
Received 23 December 2019; revised 15 January 2020; accepted 30 January 2020. Date of publication 4 February 2020; date of current version 20 February 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.2971647

Joint Offloading and Charge Cost Minimization in
Mobile Edge Computing

KEHAO WANG 1, ZHIXIN HU1, QINGSONG AI 1, YI ZHONG1, JIHONG YU2,
PAN ZHOU 3 (Senior Member, IEEE), LIN CHEN 4,

AND HYUNDONG SHIN 5 (Senior Member, IEEE)
1School of Information Engineering, Wuhan University of Technology, Wuhan 4300700, China

2School of Information and Electronics, Beijing Institute of Technology, Beijing 100811, China

3School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

4School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China

5Department of Electronic Engineering, Kyung Hee University, Seoul 02447, South Korea

CORRESPONDING AUTHOR: Y. ZHONG (e-mail: zhongyi@whut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672395, Grant 61972448, Grant 61603283,
and Grant 61911540481, in part by the Fund of Hubei Key Laboratory of Inland Shipping Technology under Grant NHHY2019004, in part by the

Fundamental Research Funds for the Central Universities under Grant 2018-IB-020, and in part by the National Research Foundation of
Korea (NRF) grant funded by the Korea Government (MSIT) under Grant 2019K2A9A2A06024389.

ABSTRACT Mobile edge computing (MEC) brings a breakthrough for Internet of Things (IoT) for its
ability of offloading tasks from user equipments (UEs) to nearby servers which have rich computation
resource. 5G network brings a huge breakthrough on transmission rate. Together with MEC and 5G, both
execution delay of tasks and time delay from downloading would be shorter and the quality of experience
(QoE) of UEs can be improved. Considering practical conditions, the computation resource of an MEC
server is finite to some extent. Therefore, how to prevent the abuse of MEC resource and further allocate
the resource reasonably becomes a key point for an MEC system. In this paper, an MEC system with
multi-user is considered where a base station (BS) with an MEC server, which can not only provide
computation offloading service but also data cache service. Especially, we take the charge for both data
transmission and task computation as one part of total cost of UEs, and then explore a joint optimization
for downlink resource allocation, offloading decision and computation resource allocation to minimize
the total cost in terms of the time delay and the charge to UEs. The proposed problem is formulated as
a mixed integer programming (MIP) one which is NP-hard. Therefore, we decouple the original problem
into two subproblems which are downlink resource allocation problem and joint offloading decision and
computation resource allocation problem. Then we address these two subproblems by using convex and
nonconvex optimization techniques, respectively. An iterative algorithm is proposed to obtain a suboptimal
solution in polynomial time. Simulation results show that our proposed algorithm performs better than
benchmark algorithms.

INDEX TERMS Mobile edge computing, offloading decision, resource allocation, charge to UEs.

I. INTRODUCTION

THE EMERGENCE of IoT brings enormous challenges
to existing technologies because IoT allows thousands

of UEs including smartphones, Pads and intelligent wearable
devices connected to Internet simultaneously [1]. Moreover,
some novel applications requiring high computation

capability and high energy consumption are on demands,
such as massive multiplayer online game, virtual reality
(VR), augmented reality (AR) and face recognition.
Meanwhile, these applications are also sensitive to latency,
which puts higher requirement for UEs, especially CPU and
battery. However, it is not easy to meet these requirements

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020 205

HTTPS://ORCID.ORG/0000-0001-9843-8104
HTTPS://ORCID.ORG/0000-0003-4283-2289
HTTPS://ORCID.ORG/0000-0002-8629-4622
HTTPS://ORCID.ORG/0000-0001-7943-3172
HTTPS://ORCID.ORG/0000-0003-3364-8084

WANG et al.: JOINT OFFLOADING AND CHARGE COST MINIMIZATION IN MEC

for UEs because of their stringent equipment-size
constraint.
To address these challenges, mobile cloud computing

(MCC) is considered as a possible solution for IoT. The
main idea of MCC is to allow UEs offload their computa-
tion intensive tasks to a powerful centralized cloud, so that
the delay and energy of tasks execution of UEs could be
reduced sharply [2]. Generally, the cloud center is too far
from UEs, so the UEs would suffer huge uploading delay and
cause extra uploading energy consumption. To deal with this
problem, MEC is put forward with advantage of deploying
servers with abundant computation resource on the edge of
network which are close to UEs [3]. As the emergence of
5G network brings a huge breakthrough on transmission
rate, MEC-enable IoT was proved as a promising solution
to reduce the delay of task and save the energy of UEs in
some IoT scenarios [4]. In [5], MEC was used to reduce the
delay of tasks execution and improve computation efficiency
in an unmanned aerial vehicle (UAV). Reference [6] showed
that MEC was suitable for vehicular networks because it
significantly reduced delay and average system cost.
Moreover, the theoretical speed of 5G has exceeded the

rate of a mechanical hard disk [7]. In this case, rate of
UEs reading local files may be slower than downloading
files from MEC, which implies that reading only memory
(ROM) of UEs may not need to existed any more. Such that
UEs must download what they need all the time, which puts
higher requirements on downlink bandwidth. Meanwhile,
some UEs need to offload their high computation required
tasks to MEC, which put higher demand on computation
resource of MEC servers. Therefore, offloading decision,
resource allocation or other policy should be considered to
improve the QoE of UEs since resource of an MEC system
is finite.
Offloading decision is to decide how to offload

tasks. Basically, an offloading decision has three choices:
no offloading, full offloading and partial offloading to
servers [8]. Specifically, no offloading means the tasks are
executed locally and no data is uploading to MEC servers.
Full offloading means a whole task is offloaded to an MEC
server. However, it is not suitable for all UEs offloading
their tasks to MEC because of the constraints of bandwidth
resource and computation resource of MEC. Partial offload-
ing allows a task to be cut into two parts, one part executed
locally, and the other part executed at the MEC server.
According to [9], partial offloading is very challenging
because of the dependency of offloadable components from
tasks. Thus, most researches consider the binary offloading
policy which allows each UE to either execute task locally
or offload task to a remote MEC server [10].
On the other hand, resource allocation should be con-

