
Received March 25, 2019, accepted April 20, 2019, date of publication April 30, 2019, date of current version May 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914148

On Cooperative Channel Rendezvous
in Cognitive Radio Networks
KEHAO WANG 1, LIN CHEN 2,3, KAIGUI BIAN 4, WEI WANG 5, AND PAN ZHOU 6
1School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
2Laboratoire de Recherche en Informatique (LRI), University of Paris-Sud, 91405 Orsay, France
3Institut Universitaire de France (IUF)
4Institute of Network Computing and Information System, School of EECS, Peking University, Beijing 100871, China
5Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 321000, China
6School of Electrical and Information Communications, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Lin Chen (chen@lri.fr)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672395 and Grant 61571396.

ABSTRACT In cognitive radio (CR) networks, establishing communication sessions requires the commu-
nicating pairs to meet each other on a common channel via a ‘‘rendezvous’’ process. Designing distributed
rendezvous protocols without common control channels is a challenging problem due to the dynamic and
opportunistic spectrum access paradigm. The existing protocols, mainly based on channel hopping, suffer
from the rendezvous difficulty due to asymmetric channel perceptions and significant rendezvous delaywhen
the system scales. In this paper, we exploit a long-neglected opportunity for enabling rendezvous in CR
networks—the cooperation among cognitive users. We develop a novel cooperative rendezvous mechanism
by introducing the cooperative cognitive nodes serving as ‘‘bridges’’ between communicating pairs to
facilitate their rendezvous process. We establish a mathematics framework to study the rendezvous delay
and robustness and derive the performance limit in asymptotic scenarios. Our analytical results are further
confirmed by the simulation results showing the performance improvement of the developed cooperative
rendezvous protocol with only small overhead.

INDEX TERMS Cognitive radio (CR), cooperative communication, research problems.

I. INTRODUCTION
Channel rendezvous in cognitive radio (CR) networks is the
process between two communicating secondary users (SUs)
of ‘‘meeting’’ each other on a common channel (a.k.a. a ren-
dezvous channel) for exchanging required control informa-
tion prior to data communications. In opportunistic spectrum
sharing (OSS) paradigm, SUs equipped with one or multiple
CRs are required to refrain from transmitting on the channels
where licensed primary user (PU) signals are detected.

The OSS paradigm poses three challenges for devising
channel rendezvous protocols in CR networks. First, ren-
dezvous failure between a pair of SUs occurs when their
rendezvous channels are blocked by PU signals. Secondly,
two communicating SUs may have different views of channel
availability as the PU transmission may unpredictably vary at
different locations. Such asymmetry in perceptions of avail-
able channels can cause the rendezvous difficulty in finding
a common rendezvous channel. Thirdly, a communication

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan Zhang.

pair may have to sense and search through a large number of
channels before successfully achieving rendezvous and thus
experience significant rendezvous delay.

A common control channel (CCC) that simplifies the
rendezvous process is widely deployed in conventional
multi-channel wireless networks [1]. However, the ren-
dezvous failure is inevitable when the PU transmission is fea-
sible on the same band of CCC in CR networks. A number of
channel hopping (CH) schemes have recently been proposed
to mitigate the rendezvous failure by increasing the number
of rendezvous channels—the rendezvous diversity—between
an SU pair. For example, multiple rendezvous channels
between two SUs can be guaranteed in the sequence-based
CH approaches when the CH sequences are deliberately
designed [2]–[19]; the random CH approach [20] can even
provide the rendezvous opportunity for two SUs on every
channel. However, the rendezvous difficulty in finding a com-
mon channel still remains because two SUs cannot exchange
any information regarding the asymmetric perceptions of
channel availability. Meanwhile, existing CH approaches
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suffer from significant rendezvous delay when the number
of channels for SUs to scan is large.

In this paper, we exploit a long-neglected opportunity for
enabling channel rendezvous in CR networks—i.e., the coop-
eration among cognitive users. Specifically, we investigate
how to improve the rendezvous performance by introducing
the cooperative SUs (termed as helper nodes throughout the
paper) that serve as ‘‘bridges’’ between neighboring SUs to
facilitate their rendezvous process. A cooperative SU can
simply relay the rendezvous requests of neighboring SUs
on its operating channels such that the SUs that need to
rendezvous can switch to a common channel by referring to
the information contained in the rendezvous requests.

The cooperative SU’s operation of relaying rendezvous
requests brings about three benefits for channel rendezvous
between neighboring SUs: 1) a greater number of channels
where the rendezvous requests circulate is equivalent to the
increase of rendezvous diversity; 2) the relayed rendezvous
requests contain necessary information that can mitigate the
rendezvous difficulty caused by the asymmetric perceptions
of channel availability between two SUs; and 3) with help
of the information in relayed rendezvous requests, it is easier
for two SUs to find each other on a common channel at a
small rendezvous latency. From the practical implementation
perspective, the proposed cooperative rendezvous protocol
only incurs small overhead, but has significant performance
improvement. As illustrated later in the paper, the partic-
ipation of even one helper node can reduce the expected
rendezvous delay by 18%. The performance gain exceeds
100% when the rendezvous is assisted by 3 helper nodes.

There are a number of candidates in CR networks that
can serve as helper nodes: 1) the bridge customer-premises
equipments (CPE) specified by the IEEE 802.22 stan-
dard [21] located in the overlapping coverage areas of IEEE
802.22 cells; 2) the authentication nodes deployed around
PUs to authenticate the primary signals [22]; 3) SUs that
are willing to serve as helpers for assisting their peers to
rendezvous.

This paper presents a systematic approach for devising
cooperative rendezvous protocols and analyzing the resulting
performance benefits. Specifically, we develop a mathematic
framework to study the following optimization questions:
How should helper nodes cooperate? Howmuch performance
gain can we obtain with cooperative rendezvous? What is
the impact of the number of CRs per cognitive node and
per helper node? Our main contributions are articulated as
follows.
• Non-cooperative rendezvous (Sec. IV). We first analyze
the non-cooperative rendezvous protocol with multiple
radios per SU. We quantify the rendezvous performance
and establish performance limits in asymptotic scenar-
ios. These results serve as a theoretic basis and compar-
ison reference for the cooperative rendezvous protocol.

• Cooperative rendezvous (Sec. V). We devise a novel
cooperative rendezvous protocol by exploiting helper
nodes to facilitate rendezvous. By characterizing

rendezvous delay and robustness, we quantify the bene-
fits for rendezvous using cooperative helper nodes.

• Optimization of cooperative rendezvous (Sec. VI).
Based on the theoretical foundation laid in previous sec-
tions, we further study the following optimization ques-
tion: howmany helpers are necessary to upper-bound the
expected rendezvous delay? We then develop a dynamic
learning algorithm enabling a helper node to config-
ure its cooperation level based on the target performance
metric.

The rest of the paper is organized as follows. Sec. III
describes the technical background materials. Sec. IV inves-
tigates the non-cooperative rendezvous protocol. Section V
presents the cooperative rendezvous protocol. Sec. VI
addresses the optimization of the developed cooperative
rendezvous protocol. Sec. VII discusses the integration of
the proposed approach with other rendezvous mechanisms
and related issues. Sec. VIII presents the simulation results.
Sec. II summarizes the related work. Sec. IX concludes the
paper.

II. RELATED WORKS
A. SINGLE RADIO
Existing distributed rendezvous mechanisms in CR networks,
most focusing on single-radio rendezvous, can be categorized
into the following two classes:
• Stationary and memoryless rendezvous [20], [23].
Motivated by the asymmetric perceptions of channel
availability at cognitive nodes and the lack of network
synchronization and coordination, this class of ren-
dezvous schemes adopt stationary and memoryless ren-
dezvous strategies such as random channel hopping. Due
to the memoryless nature, these schemes are especially
robust and adapted in the ad hoc environments where
no a priori knowledge or coordination is available. The
main drawback of them is the lack of performance guar-
antees in terms of rendezvous delay.

• Sequence-based rendezvous [2]–[19]. In this category
of rendezvous schemes, each SU switches across dif-
ferent channels based on certain CH patterns which are
carefully designed to ensure that each pair of two CH
sequences are overlapped within one CH period. Con-
sequently, rendezvous delay can be bounded. However,
sequence-based rendezvous schemes usually require
certain coordination on the CH patterns and time syn-
chronization, which may degrade rendezvous perfor-
mance and limit their application.

