order with which a radio visits all
available channels. In the following, we define the CH pattern of a
cognitive node characterising the way the node hops its radios
across channels.
 

Definition 1 (CH pattern): The CH pattern of a cognitive node
with r radios is defined as a set of CH sequences u ≜ {um}1 ≤ m ≤ r
where um is the CH sequence of the mth radio, defined as
um ≜ {um

t }1 ≤ t ≤ T, where T is the period of the sequence [A random
CH sequence can be regarded as a special case where T → ∞.],
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um
t ∈ N is the channel index of the sequence um in time slot t of a

CH period. In the case r = 1, the CH pattern degenerates to the CH
sequence u1.

Given two CH patterns u and v, if ∃t and m, m′ such that
um

t = vm′
t = h ∈ N, we say that u and v can rendezvous in slot t on

channel h. Slot t is called the rendezvous slot and channel h is
called the rendezvous channel between u and v. Let C(u, v) denote
the set of rendezvous channels between u and v. It holds that
C(u, v) ≤ N.

 
Example 1: To illustrate the above definition, consider a system

with N = 6 and a rendezvous pair u and v equipped with
ru = rv = 2 radios and whose CH patterns are: u1 = {1, 2, 3},
u2 = {4, 5, 6} and v1 = {1, 3, 5}, v2 = {2, 4, 6}. We can observe that
u and v can rendezvous on channels 1 and 6 at slots 1 and 3,
respectively, i.e. C(u, v) = {1, 6}.

To model the situation where the clocks of different nodes are
not synchronised, we apply the concept of cyclic rotation to the CH
sequences. Specifically, given a CH sequence w, we denote w(k) a
cyclic rotation of w by k time slots, where k is referred to as the
cyclic rotation phase. Given a CH pattern u, we denote u(k) a
cyclic rotation of all the CH sequences um ∈ u by k time slots, i.e.
u(k) ≜ {um(k)}m ∈ [1, r]. Consider Example 1, we have
u(2) ≜ {u1(2), u2(2)} where u1(2) = {3, 1, 2}, u2(2) = {6, 4, 5}.

We now formally express the worst-case rendezvous delay and
rendezvous diversity defined in Section 2.1 when nodes' clocks are
not synchronised.

• Maximal time-to-rendezvous: for CH patterns u and v, we
define D(u, v) as the first rendezvous slot between them and we
define Γ(u, v) = maxk, l D(u(k), v(l)) as the worst case MTTR
between u and v among all possible cyclic rotation phases k and
l.

• Rendezvous diversity: for CH patterns u and v, we define the
worst case rendezvous diversity as
Δ((u, v)) ≜ mink, l C(u(l), v(k)) .

• Full rendezvous diversity: given perception channel sets Na and
Nb of nodes a and b, if there exists CH sequences u and v for a
and b such that C(u, v) = Na⋂Nb , then nodes a and b can
achieve full rendezvous diversity under u and v.

• Rendezvous channel load: for X rendezvous pairs, denote xi the
number of pairs rendezvousing on channel i,
L ≜ (∑i ∈ N xi)2/(N∑i ∈ N xi

2) quantifies the degree to which
rendezvous are distributed among the channels.

We are now ready to formulate the optimal channel rendezvous
problem.

 
Problem 1: The optimal channel rendezvous problem is defined

as follows:

minimise T ,
subject to ∀ta0 ∈ [0, Ta − 1], tb0 ∈ [0, Tb − 1], ∃t ≤ T

such that xa
t (ta0) = xb

t (tb0) = h, ∀h ∈ Na⋂Nb .

That is, devising CH patterns to minimise T, the worst-case
rendezvous delay while achieving full rendezvous diversity
between any pair of nodes a and b for any initial time offsets ta0 and
tb0 and any channel perception Na and Nb.

3 Protocol-independent performance bound
Rendezvous delay and diversity are the keys performance metrics
in evaluating any channel rendezvous protocol. It is insightful to
note that there exists an intrinsic trade-off between reducing the
rendezvous latency and increasing the rendezvous diversity.
Intuitively, focusing on a subset of channels reduces the
rendezvous latency but also limits the rendezvous diversity. The
following theorem analytically quantifies this trade-off to establish

the performance bound of channel rendezvous in the generic
protocol-independent context.
 

Theorem 1 (Protocol-independent rendezvous performance
bound): For any CH-based channel rendezvous protocol achieving
full rendezvous diversity, the worst-case rendezvous latency
(MTTR) between two nodes a and b is lower-bounded by N /rarb,
i.e.

Γ(u, v) ≥ N
rarb

, ∀u, v,

where u and v denote the CH patterns of a and b, ra and rb denote
the number of radios of a and b.
 

Proof: We denote the period of the CH patterns u and v as Tu
and Tv. Without loss of generality, we fix u and cyclically rotate v
by l where l = 0, 1, …, Tu − 1. Now consider u and v(l). Recall the
definition of MTTR that Γ((u, v)) is the worst case rendezvous
delay, there must be at least one rendezvous slot between u and v(l)
each Γ((u, v)) slots, resulting a minimal number of rendezvous slots
Tv/Γ(u, v) between them during Tv. Let A denote the total number
of accumulated rendezvous between u and v(l) as l is incremented
from 0 to Tu − 1, we have

A ≥ TuTv
Γ(u, v) . (1)

On the other hand, let n(ui, h) (n(vj, h), respectively) denote the
number of time slots in sequence ui (vj, respectively) that are
assigned with channel h. We can express the period Tu for any
1 ≤ i ≤ ra as Tu = ∑h = 1

N n(ui, h). Symmetrically, we can express
the period Tv for any 1 ≤ j ≤ rb as Tv = ∑h = 1

N n(vj, h). It then
follows that

TuTv = Tv ∑
h = 1

N
n(ui, h) = Tu ∑

h = 1

N
n(vj, h)

= ∑
h = 1

N Tvn(ui, h) + Tun(vj, h)
2 .

