
SCIENCE CHINA
Information Sciences

April 2020, Vol. 63 140313:1–140313:16

https://doi.org/10.1007/s11432-019-2780-0

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Internet of Minds

Joint time delay and energy optimization with

intelligent overclocking in edge computing

Kehao WANG1,2*, Zhenhua XIONG1, Lin CHEN3, Pan ZHOU4 & Hyundong SHIN5

1School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
2Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan 430063, China;

3School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China;
4School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430000, China;

5Department of Electronic Engineering, Kyung Hee University, Yongin-si 17014, South Korea

Received 19 October 2019/Revised 13 December 2019/Accepted 4 February 2020/Published online 9 March 2020

Abstract With the rapid growth of user equipment (UE), the amount of data transmitted over networks

has become enormous, exerting immense pressure on backbone networks and central cloud infrastructures.

Simultaneously, corresponding applications requiring high energy consumption and low latency have multi-

plied the requirements for UE. Mobile edge computing (MEC) has been proposed to support the offloading of

UE tasks to edge clouds for execution. The implementation of MEC requires fast data transmission between

UE and edge servers, and the emerging 5G network appears to render this technology possible. In this paper,

considering a large number of UE, a fixed MEC server, and an advanced intelligent network, we suggest an

intelligent overclocking mechanism for the MEC server that operates for an intelligently calculated period to

allow it to leverage more computing power without introducing additional hardware resources for a certain

period of time. We jointly manage task offloading, server resource allocation, and overclocking to minimize

the system-wide computation overhead and other risks. The proposed optimization problem is a mixed-

integer nonlinear programming problem that is divided into three subproblems: offloading decision, resource

allocation, and overclocking decision. We solve these subproblems using non-convex techniques and provide

an iterative algorithm to obtain a heuristic solution for the original problem. Finally, simulation results show

that the overclocked MEC server has lower system-wide computation overhead, faster task processing, and

more offloaded UE as compared with the case without overclocking.

Keywords overclocking, intelligent network, mobile edge computing, computation offloading, resource

allocation

Citation Wang K H, Xiong Z H, Chen L, et al. Joint time delay and energy optimization with intelligent

overclocking in edge computing. Sci China Inf Sci, 2020, 63(4): 140313, https://doi.org/10.1007/s11432-019-2780-0

1 Introduction

The explosively increasing number of Internet-of-Things (IoT) devices, which is anticipated to reach

20 billion by 2020, imposes greater challenges for network communications. The popularity of complex

distributed applications and the emerging 5G network has brought a slew of new requirements to IoT

devices [1] (e.g., smart mobile devices, vehicle-mounted intelligent terminals [2], smart televisions, and

virtual-reality devices). A growing amount of user equipment (UE) and their corresponding emerging

applications inevitably increase network node traffic and data handling. Managing and processing these

network data are key to any intelligent network [3, 4]. However, processing data from a large number

*Corresponding author (email: kehao.wang@whut.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2780-0&domain=pdf&date_stamp=2020-3-9
https://doi.org/10.1007/s11432-019-2780-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2780-0
https://doi.org/10.1007/s11432-019-2780-0


Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:2

of networks is a huge problem. Emerging applications are being developed with characteristics of time-

delay sensitivity and high energy consumption. However, existing IoT devices can hardly support those

conditions owing to limited power and resources [5]. Under this context, edge computing has been

proposed as a promising IoT paradigm.

Fog-computing integration with IoT has been proposed, such that devices can be deployed at the edge

of networks [6,7]. Mobile edge computing (MEC)-enabled IoT devices have also been promulgated [8–10].

The core of this type of IoT involves the implementation of MEC to support the large number of UE

that offloads data and computation-requiring tasks to edge networks for execution. These are known

as MEC servers. Considering the emerging 5G network with its fast data transmission capability and

the development of new MEC servers with even more powerful computing resources, MEC-enabled IoT

should well-accommodate the emerging demands and their related quality-of-service (QoS) requirements

while reducing the pressure on UE, backbone networks, and central cloud infrastructures [11].

MEC deploys cloud resources to the edge of Radio access networks to improve UE computing efficiency

and storage capacity [12], and they can be applied for specific cases of mobile cloud computing (MCC).

Compared with UE, MECs have abundant computing resources and powerful processing capabilities.

MECs exist closer to the UE as compared with MCCs. This greatly reduces interaction time between

UE and cloud services. Computation offloading involves the transmittal of UE data to the MEC server

for execution and is key to MEC [13]. However, computation offloading brings extra overhead related

to latency and energy consumption and is mainly divided into three cases: local execution, complete

offloading, and partial offloading. If a task is executed locally, only the delay and energy consumption

of the task is considered. If it is executed on MEC servers, transmission delays, data processing, and

reporting are additionally considered. Therefore, minimizing cumulative overhead and satisfying the QoS

of tasks are a worthy issue of study [14].

Generally, MEC resources are sufficient for UE offloading. In some practical applications, however, the

number of UE constantly changes. Sometimes the number is very large, such as near marketplaces during

rush hours. In these situations, if the MEC server can obtain more computation resources, it will reduce

system pressures and improve the overall QoS. For this, an overclocking mechanism is proposed to gain

additional computing ability from a given component by increasing its backbone operating frequency for

calculated periods. Overclocking incurs some extra overhead and can lead to component damage and

overheating. With an intelligent network, we can collect context data from the network to agilely and

intelligently control MEC servers [15] to achieve quality and timely data processing. In this paper, we

mainly consider minimizing delays, energy consumption, and overclocking overhead for a single MEC

server connected to multiple UE.

This paper specifically considers the model in which MEC server resources can change dynamically with

the number of UE. We further design a computation offloading framework that accounts for UE offloading

decisions, server resource allocation, and overclocking decisions to minimize the overall computational

overhead. The main contributions of this study can be summarized as follows.

• We propose a new overclocking concept for MEC servers that jointly considers task offloading,

computation resource allocation, and server overclocking. To minimize the computational overhead of

the system, an optimization problem is formulated as a mixed-integer nonlinear programming (MINLP)

problem.

• For the proposed MINLP problem, we decompose the original problem into three subproblems:

(i) offloading decision, (ii) MEC server resource allocation, and (iii) MEC server overclocking decision.

