
Ad Hoc Networks 77 (2018) 54–68

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

On heterogeneous duty cycles for neighbor discovery in wireless

sensor networks

Lin Chen

a , b , Ruolin Fan

c , Yangbin Zhang

a , Shuyu Shi d , Kaigui Bian

a , ∗, Lin Chen

e , Pan Zhou

f ,
Mario Gerla

c , Tao Wang

a , Xiaoming Li a

a Peking University, China
b Yale University, USA
c University of California, Los Angeles, USA
d National Institute of Informatics, Japan
e University of Paris-Sud, France
f Huazhong University of Science and Technology, China

a r t i c l e i n f o

Article history:

Received 10 November 2017

Revised 5 April 2018

Accepted 16 April 2018

Available online 27 April 2018

Keywords:

Neighbor discovery

Heterogeneous duty cycles

Wireless sensor networks

a b s t r a c t

Neighbor discovery plays a crucial role in the formation of wireless sensor networks and mobile networks

where the power of sensors (or mobile devices) is constrained. Due to the difficulty of clock synchroniza-

tion, many asynchronous protocols based on wake-up scheduling have been developed over the years in

order to enable timely neighbor discovery between neighboring sensors while saving energy. However,

existing protocols are not fine-grained enough to support all heterogeneous battery duty cycles, which

can lead to a more rapid deterioration of long-term battery health for those without support. Existing

research can be broadly divided into two categories according to their neighbor-discovery techniques—

the quorum-based protocols and the co-primality based protocols. In this paper, we propose two neigh-

bor discovery protocols, called Hedis and Todis , that control the duty cycle granularity of quorum and

co-primality based protocols respectively, by enabling the finest-grained control of heterogeneous duty

cycles. We compare the two optimal protocols via analytical and simulation results, which show that

the optimal co-primality based protocol (Todis) is not only simpler in its design, but also has a better

performance.

© 2018 Elsevier B.V. All rights reserved.

n

c

m

n

e

d

s
1. Introduction

As human technology continues to advance at an unprece-

dented rate, there are more mobile wireless devices in operation

than ever before. Many have taken advantage of the ubiquity of

these devices to create mobile social network applications that use

mobile sensing as an important feature [1,2] . These applications

rely on their devices’ capability to opportunistically form decen-

tralized networks as needed. For this to happen, it is important

for these devices to be able to discover one another to establish

a communication link. In order to save energy, each of the de-

vices alternates between active and sleeping states by keeping its

radio “ON” for only some of the time [3] . This is challenging to

achieve because two neighboring nodes have the opportunities of

discovering each other only when both of their radios are “ON” at

the same time; and with clock drifts, having set times for all the
∗ Corresponding author.

E-mail address: bkg@pku.edu.cn (K. Bian).

s

t

https://doi.org/10.1016/j.adhoc.2018.04.007

1570-8705/© 2018 Elsevier B.V. All rights reserved.
odes to wake up at the same time is not trivial. Since clock syn-

hronization is difficult in a distributed system, neighbor discovery

ust be done asynchronously. Over the years, the asynchronous

eighbor discovery problem has been widely studied [4–13] , and

xisting research mainly focused on satisfying the following three

esign requirements:

1. Guarantee neighbor discovery within a reasonable time frame;

2. Minimize the number of time slots for which the node is awake

to save energy;

3. Match the nodes’ wake-up schedules with their heterogeneous

battery duty cycles 1 as closely as possible (i.e. finer duty cycle

granularity).

Most existing solutions to this problem use patterned wake-up

chedules to satisfy the first two requirements. We classify these

olutions into two broad categories: (1) quorum based protocols

hat arrange the radio’s time slots into a matrix and pick wake-
1 Duty cycle is the percentage of one period in which a sensor/radio is active.

https://doi.org/10.1016/j.adhoc.2018.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2018.04.007&domain=pdf
mailto:bkg@pku.edu.cn
https://doi.org/10.1016/j.adhoc.2018.04.007

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 55

u

b

s

a

t

s

t

s

o

n

c

m

c

e

a

d

c

o

c

T

u

t

c

t

b

i

o

i

r

b

f

r

c

b

p

p

b

i

o

t

t

p

g

p

fi

a

S

t

a

c

2

s

w

n

a

Fig. 1. An example of neighbor discovery: two neighbor discovery schedules are

s a = { 0 , 0 , 0 , 0 , 0 , 1 } and s b = { 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 } . Without clock drift (a), the two

nodes can discover each other every 18 time slots since lcm (T a , T b) = 18 . With clock

drift (b), neighbor discovery fails.

o

t

D

o

s

f

t

t

s

r

w

D

s

(

δ

e

s

c

s

p

s

t

n

t

r

u

c

n

n

p

t

u

T

m

n
p times according to quorums in the matrix; and (2) co-primality

ased protocols that use number theory to choose numbered time

lots as the radio’s wake-up times.

In a quorum-based protocol, a node populates time slots into

 matrix, where the elements in the matrix represent time slots

he node takes to run a period of the wake-up schedule [14] . The

pecific arrangements of rows and columns depend upon the pro-

ocol scheme, which typically assign slots as “active” or “sleeping”,

uch that it will ensure these chosen active time slots in the matrix

f one node will overlap with those active ones of a neighboring

ode. Especially, when nodes have the same duty cycles, two nodes

hoosing active times from a row and a column respectively in the

atrix will be ensured to achieve neighbor discovery regardless of

lock drifts.

A co-primality based protocol directly takes advantage of prop-

rties of the Chinese remainder theorem (CRT) [15] to ensure that

ny two nodes would both be active in the same time slot [6] . Un-

er these protocols, nodes wake up at time slots in multiples of

hosen numbers (a.k.a. protocol parameters) that are co-prime to

ne another. Such a neighbor discovery protocol fails when nodes

hoose the same number that would compromise the co-primality.

hus, every node is allowed to choose several numbers and wake

p at multiples of all of those chosen numbers, which guarantees

hat nodes discover one another within a bounded time/delay.

Up to now, all of the protocols incepted, be it quorum-based or

o-primality based, fail to meet the third design requirement, as

heir requirements for duty cycles are too specific. As a quorum-

ased protocol, Searchlight [4] requires that the duty cycles be

n the form

2
n i

, where n is a fixed integer and i = 1 , 2 , 3 , . . . (it

nly supports duty cycles of 1 , 1 2 ,
1
4 ,

1
8 ,

1
16 , . . . if n = 2). Therefore,

t greatly restricts the choices of supported duty cycles due to the

equirement for duty cycles to be in the form

2
n i

. For a co-primality

ased protocol like Disco [6] , it restricts duty cycles to be in the

orm

1
p 1

+

1
p 2

, where p 1 and p 2 are prime numbers. Such stringent

equirements on duty cycles force devices to operate at duty cy-

les that they are not designed to operate at, thus shortening their

attery longevity.

In this paper, we present two fine-grained neighbor discovery

rotocols, called Hedis (heterogeneous discovery as a quorum-based

rotocol) and Todis (triple-odd based discovery as a co-primality

ased protocol), that guarantee asynchronous neighbor discovery

n a heterogeneous environment, meaning that each node could

perate at a different duty cycle. We analytically compare these

wo protocols with existing state-of-the-art protocols to confirm

heir fine granularity in the support of duty cycles, and also com-

are them against each other as a comparison between the two

eneral categories of neighbor discovery protocols (quorum vs. co-

rimality based protocols).

The rest of this paper is organized as follows. We formally de-

ne the problem as well as any necessary terms in Section 2 ,

nd give a taxonomy of current research effort s in this area in

ection 3 . In Sections 4 and 5 , we present our optimizations for

he quorum-based and co-primality based protocols respectively,

nd we evaluate them with simulations in Section 6 . Finally, we

onclude with Section 8 .

. Problem formulation

Here we define the terms and variables used to formally de-

cribe the neighbor discovery problem and its solution; and mean-

hile we state the assumptions used in devising our protocols.

Wake-up schedule : We consider a time-slotted wireless sensor

etwork where each node is energy-constrained. The nodes follow

 neighbor discovery wake-up schedule that defines the time pattern
f when they need to wake up (or sleep), so that they can discover

heir respective neighbors in an energy-efficient manner.

efinition 1. The neighbor discovery schedule (or simply schedule)

f a node a is a sequence s a � { s t a } 0 ≤t<T a of period T a and

t
a =

{
0 a sleeps in slot t
1 a wakes up in slot t

We do not assume clock synchronization among nodes, there-

ore any two given nodes may have random clock drifts. We use

he cyclic rotation of a neighbor discovery schedule to describe

his phenomenon. For example, a clock drift by k slots of node a’s

chedule s a is

otate (s a , k) = { r t a } 0 ≤t<T a ,

here r t a = s (t+ k) mod T a
a .

efinition 2. The duty cycle δa of node a is the percentage of time

lots in one period of the wake-up schedule where node a is active

node a wakes up), defined as

a =

|{ 0 ≤ t < T a : s
t
a = 1 }|

T a
.

For example, a node that wakes up on average in one slot for

very 2 time slots has a duty cycle of 50%.