(2)

Since u and v achieve maximal (full) rendezvous diversity, for
any channel h, the total number of rendezvous that involve a given
time slot, with vj is n(ui, h). Since there are n(vj, h) time slots in vj
that are assigned channel h, the total accumulated number of
rendezvous between ui and vj(l), as l is incremented from 0 to
Tu − 1, in which the rendezvous channel is h, is n(ui, h) ⋅ n(vj, h).

Hence, the total number of accumulated rendezvous as l is
incremented from 0 to Tu − 1 is

A = ∑
1 ≤ i ≤ ra, 1 ≤ j ≤ rb

n(ui, h) ⋅ n(vj, h) .

Noticing that

n(ui, h) + n(vj, h)
2

2

≥ n(ui, h) ⋅ n(vj, h),

it follows from (2) that

ATuTv = ∑
1 ≤ i ≤ ra, 1 ≤ j ≤ rb

Tvn(ui, h) ⋅ Tun(vj, h) ≤ rarbTu
2Tv

2

N .

It then follows from (1) that

rarbTuTv
N ≥ TuTv

Γ(u, v) ,
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which leads to Γ(u, v) ≥ N /rarb. □
Theorem 1 leads to the following observations:

• Asymptotically, when ra ≃ rb ≃ r, for any rendezvous protocol
achieving full rendezvous diversity, the lower-bound of the
rendezvous delay scales linearly in the number of channels N
while decreases squarely in r, i.e. Γ ≃ O N /r2 .

• When ra = rb = 1, Theorem 1 characterises the rendezvous
delay of the single radio case, which has been extensively
explored in the literature. However, it is worth noting that most
of the existing work on single-radio channel rendezvous
achieves the rendezvous delay lower-bound O(N) without
ensuring rendezvous on every channel.

• In the heterogeneous case where a has multiple radios while b
has only one radio, Γ decreases linearly in ra, meaning that
having only one node equipped with multiple radios can still
bring rendezvous performance gain linear to ra.

In what follows, we develop an order-optimal multi-radio
channel rendezvous protocol, termed as M-Rendezvous, that has
O N /rarb  rendezvous delay with full rendezvous diversity.

4 M-Rendezvous: multi-radio nodes
This section presents the design of M-Rendezvous for multi-radio
nodes. We start by specifying the M-Rendezvous design and
proceed to establish its performance in the homogeneous case
where both of the rendezvous nodes a and b have multiple radios,
i.e. ra, rb > 1. We then relate the rendezvous delay and diversity to
a number of protocol parameters to further fine-tune M-
Rendezvous to balance the design metrics.

4.1 Protocol description

Our proposed rendezvous protocol, M-Rendezvous, is an
asynchronous CH-based channel rendezvous protocol that can
achieve order-minimal worst-case rendezvous delay with full
rendezvous diversity. The idea of M-Rendezvous comes from the
observation that given two nodes each equipped with at least two
radios, if each node keeps one radio on a fixed channel and another
radio scanning sequentially across the channels, the two nodes are
ensured to rendezvous on some channel, as illustrated in Fig. 1. 

Specifically, each node i running M-Rendezvous classifies its
radios into two groups, ra

i  anchor radios (indexed from 1 to ra
i ) and

rs
i = r − ra

i  scan radios (indexed from 1 to rs
i). M-Rendezvous

operates according to a periodic slot-based CH sequences in which
a period consists of Fi ≜ N /ra

i  frames (indexed from 1 to Fi), each
composed of Si ≜ (N − ra

i )/rs
i slots (indexed from 1 to Si)

<DIFadd>[To streamline our presentation and make the analysis
clear, we assume that both Fi and Si are integers. In generical cases
when this is not the case, the following operations can be
performed before executing the protocol: expand the channel set
from {1, ⋯, N} to {1, N = k0ra

i } where N ≤ k0ra
i . In the expanded

channel set, channels 1 to N are the original channels, channel
N + 1 to N′ = k0ra

i  correspond to the channels randomly chosen
from channels 1 to N. After the expansion, Fi becomes an integer.
We now show that by appropriately choosing k0, we can ensure that
Si is also integer. In this regard, let k denote the integer such that
(k − 1)ra

i < N ≤ kra
i . We can find k0, with k ≤ k0 ≤ k + rs

i − 1, such
that k0 − 1 is divisible by rs

i; hence
Si = (N − ra

i )/rs
i = (k0ra

i − ra
i )/rs

i = (k0 − 1)ra
i /rs

i is integer.
Moreover, since in practice ra

i , rs
i ≪ N, N′ is close to N, thus the

expansion operation will not degrade significantly the rendezvous
performance.]</DIFadd>. The CH pattern of each node is repeated
each FiSi time slots, as illustrated in Fig. 2 for N = 8, rs

i = ra
i = 2

and Fi = 4, Si = 3. Generically, the CH pattern of node i is
specified as follows:

• Anchor radio: the anchor radio mi (1 ≤ mi ≤ ra
i ) operates on

channel f ⊕ (N(mi − 1))/ra
i  in frame f (1 ≤ f ≤ Fi), where ⊕

and ⊖ denote the operations of addition and substraction
modulo N, respectively. There are two properties hinging behind
such CH pattern: (i) an anchor radio scans sequentially the N
channels by staying on one channel for Si slots (one frame
duration), and (ii) two neighbouring anchor radios are separated
by Fi channels.

