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It is well known that the labeling problems of graphs arise in many (but not limited 

to) networking and telecommunication contexts. In this paper we introduce the anti- k - 

labeling problem of graphs which we seek to minimize the similarity (or distance) of 

neighboring nodes. For example, in the fundamental frequency assignment problem in 

wireless networks where each node is assigned a frequency, it is usually desirable to limit 

or minimize the frequency gap between neighboring nodes so as to limit interference. 

Let k ≥ 1 be an integer and ψ is a labeling function (anti- k -labeling) from V ( G ) to 

{ 1 , 2 , . . . , k } for a graph G . A no-hole anti-k-labeling is an anti- k -labeling using all labels 

between 1 and k . We define w ψ (e ) = | ψ(u ) − ψ(v ) | for an edge e = u v and w ψ (G ) = 

min { w ψ (e ) : e ∈ E(G ) } for an anti- k -labeling ψ of the graph G . The anti-k-labeling number 

of a graph G , λk ( G ), is max { w ψ (G ) : ψ} . In this paper, we first show that λk (G ) = � k −1 
χ−1 

� , 
and the problem that determines the anti- k -labeling number of graphs is NP-hard. We 

mainly obtain the lower bounds on no-hole anti- n -labeling number for trees, grids and 

n -cubes. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Problems 

All graphs considered here are simple and finite. Definitions which are not given here may be found in [1] . Let k ≥ 1 be

an integer. An anti-k-labeling ψ of a graph G is a mapping from V ( G ) to { 1 , 2 , . . . , k } . An anti- k -labeling ψ of G is called

a no-hole anti-k-labeling if it uses all labels between 1 and k . We define w ψ 

(e ) = | ψ(u ) − ψ(v ) | ( w 

nh 
ψ 

(e ) = | ψ(u ) − ψ(v ) | )
for an edge e = u v and w ψ 

(G ) = min { w ψ 

(e ) : e ∈ E(G ) } ( w 

nh 
ψ 

(G ) = min { w 

nh 
ψ 

(e ) : e ∈ E(G ) } ) for an anti- k -labeling ψ (a no-

hole anti- k -labeling ψ) of the graph G . The anti-k-labeling number ( the no-hole anti-k-labeling number ) of a graph G , λk ( G )

( λnh 
k 

(G ) ), is max { w ψ 

(G ) : ψ} ( max { w 

nh 
ψ 

(G ) : ψ} ). We refer to a labeling ψ with w ψ 

(G ) = λk (G ) ( w 

nh 
ψ 

(G ) = λnh 
k 

(G ) ) as an

optimal anti-k-labeling (an optimal no-hole anti-k-labeling ) for a graph G . Such (no-hole) anti- k -labeling number problem is

our focus in this paper. 

The above labeling problem represents a generic class of labeling problems arising in many (but not limited to) network-

ing and telecommunication contexts, in which we seek to minimize the similarity (or distance) of neighboring nodes. For

example, in the fundamental frequency assignment problem in wireless networks where each node is assigned a frequency,

it is usually desirable to limit or minimize the frequency gap between neighboring nodes so as to limit interference. Another

example relates to the content sharing systems such as peer-to-peer file sharing systems, where resources (e.g., files) are
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replicated at network nodes to reduce resource retrieval time and increase system robustness. In these systems, to maximize

performance gain, we usually want to place different items in the vicinity of each node or to place the same items far from

each other. 

These problems can be cast to the labeling problem where we seek a node labeling maximizing the minimum labeling

distance among neighboring nodes. Surprisingly, this labeling problem has not yet been analyzed (not even formulated in a

mathematical sense). 

Let T be a set of nonnegative integers. Find a function f : V (G ) → Z + such that | f (x ) − f (y ) | / ∈ T for xy ∈ E ( G ). This function

f is called a T-coloring of G . The span under f is max {| f (x ) − f (y ) | : x, y ∈ V (G ) } . We denote the minimum span over all

T -colorings by sp T ( G ). If T = { 0 , 1 , · · · , m − 1 } , then this T -coloring is called an m-distant coloring . Moreover, if all colors

are used, then this m -distant coloring is called a no-hole m-distant coloring . When m = 1 , then an m -distant coloring is an

ordinary graph coloring. Hence, m -distant coloring is a generalization of ordinary graph coloring. 

In some sense, our focus problem is also m -distant coloring. In fact, λk ( G ) > 0 if and only if k ≥χ ( G ) for a graph G , where

χ ( G ) is the chromatic number of the graph G . Hence, χ ( G ) is the minimum number of k such that λk ( G ) > 0 for a graph G .

Since determining the chromatic number of graphs is NP-hard, the anti- k -labeling problem is also NP-hard. 