B. MULTIPLE RADIOS
In [24], the authors presented an adaptive rendezvous algo-
rithm that can function for multiple interfaces and differ-
ent sizes of channel lists and an adaptive jumping pattern
for different channel conditions. In [25], the authors pro-
posed a new rendezvous algorithm, called role-based par-
allel sequence (RPS), in which nodes stay in a specific
channel in one dedicated radio and hop on the available
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channels with parallel sequences in the remaining gen-
eral radios. In [26], the authors proposed an Adjustable
Multi-Radio Rendezvous (AMRR) algorithm in which m
radios of a node is partitioned into two groups: k stay
radios and (m− k) hopping radios. The MSS algorithm [27]
is based on the Single-radio Sunflower-Sets-based pairwise
rendezvous (SSS) algorithm. Mathematical construction of
sunflower sets is exploited to develop the SSS rendezvous
algorithm In [28], the authors presented two novel CH
schemes for multi-radio cognitive users with and without
a synchronized time clock to rendezvous blindly in every
time slot. In [29], the Hybrid Radios Rendezvous (HRR)
algorithm is proposed to address users equipped with dif-
ferent numbers of radios. In [30], the authors proposed a
homogeneousmulti-radio channel- hopping (CH) rendezvous
algorithm which achieves improved (exact) maximum-TTR
and is a linear function of a number of available channels
instead of quadratic functions in heterogeneous multi-radio
algorithms. In [31], the authors designed a low-complexity
rendezvous scheme that account for CH capability lim-
its by treating CH patterns as random walks over spec-
trum graphs. In [32], the authors designed a family of CH
sequences, so-called multi-MTTR asynchronous-asymmetric
prime sequences (MAAPSs), for cognitive radio networks.
In [33], the authors proposed a Chinese Remainder Theo-
rem (CRT) based multi-radio rendezvous (CMR) algorithm
for oblivious rendezvous problem in heterogeneous CRNs.

The cooperative rendezvous approach developed in the
paper represents an orthogonal research effort to the above
two directions. As a desired property, it can be integrated with
both classes of rendezvous protocols (cf. Sec. VII).We expect
the developed approach to bring new research perspectives on
the CR rendezvous and to stimulate more profound research
on this topic.

III. PRELIMINARIES
A. NETWORK MODEL
We consider a time-slotted (but not necessarily synchro-
nized) CR network operating on a set N of N licensed
non-overlapping channels1. Each SU is equipped with r
(r ≥ 1) radios and thus can access up to r channels at a time.
Due to regulatory constraints posed by PUs, the available
channel set of each SU is different based on its relative
location to the PUs and may vary in both time and spacial
domains. For each SU i, we denote Ci the set of channels it
can access.

In order to use the spectrum in a dynamic and oppor-
tunistic way in such a multi-channel environment, a pair of
SUs wishing to initiate communication need to meet each
other on at least one common channel via a rendezvous
process. In infrastructureless CR networks without central
controllers, the rendezvous process should be carried out in

1Throughout this paper, for presentation convenience, we use uppercase
calligraphic letters (e.g.,N ) to denote sets and the correspondent uppercase
letters (e.g., N ) to denote their cardinalities (e.g, N = |N |).

a distributed fashion. In the analysis that follows, we focus
on the design of distributed rendezvous protocols in an
uncoordinated and efficient way without a common control
channel.

B. PERFORMANCE METRICS OF RENDEZVOUS
To evaluate the performance of a rendezvous protocol,
we introduce the followingmetrics quantifying two important
aspects of a rendezvous protocol, i.e., rendezvous delay and
rendezvous robustness.
• Rendezvous delay: The primary performance metric
characterizing a rendezvous protocol is rendezvous
delay. Specifically, we define the metric expected time-
to-rendezvous (ETTR) as the expected latency (in num-
ber of time slots) before successful rendezvous on at
least one channel. ETTR can be derived by calculating
the channel hitting probability, defined as the probabil-
ity that rendezvous is achieved in a given time slot.

• Rendezvous Robustness: The secondary performance
metric is rendezvous robustness. In a CR network where
the PU traffic is often unpredictable, a desirable property
of a rendezvous protocol is the capability of rendezvous-
ing on multiple channels. In this regard, we quantify the
robustness of a rendezvous protocol by the probability
of rendezvousing on multiple channels.

IV. NON-COOPERATIVE RENDEZVOUS
In this section, we specify and analyze a natural
non-cooperative rendezvous protocol based on random chan-
nel hopping when using multiple radios per node. The anal-
ysis presented in this section also serves as a theoretical
basis and comparison reference for the more sophisticated
cooperative rendezvous protocol developed in Sec. V.

A. THE RENDEZVOUS MECHANISM
In a context without any a priori knowledge on the accessed
channels of other nodes, a natural strategy is to randomize
the channel choice to maximize the rendezvous probability
in a non-cooperative fashion. This motivates the rendezvous
protocol based on random channel hopping. Specifically,
each user i randomly selects a set Ri of r channels from Ci
to and tunes its r radios on them. If user s wants to initiate
a communication session with another user d , it sends a
rendezvous request on each channel inRs. The rendezvous is
achieved if s and d tune their radios on at least one common
channel, i.e.,Rs ∩Rd 6= ∅. The process is repeated each slot
until successful rendezvous.

In what follows, we study the performance of the
non-cooperative rendezvous protocol in terms of rendezvous
delay and robustness. To facilitate our analysis and con-
centrate on the essential properties of the studied ren-
dezvous protocol, we start with the scenario where each
user i in the system can access all the channels in N ,
i.e., Ci = N . The extension to the generical scenario
follows the same methodology and is presented in the
appendix.
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B. PERFORMANCE ANALYSIS: RENDEZVOUS
DELAY AND ROBUSTNESS
We conduct a quantitative analysis on the rendezvous delay
and robustness of the non-cooperative rendezvous mecha-
nism with multiple radios by studying the two performance
metrics defined in Sec. III-B.

To compute the ETTR (denoted as E[Tttr ]), we derive the
channel hitting probability (denoted as Ph), as defined in
Sec. III-B. It can be noted that the two metrics are actually
coupled. E[Tttr ] can be derived from Ph noticing that Ph for
each slot is Bernoulli-distributed. Specifically, it holds that:

E[Tttr ] =
∞∑
t=1

t(1− Ph)t−1Ph =
1
Ph
.

Consider the rendezvous process between s and d , both
able to access all the channels. Theorem 1 establishes Ph.
Theorem 1: It holds that

Ph = 1−
r−1∏
i=0

(
1−

r
N − i

)
. (1)

Asymptotically, let r = O(Nα) (α ≤ 1), it holds that:

lim
N→∞

Ph =


1 α > 1

2
1− 1

ec r =
√
cN , c = O(1)

r2
N = 0 α < 1

2

. (2)

Proof: Please refer to Appendix. �
Theorem 1 leads us to observe the following engineering

implications on the non-cooperative rendezvous when using
multiple radios per user:
• When the number of radios per user r is small, Ph can be
approximated in order ofmagnitude by r2/N . Compared
with rendezvous with a single radio (r = 1), Ph scales
squarely in r .

• Asymptotically, O(
√
N ) is the necessary condition to

achieve Ph ' O(1), or equivalently E[Tttr ] ' O(1).
We next study the rendezvous robustness by establishing

the probability of rendezvousing on multiple channels in
Theorem 2, whose proof is detailed in the appendix.
Theorem 2: The probability that the rendezvous can be

achieved on at least two channels, denoted as Pm, is

Pm = 1−
r−1∏
i=0

(
1−

r
N − i

)
−

r2

N − r + 1

r−2∏
i=0

(
1−

r
N − i

)
.

Asymptotically, let R = O(Nα) (α ≤ 1), it holds that:

lim
N→∞

Pm =


1 α > 1

2
1− (1+ c)e−c r =

√
cN , c = O(1)

r4

2N 2 = 0 α < 1
2

.

Theorem 2 quantifies the rendezvous robustness:
• When r is small such that r ' o(

√
N ), Ph scales

quadratically in r . It can also be observed that Pm � Ph,
implying that once rendezvous is achieved, in most cases
it is achieved on only one channel.

• Asymptotically, when r scales to O(
√
N ), rendezvous is

predominately achieved on multiple channels.

To summarize the analytical results obtained in this
section, we point out that r ' O(

√
N ) is a critical point

to achieve asymptotically optimal performance in order of
magnitude for the non-cooperative rendezvous protocol in
terms of both rendezvous delay and robustness. Below this
point, compared with the single-radio case, rendezvous per-
formance scales in r2 and r4 in terms of rendezvous delay and
robustness, respectively.

V. COOPERATIVE RENDEZVOUS
As explained in the Introduction, exploiting cooperative
helper nodes in the network can create additional rendezvous
diversity, thus facilitating the rendezvous process. Motivated
by this observation, we develop a cooperative rendezvous
protocol in this section. We start by providing a motivating
example illustrating the core idea and proceed to specify the
developed protocol. A quantitative analysis on rendezvous
performance is then conducted to demonstrate the benefits
for rendezvous when using helper nodes.

A. A MOTIVATING EXAMPLE
Consider a CR network consisting of 12 channels and 2
SUs s, d wishing to rendezvous and a helper node m, each
equipped with 3 radios and can access all the 12 channels.
To rendezvous with d , s tunes its radios to channel 1, 2 and 3.
The radios of d and m are tuned to channel 4, 5, 6 and 3,
5, 8, respectively. In this setting, since none of the radios of
s and d is on the same channel, the rendezvous cannot be
achieved. However, with the help of m, more specifically,
withm capturing the rendezvous request s sends on channel 3
and relaying it on channel 5, d can be informed of the pres-
ence of s on channels 1, 2, 3 and thus can switch to one of
them to rendezvous with s.