The importance of duty cycle matching : In a wireless mobile

ensor network, each sensor node may have a different duty cy-

le due to various factors. By adjusting the duty cycles of a sen-

or, one is able to exploit the tradeoff between conserving battery

ower and packet forwarding capacity. A smaller duty cycle con-

umes less power because the radio is powered on for less of the

ime; however, because the radio is off for so long, the node can-

ot spend as much time transmitting packets, causing high end-

o-end delays. On the other hand, as the duty cycle increases, the

adio is powered on more frequently, thus mitigating delays while

sing up more battery power. Due to the ever-changing network

onditions (periods of high and low traffic rates) and each sensor

ode’s power status, the notion of having dynamic duty cycles is

ow an area of active research [16–18] . Thus, a neighbor discovery

rotocol must support duty cycles at a fine granularity in order for

hese new dynamic duty cycled schemes to come into fruition.

Neighbor discovery : Suppose two nodes a and b have sched-

les s a and s b of periods T a and T b , respectively. If ∃ t ∈ [0, lcm(T a ,

 b)) such that s t a = s t
b

= 1 where lcm(T a , T b) is the least common

ultiple of T a and T b , we say that:

• Nodes a and b can discover each other in slot t .

• Slot t is called a discovery slot between a and b .

Fig. 1 shows an example of two sensor nodes with

eighbor discovery schedules s a = { 0 , 0 , 0 , 0 , 0 , 1 } and s =
b

56 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

t

w

i

o

e

s

d

b

p

d

a

g

o

n

c

3

w

D

b

t

s

p

s

T

δ

δ

·

(

T

g

t

p

b

s

g

n

a

t{

I

a
{ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 } , that have period lengths of T a = 6 and

T b = 9 respectively. Node a is active on 1 slot within each period

(6 slots) while node b is active on 2 slots within each period (9

slots). Thus the duty cycles of a and b are d a =

1
6 ≈ 16 . 7% and

d b =

2
9 ≈ 22 . 2% . In Fig. 1 a, we see that for every period of 18

slots (lcm (T a , T b) = 18), nodes a and b discover each other in slot

17. However, as illustrated in Fig. 1 b, when a one-slot clock drift

occurs in node b , we have rotate (s b , 1) = { 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 }
and these two nodes can no longer discover each other.

Duty cycle granularity : Duty cycle is the percentage of one pe-

riod in which a sensor/radio is active. Duty cycle granularity mea-

sures how small the duty cycle can be supported by a neighbor

discovery protocol.

In a practical implementation, when two nodes are active in

the same time slot, if both in reception mode, no discovery will

happen; on the other hand, if both in transmission mode, colli-

sion may happen. Collision resolution mechanisms have been well

studied [19,20] . If one is in reception mode while the other is in

transmission mode, discovery happens.

3. A taxonomy of neighbor discovery protocols

In this section, we introduce a taxonomy of deterministic asyn-

chronous neighbor discovery protocols. Through examining exist-

ing solutions to the neighbor discovery problem, we divide these

protocols into two broad categories.

3.1. Why deterministic protocols

Many solutions have been proposed to solve the neighbor dis-

covery problem. One of the earliest such solutions are the birthday

protocols [21] , which take upon a probabilistic approach to neigh-

bor discovery. These protocols rely on the birthday paradox , which

states that with as few as 23 people, the probability that two peo-

ple have the same birthday exceeds 1
2 . As a non-deterministic pro-

tocol based upon probability, birthday protocols are heterogeneous

and supports every duty cycle with the finest granularity. Follow-

ing this, many more similar probabilistic protocols were also de-

veloped [22–25] . However, due to their probabilistic nature, these

protocols fail to provide a guaranteed upper bound for neighbor

discovery latency, which means that there is a chance for two

neighbors to never discover each other.

To combat this insufficiency, deterministic protocols with worst

case bounds for neighbor discovery were developed. The earlier

deterministic protocols such as [14,26] , and [27] all use the quo-

rum concept. However, while these protocols are effective in guar-

anteeing neighbor discovery, they are generally lacking in duty cy-

cle support. For example, [14] and [26] are homogeneous, mean-

ing that they require all the nodes to have the same duty cycle.

As a result, the co-primality based approach was developed with

Disco [6] and U-Connect [7] , although U-Connect is in some ways

a hybrid approach using elements from both the quorum and co-

primality paradigms.

3.2. Quorum vs. co-primality based protocols

The deterministic protocols for neighbor discovery can be

largely classified into two major categories, quorum based proto-

cols and co-primality based protocols.

3.2.1. Quorum-based protocols

Quorum-based protocols take advantage of geometry in a 2-

dimensional array.

Bounded discovery delay : In the most original protocols like

[14] , time is arranged into an m × m matrix. Every node then

chooses a row and a column for which to wake up. This ensures
hat regardless of any clock drifts, any two nodes would be able to

ake up at the same time slot every m

2 time slots, thus guarantee-

ng an upper bound for neighbor discovery. However, this method

nly works if every node happens to use the same duty cycle. Lai

t al. [27] improve upon this method by constructing cyclic quorum

ystem and grid quorum system pairs, which allow for two different

uty cycles to coexist and still ensure bounded neighbor discovery.

Example protocols : The current latest development in quorum-

ased protocols is Searchlight [4] , which is able to support multi-

le duty cycles in the network. Searchlight essentially divides the

uty cycle period into a t
2 × t matrix, and uses a combination of

nchor and probing slots to generate wake-up patterns. At the be-

inning of every t time slots is an anchor slot, and a probing slot

ccurs at random slots between the anchor slots. With this tech-

ique, Searchlight [4] shows that it is able to allow neighbor dis-

overy among nodes with many different duty cycles.

.2.2. Co-primality based protocols

A co-primality based neighbor discovery protocol is one in

hich

• Each node, say, node a , chooses a set of integers (not necessar-

ily distinct)

N a = { n

a
1 , n

a
2 , n

a
3 , . . . , n

a
| N a | } .

• For two distinct nodes a and b, N a and N b must satisfy the fol-

lowing co-prime pair property .

efinition 3. For two distinct nodes a and b under a co-primality

ased neighbor discovery protocol, there exists an integer in N a

hat is co-prime to an integer in N b —i.e., ∃ n a
i 0

∈ N a and n b
j 0

∈ N b

uch that n a
i 0

and n a
j 0

are co-prime.

Node a ’s schedule s a � { s t a } 0 ≤t<T a under this co-primality based

rotocol is

t
a =

{
1 t is divisible by some n

a
i

∈ N a

0 otherwise

he period length is T a = lcm (n a
1
, n a

2
, . . . , n a | N a |) and its duty cycle

a is

a =

∑

1 ≤i 1 ≤| N a |

1

n

a
i 1

−
∑

1 ≤i 1 <i 2 ≤| N a |

1

lcm (n

a
i 1
, n

a
i 2
)

· · + (−1) | N a | +1 1

lcm (n

a
1
, n

a
2
, n

a
3
, · · · , n

a
| N a |)

.

Bounded discovery delay : By the Chinese remainder theorem

CRT) [15] , we can obtain the following theorem.

heorem 1. A co-primality based neighbor discovery protocol can

uarantee discovery for any two nodes for any amount clock drift if

he associated integer sets of the nodes in this network satisfy the co-

rime pair property. And the worst-case discovery delay is bounded

y the product of the two smallest co-prime numbers, one from each

et, i.e.:

min

cd (n a
i
,n b

j
)=1 , 1 ≤i ≤N a , 1 ≤ j≤N b

{ n

a
i · n

b
j } .

Suppose the clock of node a is d time slots ahead of that of

ode b , i.e., node b ’s t th time slot is the (t + d) th time slot of node

 , where d is the clock drift, the following congruence system w.r.t.

 applies:

t ≡ 0 (mod n

a
i
) for some i = 1 , 2 , 3 . . . , N a

t + d ≡ 0 (mod n

b
j
) for some j = 1 , 2 , 3 , . . . , N b

(1)

f t is a solution to Eq. (1) , then node a will discover node b in node

 ’s t -th time slot (i.e., node b ’s (t + d) -th time slot). By CRT, if n a
i

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 57

a

t

p

T

o

g

t

b

c

t

a

o

e

f

d

g

A

b

b

q

c

c

t

o

f

4

e

a

a

4

s

s

δ

H

s

w

a

c

t

t

t

g

d

s

t

W

d

c

Fig. 2. Two example Hedis schedules.

s

e

d

o

c

4

p

L

t

x

a

x

i

a

I

a

x

T

t

g

d

P

r

u

t

c{

w

t

(

s

t

(

e

p

a

n

s

e

nd n b
j

are co-prime, there exists a solution t ≡ t 0 (mod n a
i
n b

j
) ; i.e.,

he worst-case discovery delay is bounded by n a
i
n b

j
. The co-prime

air property guarantees the existence of such co-prime n a
i

and n b
j
.

hus the worst-case discovery delay is bounded by the minimum

f the product of co-prime n a
i

and n b
j
, i.e.,

min

cd (n a
i
,n b

j
)=1 , 1 ≤i ≤N a , 1 ≤ j≤N b

{ n

a
i · n

b
j } .

Example protocols : Disco [6] , as such a co-primality based pro-

ocol, ensures co-primality by only using prime numbers as possi-

le parameters. In Disco, each node chooses two distinct primes to

reate its wake-up schedule. For example, node a chooses two dis-

inct primes p 1 and p 2 and node b chooses p 3 and p 4 . Node a is

ctive (wakes up) in the t -th time slot iff t is divisible by either p 1
r p 2 while node b is active in the t -th time slot iff t is divisible by

ither p 3 or p 4 . Therefore, Disco can guarantee neighbor discovery

or any two nodes for any amount of clock drift with a bounded

iscovery delay of

min

cd (p i ,p j)=1 ,i =1 , 2 , j=3 , 4

{ p i · p j } .

gain, this delay is the product of the two smallest co-prime num-

ers following from the CRT.