The first subproblem is a convex optimization that can be easily solved with existing technologies. The

second is still an MINLP problem, and we can obtain its optimal solution under known conditions. The

third is a simple comparison problem that can be easily solved. Then, we propose iterative joint opti-

mization for offloading decisions, overclocking decisions, and computation resource allocation algorithm

(i.e., JOOC) to obtain a heuristic policy to solve the original problem.

• Our simulation results show that the proposed algorithm performs better than random offloading

under two benchmark schemes, and the performance in the case of overclocking is superior to that without

overclocking in terms of computational overhead, QoS, and offloading rate.



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:3

We introduce the background knowledge of MEC and overclocking in Section 2. In Section 3, we

introduce a model of the MEC system with the overclocking capability, and we formulate an optimization

problem. Section 4 provides the algorithm for solving the optimization problem in detail, and we analyze

the algorithm’s computing complexity. The experimental simulation results, analysis, and summary are

presented in Section 5. Finally, the paper is concluded in Section 6.

2 Related work

2.1 Mobile edge computing

The emergence of 5G networks and the dawn of the IoT age have brought new opportunities and challenges

to the transmission and processing of network data. As a key technology for solving these challenges,

MEC has attracted a lot of research. Mach and Becvar [13] detailed the MEC system and presented two

of the most commonly used metrics to evaluate performance (i.e., energy consumption and latency).

In terms of time delay, Alameddine et al. [16] jointly tackled task offloading and order of execution

by considering different requirements and task latency. They mainly considered five delays: uploading,

edge-to-edge, waiting, processing, and downloading. Ning et al. [17] comprehensively considered both

cloud computing and MEC, using the ARkit framework to consider the partial offloading of sensitive

time-delayed tasks. They mainly computed the transmission delay of the block task between local, MEC,

and cloud servers. Wang et al. [18] investigated the problem of how to realize effective federated offloading

for moving vehicles with a goal of minimizing total latency.

In terms of optimizing energy consumption, Zhang et al. [19] combined radio-frequency-based wireless

power transfer and MEC technologies to deliver energy to energy-constrained wireless devices to improve

energy efficiency. Li et al. [20] specifically noted that each terminal device could access multiple edge

servers and distributed heterogeneous computational resources among multiple devices in the network to

achieve optimal network-level energy efficiency while meeting QoS.

For joint optimization of latency and energy consumption, Cui et al. [21] used the mechanism of small

cells [22] to improve spectrum and energy efficiencies. Pham et al. [23] introduced a novel framework for

joint computation offloading and resource allocation in MEC networks with wireless backhaul [24, 25].

They proposed a model framework for wireless backhaul to achieve dense small-cell deployment and

efficient data transmission. Tran et al. [26] considered a multi-cell ultra-dense network in which each base

station (BS) was equipped with an MEC server to provide computation offloading services to mobile users.

According to the context information of the network, they proposed a mechanism for resource allocation

coordination of multiple neighboring BSs to reduce interference and resource contention among users.

Zhang et al. [27] proposed an energy-aware offloading scheme and used the energy of surface-mounted

diodes as a constraint to jointly optimize system overhead.

Most of the above MEC models only consider the optimization of computational overhead from user

characteristics, task-offloading methods, and network access points but do not optimize system overhead

from changes in the MEC server.

2.2 Overclocking

High power consumption has become one of the most important problems for supercomputer systems.

Therefore, improving the energy efficiency of a computer node is our concern. It is very important to

achieve a tradeoff between performance and energy consumption for better energy efficiency; overclocking

the central processing unit (CPU) is a simple method for realizing this purpose.

There are many ways to overclock a CPU [28–32]. Wu et al. [29] utilized processor overclocking and

memory-frequency scaling to achieve better performance and lower power consumption, bringing about

better energy efficiencies for their benchmarks. Jang et al. [30] adopted the F-overclocking technique,

which increased clock frequency without changing supply voltage. They then proposed an adaptive over-

clocking controller that dynamically managed the F-overclocking technique based on dynamic application



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:4

Figure 1 (Color online) System model.

characteristics. Short et al. [31] considered overclocking a controller area network to improve information

throughput. Zhao et al. [32] proposed low-density parity-check-based overclocked solid-state drives.

Although there are many useful overclocking applications, they have not been used for emerging MEC

technologies. Based on intelligent networks and the emergence of 5G, we propose an intelligent overclock-

ing mechanism for an MEC server.

3 System model and problem formulation

3.1 System model

We consider an MEC system comprising multiple UE and a BS equipped with a smart overclocking server

as shown in Figure 1.

We assume that there are N = {1, 2, 3, . . . , N} UE, and each UE, n, has a task In to be offloaded.

In = {Cn, Dn, T
max
n }, ∀n ∈ N , (1)

where Cn denotes the total number of the CPU cycles required to accomplish task In. Dn is the computed

input data size, and Tmax
n is the QoS requirement of task In. Each computation task can be executed

either locally or on an MEC server. Consider that when the MEC server is not overclocked, its maximum

computation resource is F . When the MEC server is overclocked, more computing resources (ϕF , ϕ

(constant), and 0 < ϕ < 1) will be allocated for tasks. At this time, however, an overclocking loss

L(t) will be generated because of the additional heat and possible hardware damage. The overclocking

working time of an MEC server cannot exceed time T0 to ensure that the MEC server works stably. The

loss function L(t) is given by

L(t) =

{

αt, 0 6 t 6 T0,

∞, T0 < t < T cyc,
(2)

where α > 0 is a fixed value representing the growth rate of the loss function L(t) with time t, and the

T cyc represents the period of the loss function.

We define the offloading decision model as x = {xn | ∀n ∈ N}, where xn ∈ {0, 1}. When xn = 0, task

In will be executed locally. When xn = 1, task In will be offloaded to the MEC server for execution.

We define the overclocking decision model as a ∈ {0, 1}, where a = 0 indicates that the MEC server is

not overclocked, whereas a = 1 means that the MEC server is overclocked.



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:5

3.2 Executed locally

We denote f l
n as the computational capability of UE n. Let tln represent the computation time required

for the local execution of task In, which can be computed as

tln = Cn/f
l
n, ∀n ∈ N . (3)

The energy consumption El
n (in Joule) of UE n executing a task can be modeled as

El
n = κnCn(f

l
n)

2, ∀n ∈ N , (4)

where κn is the coefficient related to the chip-hardware architecture according to the measurements

in [33]. We set κn = 5× 10(−27) in this paper.