sidered since the resource on an MEC server is limited.
Inappropriate resource allocation policies could cause
additional overhead in terms of energy consumption and
latency, i.e., the delay of uploading task data to the MEC
server and execution time [11]. Resource allocation involves

bandwidth, power and computation resource allocation. For
bandwidth resource allocation, many papers only consider
uplink bandwidth and minimize uploading time [12]. In fact,
the downlink resource, i.e., bandwidth and power of MEC,
is also a significant factor for reducing latency if some
task-related data needs to be download from MEC the server.
For computation resource allocation, it should be noticed

that the computation resource of MEC servers is not infinite
although much richer than that of UEs. Moreover, extra cost
would be paid for the maintenance of MEC servers. Existing
tasks offloading policies only consider the delay and energy
consumption of uploading data to MEC servers, and the
aftermath is that those tasks offloaded to MEC servers would
abuse the computation resource and further increase server
maintenance cost of the MEC servers. Such as in [13], the
MEC server would keep full load even though the number
of UEs is very small, which will incur extra burden on MEC
server but has little promotion on QoE of UEs.
In this paper, we consider that UEs should pay cost to

use the MEC server, that is UEs will be charged for occupy-
ing computation and bandwidth resource in task offloading.
Specifically, we jointly explore the offloading decision,
resource allocation including downlink bandwidth, downlink
power and computation resource allocation, and the charge
for computation and bandwidth resource. We consider data
transmission delay and task execution delay as one part of
cost in offloading tasks to the MEC server, and the charge
to UEs as another part of cost, and try to minimize the
total cost of all UEs. Specially, we set the price of com-
putation resource according to computation rate because the
purpose of offloading is to reduce execution time of a task.
In this context, the main contributions of our paper can be
summarized as follows:
1) We consider the charge as a new cost of offloading

and model the minimization of total cost in the weight-
sum of tasks completion time and the charge. Then,
we formulate this problem as a Joint Optimization for
Downlink Resource Allocation, Offloading Decision
and Computation Resource Allocation (JODOC) to
minimize the total cost of all UEs.

2) We decompose the JODOC problem into two subprob-
lems. One is Downlink Resource Allocation (DRA)
problem, and another is Joint Offloading Decision and
Computation Resource Allocation (JOCRA) problem.

3) We address DRA and JOCRA by using convex
and nonconvex optimization techniques, respectively.
Combining the solutions of these two problems, we
propose a novel low-complexity algorithm to solve
the original JODOC problem and obtain a suboptimal
solution.

4) Simulation results show our proposed algorithm per-
forms better than three benchmark algorithms.

The rest of this paper is organized as follows. In Section II,
we show some related studies on tasks offloading. In
Section III, we propose a network model and formulate
the joint optimization for downlink bandwidth allocation,

206 VOLUME 1, 2020

offloading decision and computation resource allocation
problem. And we decouple this problem and propose a
suboptimal solution in Section IV. The simulation results
are given in Section V. Finally, we conclude this paper in
Section VI.

II. RELATED WORK
Ever since MEC is put forward, the cost in terms of delay and
energy consumption is regarded as an important parameter
of evaluating the quality of an MEC system. Most researches
aim to minimization of execution delay or minimization
of energy consumption while satisfying execution delay
constraint or trade-off between energy consumption and
execution delay.
For the minimization of execution delay, in [14], the

authors proposed a low-complexity online Lyapunov
optimization-based dynamic computation offloading
(LODCO) algorithm to minimize execution delay and
assumed that the UEs exploited energy harvesting tech-
niques in [15]. But the harvested energy is not enough
to provide all the energy consumption when the UEs are
too many. In [16], the authors aimed to minimize the
transmission delay by a multilayer data flow processing
system including edge devices, access point, MEC servers
and cloud center. In [17], the authors considered partial
offloading and proposed an iterative heuristic MEC resource
allocation (IHRA) algorithm to reduce the time delay of
MEC system. In [18], the authors proposed a two-step radio
and computing resources allocation scheme for minimizing
total processing completion time.
For the minimization of energy consumption while satisfy-

ing execution delay constraint, in [19], the authors proposed
an offline strategy to minimize the average energy consumed
by all the user terminals to process their mobile applications
under average delay constraints. In [20], the authors aimed to
minimize the network-level energy consumption in heteroge-
nous network by jointly considering computation resources,
latency requirements and power consumption.
In previous works, most papers aimed to minimize

trade-off between energy consumption and execution delay.
In [21], the authors proposed a framework considering phys-
ical resource block (PRB) along with computation resource
allocation. In [22], the authors considered to share the com-
putation results so that the computation resource would be
saved. In [23], the authors modeled the MEC system as a
Stackelberg game, and then let the MEC servers and UEs
compete for their own best profits. In [24], the authors
proposed a novel online SBS peer offloading framework to
maximize the long-term system performance and meanwhile
satisfy the energy constraints. In [25], the authors allowed
multi-user to choose a better node from multi-node and avoid
too many UEs choosing the same edge node by using a non-
cooperative exact potential game (EPG). In [26], the author
jointly solved the transmission power control problem and
tasks offloading problem to get minimization of the trade-off
between energy consumption and execution delay.

FIGURE 1. Network model.

There are also same researches that considered the charge
problem. In [27], the authors assumed UEs will be charged
for transmitting computation input data and computation
resource that different from local resource. In [23], the
authors used Stackelberg game to find the minimization of
cost which is defined as time delay and payment for MEC
servers. In [28], the authors aimed to maximize the profit
of the network operators considering the cost of maintain
resource of MEC and the profit from UEs.
These papers all above, however, didn’t jointly con-

sider offloading decision and the radio and computation
resource allocation with charge. Meanwhile, the joint down-
link resource allocation, i.e., bandwidth and power resource
allocation, is not considered. So, in this paper we aim to min-
imize the total cost of UEs in terms of delay and charge, by
jointly considering downlink resource, offloading decision
and computation resource allocation.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
In this paper, we consider a multiple-user, one-server MEC
system which provides both computation offloading service
and content cache service, as shown in Fig. 1. Denote the
set of UEs as N = {1, 2, 3, . . . ,N}. Each UE n has a com-
putation task to be offloaded and a content cache task to be
downloaded. For UE n, let Cn denote CPU cycles required
to accomplish a computation task, Dun denote the data size
of a computation task, and Ddn denote the cache date size to
be downloaded, i.e., pictures and videos that UE n needs.
Formally, the task of UE n can be expressed as

In =
{
Cn,D

u
n,D

d
n

}
, ∀n ∈ N (1)

We define the offloading decision profile as
x = {xn, ∀n ∈ N }, herein xn = 1 indicates the com-
putation task of UE n will be offloaded to MEC server
while xn = 0 shows it will be executed locally.