Another related labeling problem (namely, L (2, 1)-labeling) will be mentioned in Section 4 . 

2. λk ( G ) and χ( G ) of graphs 

Observation 1. If H is a subgraph of G , then λk ( H ) ≥λk ( G ). 

Proof. Clearly, for an arbitrary anti- k -labeling ψ , w ψ 

(H) ≥ w ψ 

(G ) holds. Suppose ψ is an optimal anti- k -labeling of G (i.e.,

w ψ 

(G ) = λk (G ) ), then w ψ 

(H) ≥ w ψ 

(G ) = λk (G ) . Hence, λk ( H ) ≥λk ( G ) by the definition of anti- k -labeling number. �

Suppose that G 1 and G 2 are two graphs with V (G 1 ) ∩ V (G 2 ) = ∅ . The union G of G 1 and G 2 , denoted by G = G 1 ∪ G 2 , is

the graph whose vertex set is V ( G 1 ) ∪ V ( G 2 ), and edge set is E ( G 1 ) ∪ E ( G 2 ). 

Observation 2. If G = G 1 ∪ G 2 , then λk (G ) = min { λk (G 1 ) , λk (G 2 ) } . 
Proof. λk ( G ) ≤ min { λk ( G 1 ), λk ( G 2 )} following from Observation 1 and the fact that G 1 and G 2 are subgraphs of G 1 ∪ G 2 . On

the other hand, an anti- k -labeling of G 1 together with an anti- k -labeling of G 2 makes an anti- k -labeling ψ of G 1 ∪ G 2 so that

ω ψ 

( G ) ≥ min { λk ( G 1 ), λk ( G 2 )}. Hence λk ( G ) ≥ min { λk ( G 1 ), λk ( G 2 )}. �

Theorem 3. Let G be a graph with chromatic number χ = χ(G ) ≥ 2 . Then λk (G ) = � k −1 
χ−1 � for all k. 

Proof. We first show that λk (G ) ≥ � k −1 
χ−1 � . It suffices to show that there exists an anti- k -labeling ψ such that w ψ 

(G ) =
� k −1 

χ−1 � for a graph G . Let V 1 , V 2 , . . . , V χ be a proper χ-coloring of G . Then we consider the following labeling ψ : label the

vertices of V i by 1 + (i − 1) � k −1 
χ−1 � , i = 1 , 2 , . . . , χ . Note that 1 + (χ − 1) � k −1 

χ−1 � ≤ k and V i ( i = 1 , 2 , . . . , χ ) is an independent

set. We have w ψ 

(G ) = min { w ψ 

(e ) : e ∈ E(G ) } = � k −1 
χ−1 � . Hence, λk (G ) ≥ � k −1 

χ−1 � . 
We next show that λk (G ) ≤ � k −1 

χ−1 � . Let ψ be an optimal anti- k -labeling of G and (V 1 , V 2 , . . . , V k ) be a parti-

tion of V ( G ) under ψ , where the vertices in V i have label i , i = 1 , 2 , . . . , k . Assume λk (G ) ≥ � k −1 
χ−1 � + 1 . We colour

the vertices of V 
(i −1) � k −1 

χ−1 
� + i , V (i −1) � k −1 

χ−1 
� + i +1 

, . . . , V 
i � k −1 

χ−1 
� + i with color c i ( i = 1 , 2 , . . . , χ − 2 ), and color the vertices of

V 
(χ−2) � k −1 

χ−1 
� + χ−1 

, V 
(χ−2) � k −1 

(χ−1) 
� + χ , . . . , V k with color c χ−1 . Note that k ≤ (χ − 1)(� k −1 

χ−1 � ) + χ − 1 . And the vertices of V i are

not adjacent to the vertices of V j (1 ≤ j ≤ k ), j ∈ { i − � k −1 
χ−1 � , i − � k −1 

χ−1 � + 1 , . . . , i + � k −1 
χ−1 �} by the assumption λk (G ) ≥ � k −1 

χ−1 � +
1 . Thus, the vertices of coloring c i ( i = 1 , 2 , . . . , χ − 1 ) are not adjacent. This implies a proper (χ − 1) -coloring of G , a con-

tradiction. Therefore λk (G ) = � k −1 
χ−1 � . �

By Theorem 3 , λk ′ (G ) ≥ λk (G ) holds for k ′ ≥ k . And for some integer k , if λk (G ) = m, then 

k −1 
m +1 + 1 < χ(G ) ≤ k −1 

m 

+ 1 . In

particular, if k is the minimum number with λk (G ) = m, then χ = 

k −1 
m 

+ 1 . This is line with the following Theorem. 

Theorem 4 [5] . sp T (G ) = m (χ − 1) for T = { 0 , 1 , · · · , m − 1 } . 