To get more quantitative insights on the benefits brought
by cooperative rendezvous, we compare the channel hitting
probability of the rendezvous without and with the helper m,
denoted as Ph and Pch. Bymathematic analysis (detailed in the
sequel analysis in this section), we have Ph = 0.45 and Pch =
0.55, indicating that the participation of even one helper can
increase Ph by 20%, thus reducing the expected rendezvous
delay by 18%.

B. THE COOPERATIVE RENDEZVOUS MECHANISM
In the proposed cooperative rendezvous mechanism, each SU
i randomly selects a setRi of r channels from Ci and tunes its
r radios on them. If user i wants to initiate a communication
session, it sends a rendezvous request on each channel inRi.
Each helper node hearing a rendezvous request on one of its
operating channels c relays the rendezvous request on each
channel in Ci except c. The rendezvous is established between
s and d if they tune their radios on at least one common
channel (i.e., Rs ∩ Rd 6= ∅) or both s and d share at least
one common channel with a helper m (i.e., Rs ∩ Rm 6= ∅

and Rd ∩Rm 6= ∅). The process is repeated until successful
rendezvous.
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The core idea of the cooperative rendezvous is to let helper
nodes to spread the channel information of s so as to facilitate
the rendezvous. Essential to the cooperative rendezvous pro-
tocol is the cooperative helper nodes that serve as ‘‘bridges’’
to link the pair of nodes to be rendezvoused.

From the practical perspective, the proposed cooperative
rendezvous protocol can be implemented on top of any MAC
protocol (e.g., CSMA). The overhead brought by the par-
ticipation of helper nodes in the rendezvous process is also
limited due to the following reasons: (1) The rendezvous bea-
cons are typically very short packets containing information
related to the node and channel IDs. Their overhead on packet
collisions and generated traffic is thus very limited. More-
over, they can be piggy-backed with other control packets to
further limit the overhead. (2) As will be established in this
section, the expected rendezvous delay of the cooperative ren-
dezvous protocol is smaller than that of random rendezvous.
Consequently, the number of rendezvous beacons sent and
relayed is also smaller, thus limiting the overall protocol
overhead. (3) We can further configure and limit the protocol
overhead and the cooperation efforts at the helpers based on
the target performance metric by incorporating the dynamic
learning algorithm presented in Sec. VI.

In what follows, we study the performance of the cooper-
ative rendezvous protocol in terms of rendezvous delay and
robustness. Sec. VII further studies the rendezvous overhead.
As the previous section, we focus on the scenario where every
SU i in the network can access all the channels in N . The
analysis of the generic scenario is presented in the appendix.

Specifically, we consider the scenario where s and d want
to rendezvous with the help of a setM ofM helpers indexed
from m = 1 to M , each equipped with rc radios. Denote Hm

the set of channels on which m tunes its rc radios. We focus
on the case where Hm1 ∩Hm2 = ∅,∀m1,m2 ∈M. Without
loss of generality, let Hm

= {(m − 1)rc + 1, · · · ,mrc}.
Our motivation of focusing on this particular scenario is to
investigate the extreme case where the maximal rendezvous
diversity is created by the cooperative helpers to facilitate the
rendezvous process.

C. THEORETICAL PERFORMANCE ANALYSIS:
RENDEZVOUS DELAY
To derive the ETTR, we study the channel hitting probability
of the cooperative rendezvous mechanism, denoted as Pch.
Theorem 3: It holds that:

Pch = 1−
1[(N
r

)]2
 M∑
k=0

M−k∑
l=0

∑k
i=1 ai≤r∑

ai≥1,1≤i≤k

∑l
j=1 bj≤r∑

bj≥1,1≤j≤l

(
M
k

)

×

(
M − k
l

)( k∏
i=1

(
rc
ai

))(
N −Mrc

r −
∑k

i=1 ai

) l∏
j=1

(
rc
bj

)
×

(
N −Mrc − r +

∑k
i=1 ai

r −
∑l

j=1 bi

)]
,

Specifically, when M = 1, the above formula degenerates to:

Pch = 1−

∑r
i=0

(rc
i

)(N−rc
r−i

)(N−r−rc+i
r

)[(N
r

)]2 .

Proof: Please refer to Appendix. �
Theorem 3 establishes Pch in close-form. Therefore, in the

analysis that follows, we give an order of magnitude study
by mapping the scenario with M helpers to another scenario
with one super helper, which is more tractable, as developed
in Lemma 3.
Lemma 1: Let q1 denote the probability that s and r can

rendezvous on at least one channel among the first Mrc chan-
nels inN (i.e., channels covered by cooperative helpers). Let
qs1 denote this probability in a system with one super helper
equipped with Mrc radios tuning on channels 1 to Mrc, other
parameters being the same. It holds that

qs1/M ≤ q1 ≤ q
s
1.

Proof: Please refer to Appendix. �
Armed with Lemma 3, we can establish the relationship

between the channel hitting probability of the two systems in
the following theorem.
Theorem 4: Let Psh denote the channel hitting probability

in the system with the super helper, it holds that

Psh
M
≤ Pch ≤ P

s
h.

Proof: Please refer to Appendix. �
Lemma 1 and Theorem 4 illustrate that studying Psh,

which is more tractable than Pch, can provide some important
insights on the performance of the cooperative rendezvous
mechanism. The following theorem derives Psh and studies
its limit in the asymptotic scenario.
Theorem 5: It holds that

Psh = 1−

∑r
i=0

(Mrc
i

)(N−Mrc
r−i

)(N−Mrc−r+i
r

)[(N
r

)]2 .

Asymptotically, let r = O(Nα), rc = O(Nαc ), M = O(Nβ ),

lim
N→∞

Psh '


1 α +

αc+β
2 > 1

2

1− e
−
r2
N

(
1+Mr2c

N

)
α +

αc+β
2 =

1
2

r2
N

(
1+ Mr2c

N

)
→ 0 α +

αc+β
2 < 1

2

. (3)

Proof: Please refer to Appendix. �
Theorem 4 establishes the lower and upper bounds of Pch

by relating it to Psh which is more tractable asymptotically,
as shown in Theorem 5. It can be noted that when M = 0,
meaning that there is no helper in the network, Theorem 5
degenerates to Theorem 1. It is also worth pointing out that
the bounds in Theorem 4may be too loose in some cases. This
can be illustrated by the example in the proof of Theorem 4:
two instances φ1 and φ2 can be mapped to ω1, but only one
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instance φ0 can be mapped toω0; As a result, the lower bound
of Pch is too loose. Generically, by extensive simulations,
we report that with parameter settings that we encounter in
practical scenarios, Pch has the same order of magnitude as Psh
by varying from 40%Psh in the worst case to 100%Psh in the
best case.

Given the theoretic results and the above findings, we are
able to quantify the performance gain brought by coopera-
tive helpers in the rendezvous process. Specifically, in the
non-cooperative rendezvous without any helper, α ≥ 1/2 is
a necessary condition to achieve asymptotically non-zero Ph.
In contrast, in the cooperative rendezvous, the condition to
achieve asymptotically non-zero Pch becomes α + (αc +
β)/2 ≥ 1/2, which is much more easier to satisfy in prac-
tical applications. As an illustrative example with N = 64
channels, s and r should be equipped with r = 8 radios in
non-cooperative rendezvous to achieve non-zero Ph. How-
ever if 4 helpers participate the rendezvous, only 4 radios are
required at each node (r = rc = 4).
The analytical results illustrate that the participation of

cooperative helpers in the rendezvous process is especially
beneficial when the hardware capacity of cognitive nodes is
limited (in terms of the number of radios) as it can at the best
case increase M times the channel hitting probability, thus
decreasing M times the expected rendezvous delay.

D. THEORETICAL PERFORMANCE ANALYSIS:
RENDEZVOUS ROBUSTNESS
To study the rendezvous robustness, we first derive the proba-
bility that the rendezvous is achieved on at least two channels,
denoted as Pcm.
Theorem 6: Let PD (PC , respectively) denote the proba-

bility that s and d can rendezvous on exactly one channel

among channels Mrc + 1 to N (among channels 1 to
Mrc, respectively) and cannot rendezvous on channels 1
to Mrc (channels Mrc + 1 to N , respectively), it holds
that (4) and (5), [(5), as shown at the bottom of this page]

PD =
1[(N
r

)]2
 M∑
k=0

M−k∑
l=0

∑k
i=1 ai≤r−1∑

ai≥1,1≤i≤k

∑l
j=1 bj≤r−1∑

bj≥1,1≤j≤l

(
M − k
l

)

×

(
M
k

)( k∏
i=1

(
rc
ai

))(
N −Mrc

1

)(
N −Mrc − 1

r −
∑k

i=1 ai − 1

)

×

 l∏
j=1

(
rc
bj

)(N −Mrc − r +∑k
i=1 ai

r −
∑l

j=1 bi − 1

) , (4)

Pcm can then be derived as

Pcm = Pch − PD − PC .