VOLUME 1, 2020 207

WANG et al.: JOINT OFFLOADING AND CHARGE COST MINIMIZATION IN MEC

B. COMMUNICATION MODEL
We denote Nf = {n | xn = 1, ∀n ∈ N } as the set of UEs
which tend to offload their computation tasks to the MEC
server. Then Nf = |Nf| = ∑N

n=1 xn. We assume that the
total uplink spectral bandwidth is wu which is divided into
Nf sub-channels, and UE n is allocated with wun = wu/Nf.
We denote pun and Hn as the fixed transmit power of UE

n and the channel gain between UE n and the MEC, respec-
tively. N0 is the variance of complex white Gaussian channel
noise power. Accordingly, the transmission rate between UE
n and the MEC is given by

run = wun log2

(
1 + punHn

N0

)
(2)

Then we can get the uploading time of task Dun as follows

tun = Dun
run

, ∀n ∈ Nf (3)

When UE n asks for downloading task Ddn from the MEC
server, the total time cost of this task mainly consists of three
parts. The first part is the delay in sending the request from
UE n to the MEC server which is neglected because of the
short data size of requesting packet. The second part is the
time required to search for specific data Ddn on MEC server,
which we denote by twn . The third part is the downloading
delay denoted by tdn .
We assume that the downlink bandwidth, wd, different

from wu, is allocated dynamically according to the number of
downloaded tasks. The downlink resource allocation policy
is defined as w = {wdn | n ∈ N }. Then the downloading delay
for the content cache task Ddn can be obtained as follows

tdn = Ddn
rdn

, ∀n ∈ N (4)

where rdn is the downloading data rate given by

rdn = wdn log2

(
1 + pdnHn

N0

)
(5)

where pdn is the transmission power of MEC to UE n.
Meanwhile, the downlink transmission power allocation

policy is defined as p = {pdn | n ∈ N } and the MEC server
has limited transmission power, which is denoted by pm.
Therefore, p should meet the total power limit

∑
n∈N

pdn ≤ pm. (6)

C. OFFLOADING MODEL
For local execution, we denote f ln as local computation
resource of UE n. Let tln be the local execution time of
computation task which can be expressed as

tln = Cn
f ln

(7)

As for offloading, the MEC server allocates computation
resource fn to offloading task from UE n. We define the

computation resource allocation policy as f = {fn|n ∈ Nf}.
fm is defined as the maximum computation capacity of the
MEC server. Therefore, all the fn allocated to UEs should
meet the computation resource constraint as follows∑

n∈Nf

fn ≤ fm (8)

Let texen be the execution time of the computation task at
the MEC server, which can be expressed as

texen = Cn
fn

, ∀n ∈ Nf (9)

We ignore the delay of transmitting the result back because
the output data has smaller size and MEC sever has a higher
transmission power.

D. CHARGE POLICY
In this part, we assume that UEs will be charged for not
only task computation but also data transmission including
both uploading and downloading data.
As for data charge, the operators, i.e., China Telecom and

T-mobile, charge UEs for transmission flow rather than data
rate, so we assume that the price is a function of data size.
And operators will offer some fixed data plans (e.g., 20GB
per month for xx$). We consider that the fixed data plan is
more like a discount policy, so we set that UEs who have
fixed data plan are charged by a lower price. Therefore, the
price is set as end per bit and the price will be different
depends on different UE n. As for task computation charge,
the price is related to computation rate because the purpose of
offloading is to reduce execution time. Therefore, we set that
the price of task computation is a function of computation
resource allocated to UE n, i.e., fn, and the unit price being
charged is defined as ec per cycle/s.

Then the charge to UE n can be expressed as

Gn = xn
(
ecfn + endD

u
n

)+ endD
d
n, ∀n ∈ N . (10)

E. PROBLEM FORMULATION
In this paper, we aim to minimize the total cost in terms of
time delay and the charge.
The total time cost for UEs n can be given by

tn = xn
(
tun + texen

)+ (1 − xn)t
l
n + twn + tdn (11)

We introduce a function Jn to evaluate the weight cost
of time delay and charge to the UE, which is defined as
follows

Jn = λtntn + λcnGn (12)

where λtn ∈ [0, 1] and λcn ∈ [0, 1] (λtn + λcn = 1) are the
weight parameters for the cost of time delay and the charge
to UE n, respectively.
Thus the problem can be formulated as follows

min
x,w,p,f

∑
n∈N

Jn
(
xn,w

d
n, p

d
n, fn

)

s.t. C1 : xn = {0, 1}, ∀n ∈ N
208 VOLUME 1, 2020

FIGURE 2. Proposed framework for solving the problem (13).

C2 : wdn > 0, ∀n ∈ N ,
∑
n∈N

wdn ≤ wd

C3 : pdn > 0, ∀n ∈ N ,
∑
n∈N

pdn ≤ pm

C4 : fn > 0, ∀n ∈ Nf,
∑
n∈Nf

fn ≤ fm (13)

The constraint C1 shows that each task can be either
executed locally or offloaded to MEC server. C2 guarantees
the dowlink bandwidth allocated to tasks is valid and the
sum of them does not exceed the total bandwidth resource.
C3 guarantees the downlink bandwidth resource allocated
to the UEs is valid and the sum of them does not exceed
the total transmission power. C4 plays the similar role in
computation resource allocation.
Considering that x is binary, w, p and f are continuous,

this problem is an MIP one, which is NP-hard [29].

IV. DECOUPLED OPTIMIZATION
Considering the complexity of MIP, we decompose the orig-
inal problem into two subproblems. One is DRA problem
with all UEs, and another is JOCRA problem. First, we
solve the DRA problem by bisection method to obtain the
downlink bandwidth and power strategy profile. Second, we
propose an iterative algorithm to solve the JOCRA problem
and obtain the offloading decision and computation resource
allocation profile. Last, we combine the results of DRA and
JOCRA and proposed a polynomial time algorithm to obtain
a global solution. The framework of our proposed algorithm
is shown in Fig. 2.

