
www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 2453–2467
Toward secure and scalable time synchronization in ad hoc networks

Lin Chen *, Jean Leneutre

Département INFRES – CNRS LTCR-UMR 5141, École Nationale Supérieure des Télécommunications, 37–39, Rue Dareau, 75014 Paris, France

Available online 5 May 2007
Abstract

Time synchronization is crucial in ad hoc networks. Due to the infrastructure-less and dynamic nature, time synchronization in such
environments is vulnerable to various attacks. Moreover, time synchronization protocols such as IEEE 802.11 TSF (Timing Synchro-
nization Function) often suffer from scalability problem.

In this paper, we address the security and the scalability problems of time synchronization protocols in ad hoc networks. We propose
a novel suite of time synchronization mechanisms for ad hoc networks based on symmetric cryptography. For single-hop ad hoc net-
works, we propose SSTSP, a scalable and secure time synchronization procedure based on one-way Hash chain, a lightweight mechanism
to ensure the authenticity and the integrity of synchronization beacons. The ‘‘clock drift check’’ is proposed to counter replay/delay
attacks. We then extend our efforts to the multi-hop case. We propose MSTSP, a secure and scalable time synchronization mechanism
based on SSTSP for multi-hop ad hoc networks. In MSTSP, the multi-hop network is automatically divided into single-hop clusters. The
secure intra-cluster synchronization is achieved by SSTSP and the secure inter-cluster synchronization is achieved by exchanging syn-
chronization beacons among cluster reference nodes via bridge nodes.

The proposed synchronization mechanisms are fully distributed without a global synchronization leader. We further perform analyt-
ical studies and simulations on the proposed approaches. The results show that SSTSP can synchronize single-hop networks with the
maximum synchronization error under 20 ls and MSTSP 55–85 ls for multi-hop networks, which are, to the best of our knowledge,
among the best results of currently proposed solutions for single-hop and multi-hop ad hoc networks. Meanwhile, our approaches
can maintain the network synchronized even in hostile environments.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Time synchronization; Ad hoc networks; Security; Scalability
1. Introduction

Ad hoc networks are autonomous collections of mobile
nodes communicating with each other over wireless links
and cooperating in a distributed manner in order to pro-
vide the necessary network functionality in the absence of
a fixed infrastructure. In such environments, time synchro-
nization is crucial. It is a key function to perform power
management and to support the medium access control
protocol in the Frequency Hoping Spread Spectrum ver-
sion of the physical layer [4]. It also plays an important role
in the support of QoS in ad hoc networks, particularly for
real-time applications. Furthermore, a common view of
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.04.017

* Corresponding author. Tel.: +33 01 4581 7947.
E-mail addresses: Lin.Chen@enst.fr (L. Chen), Jean.Leneutre@enst.fr

(J. Leneutre).
local clock time is a basic requirement in some ad hoc rout-
ing protocols and cryptography and authentication
schemes for detecting out-of-date or duplicated messages.

The high dynamic nature of ad hoc networks, the nonde-
terminism of the wireless channel and the lack of reference
nodes make time synchronization a challenging task in ad
hoc networks in that traditional time synchronization tech-
niques for wired networks (e.g., [2]) are no more applicable
to ad hoc environment due to their centralized nature and
the heavy traffic and computation overhead they involve.
A good synchronization mechanism for ad hoc networks
should be robust to mobility and topology changes, efficient
in terms of traffic and processing cost, scalable and secure.