The computational overhead of the local execution of task In is a function of the task’s execution time

and energy consumption defined as

U l
n = λt

nt
l
n + λe

nE
l
n, ∀n ∈ N , (5)

where λt
n ∈ [0, 1] and λe

n ∈ [0, 1] (λt
n + λe

n = 1) are weight parameters for the computational time and

energy consumption of task In. Those two weighting factors can be set by the user according to the

battery condition of the UE n and the delay requirement of the computation task.

3.3 Executed on MEC

Let Pn and Hn represent the transmitting power of UE n and the channel gain between UE n and the

MEC. Accordingly, the transmission rate rn of date Dn is

rn =
W

NOff
log2

(

1 +
PnHn

N0

)

, ∀n ∈ NOff , (6)

where NOff represents the set of tasks that are offloaded to the MEC server. NOff = {n | xn = 1, n ∈ N},
NOff is the number of offloading UE, NOff =

∑N
n=1 xn, W is the system bandwidth, and N0 is the additive

white Gaussian noise power.

Let tpn be the time for uploading data Dn to the edge server given by

tpn = Dn/rn, ∀n ∈ NOff . (7)

Let Ep
n denote the transmission energy consumption of task In. Then, we get

Ep
n = Pnt

p
n, ∀n ∈ NOff . (8)

Let trn be the execution time of task In executed at the MEC server. trn can be expressed as

trn = Cn/f
r
n, ∀n ∈ NOff , (9)

where f r
n is the computing resource provided by the MEC server, and the computation resource vector

is defined as f = {f r
n | ∀n ∈ N}.

Similar to the computational overhead of local execution, the computation overhead under remote

execution can be computed as

U r
n = λt

n(t
p
n + trn) + λe

nE
p
n, ∀n ∈ NOff . (10)



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:6

3.4 Problem formulation

To minimize the system’s computational overhead, the objective function can be defined as

U(x, a,f) =
∑

n∈N

Un(xn, a, f
r
n) + aL(t),

where

Un(xn, a, f
r
n) = (1− xn)U

l
n + xnU

r
n, ∀n ∈ N . (11)

Then this problem can be formulated as follows:

min
x,a,f

{

∑

n∈N

Un(xn, a, f
r
n) + aL(t)

}

(12)

s.t. C1 : xn = {0, 1}, ∀n ∈ N ,

C2 : a ∈ {0, 1},
C3 : f r

n > 0, ∀n ∈ NOff ,

C4 :
∑

n∈NOff

f r
n 6 (F + aϕF ),

C5 : amax
n

{trn} 6 T0, ∀n ∈ NOff ,

C6 : (1− xn)t
l
n + xn(t

p
n + trn) 6 Tmax

n , ∀n ∈ N .

In this formulation, C1 represents the offloading decision, C2 represents the overclocking decision, C3

indicates that the computing resource for each task offloaded on the MEC server is positive, C4 implies

that the total computing resource used is limited by the MEC server’s maximum resource, and C5 means

that when the MEC server is overclocked. Thus, it cannot work longer than T0. C6 means the execution

time of task In should satisfy its QoS.

We see that x and a are all binary integers, whereas f is continuous. Therefore the optimization

problem is an MINLP problem, which is NP-hard.

4 Proposed algorithm and analysis

Considering the huge computing complexity of the problem (12), we decompose it into three subproblems:

offloading decisions, computation resource allocation, and overclocking decisions. Specifically, we propose

an iterative algorithm (i.e., JOOC) to solve the first two subproblems of overclocking and non-overclocking

states of the MEC server. Then, from the obtained solution, we can determine the overclocking decision.

Because the original problem is difficult to solve directly, and it is difficult to find the optimal solution,

our decomposition method cannot guarantee the optimality of the original problem. Figure 2 is the

framework of our proposed scheme for the original problem (12).

4.1 Offloading decision

We assume the computation resource f and the overclocking decision a are determined. Then, the

offloading decision subproblem can be rewritten as

min
x

∑

n∈N

Un(xn) (13)

s.t. xn = {0, 1}, ∀n ∈ N ,

(1 − xn)t
l
n + xn(t

p
n + trn) 6 Tmax

n , ∀n ∈ N .



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:7

 

 

The original optimization problem

Offloading

decision

subproblem

Overclocking

decision

a=0

Overclocking

decision

a=1

Resource allocation

subproblem

Resource allocation

subproblem

O
ff

lo
ad

in
g
 d

ec
is

io
n

u
n
ch

an
g
ed

 f
o
r 

tw
o

co
n
se

cu
ti

v
e 

ti
m

es

Overclocking decision subproblem

The solution: (x, a, f )

Figure 2 Proposed framework for solving the problem (12).

The problem (13) can be rewritten as

∑

n∈N

Un(xn) =
∑

n∈N

xnU
r
n +

∑

n∈N

(1 − xn)U
l
n =

∑

n∈N

xn(U
r
n − U l

n) +
∑

n∈N

U l
n.

According to Subsection 3.2,
∑

n∈N U l
n can be calculated in advance, and the problem (13) can be

turned into

min
x

∑

n∈N

xn(U
r
n − U l

n). (14)

Step 1. We assume that all tasks In are offloaded to the MEC server (i.e., N = NOff). We then get

U r
n (n ∈ NOff), as calculated in Subsections 3.2 and 4.2. If U r

n > U l
n or the execution time of task In

cannot satisfy the condition, i.e., (tpn + trn) 6 Tmax
n , this UE will not offload its computation task In

to the MEC server, and xn = 0. Otherwise, the execution time of task In cannot satisfy the condition

(tpn + trn) 6 Tmax
n . This UE will not offload its computation task In to the MEC server, and xn = 0.

However, task In will be chosen to offload to the MEC server (i.e., xn = 1). Then we get the offloading

decision x of the first iteration.