• Scan radio: the rs scan radios scan from channel 1 to N (by
keeping each scan radio scanning one channel each slot) except
the channels on which operate the anchor radios. There are two
properties hinging behind the scan CH pattern: (i) the scan
radios never scan the channels of the anchor radios so as to
maximise the number covered channels, and (ii) within each
frame, all channels are scanned by either an anchor radio or a
scan radio.

It can be noted that anchor-anchor, scan-scan, anchor-scan
overlaps all result in rendezvous.

4.2 Rendezvous performance analysis

This subsection studies the rendezvous performance of M-
Rendezvous between two nodes equipped with multiple radios. We
begin by studying the two structural properties of the CH pattern of
M-Rendezvous, which, on one hand, bring more insight on the
anchor and scan radio operation, on the other hand, serve as
building blocks to establish performance bounds. Readers are
referred to Fig. 2 to better understand the properties.
 

Lemma 1 (Structural properties of CH pattern of M-
Rendezvous): The following structural properties of the CH pattern

of M-Rendezvous hold for each node i.

• Pseudo-monotonicity: at any slot t, if a channel h is covered by a
scan radio, then the next channel h ⊕ 1 is covered (by either an
anchor radio or a scan radio) either at the current slot t or the
next slot t + 1;

• Pseudo-continuity: each channel h ∈ N is covered by either an
anchor radio or a scan radio for any consecutive Si slots;

 
Proof: The pseudo-monotonicity follows readily from the CH

pattern in M-Rendezvous. To prove the pseudo-continuity, it

Fig. 1  Example illustrating the idea of M-Rendezvous: a rendezvous pair a
and b, both equipped with r = 2 radios, let one radio (anchor) stay on a
fixed channel and let the other radio scan sequentially across the channels;
rendezvous is achieved in slots 1 and 5

 

Fig. 2  Example illustrating M-Rendezvous for multi-radio nodes: N = 8,
rs

i = ra
i = 2
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suffices to show that starting from any slot of any frame, each
channel h is ensured to be covered by a radio within Si slots. If the
Si slots starting from t = 1 to Si belong the same frame, the pseudo-
continuity follows directly from the CH pattern within a frame.
Otherwise the Si slots span across two frames, denoted as f and
f + 1. In this case, let cm (1 ≤ m ≤ ra

i ) denote the index of the
channel covered by the anchor radio m in the current frame and let
c0 = 0 and cra

i + 1 = N + 1. Let s denote the first channel covered by
the scan radios at the current time slot t = 1. There exists
0 ≤ m0 ≤ ra

i + 1 such that cm0 < s < cm0 + 1.
By examining the CH pattern of M-Rendezvous, we can notice

that for the remaining slots of frame f, the scan radios need to scan
N − (s − 1) − (ra

i − m0) channels, which requires
τ = [N − (s − 1) − (ra

i − m0)]/rs
i slots. Now consider the remaining

Si − τ slots in frame f + 1, it follows from the CH pattern that the
anchor radios cover channels cm ⊕ 1 (1 ≤ m ≤ ra

i ) in frame f + 1.
Noticing that cm0 < s < cm0 + 1, we have cm0 + 1 ≤ s ≤ cm0 + 1. It
follows from the CH pattern in frame f + 1 that in the first Si − τ
slots of frame f + 1, the channels from 1 to h are covered, where

h = rs
iτ + m0

= rs
i Si − N − (s − 1) − (ra

i − m0)
rs

i + m0

= rs
i N − ra

i

rs
i − N − (s − 1) − (ra

i − m0)
rs

i + m0

= s − 1.

Hence, every channel is covered within Si slots, with channels s to
N covered in frame f and 1 to s − 1 in frame f + 1. We thus
complete the proof. □

Armed with Lemma 1, we next study the rendezvous delay and
diversity of M-Rendezvous. Specifically, consider a rendezvous
pair a and b, we show that if rs

i, ra
i ≃ O(r) (i ∈ {a, b}), the worst-

case MTTR is bounded by O N /r2  time slots (Theorem 2) and the
full rendezvous diversity is achieved within at most O N2/r2  slots
(Theorem 3). Before delving into the technical details of the
analysis, we provide the intuitions of the theorems and their proofs,
as illustrated in Fig. 3:

• Rendezvous delay: Consider the anchor radios of a that stay in
the same channels for the entire frame of O N /r  slots and
consider the scan radios of b that scan sequentially across the
channels within one frame. Let O(r) be the number of scan
radios of b, then if node b using O(r) scan radios chases the
anchor radios of a, we know that a and b will rendezvous on
some channel within at most O N /r2  slots;

• Rendezvous diversity: Following the above explanation, a
rendezvous is guaranteed on the channels covered by the anchor
radios of a within at most O N /r2  slots. Moreover, within
O N /r  frames each channel is covered by an anchor radio of a
for one entire frame, leading to a rendezvous on every channel
within at most O N /r  frames, i.e. O N2/r2  slots.

 
Theorem 2 (Rendezvous delay): The worst case rendezvous

delay (MTTR) of M-Rendezvous Γ between a and b is

min Fa − 1
rs

b , Fb − 1
rs

a

slots where Fi = N /ra
i  (i ∈ {a, b}). Asymptotically, if rs

i, ra
i ≃ O(r)

(i ∈ {a, b}), it holds that Γ ≃ O N /r2 .
 