Here we pay a special emphasis on the security aspect
because recently many mechanisms have been proposed
to address the time synchronization problem in ad hoc net-
works [13,14], but most of them do not take into account

mailto:Lin.Chen@enst.fr
mailto:Jean.Leneutre@enst.fr

2454 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
security, although security is a major challenge in ad hoc
networks. As a result, they are very vulnerable to various
attacks ranging from modifying and replaying a time syn-
chronization message to sending forged time values to
desynchronize the network or disturb the receiver’s clock.
Khanna et al. [9] show through simulations that the attacks
against IEEE 802.11 Timing Synchronization Function
(TSF) can cause significant damage to a large number of
nodes. Such insecure time synchronization protocols may
further cause serious problems on the applications and pro-
tocols based on synchronized time. Nodes may fail to be
activated because of the incorrect time estimation, which
may cause serious problems such as failing to respond to
important events and packet loss. Out-of-date and replayed
messages cannot be detected in ad hoc routing protocols or
some cryptography and authentication schemes, which
may lead to many new opportunities for DoS (Deny-of-
Service) and replay attacks.

Given the insecurity of existing time synchronization
protocols in ad hoc networks and their detrimental effect
on the applications, we propose a novel suite of time syn-
chronization mechanisms for ad hoc networks taking into
consideration security, scalability and other challenges.
The proposed mechanisms are based on symmetric cryp-
tography, avoiding the costly digital signature schemes
which may be undesirable for resource constrained envi-
ronments such as ad hoc networks.

We start by performing an in-depth analysis on the core
problems of existing synchronization mechanisms for ad
hoc networks based on which we propose our secure sin-
gle-hop time synchronization procedure (SSTSP). We show
by simulation and analytical studies that SSTSP significantly
outperforms existing approaches in terms of scalability,
accuracy and security. We then extend our efforts to the
secure time synchronization for multi-hop ad hoc networks.
We propose the multi-hop secure time synchronization pro-
cedure (MSTSP), an extended and adapted version of
SSTSP for multi-hop ad hoc networks, and evaluate its per-
formance via simulation. The results show that the perfor-
mance of MSTSP is significantly superior to TSF and is
among the best of currently proposed solutions in terms of
accuracy and scalability. Besides, MSTSP can maintain the
network synchronized even under malicious attacks.

2. Related work

Time synchronization is the process to ensure that phys-
ically distributed processors have a common notion of
time. There are two commonly known approaches for time
synchronization [1], centralized and distributed. The cen-
tralized approach is also known as master–slave synchroni-
zation where there is one or more accurate clocks (the
master(s)) to which all other nodes listen and adjust their
local clocks accordingly. The time synchronization mecha-
nism proposed in Ganeriwal et al. [14] for ad hoc networks
belongs to this catalog. The distributed approach is also
known as mutual synchronization where there is no master
clock, but instead all clocks cooperate to achieve synchro-
nization in a distributed manner. IEEE 802.11 TSF in ad
hoc mode belongs to this catalog.

For mobile ad hoc networks we argue that the distrib-
uted approach is more suitable due to its robustness, flexi-
bility and adaptability. This motivates us to focus our
efforts on the secure distributed time synchronization
mechanism for ad hoc networks. IEEE 802.11 TSF is spec-
ified by IEEE 802.11 standards as an efficient distributed
synchronization mechanism for single-hop ad hoc net-
works. Other distributed synchronization approaches
[11,1] mainly base themselves on IEEE 802.11 TSF and
improve it to achieve better performance or extend it to
multi-hop ad hoc networks.

2.1. IEEE 802.11 TSF in ad hoc mode

IEEE 802.11 standards specify the ad-hoc-mode Timing
Synchronization Function (TSF) for IEEE 802.11 ad hoc
networks (IBSS) [4] in which time synchronization is
achieved by periodical time information exchange through
beacons containing timestamps and other parameters.
Each node maintains a local clock counting in increments
of microseconds. All nodes in the IBSS compete for beacon
transmission every Beacon Period (BP). At the beginning
of each BP, there is a beacon generation window consisting
of w + 1 slots each of length aSlotTime, where w is a
parameter defined by system. Each node calculates a ran-
dom delay uniformly distributed in [0,w] · aSlotTime and
schedules to transmit a beacon when the delay timer
expires. If a beacon is received before the random delay
timer has expired, the node cancels the pending beacon
transmission. Upon receiving a beacon, the node sets its
local clock to the timestamp of the beacon if the value of
the timestamp is later than its local clock.