Step 2. In each iteration τ , we first pick one task whose (U r
n − U l

n) is the largest of all rejected tasks

(i.e., xn(τ) = 0, (∀n ∈ NOff)). Then, we cause xn(τ) of the remaining tasks to return to 1. We can then

get a new offloading decision x(τ) to update NOff for the next iteration until ∀n ∈ NOff , U
r
n 6 U l

n or

NOff = φ.

Step 3. As in Step 2, in each iteration τ , we remove the task having the largest (tpn + trn)−Tmax
n value

from set NOff until ∀n ∈ NOff , (t
p
n + trn) 6 Tmax

n or NOff = φ. Then, we can get the final offloading

decision x.



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:8

4.2 Computation resource allocation

When the offloading decision x and the overclocking decision a are both known, the subproblem of

resource allocation can be rewritten as

P : min
f

{

y(f) =
∑

n∈NOff

λt
nCn

f r
n

+ aαmax
n

{

Cn

f r
n

}

}

s.t. D1 :
∑

n∈NOff

f r
n 6 (F + aϕF ),

D2 : f r
n > 0, ∀n ∈ NOff ,

D3 : amax
n

{

Cn

f r
n

}

6 T0, ∀n ∈ NOff , (15)

where maxn{Cn

fr
n
} indicates the maximum working time of the MEC server.

Lemma 1. (1) If the MEC server is not overclocked, i.e., a = 0, the optimal resource allocation

strategy is

f r
n =

F
√

λt
nCn

∑

n∈NOff

√

λt
nCn

. (16)

(2) If the MEC server is overclocked, i.e., a = 1, when Ci

λt
i
+α

> maxj{Cj

λt
j

}, j ∈ NOff , j 6= i and the

maximum overclocking time of the MEC server does not exceed T0, we get the optimal resource allocation

strategy:

f r
n =

(F + ϕF )
√

λt′
nCn

∑

n∈NOff

√

λt′
nCn

,

where λt′

i = λt
i + α and λt′

j = λt
j , j ∈ NOff , j 6= i.

If the maximum overclocking time of the MEC server exceeds T0, we have

f r
n =











(F+ϕF )
√

λt′
n Cn

∑
n∈NOff

√
λt′
n Cn

, 0 6 t 6 T0,

(F+ϕF )
√

λt
nCn

∑
n∈NOff

√
λt
nCn

, T0 < t.
(17)

Proof. When a = 0, the problem P can be rewritten as

P ′ : min
f

{

y(f) =
∑

n∈NOff

λt
nCn

f r
n

}

(18)

s.t. D1 :
∑

n∈NOff

f r
n 6 F,

D2 : f r
n > 0, ∀n ∈ NOff ,

and we can determine that ∂y/∂f r
n = −(λt

nCn/f
r
n) < 0 and ∂2y/∂f r

n
2 = 2Cn/f

r
n
3 > 0. Thus, the objective

in (18) is a convex monotonic decreasing function. Because D1 and D2 are both linear constraints, P ′ is

a Lagrangian duality problem.

For constraint D1, the original problem can be slacked into a single constraint optimization problem

by using the Lagrange multiplier:

min
f>0

L(f , β) =
∑

n∈NOff

λt
nCn

f r
n

+ β

(

∑

n∈NOff

f r
n − F

)

(19)

with a dual factor β > 0 and f r
n 6 F .



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:9

We now have minf>0L(f , β) 6
∑

n∈NOff
λt
nCn/f

r
n. To make minf>0L(f , β) to approach y(f), the

problem (19) is going to be minf y(f) = maxβ>0 minf>0L(f , β). By the first derivative of L(f , β) with

respect to f r
n, then we can get the optimal solution:

f r
n =

√

λt
nCn/β. (20)

We defined J (β) = minf>0L(f , β) and substituted (20) into (19). We now have J (β) =

2
∑

n∈NOff

√

λt
nCnβ − βF . We then obtain the first derivative of J (β) with respect to β and set its

result to 0. We have
√

β =
∑

n∈NOff

√

λt
nCn/F. (21)

Combining (20) and (21), we get the optimal solution:

f rℓ
n =

F
√

λt
nCn

∑

n∈NOff

√

λt
nCn

. (22)

When a = 1, it becomes more complicated to solve the original problem P directly. Thus, we rewrite

the original problem according to the solution of P ′.

Combining (9) and (22), we know the execution time trn of each task is

trn = Cn/f
r
n = F0R

√

Cn/λt
n, n ∈ NOff , (23)

where F0 = 1/(F + ϕF ) and R =
∑

n∈NOff

√

λt
nCn.

We rank the execution time of tasks from small to large. Then, we have

R
√

C1/λt
1 6 R

√

C2/λt
2 6 · · · 6 R

√

Ck/λt
k, (24)

where k =
∑N

n=1 xn = NOff . Then, we define K = {1, 2, . . . , k}.
Thus, we now know the maximum time tmax required by the MEC server to execute tasks:

tmax = F0R
√

Ck/λt
k. (25)

Thus problem P becomes

P ′′ : min
f

{

y(f) =
∑

n∈NOff

λt
nCn

f r
n

+ α
Ck

f r
k

}

(26)

s.t. D1 :
∑

n∈NOff

f r
n 6 (F + ϕF ),

D2 : f r
n > 0, ∀n ∈ NOff ,

D3 :
Ck

f r
k

= max
n

{

Cn

f r
n

}

, ∀n ∈ NOff ,

D4 :
Ck

f r
k

6 T0.

Rewriting the time weight λt
k to λt

k + α, we get a new time weight sequence λt′

n . Then, problem (26)

can be rewritten as

P ′′ : min
f

{

y(f) =
∑

n∈NOff

λt′

nCn

f r
n

}

. (27)

We know from (18) to (23) that the execution time trn of each task is

trn = F0R
′
√

Cn/λt′
n , n ∈ NOff , (28)



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:10

where R′ =
∑

n∈NOff

√

λt′
nCn.

If R′
√

Ck/(λt
k + α) > R′

√

Ck−1/λt
k−1 (i.e., t

r
k > maxn{Cn

fr
n

}, n ∈ NOff), the result will satisfy condition

D3, and we can find the best allocation of resources. However, there are two more cases caused by

condition D4.

(a) If trk 6 T0, the MEC server can execute all tasks meeting the specified overclocking constraint.