U-Connect [7] is a combination of Disco and the basic quorum-

ased protocol in that it restricts the dimensions of the square

uorum matrix to be a prime number. In this way, if the duty cy-

les of the nodes happen to be the same, neighbors would dis-

over one another via the quorum method. On the other hand, if

hey are different, the numbers chosen would be co-prime to each

ther and thus enabling neighbor discovery by Theorem 1 .

More comprehensive surveys on neighbor discovery can be

ound in [28] and [29] .

. Hedis: optimizing quorum-based protocols

Hedis is an asynchronous periodic slot-based neighbor discov-

ry protocol where each node picks its anchor and probing slots

ccording to the elements of a quorum that is carefully selected in

n (n − 1) by n matrix.

.1. Design of the hedis schedule

For a node a that has a desired duty cycle δ, the period of its

chedule under Hedis, s a = { s t a } 0 ≤t<n (n −1) , consists of n (n − 1) time

lots, where the integer n is chosen such that 2
n comes as close to

as possible (and we call n the parameter of this node). Under

edis, its schedule is

t
a =

{
1 t = ni, (n + 1) i + 1(i = 0 , 1 , 2 , . . . , n − 2)
0 otherwise

,

here ni (i = 0 , 1 , 2 , . . . , n − 2) denotes the index of an anchor slot

nd (n + 1) i + 1 denotes the index of a probing slot. We use the

olor grid and white grid to represent s t a = 1 and s t a = 0 respec-

ively in the rest of our paper.

Fig. 2 shows two example Hedis schedules when n = 4 , 6 , and

he two schedules consist of n (n − 1) = 12 , 30 time slots, respec-

ively. Each grid in the figure represents a time slot, and the inte-

er inside a grid denotes its slot index, e.g., the grid with 0 inside

enotes the 0th time slot in the schedule (note that a schedule

tarts from the 0th time slot). The red and blue slots represent

he anchor and probing slots, during which the node wakes up.

hen n = 4 , the duty cycle is 2 / 4 = 50% . The full schedules are

epicted in Fig. 3 , where the two nodes with different duty cy-

les can achieve successful neighbor discovery (overlap of colored
lots between schedules of nodes a and b) for many times in ev-

ry period. Next, we will show that Hedis can guarantee neighbor

iscovery for any two nodes of same-parity parameters (both odd

r both even) with heterogeneous duty cycles for any amount of

lock drift.

.2. Bounded discovery delay under hedis

We need a lemma first, as presented below. This lemma is re-

roduced from Theorem 2.9 on page 61 in [15] .

emma 2. Let m and n be positive integers. For any integers a and b,

here exists an integer x such that

 ≡ a (mod m) (2)

nd

 ≡ b (mod n) (3)

f and only if

 ≡ b (mod gcd (m, n)) .

f x is a solution of congruences (2) and (3) , then the integer y is also

 solution if and only if

 ≡ y (mod lcm (m, n)) .

By Lemma 2 , we further establish the following theorem.

heorem 3. Hedis guarantees neighbor discovery within bounded la-

ency for any two nodes with the same-parity parameters n and m,

iven any amount of clock drift between their schedules. The average

iscovery latency is O (nm) .

roof. Nodes a and b are two arbitrarily given nodes, whose pa-

ameters are n and m , respectively. The periods of the Hedis sched-

les of nodes a and b are T a = n (n − 1) and T b = m (m − 1) , respec-

ively. We use d to denote the clock drift.

Without loss of generality, we study the following system of

ongruences with respect to t :

t ≡ ni + d, (n + 1) i + 1 + d (mod n (n − 1))
t ≡ m j, (m + 1) j + 1 (mod m (m − 1)) ,

(4)

here i ∈ [0 , n − 2] , j ∈ [0 , m − 2] .

 ≡ ni + d, (n + 1) i + 1 + d (mod n (n − 1))

 i ∈ [0 , n − 2]) is true iff ∃ i ∈ [0 , n − 2] such that it is true, and the

ame meaning for

 ≡ m j, (m + 1) j + 1 (mod m (m − 1))

 j ∈ [0 , m − 2]).

There are a number of nm pairs of simultaneous congru-

nces, which we divide into 4 groups: anchor-anchor, anchor-

robing, probing-anchor and probing-probing groups. E.g., the

nchor-probing group denotes the case where an anchor slot of

ode a overlaps a probing slot of node b . Note that if we find a

olution that meets the requirements of any one of these congru-

nces, we obtain a solution to Eq. (4) .

58 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

Fig. 3. Node a ’s schedule is 3-slot ahead of node b ’s schedule. The overlapped colored slots between their schedules represent the successful neighbor discovery.

m

T

e

l

l

T

n

(

h

a

l

1

a

(

w

E

S

d

F

t

t

a

a

5

c

i

u

p

b

e

c

n

c

g

o

t

p

W

c

c

a

p

o

5

r
Group 1: anchor-anchor : Consider the following system of con-

gruences {
t ≡ ni + d (mod n (n − 1)) i ∈ [0 , n − 2]
t ≡ m j (mod m (m − 1)) j ∈ [0 , m − 2]

,

which is equivalent to {
t ≡ d (mod n)
t ≡ 0 (mod m)

(5)

By Lemma 2 , Eq. (5) has a solution if and only if

gcd (n, m) | d.

Group 2: anchor-probing : Consider the following system of

congruences {
t ≡ ni + d (mod n (n − 1)) i ∈ [0 , n − 2]
t ≡ (m + 1) j + 1 (mod m (m − 1)) j ∈ [0 , m − 2]

, (6)

which is equivalent to {
t ≡ d (mod n)
t ≡ (m + 1) j + 1 (mod m (m − 1)) j ∈ [0 , m − 2]

(7)

By Lemma 2 , Eq. (7) has a solution if and only if gcd (n, m (m − 1)) |
(m + 1) j + 1 − d for some integer j ∈ [0 , m − 2] , i.e., the congru-

ence with respect to j

(m + 1) j ≡ d − 1 (mod gcd (n, m (m − 1))) (8)

has a solution.

Group 3: probing-anchor : Consider the following system of

congruences {
t ≡ (n + 1) i + 1 + d (mod n (n − 1)) i ∈ [0 , n − 2]
t ≡ m j (mod m (m − 1)) j ∈ [0 , m − 2]

, (9)

which is equivalent to {
t ≡ (n + 1) i + 1 + d (mod n (n − 1)) i ∈ [0 , n − 2]
t ≡ 0 (mod m)

(10)

By Lemma 2, Eq. 10 has a solution if and only if

gcd (m, n (n − 1)) | (n + 1) i + 1 + d

for some integer i ∈ [0 , n − 2] , i.e., the congruence with respect to

i

(n + 1) i ≡ −d − 1 (mod gcd (m, n (n − 1))

has a solution.

Group 4: probing-probing : Consider the following system of

congruences {
t ≡ (n + 1) i + 1 + d (mod n (n − 1)) i ∈ [0 , n − 2]
t ≡ (m + 1) j + 1 (mod m (m − 1)) j ∈ [0 , m − 2]

(11)

By Lemma 2, Eq. 11 has a solution if and only if

gcd (n (n − 1) , m (m − 1)) | (n + 1) i − (m + 1) j + d

for some integer i ∈ [0 , n − 2] and j ∈ [0 , m − 2] .

Now we begin to prove this theorem by cases.

Case 1: If m > n , the congruence system of anchor-probing

(Group 2) is true. Proof: If m > n , we have m − 1 ≥ n ≥
gcd (n, m (m − 1)) . And note that gcd (m + 1 , gcd (n, m (m − 1))) =
gcd (m + 1 , n, m (m − 1)) = gcd (m + 1 , 2 , n) = 1 . This is be-

cause m and n are both odd or are both even. So one of
 + 1 and n are odd, and we have gcd (m + 1 , 2 , n) = 1 .

herefore (m + 1) j (j ∈ [0 , m − 2]) runs over all congru-

nce classes modulo gcd (n, m (m − 1)) . Then Eq. (8) has at

east 	 (m − 1) / gcd (n, m (m − 1))
 solutions and on average

(m − 1) / gcd (n, m (m − 1)) solutions. Hence Eq. (7) has at

east 	 (m − 1) / gcd (n, m (m − 1))
 solutions and on average

(m − 1) / gcd (n, m (m − 1)) solutions modulo lcm (n, m (m − 1)) .

herefore, the average discovery latency is lcm (n,m (m −1))

(m −1) / gcd (n,m (m −1))
=

m .

Case 2: If n > m , the congruence system of probing-anchor

Group 3) is true. Proof: If n > m , similarly to case 1, we

ave Eq. (10) has at least 	 (n − 1) / gcd (m, n (n − 1))
 solutions

nd on average (n − 1) / gcd (m, n (n − 1)) . Hence Eq. (9) has at

east 	 (n − 1) / gcd (m, n (n − 1))
 solutions and on average (n −
) / gcd (m, n (n − 1)) modulo lcm (m, n (n − 1)) . Therefore, the aver-

ge discovery latency is nm .