3. λnh 
n (G) of graphs 

In this section we consider no-hole anti- k -labeling for k = n . 

Observation 5. If G 

′ is a spanning subgraph of G , then λnh 
n (G 

′ ) ≥ λnh 
n (G ) . 

Proof. Suppose λnh 
n (G ) = l with an optimal labeling ψ . Let w 

nh 
ψ 

(G 

′ ) = w 

nh 
ψ 

(e ) . Then λnh 
n (G 

′ ) ≥ w 

nh 
ψ 

(G 

′ ) = w 

nh 
ψ 

(e ) ≥ w 

nh 
ψ 

(G ) = l

by the definitions. Therefore, λnh 
n (G 

′ ) ≥ l. �

Observation 6. For a graph G with n vertices, λn (G ) ≥ λnh 
n (G ) holds for all n ≥ 2. 
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Proof. It is obvious that λn (G ) ≥ λnh 
n (G ) . �

We denote by δ and � the minimum degree and maximum degree of a graph G . We have the following. 

Observation 7. For a connected graph G with n vertices, λnh 
n (G ) ≥ 1 and λnh 

n (G ) ≤ min { n − �, � n −1 
χ−1 � , � n −δ+1 

2 �} hold for all

n ≥ 2. 

Proof. For each no-hole anti- n -labeling ψ , w 

nh 
ψ 

(G ) ≥ 1 . Thus, λnh 
n (G ) ≥ 1 . 

Note that the vertex with the maximum degree has � neighbors which have distinct labels for any no-hole anti- n -

labeling. Then λnh 
n (G ) ≤ n − �. 

Let v be the vertex having label  n 2 � for an optimal no-hole anti- n -labeling ψ of G , then there is an edge e incident to v
so that w 

nh 
ψ 

(e ) ≤ � n −δ+1 
2 � since there are at least δ vertices adjacent to v in G . Therefore λnh 

n (G ) ≤ � n −δ+1 
2 � . 

It is clear that λnh 
n (G ) ≤ λn (G ) = � n −1 

χ−1 � by Observation 6 and Theorem 3 . Thus, the claim holds. �

Theorem 8 [8] . For a graph G , λnh 
n (G ) ≥ n if and only if G has no edges. 

Let G be a simple graph. The complement graph G 

c of G is the simple graph with vertex set V ( G ), two vertices being

adjacent in G 

c if and only if they are not adjacent in G . An m -path with m 

′ > m vertices is a sequence of m 

′ distinct vertices

of G , v 1 , v 2 , ���, v m 

′ , where v i , v i +1 , ���, v i + m 

form a clique ( i = 1 , 2 , · · · , m 

′ − m ). An m -path with m 

′ ≤ m vertices is simply

a clique of order m 

′ . A Hamilton m -path of G is an m -path containing all vertices of G . 

Theorem 9 [8] . For a graph G , λnh 
n (G ) ≥ m + 1 if and only if there exists a Hamilton m-path for G 

c . 

By Theorem 9 , one can see that the no-hole anti- n -labeling number implies some structural properties of graphs. 

Corollary 10. For a graph G , λnh 
n (G ) ≥ 2 if and only if there exists a Hamilton path for the complement graph G 

c of G. 

Proof. This is an immediate consequence of m = 1 in Theorem 9 . �

Corollary 11. For a non-empty graph G (i.e., G has at least an edge), λnh 
n (G ) ≤ α(G ) , where α( G ) is the independence number of

G. 

Proof. Suppose λnh 
n (G ) = m . Then G 

c contains a Hamilton (m − 1) -path by Theorem 9 , and m < n by Theorem 8 , since G has

at least an edge. And so G 

c contains a clique of order m . That is, G has an independent set of order m . Hence, α( G ) ≥ m . �

Next, we consider the no-hole anti- n -labeling number of some special graphs. 

3.1. λnh 
n (G ) of complete multipartite graphs 

Theorem 12 [8] . If G contains a complete t-partite subgraph H and | V (G ) | − | V (H) | < (t − 1)(m − 1) , then λnh 
n (G ) < m . 

Corollary 13. Let K n 1 , ··· ,n t be a complete t-partite graph with n vertices. Then λnh 
n (K n 1 , ··· ,n t ) = 1 holds for all n ≥ 2 . 

Proof. It is clear according to Observation 7 and m = 2 of Theorem 12 . �

We next consider an example for graph operations. Suppose G 1 and G 2 are two graphs with disjoint vertex sets. The join

G of G 1 and G 2 , denoted by G = G 1 + G 2 , is the graph obtained from G 1 ∪ G 2 by adding all edges between vertices in V ( G 1 )

and vertices in V ( G 2 ). 