In spite of its distributed nature and its efficiency in
terms of communication cost, IEEE 802.11 TSF has the
following problems when applied to large scale or multi-
hop ad hoc networks:

• Fastest node asynchronization: As identified in Lai and
Zhou [5], the clock of the fastest node may drift away,
because it may not get a chance to transmit its beacon.
Since the fastest node does not synchronize itself to
other nodes, its clock will keep drifting away from oth-
ers. The problem becomes more severe when the number
of nodes of the network increases.

• Beacon collision: As the number of nodes in the network
increases, the synchronization beacon transmission con-
tentions uprise accordingly. As a result, in a large net-
work, due to repeated collisions, synchronization
beacons can hardly be successfully transmitted and some
nodes may fail to synchronize with others.

• Time partitioning: As identified in So and Vaidya [6], this
problem occurs when TSF is applied to multi-hop ad hoc
networks, where nodes fall into clusters which may be
desynchronized during a long period of time. When the

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2455
number of nodes increases, the problem has a more neg-
ative impact on the synchronization accuracy. Giving fas-
ter nodes higher chance in beacon transmission will also
increases the impact of the time partitioning problem.

2.2. Scalable time synchronization for ad hoc networks

ATSP (Adaptive Timing Synchronization Procedure)
was proposed in Lai and Zhou [5] to solve the fastest node

asynchronization problem in IEEE 802.11 TSF. The basic
idea is to let the fastest node compete for beacon transmis-
sion every BP and let other nodes compete only every Imax

BPs. The parameter Imax should be carefully chosen to
reach a tradeoff between scalability and stability. As an
improved version of ATSP, the authors propose TATSP
(Tiered Adaptive Timing Synchronization Procedure) in
which the nodes are dynamically classified into three tiers
according to the clock speed. The nodes in tier 1 compete
for beacon transmission in every BP and the nodes in tier
2 compete once in a while and the nodes in tier 3 rarely
compete. SATSF (Self-adjusting Timing Synchronization
Function) is another synchronization protocol proposed
in Zhou and Lai [12] compatible with IEEE 802.11 TSF.
In SATSF, node i competes for beacon transmission every
FFT(i) BPs. FFT(i) is adjusted at the end of each BP in the
way that fast nodes will gradually decrease their FFT value,
thus competing more frequently than slow nodes.

ASP (Automatic Self-self-time-correcting Procedure) is
proposed in Sheu et al. [11] to synchronize multi-hop ad
hoc networks. The basic idea is to synchronize the whole
network by fulfilling two tasks: to increase the successful
transmission probability for faster nodes and to spread
the faster time information throughout the whole network.
The first task is achieved by increasing the beacon trans-
mission priority of a node who has faster time and by cut-
ting down the priorities of the others. When some slower
nodes get enough information to accomplish synchroniza-
tion by themselves, their beacon transmission priorities
are increased to carry out the second task.

Rentel and Kunz propose a mechanism in [1] which dif-
fers from the idea of giving faster nodes higher priorities. In
the mechanism all nodes participate equally in the synchro-
nization of the network. The authors define a controlled
clock, which is an adjusted clock of the real clock, and a
parameter s ¼ controlled clock

real clock
. If no beacons are received

within last T_DELAY beacons, the node participates the
contention with probability p for the next BP. When receiv-
ing a beacon, the node updates s and p to synchronize to
the sender of the beacon.