Proof: Please refer to Appendix. �
Theorem 6 being too involved to derive further engineering

implications, we study the order of magnitude of Pcm by
relating it to a system with a super helper, as in Sec. V-C.
Specifically, Theorem 6 establishes the relationship between
the two systems in terms of rendezvous robustness. The proof
consists of constructing a similar mapping as that in the proof
of Lemma 3 and is thus omitted here for briefly.
Theorem 7: Let Psm denote the probability that s and d can

rendezvous on at least two channels in the systemwith a super
helper covering Mr channels, it holds that

2Psm
M (M + 1)

≤ Pm ≤ Psm.

Theorem 8 derives Pmh and studies its limit in the asymp-
totic scenario.

PC =
1[(N
r

)]2
M−1∑
k=0

M−k−1∑
l=0

r∑
t=1

∑k
i=1 ai≤r−1∑

ai≥1,1≤i≤k

∑l
j=1 bj≤r−t∑

bj≥1,1≤j≤l

(
M − 1
k

)

×

(
M
1

)(
M − k − 1

l

)(
r
1

)( k∏
i=1

(
rc
ai

))(
N −Mrc

r −
∑k

i=1 ai − 1

)

×

(
r
t

) l∏
j=1

(
rc
bj

)(N −Mrc − r +∑k
i=1 ai + 1

r −
∑l

j=1 bi − t

)
+

1[(N
r

)]2
M−1∑
k=0

M−k−1∑
l=0

r∑
t=2

∑k
i=1 ai≤r−t∑

ai≥1,1≤i≤k

∑l
j=1 bj≤r−1∑

bj≥1,1≤j≤l

(
M − 1
k

)

×

(
M
1

)(
M − k − 1

l

)(
r
t

)( k∏
i=1

(
rc
ai

))(
N −Mrc

r −
∑k

i=1 ai − t

)

×

(
r
1

) l∏
j=1

(
rc
bj

)(N −Mrc − r +∑k
i=1 ai + t

r −
∑l

j=1 bi − 1

) . (5)
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Theorem 8: It holds that

Psm = Psh − 2
(
N −Mrc

1

)(
N −Mrc − 1

r − 1

)(
N − r + 1
r − 1

)
+ 2

(
Mrc
1

)(
N −Mrc
r − 1

)
[

r∑
i=2

(
Mrc
i

)(
N −Mrc − r + 1

r − i

)]

+

(
N −Mrc

1

)(
N −Mrc − 1

r − 1

)(
N −Mrc − r − 1

r − 1

)
+

[(
Mrc
1

)]2 (N −Mrc
r − 1

)(
N −Mrc − r + 1

r − 1

)
. (6)

Asymptotically, let r = O(Nα), rc = O(Nαc ),M = O(Nβ ),

lim
N→∞

Psh '


1, α +

αc+β
2 > 1

2
1− [1+ δ] e−δ, α +

αc+β
2 =

1
2

r4

2N 2

[
1+ M (M+1)r4c

2N 2

]
→ 0, α +

αc+β
2 < 1

2

where δ = r2
N

(
1+ Mr2c

N

)
.

Proof: Please refer to Appendix. �
The analysis in this subsection confirms our analysis

at the end of Sec. V-C on the performance of coopera-
tive rendezvous and the benefits brought by cooperative
helpers. By examining both rendezvous delay and robust-
ness, we report the finding that the cooperative rendezvous is
especially beneficial when the hardware capacity of cognitive
nodes is limited and that α + (αc + β)/2 = 1/2 consists of a
critical point to achieve good asymptotic performance.

VI. PERFORMANCE OPTIMIZATION OF
COOPERATIVE RENDEZVOUS
After specifying the cooperative rendezvous mechanism and
characterizing its performance in terms of rendezvous delay
and robustness, this section investigates the optimization of
the cooperative rendezvous mechanism by employing the
theoretic foundation laid in previous sections.

Particularly, we study the following optimization ques-
tion: how many helpers are necessary to lower-bound the
channel hitting probability, thus upper-bounding the ETTR?
We answer the question by studying the following two
scenarios.

A. RENDEZVOUS WITH COORDINATED HELPERS
We start with the case where the cooperative helpers can
coordinate among them. Lemma 2 shows that to maximize
the channel hitting probability Pch, the helpers are better off
tuning their radios on different channels.
Lemma 2: Pch is maximized when Hi

⋂
Hj = ∅,

∀i, j ∈M.
Proof Sketch: We prove the lemma by showing that given

a helpers’ strategy profile 1 where ∃i, j ∈ M such that
Hi
⋂

Hj 6= ∅, by switching a radio of j from c1 ∈ Hi
⋂

Hj to
another channel c2 /∈ Hi

⋃
Hj to construct another strategy

profile 1′, we can increase Pch.

Recall Theorem 3, for a given threshold 2 the minimal
number of helpers to achieve Pch ≥ 2 can be derived by
solving the following optimization problem:

M∗ = min
M

{
Pch ≥ 2

}
.

The helpers can then coordinate among them such that there
are at least M∗ helper operating on different channels partic-
ipating the cooperative rendezvous.

B. RENDEZVOUS WITH UNCOORDINATED HELPERS
We then proceed to the more practical while challenging
scenario with uncoordinated helpers. To that end, we assume
that each helper randomly tunes its radios at each slot. In The-
orem 9, we derive the channel hitting probability for such
generic scenario.
Theorem 9: For a set T ⊆M, letAT ,

⋂
j∈T Hj with AT

denoting its cardinality, the channel hitting probability under
the settingH , {Hm

} is given by:

Pch(H) = 1−
r−1∏
i=0

(
1−

r
N − i

)

+

∑
S⊆M

(−1)|S|−1P1

(⋂
m∈S
{m}

)
,

where for T ⊆M, P1(T ) ,

 AT∑
i=1

(AT
i

)(N−AT
r−i

)(N
r

)
2

.

Proof: Please refer to Appendix. �
Armed with the above results, we can derive the minimal

number of helpers M∗ to lower-bound the average channel
hitting probability by given a threshold 2 as

M∗ = min
M


1[(N
r

)]M ∑
Hm
⊆N ,|Hm

|=rc
m∈M

Pch(H) ≥ 2

 .
C. TO HELP OR NOT: DISTRIBUTED
LEARNING ALGORITHM
In practical scenarios where rendezvous between s and d (or
between several pairs of SUs) is repeatedly performed due to
their communication pattern, it is beneficial to minimize the
efforts at the helpers while ensuring that the expected channel
hitting probability is lower-bounded by2. In this subsection,
we further investigate the following question: how to ensure
that there are approximately M∗ helpers (M∗ is the minimal
number of helpers derived in the previous subsection that
lower-bounds the expected channel hitting probability by 2)
participating the rendezvous? This question is important to
ensure the desired rendezvous performance without bringing
too much burden on the helpers. To address this question,
we develop a distributed decision algorithm 1 at each helper
to decide whether or not to help based on only local observa-
tion without interacting with others.

The procedure, composed of the following two steps, can
gradually stabilize at the desired operating point.
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Algorithm 1 Execute on Each Helper
1: for t = 1, 2, · · · ,L
2: randomly generate a probability p
3: if p ≤ p(t)
4: step 1: Estimating the number of helpers
5: helper i observes I , Sf , and SI
6: compute L[I |m], q̃(m∗)
7: step 2: Adjusting helping probability p(t + 1)
8: end if
9: end for

1) ESTIMATING THE NUMBER OF PARTICIPATING HELPERS
In order to make its decision, a helper needs to estimate
the number of helpers that participate the cooperative ren-
dezvous in the current stage. The estimation should be per-
formed locally with only limited view of the system. To this
end, we apply the maximum likelihood estimation (MLE) to
get accurate estimations. Specifically, we divide time into a
sequence of decision periods, each consisting of L slots. Dur-
ing a single decision period, a helper chooses a fixed strategy
(i.e., participate the rendezvous or not). Thus the total number
of helpers participating the cooperative rendezvous does not
changewithin a decision period, which allows helpers to learn
the environment. In each rendezvous request, s includes a
sequence number that increments by 1 for each rendezvous
slot.

In each decision period, each helper i observes the num-
ber of slots in which it captures at least one rendezvous
request (sent by s or relayed by another helper), denoted as I .
It also observes the sequence numbers when the first and the
last rendezvous requests are captured, denoted as Sf and Sl
respectively.1S , Sl − Sf approximates the number of slots
in which s sends a rendezvous request. It can be noted that1S
is always smaller than the real value but the relative difference
between them vanishes when L → ∞. The helper then
calculates the likelihood that there arem helpers participating
the cooperative rendezvous given the observation I as:

L[I |m] =
(
1S

I

)
[q(m)]I [1− q(m)]1S−I , (7)

where q(m) denotes the probability that a helper captures at
least one rendezvous request given that m helpers participate
the rendezvous. q(m) is derived in Lemma 3.
Lemma 3: It holds that q(m) = Pch(m − 1), where

Pch(m− 1) is the average channel hitting probability between
s and the helper i with m − 1 helpers randomly tuning their
radios to participate the cooperative rendezvous. Pch(m − 1)
can be calculated by a similar analysis as Theorem 3.