Corollary 14. If G = G 1 + G 2 , then λnh 
n (G ) = 1 . 

Proof. If G = G 1 + G 2 , then G 

′ is a spanning subgraph of G , where G 

′ is a complete bipartite graph with bipartition ( V ( G 1 ),

V ( G 2 )). Hence λnh 
n (G ) = 1 by Observation 5 and Corollary 13 . �

3.2. λnh 
n (G ) of trees 

Theorem 15. Let P n be a path on n vertices. Then λnh 
n (P n ) = � n 2 � . 

Proof. Since δ(P n ) = 1 , λnh 
n (P n ) ≤ � n 2 � according to Observation 7 . 

Let v 1 , v 2 , . . . , v n be vertices of P n such that v i is adjacent to v i +1 , 1 ≤ i ≤ n − 1 . Now we show that λnh 
n (P n ) ≥ � n 2 � . It

suffices to show that there is a no-hole anti- n -labeling ψ such that w 

nh 
ψ 

(P n ) = � n 2 � for P n . Consider the following labeling: 

(i) If n is even, then we define 

ψ(v i ) = 

{
n 
2 

− i −1 
2 

i is odd , 

n + 1 − i 
2 

i is even . 
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Fig. 1. The labels of paths. 

Fig. 2. The labeling of some trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) If n is odd, then we define 

ψ(v i ) = 

{
n +1 

2 
− i −1 

2 
i is odd , 

n + 1 − i 
2 

i is even . 

Clearly, for each e ∈ E ( P n ), w ψ 

(e ) is n 
2 or n 

2 + 1 for even n , and 

n −1 
2 or n +1 

2 for odd n . Hence λnh 
n (P n ) ≥ � n 2 � (Fig. 1) . �

We denote by T n a tree with n vertices. Note that a tree is a bipartite graph. A leaf in a tree is a vertex of degree 1. 

Lemma 16. For a tree T n with bipartition ( X 1 , X 2 ), and | X 1 | < | X 2 |, we have X 2 contains a leaf of T n . 

Proof. By contradiction, suppose that X 2 contains no leaves of T n . Let Y 0 = { u : d(u ) = 1 , u ∈ V (T n ) } , Y i = { v : ∃ u ∈ Y 0 so that

d(u, v ) = i }\ ∪ 

i −1 
j=0 

Y j , m = max { i : Y i � = ∅} . Note Y i ⊆X 1 ( Y i ⊆X 2 , resp.) for even (odd, resp.) i ≤ m . And X i is an independent set

for i = 1 , 2 . Thus, | Y i +1 | ≤ | Y i | ( i = 0 , 1 , . . . , m − 1 ) due to T n without cycle. 

If m is even, then | X 2 | = | Y 1 | + | Y 3 | + . . . + | Y m −1 | ≤ | Y 0 | + | Y 2 | + . . . + | Y m −2 | < | Y 0 | + | Y 2 | + . . . + | Y m −2 | + | Y m 

| = | X 1 | , a con-

tradiction. If m is odd, then | X 2 | = | Y 1 | + | Y 3 | + . . . + | Y m 

| ≤ | Y 0 | + | Y 2 | + . . . + | Y m −1 | = | X 1 | , a contradiction. Thus, X 2 contains

a leaf of T n . �

Theorem 17. For a tree T n with bipartition ( X 1 , X 2 ), | X i | = q i , i = 1 , 2 , we have λnh 
n (T n ) ≥ q = min { q 1 , q 2 } . 

Proof. The result clearly holds for n = 1 , 2 . Without loss of generality, we suppose that q 1 ≤ q 2 for n ≥ 3, i.e., q = q 1 . We

show that λnh 
n (T n ) ≥ q by giving a no-hole anti- n -labeling ψ n of T n with w 

nh 
ψ n 

(T n ) ≥ q and ψ n (v ) ≤ q ( ψ n (v ) > q, resp.) for

v ∈ X 1 ( v ∈ X 2 , resp.). If n = 3 , then T 3 = P 3 . Let T 3 = P 3 = v 1 v 2 v 3 . Then v 2 ∈ X 1 and v 1 , v 3 ∈ X 2 . Let ψ 3 be the optimal no-hole

anti-3-labeling defined in Theorem 15 for T 3 . We have ψ 3 (v 1 ) = 3 , ψ 3 (v 2 ) = 1 , and ψ 3 (v 3 ) = 2 , and w 

nh 
ψ 3 

≥ 1 = q according

to Theorem 15 . Hence, λnh 
n (T n ) ≥ q for n = 3 . Moreover, each vertex of X 1 ( X 2 , resp.) is labeled by i ≤ q ( i > q , resp.) in the

labeling ψ 3 . 