Proof: Recall the CH pattern of the anchor radios in M-

Rendezvous that any two neighbouring anchor radios of a are
separated by Fa channels, it follows from Lemma 1 (pseudo-
monotonicity) that there exists channel h covered by an anchor
radio m of node a such that after at most ⌈(Fa − 1)/rs

b⌉ − 1 slots,
one radio of b (either an anchor radio or a scan radio) will cover
channel h. Let th denote the index of such slot, it holds that
th ≤ ⌈(Fa − 1)/rs

b⌉ − 1.
Now consider the anchor radio m of a at slot th, it covers either

channel h or channel h ⊕ 1. If it covers channel h, then a
rendezvous is achieved at slot th on channel h. We now prove the
case where it covers channel h ⊕ 1. On one hand, it follows from
the CH pattern of the anchor radios that it will still cover channel
h ⊕ 1 in slot th + 1. On the other hand, it follows from the pseudo-
monotonicity in Lemma 1 that channel h ⊕ 1 is covered by a radio
of b in either slot th or slot th + 1, both leading to a rendezvous with
the delay of th and th + 1, thus upper-bounding the MTTR by
⌈(Fa − 1)/rs

b⌉.
Symmetrically, we can upper-bound the MTTR by

⌈(Fb − 1)/rs
a⌉. Hence, the MTTR upper-bound is

min Fa − 1
rs

b , Fb − 1
rs

a .

Asymptotically, if rs
i, ra

i ≃ O(r) (i ∈ {a, b}), we have Γ ≃ O N /r2 .
□

 
Theorem 3 (Rendezvous diversity): M-Rendezvous can

guarantee rendezvous on all the N channels between a and b
(assume Fa ≥ Fb) within at most Sa(Fa + 1) − 1 slots.
Asymptotically, if rs

i, ra
i ≃ O(r) (i ∈ {a, b}), the full rendezvous

diversity is achieved within O N2/r2  slots.
 
Proof: Recall Lemma 1 (pseudo-continuity), within a frame

where the anchor radio l of node a (1 ≤ l ≤ m) covers channel hl
for Sa slots, a rendezvous is ensured to occur in the frame between
the anchor radio l and a radio of node b on channel hl. It then
follows from the CH pattern of node a that within Fa frames, i.e.
SaFa slots, each channel is covered by an anchor radio of a for one
frame, resulting in the full rendezvous diversity. Due to the initial
clock drift of a, the first entire frame where every anchor radio of i
covers a channel for Sa slots must occur at most after Sa − 1 slot.
Hence, the full rendezvous diversity is guaranteed within at most
Sa(Fa + 1) − 1 slots, which approximates to O N2/r2

asymptotically. □
Theorem 2 guarantees that a rendezvous pair with any clock

drift between them can rendezvous within at most O N /r2  slots.
Theorem 3 further establishes full rendezvous diversity is achieved
within at most O N2/r2  slots. This capability to rendezvous on
every channel significantly improves rendezvous robustness by
minimising the impact of PU activities.

4.3 Optimality and optimisation of M-Rendezvous

Armed with the theoretical results established in the previous
subsection, we investigate the optimality and optimisation of M-
Rendezvous in this subsection. Specifically, we study the following
natural questions:

• How to set the number of anchor and scan radios ra
i  and rs

i to
optimise the performance of M-Rendezvous?

Fig. 3  Example illustrating the performance bound of M-Rendezvous:
N = 5, r = 2 with a clock drift of 5 slots
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• Under what circumstances the exact optimality (rather than
order optimality) derived in Theorem 1 is reached?

In this regard, we consider the rendezvous between a and b by
distinguishing the following two cases.

4.3.1 Approaching exact optimality: system with pre-
assigned roles.: Firstly, it can be deduced from Theorem 2 that
the MTTR Γ is minimised in the degenerated case where ra

a = N,
rs

b = 0 (or symmetrically ra
a = 0, rs

b = N) with the minimum
approaching asymptotically N /r2, the theoretical protocol-
independent delay upper-bound established in Theorem 1.
Intuitively, setting ra

a = N minimises the space between two
neighbouring anchor radios of a, while setting rs

b = 0 maximises
the scan capacity of the scan radios of b, thus minimising the
rendezvous delay as a whole. At the system level, this situation
corresponds to the configuration where a and b operate in different
modes: a operates in the anchor mode [We need to slightly modify
M-Rendezvous in the way that each anchor radio, separated by N /r
channels to the neighbour anchor radios, stays on a channel for N
slots before moving to the next channel.] as all of its r radios are
configured as anchor radios; b operates in the scan mode as all of
its N radios are configured as scan radios. We can notice that if
each node in the network has a pre-assigned role as either a sender
or a receiver (e.g. in half-duplex communication systems or
Bluetooth pairing), this operation setting can be implemented by
letting the senders operate on the anchor mode and the receivers on
the scan mode to approach the exact optimality.