Case 3 : If n = m, we consider the result of d mod n . If d ≡ 0

(mod n) , then gcd (n, m) = n | d, and thus the anchor-anchor case

Group 1) is true and the average discovery latency is O (nm). Now

e concentrate on the case where d �≡ 0 (mod n) . Since n = m,

q. (8) becomes

(n + 1) j ≡ d − 1 (mod n) .

ince (n + 1) j = n j + j ≡ j (mod n) , this is equivalent to

 ≡ j + 1 (mod n) .

or j ∈ [0 , n − 2] , j + 1 runs over [1 , n − 1] . Because d �≡ 0 (mod n) ,

here exists a j ∈ [0 , n − 2] that satisfies Eq. (8) , and therefore

he anchor-probing case (Group 2) is true. Similarly, the probing-

nchor case (Group 3) is also true. And it is easy to check that the

verage discovery latency is O (n 2), i.e., O (nm). �

. Todis: optimizing co-primality based protocols

Now we optimize the asynchronous co-primality based proto-

ols, and propose Todis that exploits properties of consecutive odd

ntegers for achieving co-primality.

As a co-primality based protocol, Todis creates wake-up sched-

les for the nodes based on multiples of numbers that are co-

rime to each other. This ensures that any two given nodes would

e able to wake up at the same time by the co-prime pair prop-

rty as illustrated in Section 3 , thus succeeding in neighbor dis-

overy. Recall that Disco [6] guarantees this by simply using prime

umbers as parameters, which limits the variety of parameters to

hoose from.

For two nodes a and b , we need to construct two sets of inte-

ers, N a and N b , that must satisfy the co-prime pair property. In

ur quest to find co-prime pairs, we observe that for two numbers

o be co-prime, at least one of them must be odd. Thus, we ex-

lore the possibility of achieving co-primality using odd integers.

e observe that given two odd integers a and b , if they are not

o-prime, often times either “a + 2 and b ”, or “a and b + 2 ” is a

o-prime pair. For example, if 15 and 21 are not co-prime, we are

ble to find that either “17 and 21”, or “15 and 23” is a co-prime

air. Following this logic, we design our Todis protocol using sets

f consecutive odd integers.

.1. Design of the Todis schedule

Ideally, we want to construct a co-primality based protocol that

equires the co-prime pair property (Definition 3) for the set of in-

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 59

Fig. 4. The number of counterexamples less than n for the single-odd and double-

odd scenarios. A single-odd instance is said to be less than n if the single odd num-

ber per se is less than n . A double-odd instance is said to be less than n if the two

consecutive odd numbers are both less than n . An instance is called a counterex-

ample if it does not satisfy the co-prime pair property (Definition 3). Note that the

single-odd case results in a large number of counterexamples while the double-odd

case leads to 30 counterexamples less than n = 10 0 0 . It is noteworthy that there is

no counterexample for the triple- and quadruple-odd cases.

t

a

p

c

n

{

c

1

i

i

5

c

p

e

c

c

i

t

a

n

p

i

p

t

a

1

p

w

s

w

b

s

l

∀

o

Fig. 5. The discovery delay (in time slots) for different duty cycles, under single-,

double-, triple-odd and quadruple-odd scenarios. We observe that using more odd

numbers in a set results in a larger discovery latency.

p

i

t

c

f

a

u

w

c

t

w

5

p

(

t

m

t

e

s

5

a

s

o

e

d

c

b

c

egers associated with each node. In this subsection, we consider

 family of candidate protocols termed the family of “n -tuple-odd

rotocols”, including single-, double-, triple, quadruple-odd proto-

ols, etc.

Recall that a co-primality based protocol associates each

ode, say, node a , with a set of integers, denoted by N a =
 n a

1
, n a

2
, n a

3
, . . . , n a | N a | } (Section 3.2.2). An n -tuple-odd protocol asso-

iates each node with a set of n consecutive odd integers, e.g., {13,

5} is an instance under the double-odd protocol, {3, 5, 6} is an

nstance under the triple-odd protocol, and {11, 13, 15, 17} is an

nstance for the quadruple-odd protocol.

.1.1. Co-prime pair property

We need to check whether an n -tuple-odd protocol satisfies the

o-prime pair property.

Trying the single-odd protocol : First, we tried the single-odd

rotocol in which each node is assigned a single odd integer. How-

ver, there are a large number of odd integer pairs that are not

o-prime: e.g., 3 and 9 are not co-prime, neither are 5 and 15. We

all two odd integers a counterexample of the single-odd protocol

f the two odd integers are not co-prime.

A counterexample of the single-odd protocol is said to be less

han n if both odd numbers are less than n . Generally, a counterex-

mple of the n -tuple-odd protocol is two sets of n consecutive odd

umbers that violate the co-prime pair property. A counterexam-

le of the n -tuple-odd protocol is said to be less than n if all odd

ntegers in this counterexample is less than n .

Fig. 4 shows the number of counterexamples of the single-odd

rotocol under n when n varies from 0 to 10 0 0. We can observe

hat the single-odd protocol results in a huge amount of counterex-

mples. There are approximately 4 × 10 4 counterexamples under

0 0 0. Clearly, the single-odd protocol violates the co-prime pair

roperty, and it cannot be used for creating the neighbor discovery

ake-up schedules.

Trying the double-odd protocol : Then, we tried using two con-

ecutive odd integers in N a for each node a , i.e., N a = { n, n + 2 }
here n ≥ 1 and n is odd. Unfortunately, for given nodes a and

 , there are many instances where the sets N a and N b do not

atisfy the co-prime pair property for very small numbers (i.e.,

ess than 100). For example, when N a = { 33 , 35 } and N b = { 75 , 77 } ,
 n a

i
∈ N a , n

b
j
∈ N b , we have gcd (n a

i
, n b

j
) > 1 .

Fig. 4 shows the number of counterexamples for the double-

dd protocol under n . There are approximately 30 counterexam-
les under 10 0 0. As aforementioned, the smallest counterexample

s N a = { 33 , 35 } and N b = { 75 , 77 } . The double-odd protocol fails

o satisfy the co-prime pair property, which is also impractical for

reating the neighbor discovery wake-up schedules.

Trying the triple- and quadruple-odd protocols : Different

rom the single- and double-odd protocols, triple- and quadruple-,

s well as n -tuple-odd protocols for n ≥ 3, have no counterexample

nder 10 0 0. In other words, there is no counterexample for n ≥ 3

ithin the scope of practical duty cycles—more precisely, the duty

ycles that are greater than 0.0 0 0 0 0187496. In practical networks,

he duty cycle is usually much greater than 0.0 0 0 0 0187496. We

ill elaborate on this issue in the sequel (Section 5.1.4).

.1.2. Discovery delay

In this part, we examine the discovery delays for n -tuple-odd

rotocols.

Given an arbitrary duty cycle, we measure the discovery latency

in time slots) for single-, double-, triple-, and quadruple-odd pro-

ocols. The results are illustrated in Fig. 5 . We observe that using

ore odd numbers in a set incurs a higher discovery latency for

he n -tuple-odd neighbor discovery protocol. In fact, the discov-

ry delay for the n -tuple-odd protocol is approximately (n / δ) 2 time

lots, where δ is the duty cycle.

.1.3. Tradeoff between co-prime pair property and discovery delay

Based on the previous analysis on the co-prime pair property

nd the discovery delay, we can arrive at the following conclu-

ions:

• The single- and double-odd protocols have a number of coun-

terexamples within the scope of practical duty cycles. The

n -tuple-odd protocols for n ≥ 3 have no counterexample in

practical networks (where the duty cycle is greater than

0.0 0 0 0 0187496).

• The n -tuple-odd protocol for larger n incurs a larger discovery

delay. To be precise, the discovery delay for the n -tuple-odd

protocol is approximately (n / δ) 2 time slots, where δ is the duty

cycle.

Therefore, the triple-odd protocol, among the family of n -tuple-

dd protocols, is the only one that satisfies the co-prime pair prop-

rty for practical duty cycles and meanwhile achieves the lowest

iscovery delay. We present and analyze the triple-odd protocol,

alled Todis (triple-odd based discovery) hereinafter, which strikes a

alanced tradeoff between the co-prime pair property and the dis-

overy latency.

60 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

Fig. 6. The first 71 time slots under Todis when n = 15 (i.e., the node chooses 13,

15 and 17). The node wakes up in slots 0, 13, 15, 17, 26, 30, 34, 39, 45, 51, 52, 60,

68,

Fig. 7. Relative error vs. small duty cycle δ. The “Estimation” line is the theoretical

upper bound estimation of relative error induced by Todis (see Section 5).

d

i

ε

W

δ

n

T

δ

c

m

t

1

B

(

ε

w

t

g

l

f

1

i

M

ε

l

t

6

d
5.1.4. Using sets of three consecutive integers in Todis

In Todis, we use three consecutive odd integers n − 2 , n and

n + 2 (n ≥ 3) for constructing a wake-up schedule.

The co-prime pair property requires that at least one of the

three consecutive odd integers that node a chooses (i.e., n − 2 , n

and n + 2) is co-prime w.r.t. one of the three integers that node b

chooses (i.e., m − 2 , m and m + 2).