2.3. Secure and fault tolerant time synchronization

In spite of the numerous time synchronization protocols
proposed for ad hoc networks, most of them have not been
built with security in mind. To our knowledge, there exist
very few propositions on the secure time synchronization
protocols in the literature among which [8] mainly focus
on a specific type of attack called delay attack. The authors
propose two approaches to detect and accommodate the
delay attack. One approach uses the generalized extreme
studentized deviate (GESD) algorithm to detect multiple
outliers (malicious time offset). The other uses a threshold
based on a time transformation technique to filter out the
outliers. Ganeriwal et al. [10] proposes several protocols
for sensor networks to secure pairwise time synchroniza-
tion over single hop and multiple hops. The authors further
extend their efforts to secure group time synchronization.
They propose the lightweight secure group synchronization
protocol to counter external attacks and the secure group
synchronization protocol to counter both external and
internal attacks but at the price of the heavy traffic over-
head and the lack of scalability. Sun et al. [19] propose a
fault-tolerant cluster synchronization protocol for sensor
networks in which the hash chain scheme is applied to
achieve local broadcast authentication. All sensors should
be initially synchronized to bootstrap the protocol.

Our proposed time synchronization mechanisms differ
from existing schemes in the following ways: (1) We take into
account the scalability issue in our time synchronization pro-
tocols. Our synchronization mechanisms do not operate on
synchronization message flooding or exchanging between
each pair of nodes which may pose scalability problem; (2)
Our synchronization protocols are totally distributed and
do not rely on any synchronization sources or hierarchy.
This feature makes our approach robust to topology
changes and network dynamics in ad hoc environments.

3. System model

3.1. Clock model

Each mobile node is equipped with a clock, a time mea-
surement device normally composed of a hardware oscilla-
tor and an accumulator. Mathematically, the measured
time T(t) is a function of real time t:

T ðtÞ ¼
Z t

t0
qðsÞdsþ T ðt0Þ

where q is the nominal frequency of the oscillator, T(t0) is
the initial clock offset.

In an ideally synchronized network, for each node i it
holds that qi(s) = 1 and T(t0) = t0 for all time long. How-
ever, since all hardware clocks are imperfect, the above
equations in the ideal case do not hold. As a result, differ-
ent clocks may drift away from each other. In this paper we
use the bounded-drift model in which the difference
between qi(s) and 1 is bounded by Dqmax � 10�6, meaning
that the clock drifts away for several seconds in 10 days
(106 s). Therefore, the synchronization process is indispens-
able and should be executed periodically. We also assume
that during a period of time that is not very long, qi(s) does
not vary with time. Thus the clock can be regarded as lin-
ear with respect to real time during that period of time.

2456 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
3.2. Time synchronization model

Although time synchronization is essential to many appli-
cations in ad hoc networks, the requirement ranges from
extreme strict synchronization to loose coordination. There-
fore, there are actually many different types of synchroniza-
tion mechanisms based on different criteria such as the scope
and the lifetime of the synchronization [17]. Our mechanism
falls into the catalogue of network-wide, server-less, proac-
tive synchronization, as explained as following:

• Network-wide: The proposed synchronization mecha-
nisms provide network-wide synchronization where all
nodes within the network achieve approximately the
same clock reading. The other end of the spectrum is
the synchronization among only a subset of nodes in
the network. A typical example is pairwise synchroniza-
tion that aims to provide synchronization between a pair
of neighbor nodes.

• Server-less: Our proposed synchronization mechanisms
are fully distributed without any server or external time
sources as in NTP [2]. Each node is synchronized with
every other node with a time which might be different
from the real time. Our approach can meet the need of
most applications in ad hoc networks that requires syn-
chronized clock.

• Proactive: The proposed approaches proactive such that
the network is maintained synchronized by the repeated
execution of the synchronization procedure. In contrast
to the proactive synchronization is the on-demand syn-
chronization in which the synchronization procedure is
triggered by demand or certain events.