Thus, the optimal solution of problem P ′′ is

f r′

n =
(F + ϕF )

√

λt′
nCn

∑

n∈NOff

√

λt′
nCn

. (29)

(b) If trk > T0, when the working time of the MEC server reaches T0, the remaining unprocessed tasks

must be processed with the MEC server in a non-overclocked state. Its resource allocation method is

based on (22).

If R′
√

Ck/(λt
k + α) < R′

√

Ck−1/λt
k−1, the maximum time of task executed on the MEC server is

tmax = Ck−1
k−1/f

r
k−1 = F0R

′
√

Ck−1/λt
k−1 > Ck

k/f
r
k . (30)

Because Eq. (30) does not satisfy condition D3, we cannot directly choose this resource allocation

strategy. For this case, it is difficult to find the optimal strategy. We thus use a heuristic algorithm to

find a sub-optimal solution. We record the computational overhead yk(f) under the current resource

allocation strategy to prepare for the comparison as follows:

yk(f) =
∑

n∈NOff

λt
nCn

f r′
n

+ αF0R
′
√

Ck−1/λt
k−1. (31)

We set i ∈ K, i 6= k and rewrite the problem (26) as

P ′′ : min
f

{

y(f) =
∑

n∈NOff

λt
nCn

f r
n

+ α
Ci

f r
i

}

. (32)

As Eq. (26) evolved into (27), we have

P ′′ : min
f

{

y(f) =
∑

n∈NOff

λt
n
∗
Cn

f r
n

}

. (33)

In this case, the execution time trn of each task In will be

trn = F0R
∗
√

Cn/λt
n
∗, n ∈ NOff , (34)

where R∗ =
∑

n∈NOff

√

λt
n
∗Cn.

We still have R∗
√

Ci/λt
i 6 R∗

√

Ck/λt
k, i ∈ K, i 6= k. For task Ii, we have F0R

∗
√

Ci/λt
i >

F0R
∗
√

Ci/(λt
i + α). Combing the two cases, we get R∗

√

Ck/λt
k > R∗

√

Ci/(λt
i + α).

There is no doubt that the maximum execution time is

tmax = Ck
k/f

r
k = F0R

∗
√

Ck/λt
k. (35)

In this case, the result of resource allocation is

f r∗
n =

(F + ϕF )
√

λt∗
n Cn

∑

n∈NOff

√

λt∗
n Cn

. (36)

Thus we have

yi(f) =
∑

n∈NOff

λt
nCn

f r∗
n

+ αF0R
∗
√

Ck/λt
k, i ∈ K, i 6= k.



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:11
O

v
er

cl
o
ck

in
g
 l

o
ss

... (m−1)Tcyc (m−1)T 
cyc+T

0
mT 

cyct ...

Time

...

f
1

t
1

t
1

t
2

t
3

t
4

f
2

Δf
2

f
4

f
3

Computational resoure

E
x
ec

u
ti

o
n
 t

im
e 

o
n
 t

h
e 

M
E

C

∞

αT
0

αt

L(t)=αt

t
n
r

f
n

C
n

r

(a) (b)

Δ

Δt
2

Δf
1

Figure 3 (Color online) (a) Loss function L(t) vs. time t; (b) task allocation resource fr
n vs. processing time trn.

We then rewrite R∗ and yi(f) into the following forms:

R∗ = R+
√

(λt
i + α)Ci −

√

λt
iCi, i ∈ K, i 6= k, (37)

yi(f) = R∗F0

(

R∗ − α
√
Ci

√

λi
t + α

)

+ αF0R
∗
√

Ck/λt
k, i ∈ K, i 6= k. (38)

Generally, (
√

(λt
i + α)Ci −

√

λt
iCi) ≪ R∗, i ∈ K, i 6= k, and yi(f) is monotonically decreasing for the

variable
√

Ci/λt
i, i ∈ K, i 6= k. Thus, we propose the following algorithm to ensure the superiority of

the resource allocation strategy to a certain extent. We set a threshold value of s. If s > k − 1, we

figure out the computational overhead yi(f), i ∈ K, i 6= k of problem P in all cases. We form a set

Y = {y1(f), y2(f), . . . , yk−1(f)}. If s < k − 1, we figure out the computational overhead yi(f), i ∈
{k− s, k− s+ 1, . . . , k− 1} of problem P , and form a set Y = {yk−s(f), yk−s+1(f), . . . , yk−1(f), yk(f)}.
We then compare the computational overhead of the MEC server in all cases and find the smallest yi(f)

(i.e., i = argmini∈MY. And where s > k − 1, M = K. Otherwise, M = {k − s, k − s + 1, . . . , k − 1}).
We update the i of (36), and the result is the sub-optimal solution of the case.

Just like case (2) in Lemma 1, because of condition D4, there are still two usable cases. Thus, the final

resource allocation strategy is

f r
n =











(F+ϕF )
√

λt∗
n Cn

∑
n∈NOff

√
λt∗
n Cn

, 0 6 t 6 T0,

(F+ϕF )
√

λt
nCn

∑
n∈NOff

√
λt
nCn

, T0 < t.
(39)

4.3 Overclocking decision

For this decision, we need to judge whether overclocking is beneficial. When

min
x,f

∑

n∈N

Un(xn, 0, f
r
n) > min

x,f

{

∑

n∈N

Un(xn, 1, f
r
n) + L(t)

}

, (40)

we will decide to start overclocking.

Because the MEC server is almost always working, in Figure 3(a), only whenmT cyc 6 t 6 (T0+mT cyc),

m = {0, 1, . . .}, the MEC server can work in the overclocked state. The working time of the server in the

overclocking state cannot exceed time T0 +mT cyc − t. When (T0 +mT cyc) < t < (m+ 1)T cyc, the MEC

service cannot be overclocked, and this period becomes the recovery period of the MEC server.

In this system, when the number of UE is relatively small, and the computing resources of the MEC

server are rich, each task is assigned with more resources. If we begin overclocking, each task will get more



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:12

resources, as shown in Figure 3(b), just as f3 to f4. However, the benefit ∆t2 is not obvious. Meanwhile,

the overclocking loss is relatively large compared to the total computational overhead of the system, even

bringing negative benefits. Thus, in this case, MEC servers should not be overclocked. When the number

of UE increases, the MEC server’s computational resources will be short. If we start overclocking, each

task will receive more resources, as shown in Figure 3(b), just as f1 to f2. Then, we can see that the

benefit ∆t1 is quite obvious. We also see that the overclocking loss is relatively small compared to the

total computational overhead of the system. Thus, the MEC server should be overclocked. Overclocking

is required only when there is a large number of tasks, which concurs with the actual situation. Therefore,

the value of overclocking decision a must be determined by combining the current server state and the

overclocking overhead.