4.3.2 Achieving 1
4 -optimality: system with non-preassigned

roles.: In systems where the role of a node as sender/receiver
cannot be pre-assigned, the above operation setting may fail to
function as two nodes operating on the same mode may fail to
rendezvous with each other. With straightforward algebraic
operations, we can show that by setting ra

a = rs
a = r /2, we can

minimise the worst-case rendezvous delay without the knowledge
of the configuration of b (rs

b and ra
b). The intuition is that without

knowing the configuration of its rendezvous peer, the best strategy
of a node is to evenly distribute its capacity into scan and anchor
efforts. The MTTR Γ in this situation has the same order of
magnitude O N /r2  but with a discount factor 4 as the price of not
having pre-assigned roles. More generically, more flexible
configurations can be chosen for node i by varying ra

i  and rs
i but

keeping them the same order. For example, a larger ra
i  (rs

i,
respectively) can be attributed to nodes more likely to be senders
(receivers). Under this setting, we can still achieve the order of
magnitude minimum for the worst-case MTTR with a smaller
discounting factor in average.

From the designer's perspective, the above two operation
settings can be programmed by configuring the number of anchor
and scan radios to gear M-Rendezvous to target applications and
achieve further design tradeoff.

4.4 Tuning anchor pattern to balance rendezvous channel
load: the case of multiple rendezvous pairs

In this subsection, we extend our study on M-Rendezvous with
multiple rendezvous pairs. In this context, a desirable property is to
balance the rendezvous channel load such that the rendezvous of
different communication pairs are evenly distributed among all the
N channels. Unfortunately, the baseline version of M-Rendezvous
may lead to unbalanced load among different rendezvous channels
when the clocks drifts between different rendezvous pairs fall in
some particular pattern.

To illustrate the problem of unbalanced rendezvous channel
load, we consider an example by extending the example shown in
Fig. 3 to the case of multiple rendezvous pairs. Specifically,
consider x rendezvous pairs, each composed of two nodes al, bl
(1 ≤ l ≤ x) having the same radio configuration as the nodes a and
b in Fig. 3. The clocks of al and bl are synchronised with the clock

of a and b in Fig. 3, respectively. This scenario represents the
situation where nodes in {al} ({bl}, respectively) are
geographically close to each other while significantly more distant
to nodes in {bl} ({al}). Under this context, it can be noted that the
first rendezvous of all rendezvous pairs is achieved on channel 2,
resulting in an extremely unbalanced situation with the rendezvous
channel load L = 1/N that may lead to congestion on channel 2.

The rendezvous channel load unbalancing problem occurs when
the CH patterns of the radios, particularly that of the anchor radios,
of the rendezvous pairs are ‘synchronised’ with a constant offset
due to particular clock drift patterns as illustrated in the example
analysed above. To mitigate this problem, we propose to
‘desynchronise’ the CH patterns of the anchor radios of the
rendezvous pairs. We illustrate our idea in an example of one scan
radio and one anchor radio, while the extension to the generic cases
is trivial. For each CH period of M-Rendezvous, instead of starting
from channel 1, the anchor radio starts from a random channel
h ∈ N. The CH pattern of the scan radios remains the same as that
of baseline M-Rendezvous. Reconsider the example of the previous
paragraph, it can be easily shown that the rendezvous channel load
becomes L = 1 which corresponds to a balanced situation. To
summarise, the introduction of such randomness in the anchor
radio CH pattern desynchronises the anchor radios and thus
balances the rendezvous channel load without degrading the
performance in terms of rendezvous delay and diversity.

5 M-Rendezvous under asymmetrical channel
perceptions
In previous analysis, we implicitly assume that the rendezvous pair
a and b can access all the N channels, i.e. they have the same
perception on the accessible channel set. In this section, we relax
this assumption to show how M-Rendezvous can be adapted to the
situation where the rendezvous pair have asymmetrical channel
perceptions so as to iron out a version of M-Rendezvous that works
in practice.

Specifically, the channel perception asymmetry can be
characterised at the following two levels:

• Asymmetry on accessible channel set: The rendezvous pair a
and b may have different accessible channel set, denoted as Na
and Nb, both subsets of N. For example, in a system with
N = {1, 2, 3, 4}, we may have Na = {1, 2, 3} and Nb = {2, 4}.

• Asymmetry on channel index: Every rendezvous node (say node
a) may have its own channel labelling function to assign each
physical channel in its accessible channel set (say Na) with a
channel index. To formalise the channel index asymmetry, we
define the channel index function as follows.

 
Definition 2: The channel index function Φi for node i is a bi-

injective mapping:

Φi:Ni → {1, ⋯, Ni},

where ∀h1, h2 ∈ Ni, Φi(h1) = Φi(h2) ⇒ h1 = h2. The inverse
mapping of Φi(h1) is denoted as Φi

−1.
Reconsider the example with N = {1, 2, 3, 4} and Nb = {2, 4},

we have Φb(2) = 1 and Φb(4) = 2.
To study the design of M-Rendezvous under such asymmetrical

channel perceptions, we bring the asymmetry to its extreme by
focusing on the case where Na and Nb overlap on only one
channel h, i.e. Na ∩ Nb = {h}, indexed as ha by a and hb by b.

5.1 Protocol-independent bound on rendezvous delay

We start by establishing the lower-bound of the worst-case
rendezvous delay for any channel rendezvous protocol under
asymmetrical channel perceptions.
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Theorem 4 (Protocol-independent worst-case rendezvous delay
bound under asymmetrical channel perceptions): The worst-case
rendezvous delay among all possible channel index functions of
any rendezvous protocol cannot be lower than NaNb/rarb.
 