3.3. Attacker model

Attackers may disrupt the operation of the time syn-
chronization protocols by exhibiting malicious behavior:
e.g., replay, forge, corrupt synchronization messages to
influence the time view of benign nodes, as shown in Table
1. The attacks to the synchronization protocols can be clas-
sified as external attacks and internal attacks based on the
information the attackers have. External attacks are
launched by external attackers who do not have the crypto-
graphic credentials (e.g. public/private key pairs, authenti-
cated hash chains) that are necessary to participate in the
synchronization procedure. Internal attacks are launched
by internal attackers who have compromised legitimate
Table 1
Synchronization attacks

Possible attacks to time synchronization protocols

Synchronization message forgery
Synchronization message alteration
Synchronization message replay
Synchronization message relay (delay)
DoS attack
nodes, and therefore have access to the cryptographic cre-
dentials of those nodes. Obviously internal attacks are far
more difficult to detect and sometimes cannot be countered
by pure cryptographic primitives.

4. Single-hop secure time synchronization procedure

4.1. Design philosophy

Although TSF provides an efficient distributed synchro-
nization mechanism in terms of traffic overhead, it suffers
from the scalability problem due to its beacon contention
scheme. Besides, it is vulnerable to various malicious
attacks. In this section we address the above two problems
which are vital to build a scalable and secure synchroniza-
tion protocol.

First we argue that the root of the scalability problem in
TSF lies in the fact that the increase in the number of nodes
in the network decreases the synchronization beacon emis-
sion opportunity of the fastest node or a subset of the fast-
est nodes. Some protocols improving TSF increase the
successful emission probability of the fastest nodes by
attributing them priority with respect to other nodes in
the network. These mechanisms are significantly more scal-
able than TSF, but since they follow the same contention
mechanism as TSF, the scalability problem is not totally
solved. Furthermore, they usually depend on the observa-
tion of the beacons to find and locate the fast nodes, which
may increase the latency of synchronization.

SSTSP, however, addresses the scalability problem from
another angle. In SSTSP, all nodes content to emit the syn-
chronization beacon at the beginning following the conten-
tion mechanism of TSF. The winner becomes the reference
node and emits a beacon in the beginning of every BP with-
out random delay. Other nodes synchronize their local
clocks to the reference node until the reference node leaves
the network, when another round of contention begins. To
synchronize to the reference node, a node adjusts its clock
parameters to gradually catch up with the pace of the ref-
erence clock in order to avoid backward and uncontinuous
leaps in time. All nodes have the equal chance to become
the reference node, but the contention takes place only
when the formal reference node leaves and once the refer-
ence node is established, other nodes disable their beacon
emission and synchronize their local clocks to the reference
node each BP. The proposed mechanism maintains the dis-
tributed nature of the synchronization process while
removing the scalability problem from its root. By making
the full use of every received synchronization beacon and
adopting a fine adjustment mechanism, we achieve signifi-
cantly better synchronization accuracy than TSF and avoid
all the backward or other uncontinuous leaps in local
adjusted clock. Furthermore, by carefully choosing param-
eters, our mechanism is robust to the change of the refer-
ence node and the loss of synchronization beacons.

Furthermore, our approach can detect malicious syn-
chronization attacks and prevent networks from being

Fig. 1. Hash chain scheme.

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2457
desynchronized by malicious nodes using erroneous time
values. To this end, we use lTESLA [18], a lightweight
technique base on one-way hash chain, to protect syn-
chronization beacons against external attackers. We
would like to mention that traditional security mecha-
nisms based on asymmetric cryptographic operations can-
not be applied in our context in that it usually takes up
to hundreds of milliseconds depending on the CPU
capacity of the nodes, which may increase significantly
the synchronization error. Furthermore, due to its nature,
nodes in ad hoc networks may be resource constrained. It
is sometimes expensive or even prohibited for such nodes
to perform heavy asymmetric cryptographic operations.
In contrast, hash functions are three to four orders of
magnitude faster than asymmetric operations and can
be performed in an on-the-fly way such that it causes
almost no additional delay.

Moreover, in our approach, we propose the ‘‘clock drift
check’’ to counter the internal attacks and other attacks
such as delay attacks and replay. This mechanism is based
on the fact that the difference between any two clocks can-
not drift unboundedly within a certain period of time.