4.4 Algorithm and complexity analysis

The details of the proposed algorithm are summarized in Algorithm 1.

Algorithm 1 Joint optimization for offloading decision, overclocking decision, and computation resource allocation (JOOC)

1: Initialization:

2: Make x = {xn = 1 | ∀n ∈ N}, NOff = N .

3: Iteration:

4: for a ← 0 to 1 do

5: Get f according to (16), (17) or (39).

6: if ∃n ∈ NOff , U
r
n > U l

n then

7: Repeat

8: i# ← argminn∈NOff
{xn(U l

n − Ur
n)};

9: NOff ← NOff − {i
#};

10: Update x by setting xi# ← 0;

11: Update f according to (16), (17) or (39);

12: Until Ur
n < U l

n, ∀n ∈ NOff or NOff = φ;

13: end if

14: if ∃n ∈ NOff , (t
p
n + trn) > Tmax

n then

15: Repeat

16: i# ← argminn∈NOff
{xn(Tmax

n − (tpn + trn))};

17: NOff ← NOff − {i
#};

18: Update x by setting xi# ← 0;

19: Update f according to (16), (17) or (39);

20: Until (tpn + trn) < Tmax
n , ∀n ∈ NOff or NOff = φ;

21: end if

22: end for

23: Update a according to (40);

24: Output: the optimal solution {x, a, f}.

The main loop parts of Algorithm 1 are lines 6–13 and 14–21. The role of these two loops is to delete

the elements in the set NOff , which do not meet the corresponding conditions. Currently, there are

three cases for the set NOff . All elements in NOff meet the conditions; only some elements in NOff meet

the conditions; and all elements in NOff do not meet the conditions. Line 6 (14) and line 12 (20) in

Algorithm 1 correspond to the judgments of these three cases. Thus, Algorithm 1 is convergent.

In JOOC, every iteration aims to get a better offloading decision and resource allocation strategy. The

complexity of optimizing the part of the offloading decision is O(N). Finding a better resource allocation

strategy is divided into three cases. In (18), we simply use the duality method to obtain a result. Thus,

the complexity is O(1) in (27). We must calculate a sequence
√

Cn

λt
n

ranging from large to small, and

then use the dual model to solve the problem. Thus, the complexity is O(N log2 N). In problem (33), we

must find the minimum value of yi(f) (yi(f) ∈ Y), so that the complexity is max{O(N log2 N),O(N)}.
On the whole, the complexity of each iteration is O(N log2 N). To obtain the final offloading decision

and feasible resource allocation strategy, we must iterate N times at most. Then, the complexity of

overclocking decision is O(1). Thus, the complexity of the whole algorithm is O(N2 log2 N). If we want



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:13

Table 1 The simulation parameters

Parameter name Parameter value Unit

Bandwidth W 2.5× 107 Hz

Transmission power Pn 20 dBm

Nose power N0 −85 dBm

CPU frequency of UEs f l
n 0.5 GHz

Total CPU frequency F 20 GHz

Task CPU cycles Cn [0.5, 0.7] Gigacycle

Task date size Dn [20, 350]×103 kB

Task QoS Tmax [1.0, 1.1] s

Time weighting factor λt
n 0.5 –

Energy weighting factor λe
n 0.5 –

Growth rate of loss function α 0.3 –

0 10 15 20 25

Iterations

24

26

28

30

32

34

36

38

40

C
o
m

p
u
ta

ti
o
n
 o

v
er

h
ea

d

(11, 26.7945)

(16, 32.6642)

40UEs

46UEs

0 10 15 20 25 30 35 40 45 50

Number of UEs

0

10

20

30

40

50

60
C

o
m

p
u
ta

ti
o
n
 o

v
er

h
ea

d

Local only
Offloading only

Random offloading
Not overclocking
Overclocking

5 5

(a) (b)

Figure 4 (Color online) (a) Computation overhead vs. the number of iterations; (b) computational overhead vs. the

number of UEs.

to get an optimal solution of the original problem, we must use a traversal algorithm, in which the

complexity of the algorithm is at least O(2N ).

5 Simulation results

In this section, we demonstrate the advantages of our algorithm with offloading tasks via experiment

simulation. Table 1 shows the parameter settings of our experiment.

Figure 4(a) shows that, under different numbers of UE, the computation overhead of the system

decreases with the increasing number of algorithm iterations and finally stabilizes. It is clear that the

system computation overhead is minimized after 11 and 16 iterations when the number of UE is 40 and

46, respectively. This shows that the algorithm is convergent and can get better results after a finite

number of iterations.

In the second experiment, we set the number of UE from 3 to 50, and we compare the computation

overhead of system in different offloading decisions and two states of the MEC servers. As observed from

Figure 4(b), when all tasks are executed locally, and their computational overhead is relatively large. If

all tasks are executed at the MEC server, the computational overhead is small in the case of a small

number of UE, because the MEC server resources and bandwidth resource are abundant. However, when

the number of UE increases, considering the limited resources, the processing time of tasks will sharply

increase, leading to a sharp increase in the computational overhead of the system. When the offloading

decision is made randomly, the computational overhead of the system falls between the computation

overhead executed locally and that executed remotely. For the JOOC algorithm, it is clear that, even



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:14

0 10 15 20 25 30 35 40 45 50

Number of UEs

0

5

10

15

20

25

30

35

40

45

C
o
m

p
u
ta

ti
o
n
al

 o
v
er

h
ea

d

Not overclocking

Restricted overclocking

Unrestricted overclocking

0 10 15 20 25 30 35 40 45 50

Number of UEs

0

0.5

−0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
h
e 

b
en

ef
it

s 
o
f 

o
v
er

cl
o
ck

in
g

5 5

(a) (b)

Figure 5 (Color online) (a) Computational overhead in different states; (b) benefit difference between overclocking and

non-overclocking.