A. DOWNLINK RESOURCE ALLOCATION
In this part, we aim to analyze and solve the DRA problem.
Fixing x and f and removing all the parts not related to

w and p, we could obtain the following

min
w,p

∑
n∈N

λtnD
d
n

rdn

s.t. C2 : wdn > 0, ∀n ∈ N ,
∑
n∈N

wdn ≤ wd

C3 : pdn > 0, ∀n ∈ N ,
∑
n∈N

pdn ≤ pm (14)

Notice that the constraints C2 and C3 are convex and the
domain of wdn and pdn are 0 < wdn < pm and 0 < wdn < wd,
respectively. By simple analysis, we know that the first order
derivatives of the objective function with respect to wdn and
pdn are less than zero, so the problem can be transformed to
a convex one when one of these two variables is fixed.
Therefore, to solve problem (14), we assume that p is

fixed and give optimal solution of w, as shown in Lemma 1.
Lemma 1: For (14), when p is fixed, the optimal solution

of w is

wd
′
n = wd

√
qn∑

n∈N
√
qn

(15)

where qn = λtnD
d
n

log2(1+ pdnHn
N0

)

.

Proof: First we can write the Lagrangian function
of (14) as

L
(
wdn, α

)
= ∑

n∈N
qn
wdn

+ α

(
∑
n∈N

wdn − wd
)

(16)

where α is the nonnegative Lagrange multiplier correspond-
ing to constraint C2.
By setting the first-order derivative of L(wdn, α) with

respect to wdn and α to zero, respectively, we have{
α − qn

(wdn)
2 = 0

∑
n∈N wdn − wd = 0

Solving these two equations, we obtain the optimal downlink
bandwidth allocation in (15).
Combining (15) and λtnD

d
n/log2(1 + pdnHn

N0
) = qn into (14),

our problem is turned into following formulation.

min
p

∑
n∈N

(
wd

√
qn
∑
n∈N

√
qn

)

s.t. pdn > 0, ∀n ∈ N ,
∑
n∈N

pdn = pm (17)

Lemma 2: The optimal solution of (17) is the same with

min
p

∑
n∈N

√
qn

s.t. pdn > 0, ∀n ∈ N ,
∑
n∈N

pdn = pm (18)

Proof: First, we rewrite (17) as follows

min
p

wd
(∑
n∈N

√
qn

)2

VOLUME 1, 2020 209

WANG et al.: JOINT OFFLOADING AND CHARGE COST MINIMIZATION IN MEC

It is obvious that when
∑

n∈N
√
qn achieves the minimum,

wd(
∑

n∈N
√
qn)2 will also achieve the minimum. Therefore,

our objective function becomes (18).
Problem (18) is convex because the first order deriva-

tive of the objective function is greater than zero, and its
constraint is also convex. Therefore, this problem can be
transformed into an unconstrained problem by Lagrange
multiplier method.
Then we can give the Lagrange function of (18) as follows

L
(
pdn, ν

)
=
∑
n∈N

√√√√ λtnD
d
n

log2

(
1 + pdnHn

N0

) + ν

(∑
n∈N

pdn − pm

)

(19)

where ν is the nonnegative Lagrange multiplier.
In general, this Lagrange function can obtain its optimal

solution by setting the derivatives of the function with respect
to pdn and ν equal to zero. That is

{
− ∂

√
qn

∂pdn
= ν∑

n∈N pdn = pm
(20)

Specially, we set

ϕ
(
pdn
)

= −∂
√
qn

∂pdn

= Hn
√

λtnD
d
n

2(ln 2)
(

log2

(
1 + pdnHn

N0

)) 3
2 (
N0 + pdnHn

) (21)

Due to the logarithmic barrier, (20) has no analytical
solution in general [30]. Therefore, we design an iterative
algorithm to solve (20) in the following.
Notice that in the domain 0 < pdn < fm, ϕ(pdn) is a mono-

tonically decreasing function. For fixed UEs number N and
total transmission power pm, the optimal ν is also fixed.
Therefore, the closer ϕ(pdn) is to ν, the better solution we
will get. Moreover, from (20), we can derive that for two
different UEs i and j, ϕ(pd∗i) − ϕ(pd∗j) = 0 on the optimal
solution. This implies that the closer ϕ(pd∗i) − ϕ(pd∗j) is to
zero, the better resource allocation for UEs i and j will be
obtained.
Therefore, we propose to decompose this downlink power

allocation problem for N UEs to �N2 	 downlink power alloca-
tion problems for two UEs. Each of these downlink power
allocation problems for two UEs can be solved by a low
complexity bisection method.
First, the total power resource is equally divided into N

part, and each part is p0 = pm/N. Then any two UEs are
chosen to form a group and re-allocated power resource 2p0.
If N is an odd number, the remaining UE will be allocated
with p0. The bisection method is used to allocate the power
resource 2p0 between the two UEs in the same group. By
evaluating ϕ(pd∗i) − ϕ(pd∗j) in each iteration, we will finally
obtain a suboptimal solution pd∗n . The detail is shown in
Algorithm 1.

Algorithm 1 Bisection Method for Downlink Power
Allocation
1: Given control threshold ξ

2: p0 = pm/N, i = 1
3: repeat
4: if i+ 1 > N then
5: pd∗i = p0
6: else
7: Initialize p′ = 0, p′′ = 2p0
8: repeat
9: pd∗i = (p′ + p′′)/2, pd∗i+1 = 2p0 − pd∗i

10: Get ϕ(pd∗i) and ϕ(pd∗i+1) using (21)
11: if ϕ(pd∗i) − ϕ(pd∗i+1) > 0 then
12: Set p′ = pd∗i
13: else
14: Set p′′ = pd∗i
15: end if
16: until p′′ − p′ < ξ

17: pd∗i = (p′ + p′′)/2, pd∗i+1 = 2p0 − pi
18: end if
19: i = i+ 2
20: until i > N
21: Output p∗ = {pd∗n | n ∈ N }

In Algorithm 1, the lines 8–16 (bisection) will be executed

log2

2p0
ξ

� times and the lines 3–20 will be executed
N2 �
times, where ξ is the control threshold. Thus the complexity
of this algorithm is O(N2 log2

2pm
ξN).