Proof: We prove the theorem by contradiction. Consider
(NaNb/rarb) − 1 consecutive slots from slot 0 to (NaNb/rarb) − 2.
Since the total number of channel index combinations (ha, hb) with
ha ∈ Na and hb ∈ Nb is NaNb, there must exist one pair {ha

0, hb
0}

such that we cannot find a slot 0 ≤ t ≤ (NaNb/rarb) − 2 such that
one of the ra radios of a operates on channel ha

0 and one of the rb
radios of b operates on hb

0.
Let h* denote the unique channel that both a and b can access.

We show that there exists channel mappings Φa and Φb under
which a and b cannot rendezvous within (NaNb/rarb) − 1 slots. To
this end, we consider a pair of random channel index mappings Φa
and Φb and consider the following cases:

• If Φa(h*) = ha
0 and Φb(c*) = hb

0, rendezvous cannot be achieved
within (NaNb/rarb) − 1 slots since there does not exist a slot
0 ≤ t ≤ (NaNb/rarb) − 2 such that a radio of a operates on
channel ha

0 and a radio of b operates on hb
0.

• Otherwise, we construct the following telephone label functions
for a and b, denoted as Φa′  and Φb′ :

Φa′ (h) =
Φa(h) h ≠ h*, Φa

−1(ha
0),

ha
0 h = h*,

Φa(h*) h = Φa
−1(ha

0);

Φb′ (h) =
Φb(h) h ≠ h*, Φb

−1(hb
0),

hb
0 h = h*,

ϕb(h*) h = Φb
−1(hb

0) .

Again, since there does not exist a slot 0 ≤ t ≤ (NaNb/rarb) − 2
such that a radio of a operates on channel ha

0 and a radio of b
operates on hb

0, rendezvous cannot be achieved within
(NaNb/rarb) − 1 slots.

The analysis in the above two cases contradicts the assumption
that the worst-case rendezvous delay is at most (NaNb/rarb) − 1 and
completes our proof. □

5.2 Adaptation of M-Rendezvous under asymmetrical
channel perceptions

We assume that each node has an ID which is globally unique, e.g.
its MAC address. We use the mechanism proposed in [14] to
generate padded binary sequences that are cyclic rotationally
distinct one to the other.

We adapt M-Rendezvous for each node i as follows to make it
robust against asymmetrical channel perceptions:

Case 1: i has one radio.

• Add a bit 0 at the end of its ID i to form a new ID: i ← i ∥ 0;
• If Ni is not a power multiple of 2, let Ni′ denote the smallest

power multiple of 2 larger than Ni, expand Ni to
Ni′ ≜ {1, …, Ni′} where the first Ni elements denote the channels
in Ni and any Ni + 1 ≤ h ≤ Ni′ − 1 denotes a random channel in
Ni;

• Construct the CH sequence based on i and Ni if Ni is a power
multiple of 2 or Ni′ otherwise.

Case 2: i has multiple radios.

• Add a bit 0 at the end of its ID i to form a new ID: i ← i ∥ 0;

• If there exists k such that 2k(2n + 1) < Si < 2k + 1(2n + 1) where n
denotes the length of new IDs after adding the bit 0, then expand
Ni to Ni′ where Ni′ = 2k + 1(2n + 1)rs

i + ra
i  (i.e. Si′ = 2k + 1(2n + 1)

[Please refer to Section 4 for the definition on Si.]) by following
the same procedure as that in case 1; construct the CH sequence
based on Ni′;

• Otherwise construct the CH sequence based on Ni.

The following theorem establishes the worst-case rendezvous
delay of the adapted M-Rendezvous under asymmetrical channel
perceptions.

 
Theorem 5 (Rendezvous delay of adapted M-Rendezvous under

asymmetrical channel perceptions): Let h* denote the unique
channel accessible by both a and b, rendezvous can be guaranteed
on h* within max {O(Na

2), O(Nb
2)} slots by using the adapted M-

Rendezvous.
 
Proof: We prove the theorem by distinguishing the following

three cases. By slightly abusing notations without introducing
ambiguity, we use Ni to denote Ni′ after adaptation if necessary.

Case 1: both a and b have multiple radios. Without loss of
generality, assume that Sa ≥ Sb. Recall the CH pattern of the anchor
radios, within at most (Fa + 1)Sa − 1 slots, there must be a
complete frame where an anchor radio of a is on channel h. The
bound (Fa + 1)Sa − 1 is achieved when starting by an incomplete
frame of Sa − 1 slots with an anchor radio on channel h. Recall
Lemma 1 (pseudo-continuity), for any consecutive Sb slots, channel
h is covered by a radio of b. It then follows from Sa ≥ Sb that a
rendezvous is guaranteed to happen on channel h within at most
(Fa + 1)Na − 1 slots, i.e. O(Na

2) slots.
Case 2: only one of a and b has multiple radio and the other has
one radio. Without loss of generality, assume that a has one radio
and b has rb ≥ 2 radios. We further consider the following two
subcases.