Proof: The proof hinges on the point that capturing at
least one rendezvous request for a helper can be mapped into
rendezvousing between s and the helper. �

Then the MLE of m can be computed by maximizing the
log-likelihood function logL[I |m], i.e.,

m̃∗ = maxm logL[I |m].

In our context, in order to get unbiased estimations, instead
of estimating m, each helper i estimates q(m) as

q̃(m∗) = maxq(m) logL[I |m].

By the first order condition, we obtain the optimal solution

q̃(m∗) =
I
1S
,

which is the sample averaging estimation. When the length
of decision period L is large, by the central limit theorem,
we know that q̃(m) ' Nor

(
q(m), q(m)[1−q(m)]

1S

)
, with Nor(·)

denoting the normal distribution.
It then follows that the estimation of q(m∗) at helper i is

unbiased. In the following analysis, we assume that

q̃(m∗) = q(m∗)+ σi,

where σi ∈ [σ , σ ] is the random estimation noise with the
probability density function f (σ ) satisfying

f (σ ) > 0, ∀σ ∈ [σ , σ ], and E[σi] =
∫ σ

σ

σ f (σ ) = 0.

2) ADJUSTING HELPING PROBABILITY
Given the estimation q̃(m∗), each helper i adjusts his proba-
bility of participating the cooperative rendezvous for the next
decision period using the following rule:

p(t + 1) = p(t)+ κ[q(M∗)− q̃(m∗)], (8)

where q(M∗) can be calculated based on the targetM∗, κ � 1
is a smoothing factor that controls the speed of convergence.
Large κ decreases the convergence delay at the price of large
strategy variation. Lemma 4 establishes the convergence of
the update rule (8) to M∗.
Lemma 4: Under (8), if κ is sufficiently small, the expected

number of participating helpers converges to M∗.
Proof Sketch: The proof, detailed in the appendix, consists

of first showing that (8) admits a unique fixed point and then
establishing the convergence to the fixed point.

VII. DISCUSSION
In this section, we discuss some important issues on the
practical implementation of the cooperative rendezvous pro-
tocol and its integration with other rendezvous mechanisms
to further improve rendezvous performance.

A. COMPARISON AND INTEGRATION WITH OTHER
CR RENDEZVOUS MECHANISMS
As analyzed in Sec. II, existing rendezvous mechanisms in
CR networks can be categorized into two classes: (1) sta-
tionary and memoryless rendezvous, (2) sequence-based ren-
dezvous. Compared with existing rendezvous approaches,
the cooperative rendezvous protocol developed in the paper
represents an orthogonal research effort. It can be integrated
with both classes of rendezvous protocols. Throughout our
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analysis, we analyze the cooperative rendezvous mecha-
nism upon the rendezvous protocol based on random chan-
nel hopping in order to quantify the performance benefits
brought by cooperative helpers. Nevertheless, the cooper-
ative rendezvous mechanism can also be integrated with
any sequence-based rendezvous protocol without any mod-
ification at cognitive nodes. Such integration is especially
attractive as it can combine the advantages of both schemes
while limiting the side effects of them. We leave the detailed
performance analysis of this proposition for future research.

B. RENDEZVOUS OVERHEAD
Besides the two performance metrics analyzed previously,
the protocol overhead also has a non-negligible impact on
the overall system behavior. In this subsection, we conduct
an order of magnitude study on the protocol overhead of
the cooperative rendezvous in terms of the expected number
of rendezvous messages generated and relayed during the
rendezvous process and compare it with other rendezvous
protocols.
• Non-cooperative rendezvous: Recall that s sends a ren-
dezvous request on r channels in each slot until ren-
dezvous, we can derive the total number of rendezvous
messages sent by s as:

Nm = E[Tttr ]r =
r
Ph
'

{
O(Nα) α ≥ 1

2
O(N 1−α) α < 1

2

.

• Cooperative rendezvous: We study the scenario where
the helpers tune their radios on non-overlapping chan-
nels. Following similar analysis as Theorem 1, we can
compute the probability that a helper captures the ren-
dezvous request sent by s asPr = rrc/N 2 when α+αc <
1/2 and Pr ' O(1) when α + αc ≥ 1/2. Recall that
each helper relays the rendezvous request if it hears the
request, we can derive the total number of generated and
relayed rendezvous messages as

N c
m = E[Tttr ](r +MPr ) =

r +MPr
Ph

.

After some algebraic operations, we have

N c
m '

{
O(Nmax{α,αc+β}) α +

αc+β
2 ≥

1
2

O(N 1−α) α +
αc+β
2 < 1

2

.

• Sequence-based rendezvous: The overhead is O(N )
because the ETTR is O(N ).

We thus observe that in the worst case, the cooperative
rendezvous mechanism increases the overhead from O(Nα)
to O(Nmax{α,αc+β}) compared with the non-cooperative ren-
dezvous. N c

m can be further limited by adaptively adjusting
the helping probability as investigated in Sec. VI.

C. IMPLEMENTATION ISSUES
We now discuss some related issues when implementing the
cooperative rendezvous mechanism.

1) CHANNEL HETEROGENEITY
In CR networks, the heterogeneity among channels in terms
of their availability to SUs and quality has a non-negligible
impact on the performance of any cognitive protocol. Ren-
dezvous protocol is no exception. Specifically, it is prefer-
able to be able to rendezvous on more reliable channels less
impacted by PUs. One solution is to rank the channel in
terms of their availability and then relates the probability
of tuning a radio on a channel to its availability in the ren-
dezvous protocol. However, due to the unpredictability of
the PU traffic and the asymmetry of the system perception
at different SUs, designing a channel ranking scheme with
satisfactory performance itself can be a challenging task. One
solution is to rank the channels using past observations and
strike a balance between accessing highly ranked channels
and exploring new channels.

2) COOPERATION INCENTIVE
In our analysis, we do not address the issue of cooperation
enforcement, which is another research topic and may require
a separate mechanism. There are some possible solutions
providing incentive to helpers to participate rendezvous. For
example, a helper is paid for the rendezvous service when ren-
dezvous is achieved with his help. Alternatively, mechanisms
based on the Tit-for-Tat philosophy can be introduced such
that in order to benefit the help of others, a SU should render
his help to others.

VIII. PERFORMANCE EVALUATION
In this section, we conduct a comparative numerical study
on the non-cooperative and cooperative rendezvous protocols
analyzed previously via a set of simulations on several repre-
sentative rendezvous scenarios in CR networks.

A. NON-COOPERATIVE RENDEZVOUS
We start with the non-cooperative rendezvous protocol ana-
lyzed in Sec. IV to demonstrate its rendezvous perfor-
mance and its dependence on various network parameters.
The results on non-cooperative rendezvous also serve as a
benchmark and comparison reference of evaluating the coop-
erative rendezvous approach. Specifically, we simulate an
N -channel CR network with 20 SUs, each equipped with r
radios, initiating communication sessions with another SU
randomly chosen. Fig. 1a, Fig. 2a and Fig. 3a illustrate
the rendezvous delay (via the channel hitting probabil-
ity), robustness and overhead of the non-cooperative ren-
dezvous mechanism as functions of N with different r ,
with each point representing the average value of a num-
ber of independent simulation runs. The required num-
ber of simulation runs is calculated using ‘‘independent
replications’’ [34].

We make the following observations from the simulation
results: 1) Rendezvous performance with single radio per SU
is poor in all metrics, which is in accordancewith the observa-
tions in the existing literature on the single-radio rendezvous
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FIGURE 1. Simulation result: Channel hitting probability. (a) Non-cooperative rendezvous. (b) Cooperative rendezvous: M = 4.
(c) Cooperative rendezvous: M = 7.

FIGURE 2. Simulation result: Probability of rendezvousing on multiple channels. (a) Non-cooperative rendezvous. (b) Cooperative
rendezvous: M = 4. (c) Cooperative rendezvous: M = 7.

FIGURE 3. Simulation result: Rendezvous overhead. (a) Non-cooperative rendezvous. (b) Cooperative rendezvous: M = 4. (c) Cooperative
rendezvous: M = 7.

based on random channel hopping. 2) Increasing the num-
ber of radios per SU can bring performance gain to certain
extent. Specifically, on the rendezvous delay, when r ≤ N ,
we observe that Ph scales squarely in r , as demonstrated by
the analytical results. The protocol overhead also decreases
significantly compared to the single-radio case. In fact,
the impact of r on the protocol overhead is two-fold. On one
hand, increasing r increases the number of rendezvous
requests sent per slot. On the other hand, a larger r reduces the
rendezvous delay. The simulation results show that the former
effect outweighs the latter. The effect of increasing r is less
pronounced in terms of rendezvous robustness, as illustrated

by Fig. 2a that rendezvous is achieved predominantly on only
one channel.