0 10 15 20 25 30 35 40 45 50

Number of UEs

0

1.0

T
as

k
 p

ro
ce

ss
in

g
 t

im
e 

at
 M

E
C

 s
er

v
er

Not overclocking & not consider QoS
Not overclocking & consider QoS
Overclocking

0 10 15 20 25 30 35 40 45 50

Number of UEs

0

5

10

15

20

25

30

35

N
u
m

b
er

 o
f 

ta
sk

s 
to

 o
ff

lo
ad

 t
o

th
e 

M
E

C
 s

er
v
er

Not overclocking

Overclocking
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5 5

(a) (b)

Figure 6 (Color online) (a) Processing time of MEC servers in two states; (b) computational overhead in different states.

when the number of UE is very large, the computational overhead can be accepted. When the number of

users is relatively small, the MEC server will choose to offload all tasks to the servers. In this situation,

the MEC server having an overclocking capability will not choose overclocking (i.e., a = 0), because there

is no profit to be obtained. When the number of UE increases, the advantage of an overclocked MEC

server gradually increases (i.e., the number of users increases to 14).

From Figure 5, we see that when the number of UE is relatively small, it is not worthwhile for the

server to overclock. As the number of UE increases, the benefit becomes apparent when tasks are executed

in an overclocked manner. The computational overhead of the system then becomes smaller with the

number of users. Overclocking a server incurs extra costs to the server. Thus, to avoid too much cost,

the overclocking working time cannot exceed T0. Comparing the red curve and green one in Figure 5(a),

we see that they overlap at the beginning. The red curve becomes slightly higher than the green one.

This is because the MEC server working time is short when the task number is small, meaning that the

MEC server can work stably in an overclocked state. The MEC server working time increases with the

increasing number of tasks. When the working time is greater than T0, the MEC server cannot always

overclock. Thus, the computational overhead of the system will increase slightly, but will do so less if it

has no overclocking.

In Figure 6(a), when the MEC server begins overclocking, the server’s processing time decreases (i.e.,

the number of users equals 14). Additionally, the MEC server without overclocking reaches the saturated

state when the number of users reaches 24. However, that with the overclocking capability can serve

28. We also can see that, as the number of UE continues increasing, the processing time of the MEC

server without overclocking capability can hardly satisfy QoS requirements. Although the processing



Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:15

0

Time (h)

0

5

10

15

20

25

30

35

40

45

50

T
h
e 

n
u
m

b
er

 o
f 

 U
E

s

Time (h)

0

10

20

30

40

50

60

C
o
m

p
u
ta

ti
o
n
al

 o
v
er

h
ea

d

Local only
Offloading only
Random offloading

Not overclocking
Overclocking

2 4 6 8

(a)
(b)

10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22

Figure 7 (Color online) (a) The number of UEs changes with time; (b) computational resource overhead vs. time.

time of tasks on the overclocking state is relatively short, QoS can be basically satisfied. As observed

from Figure 6(b), the MEC server with overclocking can accommodate more tasks with less computation

overhead. It can also be seen from this figure that the MEC server with overclocking reaches its resource

saturation state later. Furthermore, the MEC server without overclocking has a low task-offloading rate

because of the limitation of computing resources and the requirement of task QoS.

We simulate the number of UE fluctuating at different times in different situations to reflect real life.

As shown in Figure 7, from 8:00 to 9:00, from 12:00 to 13:00, or from 18:00 to 19:00, there will be many

UE requiring service. However, in the middle of the night or during the early morning, there will be

very few. The MEC server with overclocking capability has the best performance and the minimum

computing-resource overhead in these scenarios. In the middle of the night, the server chooses not to

overclock. The computational overhead of the system in our algorithm is obviously smaller than other

methods. With a greater number of users, the advantages of the overclocked MEC server become clear.

6 Conclusion

This paper proposed an intelligent overclocking concept for MEC servers based on the overclocking

capabilities of CPUs. For this new MEC model, we proposed an optimization problem for joint UE

offloading decisions, computational resource allocations, and overclocking decisions for the MEC server

leveraging an MINLP problem. Thus, we have promulgated an iterative algorithm JOOC to obtain a

feasible solution. Our simulation results show that our proposed algorithm has lower computational

overhead and faster processing task efficiency.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61672395,

61972448, 61911540481), Fund of Hubei Key Laboratory of Inland Shipping Technology (Grant No. NHHY2019004), and Na-

tional Research Foundation of Korea (NRF) Grant Funded by the Korea Government (MSIT) (Grant No. 2019K2A9A2A060-

24389).

References

1 Atat R, Liu L, Chen H, et al. Enabling cyber-physical communication in 5G cellular networks: challenges, spatial

spectrum sensing, and cyber-security. IET Cyber-Phys Syst Theor Appl, 2017, 2: 49–54

2 Ning Z, Huang J, Wang X. Vehicular fog computing: enabling real-time traffic management for smart cities. IEEE

Wirel Commun, 2019, 26: 87–93

3 Reddy K Y, Gandhi N V D, Balachander K. Simulation and analysis of performance models of broadband intelli-

gent mobile networks. In: Proceedings of 2007 International Conference on Signal Processing, Communications and

Networking, 2007. 573–578

4 Jiang W, Strufe M, Schotten H D. Intelligent network management for 5G systems: the selfnet approach. In: Pro-

ceedings of 2017 European Conference on Networks and Communications (EuCNC), 2017. 1–5

5 Liu F M, Shu P, Jin H, et al. Gearing resource-poor mobile devices with powerful clouds: architectures, challenges,

and applications. IEEE Wirel Commun, 2013, 20: 14–22

https://doi.org/10.1049/iet-cps.2017.0010
https://doi.org/10.1109/MWC.2019.1700441
https://doi.org/10.1109/MWC.2013.6549279


Wang K H, et al. Sci China Inf Sci April 2020 Vol. 63 140313:16

6 Chiang M, Zhang T. Fog and IoT: an overview of research opportunities. IEEE Internet Things J, 2016, 3: 854–864

7 Lin J, Yu W, Zhang N, et al. A survey on Internet of Things: architecture, enabling technologies, security and privacy,

and applications. IEEE Internet Things J, 2017, 4: 1125–1142

8 Sabella D, Vaillant A, Kuure P, et al. Mobile-edge computing architecture: the role of MEC in the Internet of Things.

IEEE Consumer Electron Mag, 2016, 5: 84–91

9 Corcoran P, Datta S K. Mobile-edge computing and the Internet of Things for consumers: extending cloud computing

and services to the edge of the network. IEEE Consumer Electron Mag, 2016, 5: 73–74