• Subcase 2.1: 2nNa ≥ Sb. Recall the CH sequence of a, within
Na + 1 periods, there must exist an entire period in which a
operates on channel h* during the anchor frames. More
specifically, since there are n consecutive bits 1 in the padded ID
α, there exist 2nNa consecutive slots in which a operates on h*.
It follows from Lemma 1 (pseudo-continuity) that each channel
h ∈ Nb is covered by either an anchor radio or a scan radio
within the frame (Sb slots). Hence, a and b can achieve
rendezvous on h* within at most Na periods, i.e. O(Na

2) slots.
• Subcase 2.2: 2nNa < Sb. Recall that after adaptation, we have (i)

Na is a power multiple of 2 and (ii) there exists k such that
Sb = 2k(2n + 1). Hence, it holds that Sb ≥ (2n + 1)Na. Recall the
CH sequence of b, within at most Nb

ra
b  frames, there must exist

one frame during which an anchor radio of b operates on
channel h*. Since a frame lasts Sb slots, it holds that within NbSb
slots, there are Sb consecutive slots during which an anchor radio
of b operates on channel h*. Now consider the padded ID of a
a ∥ 1 ∥ 0, since a ends with a bit 0 after adaptation, there must
exist at least one 0 bit within any n + 1 consecutive bits. Hence,
there must exist at least one scan frame within any consecutive
n + 1 frames. It follows that there must exist at least one slot
within any consecutive (2n + 1)Na slots during which a operates
on channel h*. It then follows from Sb ≥ (2n + 1)Na that a
rendezvous must occur on channel h* within NbSb slots, i.e.
O(Nb

2) slots.
Case 3: both a and b have single radio. Without loss of generality,
assume that Na ≥ Nb. We consider the following two subcases:

• Subcase 3.1: Na = Nb. Without loss of generality, suppose that
the clock of a is i slots ahead of the clock of b, where i is an
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arbitrary non-negative integer. Let u and v denote the CH
sequences of a and b,, noticing that the period of u and v is 6nN,
it suffices to consider the case with i ≤ 6nN − 1. Let
i = 2Ni1 + i2 where i1 ≜ ⌈ i

2N ⌉ − 1 ∈ [0, 3n − 1] and
i2 ≜ i mod 2N ∈ [0, 2N − 1].

– If i2 ∈ [0, Na − 1]. Let j denote the bit index such that a(i1) j
differs bj. Without loss of generality, suppose that a(i1) j = 0
and bj = 1. Recall the CH sequence of b, within Nb + 1
periods, there must exist an entire period in which b operates
on channel h* during the anchor frames. We now consider
such anchor frame corresponding to bj. Note that frame j is a
scan frame at node a that scans channel h* each Na slots and
that the frame j of a and b overlap during consecutive
2Na − i2 ≥ Na + 1 slots, it holds that a and b can rendezvous
on channel h* within Nb + 1 periods, or O(Nb

2) slots.
– If i2 ∈ [Na, 2Na − 1]. Let j denote the bit index such that

a(i1 + 1) j differs bj. By following the same analysis, we can
show that the rendezvous is ensured on channel h* within
O(Nb

2) slots.
• Subcase 3.2: Na > Nb. Recall that after adaptation, both Na and

Nb are power multiples of 2, it holds that Na ≥ 2Nb. Recall the
CH sequence of a, within at most Na + 1 periods, there must
exist one period during which a operates on channel h* in
anchor frames. Consider such a period and notice the padded ID
of a a ∥ 1 ∥ 0, there must exist at least n consecutive anchor
frames lasting 2nNa slots during which a operates on channel
h*. Now consider the padded ID of b b ∥ 1 ∥ 0, since b ends
with a bit 0, there must exist at least one 0 bit within any n + 1
consecutive bits. Hence, there must exist at least one scan frame
within any consecutive n + 1 frames. It follows that there must
exist at least one slot within any consecutive (2n + 1)Nb slots
during which b operates on channel h*. It then follows from
Na ≥ 2Nb that a rendezvous must occur on channel h* within
O(Na

2) slots.

Combining the analysis on the three cases completes the proof.
□

The above analysis demonstrates a notable property of the
adapted M-Rendezvous on the robustness of rendezvous against
asymmetrical channel perceptions.

6 Performance evaluation
In this section, we simulate the baseline scenario of a multi-channel
CRN of N = 200 channels, where two rendezvous nodes are
equipped with r radios (r ≥ 2). We simulate the cases where nodes
have symmetrical and asymmetrical channel perceptions and the
rendezvous channel load. We compare the performance of M-
Rendezvous with RPS and CMR.

6.1 Symmetrical channel perceptions

We first simulate the scenario where the rendezvous nodes have
symmetrical channel perceptions and can access all the channels.
We study the rendezvous delay and diversity by plotting the worst-
case rendezvous delay (MTTR) and the worst-case delay to achieve
full rendezvous diversity by varying r in Figs. 4 and 5. 

We make the following observations from the simulation
results:

(1) The MTTR is bounded for both protocols (with and without
pre-assigned role), meaning that they can both guarantee
rendezvous when the clocks of the rendezvous pair are not
synchronised. In terms of MTTR, M-Rendezvous (without pre-
assigned roles) has comparable performance with CMR [40] and
performs slightly better than RPS [34]. This can be explained as
follows: RPS does not take into account full rendezvous diversity
in essence while CMR needs two prime CH sequence lengths as a
prerequisite.

(2) In terms of rendezvous robustness, M-Rendezvous can achieve
rendezvous on every channel, which is not the case with RPS since
RPS cannot guarantee full rendezvous diversity in essence.
(3) Having more radios per node brings performance gain in terms
of both rendezvous delay and diversity (note the logarithmic scale
of the y-axis). The benefit of increasing r on the performance is
more significant with small r. By carefully examining the results in
both figures, we observe that the performance gain goes squarely
w.r.t. r, which confirms our theoretical results established in
Section 4.
(4) In the case with pre-assigned roles, M-Rendezvous achieves
better performance compared with the case without pre-assigned
roles. The result is also in accordance to our theoretical finding that
this setting has the minimal inter-anchor radio distance in terms of
the number of channels at the sender side and the maximal scan
capability at the receiver side, thus minimising the MTTR and the
delay to achieve full rendezvous diversity.