Finally, we get the downlink power resource allocation
profile p∗. For the fixed p∗, we can obtain the optimal
downlink resource allocation policy w using (15).

B. JOINT OFFLOADING DECISION AND COMPUTATION
RESOURCE ALLOCATION
When the downlink resource allocation policy w and p are
fixed, the subproblem JOCRA could be rewritten as

min
x,f

∑
n∈N

xn
(
Zfn − Zln

)
+
∑
n∈N

Zln

s.t. xn = {0, 1}, ∀n ∈ N
fn > 0, ∀n ∈ Nf,

∑
n∈Nf

fn ≤ fm (22)

where Zfn = λtnt
u
n+λtnt

exe
n +λcnecfn+λcne

n
dD

u
n, which describes

the cost when computation task is offloaded to remote MEC
server while Zln = λtnt

l
n describes the cost when computation

task is processed locally.
The second term of (22) could be ignored because it can

be computed in advance. Thus our goal is to minimize
∑
n∈N

Zpron =
∑
n∈N

xn
(
Zfn − Zln

)

For any UE n, when the cost of the computation task exe-
cuted locally is larger than executed at the MEC server, i.e.,
Zpron < 0, the task will benefit from offloading. In another

210 VOLUME 1, 2020

word, the value of Zpron shows how much a task is suitable
for offloading. Moreover, the tasks of different UEs have
different Dun and Cn. This implies that wether a task is suit-
able for offloading is only related to Dun and Cn, which is
shown in the following proposition.
Proposition 1:
• When those UEs have the same uploading data, i.e.,
Dun = Du, ∀n ∈ N , those UEs with larger required CPU
cycles Cn, tend to offload their task to MEC server.

• When UEs have the same required CPU cycles, i.e.,
Cn = C, ∀n ∈ N , those UEs with smaller uploading
data Dun, tend to offload their task to MEC server.

Proof: Let’s rewrite Zpron as

Zpron
(
Dun,Cn

) = aDun + bCn + c (23)

where a = λtn/rn + λcne
n
d > 0, b = λtn(1/fn − 1/f ln) and

c = λcnecfn > 0.
Then we have ∂Zpron

∂Dun
= a > 0 and Zpron (Dun,Cn) increases

with Dun.
According to principle of computation offloading that

offloading a task to a richer computation resource server,
we know that fn > f ln no matter what computation allocation
strategy fn is applied. Then we can get

∂Zpron
∂Cn

= b = λtn

(
1/fn − 1/f ln

)
< 0

which implies that Zpron (Dun,Cn) decrease with Cn.
Therefore we conclude the proposition.
According to Proposition 1, we know that an UE n with

smaller Dun and bigger Cn is more suitable for offloading
task to the MEC server.
We assume that all the tasks are offloaded to theMEC server

at first, i.e., xn = 1, n ∈ N . These tasks will be allocated with
computation resource fn which can be obtain by (25). Then
we could easily get Zpron for each UE n with fixed fn. For these
tasks with Zpron > 0 which mean these tasks are not suitable
for offloading in this scenario, we should choose the task
which has the greatest Zpron to executed locally, i.e., changing
xn = 1 to xn = 0. So now we have a new offloading decision
profile x′. Then use the new x′ to update computation resource
allocation profile f ′ using (25) and the new f ′ will update
Zpron which lead to updating x′. We will do this iteration until
all the offloaded tasks get profits, i.e., Zpron < 0, n ∈ Nf, or
all the tasks are executed locally.
In the above iterating process, we should give the optimal

computation resource allocation f for a fixed decision profile
x in every iteration. Eliminating these parts which are not
with respect to fn, we rewrite the objective function when
we get fixed w and x as follows

min
f

∑
n∈Nf

Zfn = λtnCn
fn

+ λcnecfn + d

s.t. fn > 0, ∀n ∈ Nf,
∑
n∈Nf

fn ≤ fm (24)

where d = λtnt
u
n + λcne

n
dD

u
n.

We know (24) is a convex function because its second-
order derivative with respect to fn is greater than zero on
constraint fn > 0, ∀n ∈ Nf. Therefore, we could obtain
the optimal solution of (24) by using Lagrangian multiplier
method as showed in Lemma 3.
Lemma 3: The optimal solution of (24) is

f optn =
⎧⎨
⎩

√
λtnCn
λcnec

,
∑

n∈Nf
f norn ≤ fm

fmkn∑
n∈Nf

kn
,
∑

n∈Nf
f norn > fm

(25)

where kn = √
λtnCn, f

nor
n =

√
λtnCn
λcnec

.
Proof: There are two cases for the second constraint

of (24) in which the optimal solution satisfies
∑
n∈Nf

fn < fm

or
∑
n∈Nf

fn = fm

For the first case
∑

n∈Nf
fn < fm, this problem will turn to

a simple convex problem with no constraint since the first
constraint can be ignore. And problem will get its mini-
mum as long as each Zfn gets minimum. So the computation
resource allocation will be

f optn =
√

λtnCn
λcnec

(26)

As for the second case, i.e.,
∑

n∈Nf
fn = fm, we could

rewrite (24) as

min
f

∑
n∈Nf

λtnCn
fn

+ λcnecfn

s.t. fn > 0, ∀n ∈ Nf∑
n∈Nf

fn = fm (27)

The problem (27) is a typical constrained optimization
problem. Then we can write (27) to Lagrange function as
follows

L(fn, μ) =
∑
n∈Nf

(
λtnCn
fn

+ λcnecfn

)
+ μ

⎛
⎝∑
n∈Nf

fn − fm

⎞
⎠ (28)

where μ is the nonnegative Lagrange multiplier.
By solving this optimization problem, we can get the

optimal solution of (27), which is expressed as

f optn = fm
√

λtnCn∑
n∈Nf

√
λtnCn

(29)