10 Sun X, Ansari N. EdgeIoT: mobile edge computing for the Internet of Things. IEEE Commun Mag, 2016, 54: 22–29

11 Zhang G, Chen Y, Shen Z, et al. Distributed energy management for multiuser mobile-edge computing systems with

energy harvesting devices and QoS constraints. IEEE Internet Things J, 2019, 6: 4035–4048

12 Abbas N, Zhang Y, Taherkordi A, et al. Mobile edge computing: a survey. IEEE Internet Things J, 2018, 5: 450–465

13 Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv

Tutorials, 2017, 19: 1628–1656

14 Shan X, Zhi H, Li P, et al. A survey on computation offloading for mobile edge computing information. In: Proceedings

of 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International

Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent

Data and Security (IDS), 2018. 248–251

15 Kosmides P, Lambrinos L. Intelligent routing in mobile opportunistic networks. In: Proceedings of 2018 Global

Information Infrastructure and Networking Symposium (GIIS), 2018. 1–4

16 Alameddine H A, Sharafeddine S, Sebbah S, et al. Dynamic task offloading and scheduling for low-latency IOT services

in multi-access edge computing. IEEE J Sel Areas Commun, 2019, 37: 668–682

17 Ning Z, Dong P, Kong X, et al. A cooperative partial computation offloading scheme for mobile edge computing

enabled Internet of Things. IEEE Internet Things J, 2019, 6: 4804–4814

18 Wang H, Li X, Ji H, et al. Federated offloading scheme to minimize latency in mec-enabled vehicular networks.

In: Proceedings of 2018 IEEE Globecom Workshops (GC Wkshps), 2018. 1–6

19 Bi S, Zhang Y J. Computation rate maximization for wireless powered mobile-edge computing with binary computation

offloading. IEEE Trans Wireless Commun, 2018, 17: 4177–4190

20 Li S, Tao Y, Qin X, et al. Energy-aware mobile edge computation offloading for IOT over heterogenous networks.

IEEE Access, 2019, 7: 13092–13105

21 Cui L, Xu C, Yang S, et al. Joint optimization of energy consumption and latency in mobile edge computing for

Internet of Things. IEEE Internet Things J, 2019, 6: 4791–4803

22 Bu S, Yu F R. Green cognitive mobile networks with small cells for multimedia communications in the smart grid

environment. IEEE Trans Veh Technol, 2014, 63: 2115–2126

23 Pham Q V, Le L B, Chung S H, et al. Mobile edge computing with wireless backhaul: joint task offloading and resource

allocation. IEEE Access, 2019, 7: 16444–16459

24 Siddique U, Tabassum H, Hossain E, et al. Wireless backhauling of 5G small cells: challenges and solution approaches.

IEEE Wirel Commun, 2015, 22: 22–31

25 Ge X, Cheng H, Guizani M, et al. 5G wireless backhaul networks: challenges and research advances. IEEE Netw,

2014, 28: 6–11

26 Tran T X, Pompili D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks.

IEEE Trans Veh Technol, 2019, 68: 856–868

27 Zhang J, Hu X, Ning Z, et al. Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks.

IEEE Internet Things J, 2018, 5: 2633–2645

28 Thomas D, Shanmugasundaram M. A survey on different overclocking methods. In: Proceedings of the 2nd Interna-

tional Conference on Electronics, Communication and Aerospace Technology (ICECA), 2018. 1588–1592

29 Wu F, Chen J, Dong Y, et al. Improve energy efficiency by processor overclocking and memory frequency scaling.

In: Proceedings of 2018 IEEE 20th International Conference on High Performance Computing and Communications,

IEEE 16th International Conference on Smart City, IEEE 4th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), 2018. 960–967

30 Jang H B, Lee J, Kong J, et al. Leveraging process variation for performance and energy: in the perspective of

overclocking. IEEE Trans Comput, 2014, 63: 1316–1322

31 Short M, Sheikh I. Dual-rate overclocking in can networks: a soft-core controller prototype. In: Proceedings of 2010

Seventh International Conference on Networked Sensing Systems (INSS), 2010. 314–317

32 Zhao K, Li J P, Ma J, et al. Overclocking NAND flash memory I/O link in LDPC-Based SSDs. IEEE Trans Circ Syst

II, 2014, 61: 885–889

33 Wang C, Yu F R, Liang C, et al. Joint computation offloading and interference management in wireless cellular

networks with mobile edge computing. IEEE Trans Veh Technol, 2017, 66: 7432–7445

https://doi.org/10.1109/JIOT.2016.2584538
https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1109/MCE.2016.2590118
https://doi.org/10.1109/MCE.2016.2590099
https://doi.org/10.1109/MCOM.2016.1600492CM
https://doi.org/10.1109/JIOT.2018.2875909
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/JSAC.2019.2894306
https://doi.org/10.1109/JIOT.2018.2868616
https://doi.org/10.1109/TWC.2018.2821664
https://doi.org/10.1109/ACCESS.2019.2893118
https://doi.org/10.1109/JIOT.2018.2869226
https://doi.org/10.1109/TVT.2014.2313604
https://doi.org/10.1109/ACCESS.2018.2883692
https://doi.org/10.1109/MWC.2015.7306534
https://doi.org/10.1109/MNET.2014.6963798
https://doi.org/10.1109/TVT.2018.2881191
https://doi.org/10.1109/JIOT.2017.2786343
https://doi.org/10.1109/TC.2012.286
https://doi.org/10.1109/TCSII.2014.2350377
https://doi.org/10.1109/TVT.2017.2672701

	Introduction
	Related work
	Mobile edge computing
	Overclocking

	System model and problem formulation
	System model
	Executed locally
	Executed on MEC
	Problem formulation

	Proposed algorithm and analysis
	Offloading decision
	Computation resource allocation
	Overclocking decision
	Algorithm and complexity analysis

	Simulation results
	Conclusion