Notations

si Hash chain seed of node i

n Hash chain length
T0 Start time of the Hash chain
hj(si) The jth element of node i’s Hash chain
BP Beacon period, typical value is 0.1 s
ti Local unadjusted time of node i
ci(t) Local adjusted time of node i at local time t.

Our goal is to synchronize ci(t)
tj
i Local unadjusted time of node i when receiv-

ing the beacon in the jth BP
tj
ref Local adjusted time of the reference node when

emitting the beacon in the jth BP
kj

i , bj
i Coefficient and offset parameter to be adjusted

when receiving the beacon in the jth BP
qi Nominal frequency of node i’s clock, can be

regarded as constant during a short period
of time

q0i Nominal frequency of node i’s adjusted clock,
q0i ¼ qi � kj

i in the jth BP
tp Transmission and propagation delay
Tm Local expected emission time of the synchro-

nization beacon in the mth BP,
Tm = T0 + m * BP if m > 1

tsj
ref Adjusted timestamp value obtained from the

beacon emitted by the reference node in the
jth BP. tsj

ref ¼ tj
ref þ tp. tsj

ref is estimated at
the receiver side

ðtj
i Þ
�, ðtj

refÞ
�,ðtsj

refÞ
� Expected values of tj

i , tj
ref , tsj

ref

� Maximum error when estimating tref by tsref,
normally � < 5 ls

r Maximum synchronization error in SSTSP
d Threshold in the ‘‘clock drift check’’
4.2. Assumptions and requirements

We assume that each pair of nodes shares a pairwise key
which is used to bootstrap the synchronization when a
node enters the network. Once the new arriver acquires
the initial synchronization, the pairwise keys are no more
needed for the following phase.

To use one-way hash chains, we need some mechanism
for a node to distribute an authenticated element hn(si) in
its hash chain. A traditional approach is to let each node
use its public key sign the hash chain element. Alterna-
tively, a node can securely distribute an authenticated hash
chain element using pairwise keys [15] or non-crypto-
graphic approaches [16].

We also assume that the synchronization beacons are
timestamped below MAC layer. Thus, we remove the most
significant non-deterministic factor of the end-to-end delay
of the beacons, medium access waiting time.

4.3. Synchronization procedure

4.3.1. Node initiation

Each node i picks a random seed si and generates its
hash chain based on si: h(si), h2(si), . . . , hn(si). The last ele-
ment hn(si) is authenticated and published within the net-
work. The start time of the hash chain T0 is also
published (e.g. T0 can be configured and published by the
first node arriving in the network or be integrated into
the synchronization beacons). Fig. 1 illustrates the Hash
chain Scheme. Suppose the beacons are expected to be
emitted at time T0 + j * BP (j = 1,2, . . . ,n). Each element
of the hash chain hn�j(si) is used as the key to secure the
synchronization beacon sent by node i in the time interval
[T0 + j * BP � BP/2, T0 + j * BP + BP/2] if node i is the
reference node. Node i, in its synchronization beacon sent
in the above time interval, discloses the element hn�j+1(si)
(j > 1), allowing other nodes to authenticate previously
received beacons sent by itself in last time interval
[T0 + (j � 1) * BP � BP/2, T0 + (j � 1) * BP + BP/2].

Our single-hop secure time synchronization procedure
(SSTSP) consists of two phases: the bootstrapping phase
and the synchronization phase.

4.3.2. Bootstrapping phase

When joining the network, the node first enters the
bootstrapping phase during the first BP to acquire the
initial synchronization with the rest of the network. This
initial synchronization further enables the application of
one-way hash chains to secure the time synchronization

1 See Lemma 2 for the proof that after the reference node changes, the
synchronization error after the change is (l + 2) times as much as the
synchronization error before the change.

2 It is easy to show that the maximum clock drift during one BP is
bounded by 2DqmaxBP. When entering the synchronization phase, the
difference between the clock of i and the reference node increases in the
beginning 2BPs before i can adjust its clock using authenticated beacons.