Bounded discovery delay in practical networks : Gener-

ally, the triples consisting of three consecutive odd integers

can also fail to satisfy the required co-prime pair prop-

erty, as seen in counterexamples shown by the CRT. How-

ever, the two smallest sequences of odd integers in these

counterexamples are N a = { 160 0 023 , 160 0 025 , 160 0 027 } and N b =
{ 2046915 , 2046917 , 2046919 } . Such integers are too large to be

chosen for creating a “practical” duty cycle anyway. For exam-

ple, an n value larger than 160 0 023 would imply a duty cycle

δa smaller than 0.0 0 0 0 0187496. In practical applications, however,

duty cycles are much greater than 0.0 0 0 0 0187496. Therefore, any

chosen sets N a and N b based on duty cycles would satisfy the co-

prime pair property. By Theorem 1 , Todis guarantees neighbor dis-

covery with a delay bounded by

min

gcd (n + i,m + j)=1 ,i, j = −2 , 0 , 2
{ (n + i) · (m + j) } .

A node a that has a desired duty cycle of δ may therefore

choose an odd integer n such that

3(n

2 − n − 1)

n (n

2 − 4)
≈ 3

n

=

ˆ δ

is as close to δ as possible. We call n the parameter of node a .

Under Todis, its wake-up schedule is

s t a =

{
1 t is divisible by either n − 2 , n, or n + 2

0 otherwise
,

with a period length of (n − 2) n (n + 2) and a duty cycle of

1

n − 2

+

1

n

+

1

n + 2

− 1

(n − 2) n

− 1

n (n + 2)
− 1

(n − 2)(n + 2)

+

1

(n − 2) n (n + 2)
=

3(n

2 − n − 1)

n (n

2 − 4)
.

Fig. 6 shows the first 71 time slots under the Todis schedule

when n = 15 (i.e., the node chooses 13, 15 and 17). Each grid in the

figure represents a time slot, and the integer inside a grid denotes

its slot index, e.g., the grid with 0 inside denotes the 0th time slot

in the schedule (note that a schedule starts from the 0th time slot).

The gray slots represent the active slots where the node wakes up.

In this example, the duty cycle is 3 ·(5 2 −5 −1)

5 ·(5 2 −4)
≈ 18 . 9% .

5.2. Analysis of duty cycle granularity

Now we discuss the granularity of Todis in matching any de-

sired duty cycle in practical applications. Suppose node a ’s desired
uty cycle is δa , the relative error ε(δa) between δa and its approx-

mation

ˆ δa is defined by

(δa) =

∣∣∣ ˆ δa − δa

∣∣∣
δa

. (12)

e want to mathematically estimate the upper bound of ε given

a , which we denote as ˆ ε(δa) .

In Todis, node a needs to choose an odd integer n a such that
3(n 2 a −n a −1)

n a (n 2 a −4)
lies closest to δa , i.e.,

 a = arg min

n odd
| 3(n

2 − n − 1)

n (n

2 − 4)
− δa | .

hus, the best approximation of the desired duty cycle δa is

ˆ
a =

3(n

2
a − n a − 1)

n a (n

2
a − 4)

≡ min

n odd
| 3(n

2 − n − 1)

n (n

2 − 4)
− δa | .

Let f (2 k − 1) and f (2 k + 1) be two consecutive supported duty

ycles, where f (n) =

3(n 2 −n −1)

n (n 2 −4)
. Relative error ε reaches a local

aximum at δa =

f (2 k −1)+ f (2 k +1)
2 . Thus we obtain a quartic equa-

ion with respect to k

6 δa k
4 − 24 k 3 + (12 − 40 δa) k

2 + 36 k + 9 δa − 9 = 0 . (13)

y Eq. (13) , we can obtain a solution k = k (δa) in complex radicals

the other three solutions are discarded). Then we have

(δa) ≤ ˆ ε(δa) �

f (2 k (δa) − 1) − δa

δa
,

here ˆ ε(δa) is also a complex expression in radicals with respect

o δa .

Note that ε(δa) = ˆ ε(δa) iff δa =

3(n 2 −n −1)

n (n 2 −4)
for some odd inte-

er n . We illustrate ˆ ε(δa) in Figs. 7 and 8 (see the “Estimation”

ines), and we can observe that ˆ ε(δa) is a very tight upper bound

or ε(δa).

The upper bound function ˆ ε(δa) is an increasing function in [0,

). In practical applications, δa is smaller than 20%, and thus ε
s upper bounded by 6.71%, which is a very small relative error.

oreover, ε drops below 3.34% when δa ≤ 10%. Asymptotically,

ˆ (δa)

2 δa √

9 + 4 δ2
a + 3

1

3

δa

inearly approaches 0 as δa goes to 0. This property implies that

he error decreases with the decline of the desired duty cycle.

. Performance evaluation

We compare Hedis and Todis against state-of-the-art neighbor

iscovery protocols of both the quorum-based and the co-primality

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 61

Fig. 8. Relative error vs. large duty cycle δ. The “Estimation” line is the theoretical

upper bound estimation of relative error induced by Todis (see Section 5).

Table 1

Comparison of Hedis and Todis with existing neighbor discovery pro-

tocols.

Protocol Parameter Average Supported

name restriction dis. delay duty cycles

Disco prime p 1 , p 2 O (min { p 1 p 3 ,
1
p 1

+

1
p 2

p 3 , p 4 p 1 p 4 , p 2 p 3 , p 2 p 4 })

U-Connect prime O (p 1 p 2)
3 p 1 +1

2 p 2
1

p 1 , p 2
Searchlight power-multiple O (t 1 t 2)

2
t i

1

of t 1 , t 2
Hedis same parity O (nm) 2

n

n, m

Todis odd n, m O (nm) 3(n 2 −n −1)
n (n 2 −4)

≈ 3
n

b

b

b

u

g

p

l

o

t

m

y

i

6

d

t

w

ε

w

l

t

g

e

F

t

6

c

ased varieties. These protocols include Disco [6] (co-primality

ased), Searchlight [4] (quorum-based), and U-Connect [7] (a com-

ination of both). We evaluate the performances of these protocols

sing two metrics, namely the discovery latency and the duty cycle

ranularity.

• In Disco, each node chooses a pair of primes p 1 and p 2 to sup-

port duty cycles of the form

1
p 1

+

1
p 2

, and the worst-case dis-

covery latency is min { p 1 p 3 , p 1 p 4 , p 2 p 3 , p 2 p 4 }.

• In U-Connect, each node wakes up 1 time slot every p time

slots and wakes up

p+1
2 time slots every p 2 time slots. Therefore

U-Connect supports duty cycles of the form

3 p+1

2 p 2
, and has the

worst-case discovery latency of p 1 p 2 if one node uses prime p 1
while another uses p 2 . The dependence of Disco and U-Connect

upon prime numbers greatly restricts their support of choices

of duty cycle varieties.

• Searchlight requires that a node’s parameter n 1 be a multiple

or factor of its neighboring node’s parameter n 2 to guarantee

neighbor discovery. Therefore, in a network that implements

Searchlight, the number that each node chooses must be a

power-multiple of the smallest chosen number (i.e., 2, 4, 8, 16,

or 3, 9, 27, 81, etc.), guaranteeing that any two nodes’ numbers

are multiples of each other. As a result, Searchlight only sup-

ports duty cycles of the form

2
t i

, where t is an integer (i.e., the

aforementioned smallest chosen number) and i = 0 , 1 , 2 , 3 , . . .

Table 1 gives an overall theoretical comparison among these

rotocols. As the table shows, while the difference in discovery

atency exists among these protocols, all of them perform on the

rder of the multiple of the principle parameters in the two par-

icipating nodes.
• Discovery latencies may be similar among the different proto-

cols, because two nodes may choose similar parameters so as

to match the desired duty cycle.

• In contrast, the metric of duty cycle granularity presents a dif-

ferent story. While all the parameters used in the protocols all

have special restrictions due to protocol design, it is obvious

that those for Hedis and Todis are the least stringent. For ex-

ample, fewer than 2% of integers under 10 0 0 are prime, while

half of them are odd, giving Todis a much larger pool of num-

bers to choose from for its parameters as compared to Disco

and U-Connect.

We confirm these theoretical results using simulations. We

easure the relative errors each of the aforementioned protocols

ields at differing duty cycles, as well as their discovery latencies

n node pairs operating at various duty cycles.

.1. Duty cycle granularity

The first set of simulations comparatively studies the supported

uty cycles. We study two groups of duty cycles:

1. Small duty cycles 1 ≤ 1/ δ ≤ 100, i.e., δ = 1 , 1 2 ,
1
3 ,

1
4 , . . . ,

1
100 ;

2. Equispaced large duty cycles 0 ≤ δ ≤ 1, i.e., δ =
0% , 1% , 2% , 3% , 4% , . . . , 100% .

We use the metric called the relative error (defined in Eq. 12)

o quantify the capability of supporting each studied duty cycle,

hich is denoted as

� | δ′ − δ| /δ,
here δ′ is the closest duty cycle that is supported by each simu-

ated protocol, w.r.t. δ. Note that a smaller ε implies that the pro-

ocol provides more choices for energy conservation with a finer

ranularity of duty cycle control. For Searchlight, we let the small-

st duty cycle unit be 1/2 to allow the finest duty cycle granularity.

Fig. 7 illustrates the results for small duty cycles, while

ig. 8 shows those of large duty cycles. These results provide us

he following insights:

• Searchlight is inferior to the other protocols in supporting var-

ious duty cycles because it requires the duty cycle to be 2
t i

,

where t is a fixed integer and i = 1 , 2 , 3 , In this simulation,

we use t = 2 to give Searchlight support for the duty cycles

1 , 1 2 ,
1
4 ,

1
8 , The relative error increases significantly as the

desired duty cycle deviates away from the supported duty cy-

cles (e.g., in Fig. 8 , it has a peak at 37 . 5% =

1 / 2+1 / 4
2 , and 1/2 and

1/4 are supported duty cycles).