C. OVERALL ALGORITHM
In this part, an overall algorithm is proposed which combines
DRA and JOCRA as follows.

VOLUME 1, 2020 211

WANG et al.: JOINT OFFLOADING AND CHARGE COST MINIMIZATION IN MEC

Algorithm 2 Joint Optimization for Downlink Bandwidth
Allocation, Offloading Decision and Computation Resource
Allocation (JODOC)
1: Initialize t = 0, xn(0) = 1, n ∈ N , Nf = N
2: Get Zln
3: Get f (t) using (25)
4: Obtain downlink power allocation p by Algorithm 1
5: Obtain downlink bandwidth allocation w by (15)
6: repeat
7: t = t + 1
8: n∗ = arg max

n
{Zfn − Zln > 0, n ∈ Nf}

9: Nf = Nf − {n∗}
10: Update x(t) by setting xn∗(t) = 0
11: Update f (t) using (25)
12: Update Zfn = λtnt

u
n + λtnt

exe
n + λcnecfn

13: +λcne
n
dD

u
n, ∀n ∈ Nf

14: until Zfn − Zln ≤ 0,∀n ∈ Nf or Nf = φ

15: Output (x,w, p, f)

In Algorithm 2, we choose one UE each time to change
the offloading decision from xn = 1 to xn = 0 for updating
x(t). In t, the chosen UE may be not the best choice for the
next iteration, but it could make the next iteration to achieve
a better performance, which implies that with the iteration
goes on, the result will become better. Finally, the policy
cannot be improved no matter which UE is chosen to change
the offloading decision from xn = 1 to xn = 0 or Nf becomes
an empty set, which shows the termination of the algorithm.
Now we give a simple analysis of the complexity of our

proposed algorithm. The original problem is decomposed
into two subproblems. The first one in our algorithm is
DRA which is achieved by Lagrange multiplier method and
bisection mothed, hence the complexity is O(N2 log2

2pm
ξN).

The second one in our algorithm is JOCRA. In each
iteration, the complexity of finding the offloading decision
and its computation resource allocation is O(N). Let β be
the number of iterations required to update the offload-
ing decision. Furthermore, β is less than the number of
UEs N, which makes the complexity O(N2) in the worst
case, i.e., all UEs need be executed locally. As a result,
the computational complexity of the proposed algorithm is
O(max{N2 log2

2pm
ξN ,N2}).

V. SIMULATION RESULTS
In this section, the proposed method is evaluated to inves-
tigate its performance and effectiveness in comparison with
four benchmark algorithms.

• Local Only: All UEs perform their tasks locally, i.e.,
xn = 0, n ∈ N . The computation resource f is allocated
by Lagrange multiplier method. DRA is employed to
obtain downlink bandwidth resource w and downlink
power resource p.

• All Offload: All UEs offload their tasks to the MEC
server, i.e., xn = 1, n ∈ N . DRA is employed to obtain

TABLE 1. The simulation parameters.

downlink bandwidth resource w and downlink power
resource p.

• Joint Offloading Decision, Bandwidth, and Computation
Resource Allocation (JOBCA) from [12]. This scheme
aims to minimize the total cost in terms of time delay
and energy consumption. We use the JOBCA scheme
to obtain offloading decision profile x and computation
resource profile f . DRA is employed to obtain downlink
bandwidth resource w and downlink power resource p.

• Joint Offloading and Computation Resource for
Minimizing Delay (JOCD): In this scheme, time delay
is considered as the only cost of task offloading. Task
offloading scheduling and computation resource alloca-
tion method from [13] is adopted to make offloading
decision x and allocate the computation resource f .
And DRA is employed to obtain downlink bandwidth
resource w and downlink power resource p.

A. PARAMETER SETTING
We consider a simulation scenario with the following setting
and the detail is showed in Table 1.

B. SIMULATION
Fig. 3 shows the comparison of the cost versus the number
of UEs under different algorithms. Overall, the cost of the
five different algorithms increases with the number of UEs.
The curve of our algorithm JODOC is always at the bottom,
which shows that JODOC has the best performance among
the five algorithms. The cost of ‘local only’ algorithm is
relatively large and grows at a basically linear rate as the
number of UEs increases. The cost of ‘all offload’ algo-
rithm grows sharply as the number of UEs increases, this is
because the resource of the MEC system, i.e., uplink band-
width and computation resource, is limited such that it cannot
afford too many UEs. The gap between ‘local only’ algo-
rithm and JODOC shows how much benefit can be obtained
from JODOC. And the benefit almost remains unchanged
when the number of UEs exceeds a certain threshold, which
means that the benefit of UEs from task offloading reaches
the upper limit in the given simulation scenario. The curves

212 VOLUME 1, 2020

FIGURE 3. Cost versus the number of UEs under different algorithms.

FIGURE 4. Cost versus computation resource under different algorithms.

‘JOBCA’ and ‘JOCD’ are overlapping with ‘all offloading’
at the first stage. That is because, different from our scheme,
these two schemes will allocate all the computation resource
to offloaded tasks. Thus the cost will be relatively large even
though the number of UEs is small.
Fig. 4 shows the cost under different computation resource

of MEC (CPU frequency). As can be seen, JODOC performs
better than other algorithms. For JODOC, the cost will be
less with more computation resource fm at first. Then the
cost will remain unchange. This is because when the com-
putation resource of MEC is small, only a few tasks can
be offloaded to MEC server and benefit from offloading.
As the computation resource increasing, more tasks will be
offloaded to MEC and the total benefit will increase. Finally,
the computation resource increases to a relatively large value
and all the offloaded tasks can obtain their optimal resource
allocations, i.e., f optn , thus the cost will remain unchange.
For JOCD and JOBCA, their total cost is larger than ‘local
only’ when the computation resource of MEC is small. This
is because JOCD and JOBCA aims to minimize time delay

FIGURE 5. Percentage of computation resource of MEC usage.