Under the opportunistic spectrum sharing paradigm, rendezvous
may be significantly affected by the primary traffic. To evaluate the
impact of primary traffic on rendezvous performance, we conduct a
set of simulations under different primary activities. A commonly
used model to characterise the primary activity is to model it as an
i.i.d. Bernoulli random variable with the busy probability λ [44,
45]. In our simulation, we generate a primary traffic on each
channel by varying λ.

Fig. 6 plots the average time to rendezvous (ATTR) with
different λ. We make the following observations: (i) the ATTR
decreases rapidly when the number of radio increases and drops
below 50 slots for both λ = 0.2 and λ = 0.4 when r reaches 4 for
M-Rendezvous, RPS, and CMR; (ii) M-Rendezvous outperforms
RPS with a larger gap in ATTR which demonstrates the robustness
of M-Rendezvous under the presence of PUs because of full
rendezvous diversity of M-Rendezvous. 

6.2 Asymmetrical channel perceptions

We now investigate the scenario where rendezvous nodes have
asymmetrical channel perceptions, i.e. they do not have the same
knowledge on N. Specifically, we simulate the following three
scenarios:

Fig. 4  Worst-case rendezvous delay (MTTR): multi-radio scenario,
symmetrical channel perceptions

 

Fig. 5  M-Rendezvous: worst-case delay to achieve full rendezvous
diversity: multi-radio scenario, symmetrical channel perceptions
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• There is only one common channel between them;
• There are N /2 common channels;
• The number of common channels is randomly distributed in

[1, N].

We observe that all simulated runs result in rendezvous and that
rendezvous are achieved in every channel accessible to both of the
rendezvous nodes under M-Rendezvous. In other words, M-
Rendezvous ensures bounded MTTR with full rendezvous
diversity. To further quantify rendezvous performance, we plot
ATTR in Fig. 7. We observe that M-Rendezvous outperforms RPS
(note the logarithmic scale of the y-axis), which is due to the fact
that M-Rendezvous can achieve full rendezvous diversity and thus
is more robust against channel perception asymmetry. 

6.3 Rendezvous channel load balancing

We also evaluate the rendezvous channel load of M-Rendezvous by
incorporating the load balancing mechanism developed in Section
4.4.

We have pointed out in Section 4.4 that the baseline M-
Rendezvous may lead to unbalanced load among different
rendezvous channels when the clocks drifts between different
rendezvous pairs fall in some particular fashion. Specifically, the
rendezvous channel load index L drops to 1/N in these cases. To
mitigate the problem, we have developed a mechanism to
‘desynchronise’ the CH patterns of the anchor radios of the
rendezvous pair. In Fig. 8, we plot the rendezvous channel load
index L of M-Rendezvous by incorporating the proposed load
balancing mechanism with 200 rendezvous pairs. For comparison,
we also trace L by running a number of simulation runs with
random asynchonised clocks in both ACH and M-Rendezvous
without implementing the load balancing mechanism. It can be
observed that in all the simulated settings, L is close to its
maximum 1 when the anchor radio CH pattern desynchronisation is
implemented, resulting in significant performance gain compared
with the baseline setting without such desynchronisation.
Consequently, with the proposed rendezvous channel load
balancing approach implemented, M-Rendezvous can evenly
distribute the rendezvous load among different channels. This
property makes M-Rendezvous especially adapted in the
decentralised CR environment in which CR nodes are densely
deployed. 

6.4 Rendezvous between single-radio and multi-radio nodes:
heterogeneous case

We simulate a scenario with asymmetrical channel perceptions
where the multi-radio node can access all the channels in N while
the single-radio node can only access N /2  channels in N. We
observe that all simulated runs result in rendezvous and that
rendezvous are achieved in every channel accessible to both of the
rendezvous nodes, which demonstrates the capability of M-
Rendezvous of achieving bounded MTTR with full rendezvous
diversity even in the heterogeneous case.

Fig. 9 further traces average TTR (ATTR) as a function of r,
from which we observe a decrease of ATTR as r increases which
demonstrates the performance benefits brought by having multiple
radios as even one of the rendezvous peers. 

7 Conclusion
In this paper, we have presented M-Rendezvous, an order-optimal
rendezvous protocol exploiting the potential performance gain
brought by having multiple radios at cognitive nodes. As a
distinguished feature, M-Rendezvous is a unified rendezvous
protocol that can operate in both homogenous case where both of
the rendezvous nodes are equipped with only one radio or multiple
radios, and heterogeneous case where one of the rendezvous nodes
has single radio and the other has multiple radios. In both cases, by
rigorous analysis, we have demonstrated that M-Rendezvous can
guarantee rendezvous over every channel with bounded and order-

Fig. 6  ATTR under different PU activities
 

Fig. 7  ATTR under asymmetrical channel perceptions
 

Fig. 8  Rendezvous channel load index L
 

Fig. 9  ATTR: heterogeneous scenario
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minimal delay even when rendezvous nodes have asynchronous
clocks and asymmetrical channel perceptions.

Our analysis also sheds light on the theoretical performance
bound of any channel rendezvous protocol by relating the two
important performance metrics, rendezvous delay and diversity.
For any rendezvous protocol with full rendezvous diversity, the
lower-bound of the rendezvous delay scales linearly in the number
of channels while decreases squarely in the number of radios per
node. We believe that this is a fundamental result that can guide the
design of other channel rendezvous protocols in the future
research.
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