• The schedules in Disco and U-Connect are generated using

prime numbers, which have a denser distribution than power-

multiples. Thus, Disco and U-Connect perform better than

Searchlight.

• Both Hedis and Todis greatly outperform all the other proto-

cols, having very small relative errors. In fact, for small duty

cycles, the relative errors from Hedis is nearly constantly zero

(see Fig. 7). On the other hand, although Todis also performs

well, its error rate obviously increases much faster than Hedis

as the duty cycle δ increases.

• The theoretical “Estimation” lines for Todis (see Figs. 7 and 8)

holds up well in that it follows the same pattern as Todis’ ac-

tual error rates. This confirms our prior analysis in Section 5 of

Todis’ duty cycle granularity, where we estimated the upper

bound of relative error for Todis.

.2. Discovery latency in pairs

In this section, we study the discovery latencies of these proto-

ols by simulations.

62 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

Fig. 9. CDF of discovery latency when each pair of nodes operate at duty cycles 1%

and 5%, respectively. Numbers in the parentheses indicate the parameters of each

corresponding protocol.

Fig. 10. CDF of discovery latency when each pair of nodes operate at duty cycles

1% and 10%, respectively. Numbers in the parentheses indicate the parameters of

each corresponding protocol.

Fig. 11. CDF of discovery latency when each pair of nodes operate at the same

duty cycle of 5%. Numbers in the parentheses indicate the parameters of each cor-

responding protocol.

Fig. 12. CDF of discovery latency when each pair of nodes operate at the same

duty cycle of 1%. Numbers in the parentheses indicate the parameters of each cor-

responding protocol.

u

b

s

a

q

w

T

b

w

p

t

p

6

g

w

b

o

t

d

e

b

p

δ
6.2.1. Distribution of discovery latency

In this set of simulations, we take 10 0 0 independent pairs of

nodes and assign various duty cycles. In two instances, we com-

pare the protocols’ performance in heterogeneous discovery sce-

narios. We assign duty cycles of 1% and 5% to each respective node

in the node pair in the first instance (see Fig. 9), and 1% and 10%

in the second instance (see Fig. 10). We also compare the perfor-

mance of the protocols in two homogeneous discovery scenarios,

with each node in the node pair operating at the same duty cycles

of 5% in the first scenario (see Fig. 11) and 1% in the second one

(see Fig. 12).

Heterogeneous vs. homogeneous duty cycles : From these four

cumulative distribution function graphs (CDFs), we see that over-

all, all of the protocols have comparative discovery latencies, with

the odd exception of Searchlight in Fig. 9 . Nonetheless, it must be

noted that all 5 protocols presented were eventually successful in

neighbor discovery for 100% of the pairs tested. These CDFs also

show that Hedis is one of the few protocols that consistently per-

form above average in both the heterogenous and homogeneous

neighbor discovery cases. For example, Figs. 11 and 12 indicate that

Searchlight is the clear winner for discovery latency in the homo-

geneous case, but it does poorly in the heterogeneous cases, as

seen in Figs. 9 and 10 .

In addition, we see that for up to 90% of the CDF, Hedis and

Todis are both near top performers, but the protocol with one

of the smallest latencies in reaching 100% of the CDF in every

case is U-Connect. We attribute this to the fact that U-Connect
ses smaller values as its parameters, thus having a smaller upper

ound in the worst case.

Similarly, we attribute Todis’ consistent long tail in each CDF

cenario to its larger parameters. Therefore, although it can quickly

llow nodes to discover each other in most cases, seen in its

uickly reaching 90% in the CDFs, it has the longest latency in the

orst-case scenarios.

Hedis vs. Todis : These various simulations show that Hedis and

odis optimize the duty cycle granularity in both the quorum-

ased and the co-primality based neighbor discovery approaches,

ith Hedis having a finer granularity than Todis. Additionally, both

rotocols perform reasonably well in terms of discovery latency, wi

h Todis having a larger worst case latency bound due to its larger

arameters.

.2.2. Impact of duty cycles in heterogeneous case

In this set of simulations, we investigate the impact of hetero-

eneous duty cycles. We take 10 0 0 independent pairs of nodes

here the ratio of the duty cycles of two nodes in a pair (denoted

y γ) is fixed for each simulation; i.e., in each pair, the duty cycle

f one node is δ and that of the other is γ δ. In Figs. 13 , 14 and 15 ,

he ratio is set to be 1/2, 1/3 and 1/4, respectively.

We study the impact of δ (varying from 1% to 25%) upon the

iscovery latency under different neighbor discovery protocols. For

xample, in Fig. 13 , we set the duty cycles of two nodes in a pair to

e δ and δ/2, and we can observe that Hedis and Todis have similar

erformance. Moreover, we can also see that with the duty cycle

fixed, a smaller ratio γ (i.e., a smaller duty cycle for the other

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 63

Fig. 13. Heterogeneous case: discovery delay vs. duty cycle δ, where δ and δ/2 rep-

resent the duty cycles of two nodes in a pair.

Fig. 14. Heterogeneous case: discovery delay vs. duty cycle δ, where δ and δ/3 rep-

resent the duty cycles of two nodes in a pair.

Fig. 15. Heterogeneous case: discovery delay vs. duty cycle δ, where δ and δ/4 rep-

resent the duty cycles of two nodes in a pair.

n

m

6

c

b

5

a

t

Fig. 16. Discovery latency when a new node joins the cluster and discovers its 1st,

2nd, 3rd, 4th, and 5th neighbors (regardless of their actual IDs), where the new

node operates at a duty cycle of δnew = 1% while the rest of the cluster nodes oper-

ate at a duty cycle of δclu = 3% .

Fig. 17. Discovery latency when a new node joins the cluster and discovers its 1st,

2nd, 3rd, 4th, and 5th neighbors (regardless of their actual IDs), where the new

node operates at a duty cycle of δnew = 5% while the rest of the cluster nodes oper-

ate at a duty cycle of δclu = 3% .

Fig. 18. Discovery latency when a new node joins the cluster and discovers its 1st,

2nd, 3rd, 4th, and 5th neighbors (regardless of their actual IDs), where the new

node operates at a duty cycle of δnew = 5% while the rest of the cluster nodes oper-

ate at a duty cycle of δclu = 9% .

1

5

5

1

c

F

i

ode in a pair) results in a slight increase in discovery delay for

ost protocols except Searchlight (comparing Fig. 15 with Fig. 13).

.3. Discovery latency in clusters

In this set of simulations, we study the discovery latency in

lusters: when a new node joins a cluster, we measure the neigh-

or discovery latency when it discovers its 1st, 2nd, 3rd, 4th, and

th neighbors, provided that different neighbor discovery protocols

re employed.

Suppose that the duty cycle of the new node is δnew

and that

he rest of the cluster nodes have a duty cycle of δ . Figs. 16 ,
clu
7 , and 18 show the latency of finding the 1st, 2nd, 3rd, 4th, and

th neighbors in box plots when δnew

= 1% and δclu = 3% , δnew

=
% and δclu = 3% , and δnew

= 5% and δclu = 9% , respectively.

Impact of duty cycles on discovery latency : Figs. 16 and

7 both fix δclu = 3% and have different values for δnew

. The duty

ycle of the new node is δnew

= 1% in Fig. 16 and it is δnew

= 5% in

ig. 17 . We observe that a larger duty cycle of the new node results

n a smaller discovery latency of finding the neighbors.

64 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

Fig. 19. Implementation in heterogeneous case: CDF of discovery latency at duty

cycles 5% and 20%, respectively. Numbers in the parentheses indicate the parame-

ters of each corresponding protocol.

Fig. 20. Implementation in homogeneous case: CDF of discovery latency at the

same duty cycle of 10%. Numbers in the parentheses indicate the parameters of

each corresponding protocol.

a

t

l

m

t

7

a

c

s

i

t

s

t

o

F

s

a

(

f

m
Figs. 17 and 18 both fix δnew

= 9% and have different values

for δclu . The duty cycle of the rest of the cluster is δclu = 3% in

Fig. 17 and it is δclu = 9% in Fig. 18 . We observe that a larger duty

cycle of the rest of the cluster reduces the discovery latency of

finding the neighbors.

Figs. 16, 17 , and 18 show that Hedis and Todis outperform all

other protocols in finding the neighbors when a new node joins a

cluster. We can also observe that: (1) Searchlight incurs the great-

est discovery latency; (2) it depends on the values of the duty cy-

cles whether Disco or U-Connect can achieve a better performance.

7. Testbed implementation

In this section, we evaluate the performance of Hedis and Toids

by experiments over a real-world testbed. One of the major ap-

plications of neighbor discovery is to facilitate proximity-based

communication between handheld devices like smartphones. We

implemented Hedis, Todis and other protocols (U-connect, Disco,

Searchligh) in a single Android app over smartphone devices (Xi-

aomi Mi-Note). The Mi-Note phone, a Android 6.0.1 smartphone

manufactured by Xiaomi, which supports bluetooth low energy

(BLE).

7.1. Implementation setup

Slot Duration : Earlier protocols for asynchronously discovering

neighbors were all implemented on sensor nodes, allowing them

to use small slots on the order of milliseconds [6] or even mi-

croseconds [7] . Later protocols were implemented over bluetooth

of smartphones, which have a much larger slot duration due to the

standard specification of bluetooth [4] .