We next construct the no-hole anti- n -labeling ψ n of T n by induction on n ≥ 4. We assume that ψ m 

is a no-hole anti- k -

labeling of T k satisfying the requirement for k < n . We label T n based on the labeling ψ k of T k as below. 

Case 1. q 1 < q 2 . 

By Lemma 16 , there exists a leaf u ∈ X 2 of T n . Let T n −1 = T n − u . Clearly, | X 1 (T n −1 ) | = | X 1 (T n ) | = q 1 = q, | X 2 (T n −1 ) | =
| X 2 (T n ) | − 1 = q 2 − 1 and q 1 ≤ q 2 − 1 . By the induction hypothesis, there exists a no-hole anti- (n − 1) -labeling ψ n −1 so that

w 

nh 
ψ n −1 

(T n −1 ) ≥ q 1 and each vertex of X 1 (T n −1 ) ( X 2 (T n −1 ) , resp.) is labeled by i ≤ q 1 ( i > q 1 , resp.). We obtain the labeling ψ n

by labeling the vertex u by n based on ψ n −1 . It is obvious that w 

nh 
ψ n 

(T n ) ≥ q, and each vertex of X 1 (T n −1 ) ( X 2 (T n −1 ) , resp.) is

labeled by i ≤ q ( i > q , resp.) in the labeling ψ n (see Fig. 2 (2)). 

Case 2. q 1 = q 2 = q = 

n 
2 . 

Clearly, there is a vertex (say u ) whose neighbors are all leaves except one vertex for any tree T n . Without loss

of generality, we assume that u ∈ X 2 and u has m leaves as its neighbors. We consider the graph T n −m −1 obtained

from T n by removing the vertex u and the m neighbors (the m leaves) of u . Note | X 1 (T n −m −1 ) | = | X 1 (T n ) | − m = 

n 
2 − m,

| X 2 (T n −m −1 ) | = | X 2 (T n ) | − 1 = 

n 
2 − 1 . By the induction hypothesis, there exists a no-hole anti- (n − m − 1) -labeling ψ n −m −1 so

that w 

nh 
ψ n −m −1 

(T n −m −1 ) ≥ n 
2 − m and each vertex of X 1 (T n −m −1 ) ( X 2 (T n −m −1 ) , resp.) is labeled by i ≤ n 

2 − m ( i > 

n 
2 − m, resp.). 

We now label T n by the following rules (i.e., ψ n ): relabel the vertex with label i > 

n 
2 − m in T n −m −1 by i + m, label the

vertex u by n , and label the m neighbors of u by n 
2 − m + 1 , n 2 − m + 2 , · · · , n 2 . Clearly, ψ n (v ) ≤ n 

2 ( ψ n (v ) > 

n 
2 , resp.) for

v ∈ X (T n ) ( v ∈ X (T n ) , resp.) in the labeling ψ n of T n . 
1 2 
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Fig. 3. Labels of P 5 × P 5 and P 5 × P 8 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next we show w 

nh 
ψ n 

(T n ) ≥ n 
2 , i.e., w 

nh 
ψ n 

(e ) ≥ n 
2 for all e = u v ∈ E(T n ) in ψ n . If e ∈ E(T n −m −1 ) , then w 

nh 
ψ n 

(T n ) ≥ n 
2 since

w 

nh 
ψ n −m −1 

(T n −m −1 ) ≥ n 
2 − m by the induction hypothesis and w 

nh 
ψ n 

(e ) ≥ | ψ n (u ) − ψ n (v ) | = | ψ n −m −1 (u ) − ψ n −m −1 (v ) | + m . If

e / ∈ E(T n −m −1 ) , then e is incident to u . Note that u is labeled by n and its neighboring vertices are labeled by some inte-

ger i ≤ n 
2 in ψ n . We have w 

nh 
ψ n 

(e ) ≥ n 
2 . Hence, w 

nh 
ψ n 

(T n ) ≥ q (see Fig. 2 (3)). �

Remark 18. For an arbitrary bipartition ( X 1 , X 2 ), | X 1 | = q 1 ≤ | X 2 | = q 2 , there is a tree T n such that λnh 
n (T n ) = q 1 . We consider

the tree T n as following: T n is obtained by joining q 1 − 1 new vertices to leaves in the star graph K 1 ,q 2 
. Since �(T n ) = q 2 .

Then λnh 
n (T n ) ≤ n − q 2 = q 1 by Observation 7 . Therefore, λnh 

n (T n ) = q 1 by Theorem 17 . 

We also pose a conjecture below. 

Conjecture 19. For a tree T n with bipartition ( X 1 , X 2 ), X i = q i , i = 1 , 2 , we have λnh 
n (T n ) = q, where q = min { q 1 , q 2 } . 