B. COOPERATIVE RENDEZVOUS
We proceed to investigate the cooperative rendezvous proto-
col developed in Sec. V. In our simulations, M cooperative
helper nodes, each equipped with rc radios, participate the
cooperative rendezvous, the other system parameters being
the same as in Sec. VIII-A. By varying M and rc, we study
several scenarios representing different cooperation resource
levels in the cooperative rendezvous process.
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TABLE 1. Average TTR: Non-coop. vs coop. rendezvous.

The most important performance metric characterizing a
rendezvous protocol is the rendezvous delay. Tab. 1 compares
the average TTR between non-cooperative and cooperative
rendezvous under different parameter settings. More detailed
simulation results on the channel hitting probability, ren-
dezvous robustness and overhead are illustrated in Fig. 1,
Fig. 2 and Fig. 3. Compared with the non-cooperative ren-
dezvous, we remark significant performance gain in both
rendezvous delay and robustness, especially when the sys-
tem scales (N is large). As pointed out in our theoretic
analysis, the participation of cooperative helpers can create
additional rendezvous diversity, whose benefits in facilitating
rendezvous process are clearly demonstrated by the simula-
tion results. We also observe from Fig. 3 that the rendezvous
overhead in cooperative rendezvous is comparable to its
non-cooperative peer, which shows that the overhead gener-
ated by relaying rendezvous requests can be compensated by
the decrease of rendezvous delay.

C. COMPARISON OF DIFFERENT CH ALGORITHMS
We compare the ETTR of the proposed cooperative scheme,
denoted by CooP, to several multi-radio-based representative
CH rendezvous algorithms, including AR [24], RPS [25],
AMRR [26] and MSS [27].

The numbers of radios for SUs s and d are set to be r = 4.
The numbers of available channels for SUs s and d are set
to be 0.5N . The number of commonly available channels
between SUs s and d is set to 0.2 N , i.e., |Rs ∩ Rd | =

0.2 N . We assume that there exists a cooperative SU m with
|Rs ∩ Rm| = 0.1 N and |Rm ∩ Rd | = 0.1 N . The number
of global channels varies from 10 to 100. The simulation
results in Fig. 4 are measured by the average values of

FIGURE 4. ETTR vs Number of channels.

20 times simulations. From Fig. 4, we observe that the pro-
posed cooperative scheme is better than others, which verifies
the theoretical analysis on cooperative rendezvous. However,
we need to point out that the shorter ETTR is achieved with
consuming resource of the cooperative SU.

IX. CONCLUSION AND PERSPECTIVE
We have presented a novel cooperative channel rendezvous
mechanism in CR networks by introducing the cooperative
cognitive nodes that serve as ‘‘bridges’’ between communi-
cating pairs to facilitate their rendezvous process. To quantify
the performance gain of the cooperative rendezvous, we have
established a mathematic framework to study the rendezvous
delay and robustness and derived the performance limit in
asymptotic scenarios. Our analytical results have shed light
on some important design and engineering implications of the
cooperative rendezvous protocol which are further confirmed
by simulation results showing that the developed cooperative
rendezvous protocol outperforms existing schemes under var-
ious typical network conditions.

There are several directions for future work. First, incor-
porating the cooperative rendezvous with sequence-based
approaches can achieve bounded TTR while benefiting the
rendezvous diversity created by cooperative helpers. Per-
formance analysis and protocol optimization therein require
a systematic study. Secondly, extending the pairwise ren-
dezvous to more sophisticated multi-user and multi-hop sce-
narios consists of another extension of this work.

APPENDIX
THEORETICAL PERFORMANCE ANALYSIS:
GENERIC SCENARIO
This section studies the performance of the non-cooperative
rendezvous and the developed cooperative rendezvous mech-
anisms for the generic scenario where Ci 6= N .

A. NON-COOPERATIVE RENDEZVOUS
We start with the non-cooperative rendezvous. Theorem 10
derives the probability that s and d rendezvous on exactly i
channels.
Theorem 10: Let C0 , Cs

⋂
Cd and denote θi

(1 ≤ i ≤ C0) the probability that s and d can rendezvous
on exactly i channels, it holds that

θi =

jmax (i)∑
j=jmin(i)

(C0
i

)(C0−i
j

)(Cs−C0
r−i−j

)(Cd−i−j
r

)(Cs
r

)(Cd
r

)
where jmin(i) , max{0, r − i − (Cs − C0)}, jmax(i) , min
{C0 − i,Cd − r}.

Proof: To compute θi, we study the situation where
besides the i common channels with d , s tunes j radio on j
channels in C0. The probability of this event, denoted as θi(j),
is given by:

θi(j) =

(C0
i

)(C0−i
j

)(Cs−C0
r−i−j

)(Cd−i−j
r−i

)(Cs
r

)(Cd
r

) ,
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with the following constraint on j given i:
0 ≤ j ≤ C0 − i
0 ≤ r − i− j ≤ Cs − C0

0 ≤ r − i ≤ Cd − i− j

,

which, noticing C0 ≤ r , leads to the following constraint on
j: jmin(i) ≤ j ≤ jmax(i), where jmin(i) , max{0, r − i− (Cs −
C0)}, jmax(i) , min{C0 − i,Cd − r}.
By summing θi(j) over all possible j, we can derive θi as:

θi =

jmax (i)∑
j=jmin(i)

θi(j) =
jmax (i)∑
j=jmin(i)

(C0
i

)(C0−i
j

)(Cs−C0
r−i−j

)(Cd−i−j
r

)(Cs
r

)(Cd
r

) ,

which completes our proof. �
Theorem 10 can be applied to compute the rendezvous

performance metrics as follows:
• Rendezvous delay: the channel hitting probability Ph =∑r

i=1 θi, the ETTR E[Tttr ] = 1/Ph;
• Rendezvous robustness: the probability that s and d can
rendezvous on at least two channels Pm =

∑r
i=2 θi.

B. COOPERATIVE RENDEZVOUS
We now proceed to study the cooperative rendezvous. In the
generic scenario, letHm

s , Cs∩Hm,Hm
d , Cd ∩Hm; for a set

T ⊆M let AT
s =

⋂
j∈T Hj

s, AT
d =

⋂
j∈T Hj

d with ATd and
ATr denoting the corresponding cardinality of AT

s and AT
d .

Theorem 11: The channel hitting probability is given by:

Pch = 1−

(
r∑
i=1

θi

)
+

∑
S⊆M

(−1)|S|−1P1

(⋂
m∈S
{m}

)
,

where for T ⊆M,

P1(T ) =

 ATs∑
i=1

(ATs
i

)(Cs−ATs
r−i

)(Cs
d

)
 ATd∑

i=1

(ATd
i

)(Cd−ATd
r−i

)(Cd
r

)
 .

Proof: We start by establishing the probability that given
a set T ⊆ M, the rendezvous is achieved with the help of
at least one helper on the channels in

⋃
m∈T Hm but that

it cannot be achieved by s and d directly. This probability,
denoted as P1(T ), can be computed as follows:

P1(T ) =

 ATs∑
i=1

(ATs
i

)(Cs−ATs
r−i

)(Cs
r

)
 ATd∑

i=1

(ATd
i

)(Cd−ATd
r−i

)(Cd
r

)
 .

In the above formula,
(A

T
s
i )(

Cs−ATs
r−i )

(Csr )
is the probability that

each helper in T captures i rendezvous requests sent by s,∑ATd
i=1

(
ATd
i )(

Cd−A
T
d

r−i )

(Cdr )
is the probability that d captures the

relayed rendezvous request sent by each helper in T . The
formula thus gives the probability that the rendezvous is
achievedwith the help of at least one helper on the channels in⋃

m∈T Hm but that it cannot be achieved by s and d directly.
We can then derive the probability that that the rendezvous

is achieved with the help of at least one helper but that it

cannot be achieved by the sender and the receiver directly by
using the inclusion-exclusion principle.

P1 =
∑

T ⊆M
(−1)|T |−1P1

(⋂
m∈T
{m}

)
.

Recall Theorem 10 that the probability that the rendezvous
can be achieved without the help of other nodes is 1 −(∑r

i=1 θi
)
, the channel hitting probability can be computed

as:

Pch = 1−

(
r∑
i=1

θi

)
+ P1,

with P1 being the gain brought by the helpers. Injecting P1
into the above formula completes our proof. �
The calculation of Pcm in the generic case turns out to be too

involved analytically. One possible solution is to enumerate
all possible combinations and check if a combination can lead
to rendezvous on at least two channels.

PROOFS OF LEMMAS AND THEOREMS
C. PROOF OF THEOREM 1
We analyze the situation where rendezvous fails at a given
time slot. Using the combinatorial notation

(n1
n2

)
=

n1!
n2!(n1−n2)!