and tradeoff of time delay and energy consumption, respec-
tively. And these two schemes tend to offload more tasks to
MEC server so to save the cost, but the benefit of time
delay and energy consumption is too little to cover the
cost of charge for computation resource. Then the cost of
JOCD and JOBCA will also be less with more computa-
tion resource fm, but it will increase with the computation
resource. This is because the offloaded tasks already get their
sufficient resource when the computation resource of MEC
is relatively large and the execution time will not decrease
significantly even if computation resource allocated to tasks
increase, such that under this condition, the cost from the
charge for computation resource dominates, so the total cost
will increase.
Fig. 5 shows percentage of MEC server resource usage

under different cases. JOBCA and JOCD will always use all
the computation resource. For JODOC, when the number of
UEs is small, the resource of MEC server will not be fully
used. The percentage of resource usage will grow with the
increasing of UEs number until it reaches to 1. If the number
of offloaded tasks and their tasks are fixed, we can obtain
the optimal computation resource allocation of UE n, i.e.,
f optn , using (26). Thus, the optimal computation resource of
MEC server can be estimated. We assume there are Nave UEs
requiring to offload their tasks to MEC server in average.
Cave and ec are average required CPU cycles of tasks and
the price of computation resource, respectively. We set that
λtn = λen = 0.5 and ec depends on charge policy. Then we
can we can estimate the optimal resource quantity of the
MEC server

f optm = Nave

√
Cave
ec

(30)

Fig. 6 shows the offloading number of UEs under different
algorithms. We can observe that the offloading number of
UEs first increases rapidly as the number of UEs increases,
then increases slowly, and finally remains stable when the
number of UEs exceeds a certain threshold. The reason is that

VOLUME 1, 2020 213

WANG et al.: JOINT OFFLOADING AND CHARGE COST MINIMIZATION IN MEC

FIGURE 6. Offloading number of UEs under different algorithms.

FIGURE 7. Cost versus uplink bandwidth under different algorithms.

each task can obtain enough computation resource in first
stage, so all UEs choose to offload their tasks. In the second
stage, each task gets less computation resource as the num-
ber UEs increases such that some UEs cannot benefit from
task offloading and choose local execution. Finally, only a
fixed number of UEs can benefit from task offloading and
others abandon offloading task. The JOCD and JOBCA tend
to offload more tasks of UEs to MEC server than JODOC.
The reason is that these two schemes are designed to min-
imize time delay and energy consumption, which can be
significantly reduced by task offloading, while JODOC will
suffer from the charge for computation resource and therefore
fewer tasks will be offloaded to MEC.
Fig. 7 shows how uplink bandwidth the total cost. It can

be observed that our proposed algorithm JODOC obtain
lower cost than JOBCA and JOCD. The cost of JODOC
will decrease with the uplink bandwidth resource and then
almost keeps unchange when the uplink bandwidth is rela-
tively large. That is because, uploading time tun of tasks is
large when the uplink bandwidth is small, and only a few
tasks can satisfy offloading conditions and are offloaded to

FIGURE 8. Offloading number under different charge policy ec .

the MEC server. When the uplink resource is abundant, the
uploading time tun of tasks becomes small, and more tasks
can satisfy offloading conditions and are offloaded to MEC
server. Finally, the uploading time almost reaches to 0 when
uplink bandwidth is very large.
From Fig. 8 we can clearly observe that the number of

offloading UEs will decrease with the increasing of ec. This
is because the cost of offloading tasks to the MEC server
becomes larger than that of local execution with the increas-
ing of ec, which means UEs could not benefit from task
offloading any more and the offloading number of UEs
become small. Specifically, when ec = 4, all UEs choose
not to offload their tasks to the MEC server because of the
huge charge.

VI. CONCLUSION
In this paper, we considered UEs will be charged for
MEC servers and jointly optimized the downlink resource
allocation, offloading decision and computation resource
allocation. Then we formulated it as an MIP problem to
get its optimal solution and decoupled the problem into two
subproblem. Finally, we proposed an iterative algorithm to
get its suboptimal solution. The simulation results show our
solution performs better than benchmark algorithms and the
MEC servers will not always be full load with the charge
constraint.

REFERENCES
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash, “Internet of Things: A survey on enabling technologies,
protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17,
no. 4, pp. 2347–2376, 4th Quart., 2015.

[2] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: Architecture applications and approaches,” Wireless
Commun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2011.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—A key technology towards 5G,” Sophia Antipolis,
France, ETSI, White Paper, 2015.

[4] P. Corcoran and S. K. Datta, “Mobile-edge computing and the Internet
of Things for consumers: Extending cloud computing and services to
the edge of the network,” IEEE Consum. Electron. Mag., vol. 5, no. 4,
pp. 73–74, Oct. 2016.

214 VOLUME 1, 2020

[5] X. Zhang, Y. Zhong, P. Liu, F. Zhou, and Y. Wang, “Resource alloca-
tion for a UAV-enabled mobile-edge computing system: Computation
efficiency maximization,” IEEE Access, vol. 7, pp. 113345–113354,
2019.

[6] Y. Cui, Y. Liang, and R. Wang, “Resource allocation algorithm
with multi-platform intelligent offloading in D2D-enabled vehicular
networks,” IEEE Access, vol. 7, pp. 21246–21253, 2019.

[7] R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi,
“Achieving ultra-low latency in 5G millimeter wave cellular networks,”
IEEE Commun. Mag., vol. 55, no. 3, pp. 196–203, Mar. 2017.

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1628–1656, 3rd Quart., 2017.

[9] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: From concept to practice and beyond,” IEEE
Commun. Mag., vol. 53, no. 3, pp. 80–88, Mar. 2015.

[10] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190,
Jun. 2018.

[11] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[12] Q. Pham, L. B. Le, S. Chung, and W. Hwang, “Mobile edge computing
with wireless backhaul: Joint task offloading and resource allocation,”
IEEE Access, vol. 7, pp. 16444–16459, 2019.

[13] T. X. Tran and D. Pompili, “Joint task offloading and resource alloca-
tion for multi-server mobile-edge computing networks,” IEEE Trans.
Veh. Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[14] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[15] S. Ulukus et al., “Energy harvesting wireless communications: A
review of recent advances,” IEEE J. Sel. Areas Commun., vol. 33,
no. 3, pp. 360–381, Mar. 2015.

[16] P. Wang, C. Yao, Z. Zheng, G. Sun, and L. Song, “Joint task assign-
ment, transmission, and computing resource allocation in multilayer
mobile edge computing systems,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2872–2884, Apr. 2019.

[17] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled Internet
of Things,” IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814,
Jun. 2019.

[18] R. Kobayashi and K. Adachi, “Radio and computing resource alloca-
tion for minimizing total processing completion time in mobile edge
computing,” IEEE Access, vol. 7, pp. 141119–141132, 2019.