3.3. λnh 
mn (G ) of 2-Dimensional grids P m 

× P n 

In this subsection, we generalize the result on paths to 2-Dimensional grids. 

Observation 20. Let G is a 2-Dimensional grid P m 

× P n ( m ≤ n ). Then λnh 
mn (G ) ≥ � mn −m 

2 � . 
Proof. We look the P m 

× P n grid (i.e., m rows and n columns) as a chessboard. Like in the chessboard, we have white and

black alternating squares (see Fig. 3 ). 

(i) If at least one of m and n is even (i.e., mn is even), we have in the “white” squares the labels from the range [1 , mn 
2 ]

and in the “black” squares the labels from the range [ mn 
2 + 1 , mn ] . Without loss of generality, we assume that the left upper

square is white. Take the following labeling ψ : put 1 in the left upper corner (put mn 
2 + 1 in the second square in the first

row of grid, resp.) and subsequently put in the white (black, resp.) squares from left to right and row by row the upper

range labels: 2,3, . . . , mn 
2 ( mn 

2 + 2 , mn 
2 + 3 , . . . , mn, resp.). 

Let v be labelled by i , i ≤ mn 
2 ( i > 

mn 
2 , resp.). Then the vertices adjacent to v are labelled by i + 

mn 
2 , i + 

mn 
2 − 1 , i +

� mn −m 

2 � , i + � mn + m 

2 � ( i − mn 
2 , i − mn 

2 + 1 , i − � mn −m 

2 � , i − � mn + m 

2 � , resp.). Hence, λnh 
mn (G ) ≥ � mn −m 

2 � (see Fig. 3 (1)). 

(ii) If m and n are odd (i.e., mn is odd), we have in the “white” squares the labels from the range [1 , mn +1 
2 ] and in the

“black” squares the labels from the range [ mn +1 
2 + 1 , mn ] . Take the following labeling ψ : put 1 in the left upper corner (put

mn +1 
2 + 1 in the second square in the first row of grid, resp.) and subsequently put in the white (black, resp.) squares from

left to right and row by row the upper range labels: 2,3, . . . , mn +1 
2 ( mn +1 

2 + 2 , mn +1 
2 + 3 , . . . , mn, resp). We have λnh 

mn (G ) ≥
mn −m 

2 by the argument of (i) (see Fig. 3 (2)). �

Conjecture 21. Let G is a 2-Dimensional grid P m 

× P n . Then λnh 
mn (G ) = � mn −m 

2 � , where m = min { m, n } . 

3.4. λnh 
2 n 

(G ) of n -cubes 

Theorem 22. For a cycle C n of length n , λnh 
n (C n ) = � n −1 

2 � (Fig. 4) . 

Proof. Since δ(C n ) = 2 , λnh 
n (C n ) ≤ � n −1 

2 � according to Observation 7 . 

Now we show that λnh 
n (C n ) ≥ � n −1 

2 � . It suffices to show that there is a labeling ψ such that w 

nh 
ψ 

(C n ) = � n −1 
2 � . Let C n be

v 1 → v 2 → . . . → v n → v 1 . Consider the following labeling: 

(i) If n is odd, then we define 

ψ(v i ) = 

{
n +1 

2 
− i −1 

2 
i is odd , 

n + 1 − i 
2 

i is even . 
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Fig. 4. The labels of cycles. 

Fig. 5. The labelings of Q 2 , Q 3 , and Q 4 . 

 

 

 

 

 

 

 

 

 

(ii) If n is even, then we define 

ψ(v i ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 i is 1 , 

n i is 3 , 
i −1 

2 
i is odd and i � = 1 , 3 , 

n 
2 

− 1 + 

i 
2 

i is even . 

It is easy to show that w 

nh 
ψ 

(e ) , e ∈ E ( C n ), defined above is n 
2 or n 

2 − 1 for even n , and 

n −1 
2 or n +1 

2 for odd n . Hence

λnh 
n (C n ) ≥ � n −1 

2 � . �

An n -cube can be defined inductively as follows. An 1-cube is a P 2 . An n -cube Q n may be constructed from the disjoint

union of two (n − 1) -cubes Q n −1 , by adding an edge from each vertex in one copy of Q n −1 to the corresponding vertex in

the other copy. The joining edges form a perfect matching. 

Theorem 23. Let Q n be an n-cube. Then, for all n ≥ 2, λnh 
2 n 

(Q n ) ≥ 2 n −2 . 