,
the probability of such event, denoted as P0, can be derived
as:

P0 =

(N
R

)(N−R
R

)(N
R

)(N
R

) = 1−
r−1∏
i=0

(
1−

r
N − i

)
,

where
(N
R

)(N−R
R

)
is the number possible combinations where

there is no common channel between s and d ,
(N
R

)(N
R

)
is the

number of total possible combinations.
Ph can then be derived by Ph = 1 − P0, leading to (1).

We then prove the second part of the theorem.
• When α < 1

2 (i.e., r2 ' o(N )), it holds that

Ph ' 1−
(
1−

r
N

)r
' 1−

(
1− r

r
N

)
'
r2

N
.

• When α ≥ 1
2 , it holds that

1−
(
1−

r
N

)r
≤ Ph ≤ 1−

(
1−

r
N − r

)r
,

and that
limN→∞ 1−

(
1− r

N

)r
= 1−

(
1
e

) r2
N
,

limN→∞ 1−
(
1− r

N−r

)r
= 1−

(
1
e

) r2
N−r

.

Equation (2) follows readily from the above analysis.

D. PROOF OF THEOREM 2
It can be noticed that

Pm =
r∑
i=2

θi = Ph − θ1, (9)
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where θ1 can be derived as

θ1 =

(N
1

)(N−1
R−1

)(N−R−1
R

)(N
R

)(N
R

) ,

where the nominator is the number of combinations that
s and d choose exactly one channel in common, the denomi-
nator is the number of total possible combinations.

After some algebraic operations, we have

θ1 =
r2

N − r + 1

r−2∏
i=0

(
1−

r
N − i

)
.

By injecting Ph and θ1 into (9), we obtain

Pm = 1−
r−1∏
i=0

(
1−

r
N − i

)
−

r2

N − r + 1

r−2∏
i=0

(
1−

r
N − i

)
,

which completes the first part of the proof.
The second part on the asymptotical scenario can be proven

similarly as Theorem 1 by applying the second order approx-
imation

(1− x)n ' 1− nx + n2x2/2+ o(x2) (x → 0).

E. PROOF OF THEOREM 3
To prove Theorem 3, we derive the probability that the ren-
dezvous cannot be achieved, denoted as Pc0. We can note that
the rendezvous cannot be achieved if the following conditions
are satisfied:
• If s tunes its radios on the channels accessed by k
helpers, d should only tune its radios on the channels
accessed by the rest M − k helpers;

• On the rest N −Mrc channels not covered by any helper,
s and d do not tune their radios on the same channels;

Consequently, Pc0 can be derived by enumerating the com-
binations in which the above two conditions hold as follows

Pc0 =
1[(N
r

)]2
 M∑
k=0

M−k∑
l=0

∑k
i=1 ai≤r∑

ai≥1,1≤i≤k

∑l
j=1 bj≤r∑

bj≥1,1≤j≤l

(
M
k

)

×

(
M − k
l

)( k∏
i=1

(
r
ai

))(
N −Mrc

r −
∑k

i=1 ai

) l∏
j=1

(
r
bj

)
×

(
N −Mrc − r +

∑k
i=1 ai

r −
∑l

j=1 bi

)]
,

where∑k
i=1 ai≤r∑

ai≥1,1≤i≤k

∑l
j=1 bj≤r∑

bj≥1,1≤j≤l

(
k∏
i=1

(
r
ai

))(
N −Mrc

r −
∑k

i=1 ai

)
 l∏
j=1

(
r
bj

)(N −Mrc − r +∑k
i=1 ai

r −
∑l

j=1 bi

)
is the number of combinations of the following case:
• s tunes some of its radios on the channels covered by
helpers such that k helpers have at least one common

channel with s, s tunes other radios on the channels not
covered by any helper;

• d tunes some of its radios on the channels covered by a
subset of the otherM−k helpers and other radios on the
channels not covered by any helper or s.

Injecting Pc0 derived above into Pch = 1 − Pc
∅
completes

the proof of generalM and injectingM = 1 into the formula
completes the proof of the case M = 1.

F. PROOF OF LEMMA 1
Let C1, C2 denote the number of combinations that s and d
can rendezvous on at least one channel among the first Mrc
channels in the original system and in the system with a super
helper, respectively, it holds that

qi =
Ci[(N
r

)]2 , i = 1, 2.

To prove the lemma, it suffices to show that C2/M ≤

C1 ≤ C2.
It can be straightforwardly noted that C1 ≤ C2 as for any

instance with which s and d can rendezvous on at least one
channel among the firstMrc channels in the first system, they
can rendezvous on at least one channel among the first Mrc
channels in the second system with the super helper.

We now proceed to show that MC1 ≥ C2. Noticing the
definition of C1 and C2, it follows that C2−C1 is the number
of combinations that s and d can rendezvous on at least one
channel i among the first Mrc channels in the second system
but not in the first system. Let 8 = {φi} denote the set
of instances where s and d can rendezvous on at least one
channel i among the first Mrc channels in the second system
but not in the first system and let � = {ωi} denote the set
of instances where s and d can rendezvous on at least one
channel i among the first Mrc channels in the first system,
we next show that each element φi ∈ 8 can be mapped into
an element ωi ∈ � and that at most M − 1 elements in 8
can be mapped to the same element in �. We show this by
constructing the following mapping T.
Definition 1: Let aωi (j) and bωi (j) (1 ≤ j ≤ N)

denote the number of radios that s and d tune on channel j
in the instance ωi. Let a

φ
i (j) and b

φ
i (j) (1 ≤ j ≤ N) denote

the number of radios that s and r tune on channel j in the
instance φi. Let jia and j

i
b denote the smallest channel index j

with which aφi (j) and bφi (j) are positive, respectively. The
mapping T : 8→ � is defined as follows.
Each instance φi ∈ 8 is mapped into an instance ωi where

aωi (j) = aφi (j), 1 ≤ j ≤ N .

bωi (j) =


bφi (j

i
b) j = jia + [(jib − j

i
a) mod rc],

bφi (j
i
a) j = jib,

bφi (j) 1 ≤ j ≤ N , j 6= jia + [(jib − j
i
a) mod rc], jib.

We provide an example to illustrate the mapping T.
Example 1: In a system where N = 8, r = rc = 2, M = 3,

consider an instanceω0 with aω0 (1), a
ω
0 (3), b

ω
0 (2), b

ω
0 (6) being
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1 and the others being 0. Consider an instance φ0 with a
φ
0 (1),

aφ0 (3), b
φ
0 (4), b

φ
0 (6) being 1 and the others being 0. According

to the construction of the mappingT, φ0 can bemapped toω0.
It can be checked that no other instance in 8 can be mapped
to ω0.
In the same system consider another instance ω1 with

aω1 (1), a
ω
1 (7), b

ω
1 (2), b

ω
1 (8) being 1 and the others being 0.

Consider two instances φ1 and φ2 with a
φ
1 (1), a

φ
1 (7), a

φ
2 (1),

aφ2 (7), b
φ
1 (4), b

φ
1 (8), b

φ
2 (6), b

φ
2 (8) being 1 and the others

being 0. According to the construction of the mappingT, both
φ1 and φ2 can be mapped into ω1. No other instance in8 can
be mapped to ω0.
Concerning the mappingT, we can show the following two

properties: (1) each element in 8 is mapped to an element
in �; (2) at most M − 1 elements in 8 can be mapped to the
same element in �.
The above analysis onT implies thatC2−C1 ≤ (M−1)C1

and hence MC1 ≥ C2. The lemma is thus proven.

G. PROOF OF THEOREM 4
It can be easily noted that Pch ≤ P

s
h as for any instance where

rendezvous can be achieved in the system with the super
helper, it can be achieved in the original system.

We now prove that Psh/M ≤ Pch. To this end, we develop
Ph as follows

Pch = qc1 + q
c
2 − q

c
3

where qc1 is the probability that rendezvous can be achieved
on at least one channel from channel 1 to Mrc, qc2 is the
probability that rendezvous can be achieved on at least one
channel from channel Mrc + 1 to N , qc3 is the probability
that rendezvous can be achieved on at least one channel from
channel 1 to Mrc and on at least one channel from channel
Mrc + 1 to N . Similar development holds for Psh with the
corresponding probabilities qsi (i = 1, 2, 3) in the system with
the super helper.

It can be noted that qc2 = qs2. It follows from Lemma 3 that
qc2 ≥ qs2/M . It also holds that qc3 ≤ qs3. This can be shown
by noticing that for any instance where rendezvous can be
achieved on at least one channel from channel 1 to Mrc and
on at least one channel from channel Mrc + 1 to N in the
original system, rendezvous can also be achieved on at least
one channel from channel 1 toMrc and on at least one channel
from channel Mrc to N in the system with the super helper.

It follows from the above analysis that Psh/M ≤ P
c
h.

H. PROOF OF THEOREM 5
To prove the first part of the theorem, we derive the proba-
bility that the rendezvous cannot be achieved, denoted as Ps0.
To this end, we notice that the rendezvous cannot be achieved
if one of the following cases hold:

1) Case 1: s tunes i of its radios (1 ≤ i ≤ r) on the
channels covered by the super helper, d tunes its radios
on the channels other than those covered by the super
helper or s;

2) Case 2: s tunes all of its radios on the channels not
covered by the super helper, d tunes its radios on the
N − r channels not covered by s.