In our study, we implemented all protocols to use the BLE of

Mi Note phones for neighbor discovery, since BLE is the off-the-

shelf technology which has widely been equipped in many de-

vices. Unlike the implemention over sensor radios, BLE have a non-

negligible transition latency from the mode of sleep to that of

transmit/receive. On the Mi Note, the time for BLE to start trans-

mission and stop transmission is around 53 ms. The time for BLE

to start scanning and stop scanning is around 13 ms. Because of

this latency, we choose a slot duration of 2 s. Such a chosen slot

duration (2 s) is sufficiently large, which leads to a longer discov-

ery delay in our study compared with the implementation over

sensor radios. Note that this is a limitation of the current proto-

col and hardware, and it is not because of our protocol design. For

the same reason, the duty cycle assigned in the implementation

study is greater than that in the simulation study.

Message sent and listened in an active slot : In the Android

app we developed, we implement the message exchange between

two nodes in an active slot. In neighbor discovery process, each

node schedules active slots according to the desired duty cycle and

the protocol it uses. Similar to other implemented testbed [4] , in

an active slot, a node needs to send “hello” messages to others,

and meanwhile it listens over the channel in search of the hello

messages sent by others, in order to discover a neighboring node.

Specifically, during an active slot:

• When to send hello messages : In our implementation, hello mes-

sages containing the sender node’s ID is sent at the very begin-

ning and at the very end of the slot.

• When to listen for hello messages : Between the very beginning

and the end of an active slot, the node continuously listens for

hello messages sent from other nodes, without sending mes-

sages.

• When is the pairwise neighbor discovery complete? : When node 1

gets gets a hello message sent from node 2, we say node 1 dis-

covers node 2, and it adds the ID of the sender to a list of dis-

covered nodes. A pairwise neighbor discovery between nodes 1
and 2 is complete when the two nodes receive the hello mes-

sages sent from each other.

Possible collision of hello messages : In experiment, we place

ll devices together in a large room of 20 m by 30 m, to avoid in-

erference from neighboring bluetooth/WiFi devices. However, col-

ision of hello messages may exist when multiple pairs send the

essages simultaneously, which will affect the performance of cer-

ain protocols as discussed below.

.2. Results

We implemented considered protocols on 8 Mi Note phones,

nd recorded the discovery latency with various duty cycles. To

reate the asynchronous clocks, we added a random number of

lots before the neighbor discovery process starts on each device.

In two instances, we compare the performance of the protocols

n heterogeneous scenarios. We assign duty cycles of 5% and 20% in

he first instance (see Fig. 19), and 10% and 20% in the second in-

tance (see Fig. 21). We also compare the performance of the pro-

ocols in two homogeneous discovery scenarios, with each phone

perating at the same duty cycles of 10% in the first scenario (see

ig. 20) and 20% in the second one (see Fig. 22).

The overall trends in these experimental results agree with the

imulation results. When the duty cycle is relatively large, i.e., 20%

s shown in Fig. 21, Fig. 22 , all phones can discover each other

100% in the CDF) within a short time; that is, all protocols per-

orm well in these cases.

Searchlight performs differently in heterogeneous and ho-

ogeneous cases : Searchlight performs well in homogeneous

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 65

Fig. 21. Implementation in heterogeneous case: CDF of discovery latency at duty

cycles 10% and 20%, respectively. Numbers in the parentheses indicate the parame-

ters of each corresponding protocol.

Fig. 22. Implementation in homogeneous case: CDF of discovery latency at the

same duty cycle of 20%. Numbers in the parentheses indicate the parameters of

each corresponding protocol.

c

n

p

w

c

t

t

l

p

t

8

o

e

b

a

p

b

t

s

u

a

b

u

a

a

H

c

p

l

a

b

H

s

c

c

A

a

N

a

R

[

[
ases (Fig. 20), while it has an inferior performance in heteroge-

eous cases (Fig. 19), which confirms the simulation results.

Todis excels in real-world implementation : Todis has the best

erformance in the heterogeneous cases (Figs. 19 and 21); mean-

hile, it has the second best performance in the homogeneous

ases. This is can be attributed to the fact that: in Todis, the ac-

ive slots in a wake-up schedule are more evenly distributed than

he active slots in the wake-up schedule of other protocols. This

eads to less probability of collision of hello messages in the im-

lementation. Hence, Todis excels in the discovery latency owing

o less collision of hello messages.

. Conclusion

In this paper, we explored the current two main approaches

f designing an asynchronous heterogeneous neighbor discov-

ry protocol with guaranteed latency upper bounds—the quorum-

ased and the co-primality based approaches. Using these two

pproaches we designed the Hedis and Todis neighbor discovery

rotocols, emphasizing on duty cycle granularity optimization for

oth. Hedis, as a quorum-based protocol, forms a (n − 1) × n ma-

rix of time slots and uses the anchor- probing slot method to en-

ure neighbor discovery. Todis, as a co-primality based protocol,

ses sets of three consecutive odd integers to ensure co-primality

nd thus ensures neighbor discovery due to CRT. In the design of

oth protocols we proved their capability in ensuring acceptable

pper bounds in discovery latency. Through analytical comparisons

s well as simulations, we confirmed the fine-granularity of Hedis

nd Todis in duty cycle control compared with existing protocols.

edis is able to support duty cycles in the form of 2 , while Todis
n
an support duty cycles roughly in the form of 3
n , allowing both

rotocols to effectively cover any practical duty cycle and thus pro-

ong battery longevity.

We also showed in both our analysis and simulations that Hedis

s a quorum-based protocol is similar with Todis as a co-primality

ased protocol in duty cycle granularity, while Todis is better than

edis in discover latency. By being able to support duty cycles at

uch a fine granularity while still guaranteeing an acceptable dis-

overy latency bound, Hedis truly paves the way for neighbor dis-

overy in wireless sensor networks.

cknowledgement

This work is partially supported by the National Key Research

nd Development Program no. 2017YFB0803302, and the National

atural Science Foundation of China under Grant nos. 61572051

nd 61632017 .

eferences

[1] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman,

X. Zheng, A. T. Campbell, Sensing Meets Mobile Social Networks: The Design,

Implementation and Evaluation of the Cenceme Application, in: ACM SenSys,
2008, pp. 337–350.

[2] A.-K. Pietiläinen , E. Oliver , J. LeBrun , G. Varghese , C. Diot , Mobiclique: middle-
ware for mobile social networking, in: Proceedings of the 2nd ACM Workshop

on Online Social Networks, 2009, pp. 49–54 .
[3] L.M. Feeney , M. Nilsson , Investigating the energy consumption of a wireless

network interface in an ad hoc networking environment, in: IEEE INFOCOM,
2001, pp. 1548–1557 .

[4] M. Bakht , M. Trower , R.H. Kravets , Searchlight: won’t you be my neighbor? in:

ACM MobiCom, 2012, pp. 185–196 .
[5] L. Chen , K. Bian , M. Zheng , Heterogeneous multi-channel neighbor discovery

for mobile sensing applications: theoretical foundation and protocol design, in:
ACM MobiHoc, 2014, pp. 307–316 .

[6] P. Dutta , D. Culler , Practical asynchronous neighbor discovery and rendezvous
for mobile sensing applications, in: ACM SenSys, 2008, pp. 71–84 .

[7] A. Kandhalu , K. Lakshmanan , R.R. Rajkumar , U-connect: a low-latency ener-

gy-efficient asynchronous neighbor discovery protocol, in: ACM IPSN, 2010,
pp. 350–361 .

[8] D. Zhang , T. He , Y. Liu , Y. Gu , F. Ye , R.K. Ganti , H. Lei , Acc: generic on-demand
accelerations for neighbor discovery in mobile applications, in: ACM SenSys,

2012, pp. 169–182 .
[9] R. Zheng , J.C. Hou , L. Sha , Asynchronous wakeup for ad hoc networks, in: ACM

MobiHoc, 2003, pp. 35–45 .

[10] T. Meng , F. Wu , A. Li , G. Chen , N.H. Vaidya , On robust neighbor discovery in
mobile wireless networks, in: CoNext, ACM, 2015, p. toappear .

[11] L. Chen , R. Fan , K. Bian , M. Gerla , T. Wang , X. Li , On heterogeneous neighbor
discovery in wireless sensor networks, in: Computer Communications (INFO-

COM), 2015 IEEE Conference on, IEEE, 2015, pp. 693–701 .
[12] Y. Zhang , K. Bian , L. Chen , P. Zhou , X. Li , Dynamic slot-length control for re-

ducing neighbor discovery latency in wireless sensor networks, in: GLOBECOM

2017-2017 IEEE Global Communications Conference, IEEE, 2017, pp. 1–6 .
[13] K. Bian , Y. Zhang , P. Qiao , Z. Li , Fine-grained collision mitigation control for

neighbor discovery in wireless sensor networks, in: IEEE/CIC International Con-
ference on Communications in China, IEEE, 2017 .

[14] Y.-C. Tseng , C.-S. Hsu , T.-Y. Hsieh , Power-saving protocols for ieee 802.11-based
multi-hop ad hoc networks, Comput. Netw. 43 (3) (2003) 317–337 .

[15] M.B. Nathanson , Elementary Methods in Number Theory, 195, Springer, 20 0 0 .