Proof. We show λnh 
2 n 

(Q n ) ≥ 2 n −2 by constructing a no-hole anti-2 n -labeling ψ n such that w 

nh 
ψ n 

(Q n ) ≥ 2 n −2 , and one end has

label at most 2 n −1 and the other end has label greater 2 n −1 for each edge in Q n . If n = 2 , then Q n = C 4 . By Theorem 22 ,

λnh 
2 2 

(Q 2 ) = 1 ≥ 2 2 −2 . Let ψ 2 be the optimal no-hole anti-2 2 -labeling defined in Theorem 22 of Q 2 . Clearly, for each edge e of

Q 2 , one end of e has label at most 2 2 −1 = 2 and the other end of e has label greater 2 under ψ 2 , see Fig. 5 (1). For m ≤ n , we

assume there exists a labeling ψ m 

such that w 

nh 
ψ m 

(Q m 

) ≥ 2 m −2 , and one end has label at most 2 m −1 and the other end has

label greater 2 m −1 for each edge in Q m 

. We next construct the labeling ψ n +1 satisfying the assumption above for Q n +1 from

the labeling ψ n defined above of Q 

1 
n and Q 

2 
n as follows. 
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Note that an (n + 1) -cube Q n +1 can be obtained by adding a perfect matching PM between two copies of an n -cube,

denoted by Q 

1 
n and Q 

2 
n (Each edge of PM joins two vertices having the same labels.). We relabel the vertices with label

i > 2 n −1 in Q 

1 
n by i + 2 n −1 , and we relabel the vertices with label i ≤ 2 n −1 in Q 

2 
n by i + 2 n + 2 n −1 . 

We next show that the assumption above holds for ψ n +1 in Q n +1 . Let e = u v be an edge of E(Q n +1 ) . We firstly assume

e ∈ E(Q 

1 
n ) and ψ n (u ) > ψ n (v ) . By the induction hypothesis, we have ψ n (u ) > 2 n −1 , ψ n (v ) ≤ 2 n −1 and ψ n (u ) − ψ n (v ) ≥ 2 n −2 .

Therefore ψ n +1 (u ) = ψ n (u ) + 2 n −1 > 2 n , ψ n +1 (v ) = ψ n (v ) ≤ 2 n −1 < 2 n , and w 

nh 
ψ n +1 

(e ) = | ψ n +1 (u ) − ψ n +1 (v ) | = ψ n +1 (u ) −
ψ n +1 (v ) = ψ n (u ) + 2 n −1 − ψ n (v ) ≥ 2 n −1 + 2 n −2 > 2 n −1 according to the definition of ψ n +1 . If e ∈ E(Q 

2 
n ) and we suppose

ψ n (u ) > ψ n (v ) . Then ψ n (u ) > 2 n −1 , ψ n (v ) ≤ 2 n −1 , and ψ n (u ) − ψ n (v ) < 2 n . Therefore ψ n +1 (u ) = ψ n (u ) < 2 n , ψ n +1 (v ) =
ψ n (v ) + 2 n + 2 n −1 > 2 n , and w 

nh 
ψ n +1 

(e ) = | ψ n +1 (u ) − ψ n +1 (v ) | = ψ n +1 (v ) − ψ n +1 (u ) = ψ n (v ) + 2 n + 2 n −1 − ψ n (u ) > 2 n −1 . Fi-

nally, we assume e ∈ E ( PM ). Without loss of generality, we assume u ∈ V (Q 

1 
n ) and v ∈ V (Q 

2 
n ) . Then ψ n (u ) = ψ n (v ) . If

ψ n (u ) ≤ 2 n −1 , then ψ n +1 (u ) = ψ n (u ) < 2 n , ψ n +1 (v ) = ψ n (v ) + 2 n + 2 n −1 > 2 n , and w 

nh 
ψ n +1 

(e ) = 2 n + 2 n −1 . If ψ n ( u ) > 2 n , then

ψ n +1 (u ) = ψ n (u ) + 2 n −1 > 2 n , ψ n +1 (v ) = ψ n (v ) < 2 n , and w 

nh 
ψ n +1 

(e ) = 2 n −1 . We complete the proof. �

Theorem 24. Let Q 3 be a 3-cube. Then λnh 
8 

(Q 3 ) = 2 . 

Proof. We have λnh 
8 

(Q 3 ) ≥ 2 by Theorem 23 . We next show λnh 
8 

(Q 3 ) ≤ 2 by contradiction. Suppose λnh 
8 

(Q 3 ) ≥ 3 . Let ψ be an

optimal labeling and we denote by v i the vertex with label i under ψ . Then v 4 may only be adjacent to vertices v 1 , v 7 , v 8 ,
v 5 may only be adjacent to vertices v 1 , v 2 , v 8 , and v 6 may only be adjacent to vertices v 1 , v 2 , v 3 in Q 3 due to mc nh 

8 
(Q 3 ) ≥ 3 .