[19] W. Labidi, M. Sarkiss, and M. Kamoun, “Joint multi-user resource
scheduling and computation offloading in small cell networks,” in
Proc. IEEE 11th Int. Conf. Wireless Mobile Comput. Netw. Commun.
(WiMob), Oct. 2015, pp. 794–801.

[20] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, “Energy-
aware mobile edge computation offloading for IoT over heterogenous
networks,” IEEE Access, vol. 7, pp. 13092–13105, 2019.

[21] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Trans. Veh. Technol., vol. 66,
no. 8, pp. 7432–7445, Aug. 2017.

[22] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offload-
ing with data caching enhancement for mobile edge computing,” IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 11098–11112, Nov. 2018.

[23] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Commun. Lett., vol. 7, no. 3, pp. 420–423, Jun. 2018.

[24] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell networks,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[25] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learning for com-
putation offloading in mobile edge computing,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6353–6367, Dec. 2018.

[26] J. Liu, P. Li, J. Liu, and J. Lai, “Joint offloading and transmission
power control for mobile edge computing,” IEEE Access, vol. 7,
pp. 81640–81651, 2019.

[27] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Joint compu-
tation offloading, resource allocation and content caching in cellular
networks with mobile edge computing,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1–6.

[28] Z. Jian, W. Muqing, and Z. Min, “Joint computation offloading
and resource allocation in C-RAN with MEC based on spectrum
efficiency,” IEEE Access, vol. 7, pp. 79056–79068, 2019.

[29] Y. Pochet and L. A. Wolsey, Production Planning by Mixed Integer
Programming. New York, NY, USA: Springer, 2006.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

KEHAO WANG received the B.S. degree in electrical engineering and the
M.S. degree in communication and information system from the Wuhan
University of Technology, Wuhan, China, in 2003 and 2006, respec-
tively, and the Ph.D. degree from the Department of Computer Science,
University of Paris-Sud XI, Orsay, France, in 2012. He is currently
an Associate Professor with the Department of Information Engineering,
Wuhan University of Technology. His research interests are cognitive radio
networks, wireless network resource management, and data hiding.

ZHIXIN HU received the B.S. degree in electrical engineering from the
Wuhan University of Technology, Wuhan, China, in 2018, where he is
currently pursuing the Ph.D. degree with the Department of Information
Engineering. His research interests include MEC, machine learning, transfer
reinforcement learning, and deep reinforcement learning.

QINGSONG AI received the B.S. degree in electrical engineering and the
M.S. and Ph.D degrees in communication and information system from
the Wuhan University of Technology, Wuhan, China, in 2003, 2006, and
2010, respectively, where he is currently a Professor with the Department
of Information. His research interests are digital watermark, data hiding,
and information security.

YI ZHONG received the B.E.E.E. and M.S.E.E. degrees from the School
of Information Engineering, Wuhan University of Technology in 1999 and
2002, respectively, and the Ph.D. degree in information and communica-
tion engineering from the Wuhan University of Technology in 2007. He
has published numerous articles and papers in domestic and international
journals, and has attended in many conferences on topics ranging from
embedded control systems to system fault diagnosis.

JIHONG YU received the B.E. degree in communication engineering and
the M.E. degree in communication and information systems from the
Chongqing University of Posts and Telecommunications, Chongqing, China,
in 2010 and 2013, respectively, and the Ph.D. degree in computer science
from the University of Paris-Sud, Orsay, France, in 2016. In 2017, he was
a Research Fellow with the School of Computing Science, Simon Fraser
University, British Columbia, Canada. He is currently an Associate Professor
with the Beijing Institute of Technology. His research interests include RFID
technologies, wireless communications, and Internet of Things.

VOLUME 1, 2020 215

WANG et al.: JOINT OFFLOADING AND CHARGE COST MINIMIZATION IN MEC

PAN ZHOU (Senior Member, IEEE) received the B.S. degree in advanced
class of the Huazhong University of Science and Technology (HUST),
Wuhan, China, in 2006, and the Ph.D. degree from the School of Electrical
and Computer Engineering, Georgia Institute of Technology (Georgia Tech),
Atlanta, USA, in 2011. He is currently an Associate Professor with the
School of Cyber Science and Engineering, HUST. From 2011 to 2013, he
was a Senior Technical Member with Oracle, Inc., Boston, MA, USA. His
current research interests include network security, machine learning and
big data analytics, and information networks.

LIN CHEN received the B.E. degree in radio engineering from Southeast
University, China, in 2002, the M.S. degree in networking from the
University of Paris 6, and the Diploma degree in engineering and the
Ph.D. degree from Telecom ParisTech, Paris, in 2005 and 2008, respec-
tively. He currently works as an Associate Professor with the School of
Data and Computer Science, Sun Yat-sen University. His main research
interests include modeling and control for wireless networks, security and
cooperation enforcement in wireless networks, and game theory.

HYUNDONG SHIN (Senior Member, IEEE) received the B.S. degree in
electronics engineering from Kyung Hee University (KHU), Yongin, South
Korea, in 1999, and the M.S. and Ph.D. degrees in electrical engineering
from Seoul National University, Seoul, South Korea, in 2001 and 2004,
respectively. From 2004 to 2006, he was a Postdoctoral Researcher with
the Wireless Communication and Network Sciences Laboratory, Laboratory
for Information Decision Systems, Massachusetts Institute of Technology.
In 2006, he joined KHU, where he is currently a Professor with the
Department of Electronic Engineering. His research interests include quan-
tum information science, wireless communication, and nanonetworks. He
was a recipient of the Knowledge Creation Award in the field of computer
science from the Korean Ministry of Education, Science and Technology
in 2010, the IEEE Communications Society Guglielmo Marconi Prize
Paper Award in 2008, and the William R. Bennett Prize Paper Award
in 2012. He served as the Publicity Co-Chair for IEEE PIMRC in 2018,
and the Technical Program Co-Chair for IEEE WCNC (PHY Track, 2009),
and IEEE GLOBECOM (Communication Theory Symposium 2012 and
Cognitive Radio and Networks Symposium 2016). He was an Editor of
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2007
to 2012 and IEEE COMMUNICATIONS LETTERS from 2013 to 2015.

216 VOLUME 1, 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