Based on the above observation, the probability that the
rendezvous cannot be achieved can be derived as follows:

Ps0 =
1[(N
r

)]2
[(
N −Mrc

r

)(
N − r
r

)

+

r∑
i=1

(
Mrc
i

)(
N −Mrc
r − i

)(
N −Mrc − rc + i

r

)]
,

where
(N−Mrc

r

)(N−r
r

)
is the number of combinations of case 2,∑r

i=1
(Mrc
i

)(N−Mrc
r−i

)(N−Mrc−r+i
r

)
is the number of combina-

tions of case 1,
[(N

r

)]2
is the total number of combinations.

By injecting Ps0 into P
s
h = 1 − Ps0, we obtain the formula

of Psh in the theorem.
We then proceed to prove the second part of the theorem.

The proof hinges on the fact that whenN is large, it holds that(
N −Mrc

r

)(
N − r
r

)
�

r∑
i=1

(
Mrc
i

)(
N −Mrc
r − i

)(
N −Mrc − r + i

r

)
.

After some algebraic operations, we have

lim
N→∞

Ps0 '


0, α +

αc+β
2 > 1

2
[1+ δ] e−δ, α +

αc+β
2 =

1
2

1− r4

2N 2

[
1+ M (M+1)r4c

2N 2

]
, α +

αc+β
2 < 1

2

.

Noticing that Psh = 1− Ps0, the second part is proven.

I. PROOF OF THEOREM 6
The calculation of PD1 can be proven noticing that(

k∏
i=1

(
r
ai

))(
N −Mrc

1

)(
N −Mrc − 1

r −
∑k

i=1 ai − 1

)

×

 l∏
j=1

(
r
bj

)(N −Mrc − r +∑k
i=1 ai

r −
∑l

j=1 bi − 1

)
is the number of combination where s and d can rendezvous
on exactly one channel among channels Mrc + 1 to N and
cannot rendezvous on channels 1 to Mrc.

The calculation of PC1 in can be proven noticing that
• the term in the first square bracket is the number of com-
binations where s and d can rendezvous on exactly one
channel among channels 1 toMrc and cannot rendezvous
on channels Mrc + 1 to N with s tuning 1 radio and d
tuning t (t ≥ 1) radios on the channels covered by a
helper;

• the term in the second square bracket is the number of
the same combinations with s tuning t (t ≥ 2) radios and
d tuning 1 radio on the channels covered by a helper.
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Finally, the probability of rendezvousing on multiple chan-
nels Pcm can be derived by the channel hitting probability
minus the probability of rendezvousing on one channel:

Pcm = Pch − PD − PC ,

which completes the proof.

J. PROOF OF THEOREM 8
It can be noted that Psm equals to Psh minus the probability
that s and d rendezvous on exactly one channel. We now
derive the second probability. To that end, we note that s and d
rendezvous on exactly one channel can be categorized into the
following four cases:
• Case 1: The rendezvous is achieved on a channel i not
covered by the super helper and s does not tune any of
its radios on the channels covered by the super helper.
The number of combinations in this case is(

N −Mrc
1

)(
N −Mrc − 1

r − 1

)(
N − r + 1
r − 1

)
.

• Case 2: The rendezvous is achieved on a channel i not
covered by the super helper and s tunes at least one of its
radios on the channels covered by the super helper. The
number of combinations in this case is(

N −Mrc
1

)(
N −Mrc − 1

r − 1

)(
N − r + 1
r − 1

)
−

(
N −Mrc

1

)(
N −Mrc − 1

r − 1

)(
N −Mrc − r − 1

r − 1

)
.

• Case 3: The rendezvous is achieved on a channel i
covered by the super helper and s tunes one radio on
the channels covered by the super helper. The number
of combinations in this case is(
Mrc
1

)(
N −Mrc
r − 1

)[ r∑
i=1

(
Mrc
i

)(
N −Mrc − r + 1

r − i

)]
.

• Case 4: The rendezvous is achieved on a channel i cov-
ered by the super helper and s tunes more than one radios
on the channels covered by the super helper. In this case,
d must tune one radio on on the channels covered by the
super helper. The number of combinations in this case is(
Mrc
1

)(
N −Mrc
r − 1

)[ r∑
i=2

(
Mrc
i

)(
N −Mrc − r + 1

r − i

)]
.

Combining the results in the above four cases completes
the proof of the first part of the theorem. The second part can
be shown by performing algebraic operations by neglecting
terms of lower order of magnitude.

K. PROOF OF LEMMA 2
To prove the lemma, we show that given a helpers’ strat-
egy profile 1 where ∃i, j ∈ M such that Hi

⋂
Hj 6= ∅,

by switching a radio of j from c1 ∈ Hi
⋂

Hj to another chan-
nel c2 /∈ Hi

⋃
Hj to construct another strategy profile 1′,

we can increase Pch. To show this, we construct the following
mapping to map any instance ω with strategy 1 to another

instance ω′ with strategy1′: if in ω, s (d , respectively) tunes
one radio on c1 and d (s) tunes one radio on a channel inHj,
then switch the radio of s (d) on c1 to c2 to construct ω′;
otherwise let ω′ = ω.

It can be noted that if s and d can rendezvous in ω, they
can rendezvous in ω′. Hence the channel hitting probability is
increased by switching from1 to1′. By iteratively perform-
ing the above switching, we can show that Pch is maximized
when Hi

⋂
Hj = ∅,∀i, j ∈M.

L. PROOF OF THEOREM 9
We start by establishing the probability that given a set
T ⊆M, the rendezvous is achieved with the help of at least
one helper on the channels in

⋃
m∈T Hm but that it cannot

be achieved by the sender and the receiver directly. This
probability, denoted as P1(T ), can be computed as follows:

P1(T ) =

 AT∑
i=1

(AT
i

)(N−AT
r−i

)(N
r

)
2

.

In the above formula,

[∑AT
i=1

(A
T
i )(

N−AT
r−i )

(Nr )

]
is the probabil-

ity that each helper in T captures i rendezvous requests sent
by s; it is also the probability that d captures the relayed
rendezvous request sent by each helper in T . The formula
thus gives the probability that the rendezvous is achieved with
the help of at least one helper on the channels in

⋃
m∈T Hm

but that it cannot be achieved by s and d directly.
We can then derive the probability that that the rendezvous

is achieved with the help of at least one helper but that it
cannot be achieved directly by using the inclusion-exclusion
principle.

P1 =
∑

T ⊆M
(−1)|T |−1P1

(⋂
m∈T
{m}

)
.

Recall the proof of Theorem 1 that the probability that the
rendezvous can be achieved without the help of other nodes
is 1−P0, the channel hitting probability can be computed as:

Pch(H) = 1− P0 + P1,

with P1 being the gain brought by the helpers. Injecting P0
and P1 into the above formula completes our proof.

M. PROOF OF LEMMA 4
Denote m∗(t) the number of participating helpers in decision
period t , by summing (8) for all helpers i, we have

m∗(t + 1) = m∗(t)+κM

(
q(M∗)− q(m∗(t))

∑
i∈N
−E[σi]

)
.

Noticing that E[σi] = 0, we have

m∗(t + 1) = m∗(t)+ κM
[
q(M∗)− q(m∗(t))

]
. (10)

It can be noted that (10) admits a unique fixed point
m∗(t) = M∗. We next show that starting from any statem∗(0),
limt→∞ = M∗ under (10). To this end, we first state the
following properties:
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• If≤ m∗(t) ≤ M∗, noticing that q(m∗(t)) ≤ q∗(M ), it fol-
lows from (10) that m∗(t+1) ≥ m∗(t). Moreover, if κ is
sufficiently small such that κ ≤ min0≤x≤M

q(M∗)−q(x)
M (M∗−x) ,

it follows from (10) that

M∗ − m∗(t + 1) = M∗ − m∗(t)− κM[
q(M∗)− q(m∗(t))

]
≥ 0.

• If m∗(t) ≥ M∗, similarly, we have

m∗(t) ≥ m∗(t + 1) ≥ M∗.

Now consider an arbitrary sequence of update steps com-
mencing from an initial vector m∗(0), we distinguish the
following two cases:
• Case 1: 0 ≤ m∗(0) < M∗. In this case, we have

m∗(0) ≤ m∗(1) ≤ · · · ≤ m∗(t) ≤ · · · ≤ M∗.

We thus obtain a non-decreasing sequence upper-
bounded by M∗. It follows that it must converge to a
limit. Since there is no other fixed point other than M∗,
this limit must be M∗.

• Case 2: M∗ ≤ m∗(0) ≤ M. Similarly, we obtain a
non-increasing sequence m∗(t) converging to M∗.

Combine the above analysis, we establish the convergence of
m∗(t) to M∗.
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