Note that Q 3 is a bipartite graph. Let the bipartition of Q 3 be ( X , Y ), and | X| = | Y | = 2 3 −1 = 4 . Without loss of generality, we

assume v 4 ∈ X . Then v 1 , v 7 , v 8 ∈ Y, and v 5 , v 6 ∈ X . Hence, v 1 , v 2 , v 3 , v 7 , v 8 ∈ Y, that is, | Y | = 5 , a contradiction. �

Note that the bound in Theorem 23 is sharp for n = 2 , 3 . λnh 
2 n 

(Q n ) ≤ � 2 n −n +1 
2 � holds by Observation 7 . We pose the fol-

lowing problem. 

Conjecture 25. For all n ≥ 2, λnh 
2 n 

(Q n ) = 2 n −2 . 

4. Anti- L d (2, 1)-labeling of graphs 

Given a simple graph G = (V, E) and a positive number d , an L d (2, 1)-labeling of G is a function f : V ( G ) → [0, ∞ ) such that

whenever x , y ∈ V are adjacent, if | f (x ) − f (y ) | ≥ 2 d, and whenever the distance between x and y is two, if | f (x ) − f (y ) | ≥ d.

The L d (2, 1)-labeling number λ( G , d ) is the smallest number m such that G has an L d (2, 1)-labeling f with max { f (v ) : v ∈
 } = m . When d = 1 , the L d (2, 1)-labeling problem is the L (2, 1)-labeling problem. The L (2, 1)-labeling problem of graphs

has been discussed for many graph families, see [2–4,7,9,10] . 

Similarly, we define the anti-L d (2, 1) -labeling problem: given a simple graph G = (V, E) and a positive number d , a labeling

of G is a function f : V ( G ) → [1, k ] such that | f (x ) − f (y ) | ≥ 2 d if xy ∈ E ( G ), | f (x ) − f (y ) | ≥ d if d(x, y ) = 2 . The anti-L d (2, 1) -

labeling number of G , denoted by λL 
k 
(G ) , is the largest number 2 d . 

By the proofs of Observations 1 and 2 , we have the results of Observations 26 and 27 as following. 

Observation 26. If H is a subgraph of G , then λL 
k 
(H) ≥ λL 

k 
(G ) . 

Observation 27. If G = G 1 ∪ G 2 , then λL 
k 
(G ) = min { λL 

k 
(G 1 ) , λ

L 
k 
(G 2 ) } . 

Lemma 28 [7] . λ(G, d) = d · λ(G, 1) for a non-negative integer d. 

Lemma 29 [6] . λ(G, 1) ≤ �2 + � − 2 . 

Theorem 30. Let G is a simple graph. Then λL 
k 
(G ) ≥ 2 � k −1 

�2 +�−2 
� . 

Proof. Suppose that λ(G, d) = m for a graph G . Then there exists a labeling f : V ( G ) → [0, m ] such that whenever x , y ∈ V

are adjacent, if | f (x ) − f (Y ) | ≥ 2 d, and whenever the distance between x and y is two, if | f (x ) − f (Y ) | ≥ d. Therefore, there

exists a labeling ψ : V (G ) → [1 , m + 1] , such that w ψ 

(G ) = 2 d for k = m + 1 = λ(G, d) + 1 . According to Lemma 28 , there

exists a labeling ψ , such that w 

λ
ψ 

(G ) = 2 k −1 
λ(G, 1) 

for all k . Therefore λL 
k 
(G ) ≥ 2 � k −1 

λ(G, 1) 
� for all k according to the definition of

the anti- L d (2, 1)-labeling number λL 
k 
(G ) . Combining with Lemma 29 , we have λL 

k 
(G ) ≥ 2 � k −1 

�2 +�−2 
� . �

Theorem 31. If λL 
k 
(G ) = 2 d for a positive number k , then k −1 

d+1 
< λ(G, 1) ≤ k −1 

d 
. 

Proof. Suppose that λL 
k 
(G ) = 2 d for a graph G . Then λ(G, d) + 1 ≤ k < λ(G, d + 1) + 1 . In fact, it is obvious that λ(G, d) + 1 ≤

k, since G has an L d (2, 1)-labeling for all positive number k and λ( G , d ) is the smallest number m such that G has an

L d (2, 1)-labeling f . Suppose k ≥ λ(G, d + 1) + 1 . Then there exists a labeling ψ , such that w 

λ
ψ 

(G ) = 2(d + 1) . Hence λL 
k 
(G ) ≥

2(d + 1) according to the definition of λL 
k 
(G ) , a contradiction. Hence, d · λ(G, 1) + 1 ≤ k < (d + 1) · λ(G, 1) + 1 combining

k −1 k −1 
with Lemma 28 , that is 
d+1 

< λ(G, 1) ≤
d 

. �
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