[16] C.M. Vigorito , D. Ganesan , A.G. Barto , Adaptive control of duty cycling in en-
ergy-harvesting wireless sensor networks, in: Sensor, Mesh and Ad Hoc Com-

munications and Networks, 2007. SECON’07. 4th Annual IEEE Communications
Society Conference on, IEEE, 2007, pp. 21–30 .

[17] X. Wang , X. Wang , G. Xing , Y. Yao , Dynamic duty cycle control for end-to-end
delay guarantees in wireless sensor networks, in: Quality of Service (IWQoS),

2010 18th International Workshop on, IEEE, 2010, pp. 1–9 .

[18] H. Yoo , M. Shim , D. Kim , Dynamic duty-cycle scheduling schemes for ener-
gy-harvesting wireless sensor networks, Communications Letters, IEEE 16 (2)

(2012) 202–204 .
[19] I. Demirkol , C. Ersoy , F. Alagoz , et al. , Mac protocols for wireless sensor net-

works: a survey, IEEE Commun. Mag. 44 (4) (2006) 115–121 .
20] W. Ye , J. Heidemann , D. Estrin , An energy-efficient mac protocol for wireless

sensor networks, in: INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, 3, IEEE,

2002, pp. 1567–1576 .

[21] M.J. McGlynn , S.A. Borbash , Birthday protocols for low energy deployment and
flexible neighbor discovery in ad hoc wireless networks, in: ACM MobiHoc,

2001, pp. 137–145 .
22] S. Vasudevan , J. Kurose , D. Towsley , On neighbor discovery in wireless net-

works with directional antennas, in: IEEE INFOCOM, 2005, pp. 2502–2512 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0003
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0005
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0006
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0008
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0010
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0017
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0018
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0021

66 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

[

[

[23] S. Vasudevan , D. Towsley , D. Goeckel , R. Khalili , Neighbor discovery in wire-
less networks and the coupon collector’s problem, in: Proceedings of the 15th

annual international conference on Mobile computing and networking, ACM,
2009, pp. 181–192 .

[24] W. Zeng , S. Vasudevan , X. Chen , B. Wang , A. Russell , W. Wei , Neighbor discov-
ery in wireless networks with multipacket reception, in: ACM MobiHoc, 2011,

pp. 3:1–3:10 .
[25] Z. Zhang , B. Li , Neighbor discovery in mobile ad hoc self-configuring networks

with directional antennas: algorithms and comparisons, IEEE Trans. Wireless

Commun. 7 (5) (2008) 1540–1549 .
26] J.-R. Jiang , Y.-C. Tseng , C.-S. Hsu , T.-H. Lai , Quorum-based asynchronous pow-
er-saving protocols for ieee 802.11 ad hoc networks, Mobile Netw. Appl. 10

(1–2) (2005) 169–181 .
[27] S. Lai , B. Ravindran , H. Cho , Heterogenous quorum-based wake-up scheduling

in wireless sensor networks, IEEE Trans. Comput. 59 (11) (2010) 1562–1575 .
28] G. Anastasi , M. Conti , M. Di Francesco , A. Passarella , Energy conservation in

wireless sensor networks: a survey, Ad Hoc Netw. 7 (3) (2009) 537–568 .
[29] V. Galluzzi , T. Herman , Survey: discovery in wireless sensor networks, Int. J.

Distrib. Sens. Netw. 8 (1) (2012) 271860 .

http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0022
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0023
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0024
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0025
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0025
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0025
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0025
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0025
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0026
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0026
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0026
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0026
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0027
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0027
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0027
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0027
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0027
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0028
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0028
http://refhub.elsevier.com/S1570-8705(18)30133-1/sbref0028

L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68 67

om Peking University, Beijing, China, in 2014. He is currently working toward the Ph.D.

raduate School of Arts and Sciences, Yale University, New Haven, CT, USA. His research

from University of California, Los Angeles, USA, in 2011. He is currently working toward

ifornia, Los Angeles, USA. His research interests focus on computer networks, particularly

nce from Tongji University, Shanghai, China, in 2015. He is currently working toward the

d Information Systems, School of Electronics Engineering and Computer Science, Peking
ireless networks and network theory.

rsity of Science and Technology of China in 2011, majoring in computer science. She has
 of Informatics, School of Multi- disciplinary Science, Graduate University for Advanced

er engineering from the Virginia Polytechnic Institute and State University, Blacksburg,
ith the Institute of Network Computing and Information Systems, School of Electronics

ijing, China. His research interests include mobile computing, cognitive radio networks,

ngineering from Southeast University, China, in 2002 and the Engineer Diploma from

an M.S. degree of networking from the University of Paris 6. He currently works as an

ce of the University of Paris-Sud. He serves as Chair of the IEEE Special Interest Group
th Cognition and Cooperation, IEEE Technical Committee on Green Communications and

and control for wireless networks, distributed algorithm design, and game theory.
Lin Chen received the B.S. degree in computer science fr

degree with the Department of Electrical Engineering, G
interests focus on wireless networks and network theory.

Ruolin Fan received the B.S. degree in computer science

the Ph.D. degree in Computer Science at University of Cal
in wireless networks.

Yangbin Zhang received the B.S. degree in computer scie

M.S. degree with the Institute of Network Computing an
University, Beijing, China. His research interests focus on w

Shuyu Shi received the bachelor’s degree from the Unive
been working toward the PhD degree in the Department

Studies since 2011.

Kaigui Bian (M’11) received the Ph.D. degree in comput
VA , USA , in 2011. He is currently an Assistant Professor w

Engineering and Computer Science, Peking University, Be
network security, and privacy.

Lin Chen (S’07’M’10) received his B.E. degree in radio e

Telecom Paris Tech, Paris, France, in 2005. He also holds

Associate Professor in the Department of Computer Scien
on Green and Sustainable Networking and Computing wi

Computing. His main research interests include modeling

68 L. Chen et al. / Ad Hoc Networks 77 (2018) 54–68

 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,

 Oracle Inc., Boston, MA , USA , from 2011 to 2013, where he was involved in Hadoop and
 cloud Platform. He is currently an Associate Professor with the School of Electronic Infor-

nce and Technology, Wuhan, China. His current research interests include communication

learning, and big data.

m Politecnico di Milano, Milano, Italy, and the Ph.D. degree from the University of Cali-

e was with Network Analysis Corporation, New York, NY, USA, where he helped transfer
works. In 1976, he joined UCLA, where he is currently a Professor of computer science.

ly ARPANET protocols under the guidance of Prof. L. Kleinrock. He has also designed and
ess clustering, multicast (ODMRP and CodeCast), and Internet transport (TCP Westwood).

designing the nextgeneration scalable airborne Internet for tactical and homeland defense

network projects under U.S. Army and IBM funding. His team is developing a vehicular
 transport. A parallel research activity explores personal communications for cooperative

u/NRL for recent publications).

r science from Peking University, Beijing, China, in 2006. He is currently an associate
rch interests include computer architecture, reconfigurable logic, wireless network, and

r Science from Stevens Institute of Technology, Hoboken, NJ, USA, in 1986. He is currently
earch interests include web search and mining and online social network analysis. Dr. Li

tworking Science.
Pan Zhou (S’07’M’14) received the Ph.D. degree from the

GA , USA , in 2011. He was a Senior Technical Member with
distributed storage systems for big data analytics at Oracle

mation and Communications, Huazhong University of Scie

and information networks, security and privacy, machine

Mario Gerla (F’02) received the degree in engineering fro

fornia, Los Angeles (UCLA), CA, USA. From 1973 to 1976, h
ARPANET technology to government and commercial net

At UCLA, he was part of the team that developed the ear
implemented net- work protocols, including ad hoc wirel

He has lead the $12M six-year ONR MINUTEMAN project,

scenarios. He is currently leading two advanced wireless
testbed for safe navigation, urban sensing, and intelligent

networked medical monitoring (see http://www.cs.ucla.ed

Tao Wang (SM’11) received the PhD degree in compute
professor with Peking University, Beijing, China. His resea

parallel computing. He is a senior member of the IEEE.

Xiaoming Li (SM’03) received the Ph.D. degree in Compute
a Professor with Peking University, Beijing, China. His res

is an Editor of both Concurrency and Computation and Ne

http://www.cs.ucla.edu/NRL

	On heterogeneous duty cycles for neighbor discovery in wireless sensor networks
	1 Introduction
	2 Problem formulation
	3 A taxonomy of neighbor discovery protocols
	3.1 Why deterministic protocols
	3.2 Quorum vs. co-primality based protocols
	3.2.1 Quorum-based protocols
	3.2.2 Co-primality based protocols

	4 Hedis: optimizing quorum-based protocols
	4.1 Design of the hedis schedule
	4.2 Bounded discovery delay under hedis

	5 Todis: optimizing co-primality based protocols
	5.1 Design of the Todis schedule
	5.1.1 Co-prime pair property
	5.1.2 Discovery delay
	5.1.3 Tradeoff between co-prime pair property and discovery delay
	5.1.4 Using sets of three consecutive integers in Todis

	5.2 Analysis of duty cycle granularity

	6 Performance evaluation
	6.1 Duty cycle granularity
	6.2 Discovery latency in pairs
	6.2.1 Distribution of discovery latency
	6.2.2 Impact of duty cycles in heterogeneous case

	6.3 Discovery latency in clusters

	7 Testbed implementation
	7.1 Implementation setup
	7.2 Results

	8 Conclusion
	 Acknowledgement
	 References