2458 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
procedure in the synchronization phase that follows the
bootstrapping phase.

We adopt the following simple pairwise synchronization
protocol [10] in this phase:

1. iðts
i Þ ! jðcr

jÞ: i, j,Ni,SynInit
2. jðcs

jÞ ! jðtr
i Þ: cr

j; c
s
j;N i; SynAck;MACKijfjðtr

i Þ: cr
j; c

s
j;N i;

SynAckg
3. If d ¼ ðtr

i � ts
i Þ � ðcs

j � cr
jÞ < bðT init þ T ackÞ, i sets ti ¼ tiþ

ðcr
j � ts

i Þ � ðtr
i � cs

jÞ

In the above protocol, i is the new arriver that synchro-
nizes to its neighbor j. i sends a SynInit message at local time
ts
i . j receives the message at its local adjusted time cr

j and send
back a SynAck message at cs

j containing the correspondent
timestamps protected by the attached MAC. i then com-
putes the end-to-end delay d and compares d with b(Tinit +
Tack) to check if any packet is delayed or replayed by attacks,
where b is a coefficient sightly greater than 1, Tinit and Tack is
the transmission time of the SynInit and SynAck including
packet header and preamble. In normal cases, we have
d � Tinit + Tack since the propagation time is negligible
and the calculation of keyed MAC can be processed in the
on-the-fly as the packet is being transmitted. If the SynInit
or SynAck packet is replayed or delayed by an attacker, then
since the attacker cannot receive and emit at the same time,
we have d P 2(Tinit + Tack). Next i computes the offset
between its local clock and j’s clock and uses the offset to
adjust its clock.

i thus synchronizes itself with a trusted neighbor j or
repeats the above protocol with several neighbors if it does
not have any trusted neighbors and further eliminates
biased offsets and uses the averaged of the rest unbiased
offset to adjust its local clock. In the bootstrapping phase,
ci(ti) is set to ti. At the end of the bootstrapping phase, i is
synchronized with the network and then enters the follow-
ing synchronization phase.

4.3.3. Synchronization phase
In this phase, each node competes to be the reference

node if it has not heard the synchronization beacon in
the last l BPs. A larger value of l makes the mechanism
more robust since the failure to receive a beacon may be
due to collision or temporary wireless channel instability
other than the leave of the reference node. As price, a larger
l increases the synchronization error when the reference
node changes. In case of collision, the contention may last
several BPs. The contention mechanism is the same as in
IEEE 802.11 TSF. The winner becomes the reference node
and emits a beacon in the beginning of every BP without
random delay. Other nodes synchronize their local clocks
to the reference node until the reference node leaves the
network, when another round of contention begins. A node
joining the network does not participate in the contention
until it is synchronized with the network. We use lTESLA
scheme to protect the beacons. The synchronization beacon
sent by the reference node ref in time interval j is:
hB; j; hn�j
ref ðB; jÞ; hn�jþ1ðsrefÞi

where B is the original unsecured synchronization beacon,
hn�j

ref ðB; jÞ denotes the HMAC output using hn�j(sref) as the
key applied to (B, j),hn�j+1(sref) is the disclosed key corre-
sponding to the last interval (interval (j � 1)).

Each node i temporarily stores the recently received bea-
cons. Upon receiving a new beacon from the reference
node ref, node i performs the following checks:

• Node i checks whether interval j corresponds to the cur-
rent time interval.

• If the above check passes, node i further checks the
validity of the disclosed key hn�j+1(sref) in the beacon
by verifying whether hj�1(hn�j+1(sref)) equals to the
published element hn(sref). In case of success, i checks
the authenticity and the integrity of the beacon
received in last interval using disclosed key hn�j+1(sref).
Node i can store previously authenticated disclosed
key hn�j+2(sref) to reduce processing overhead. In this
case only one hash operation is needed instead of
j � 1.

• If the above two checks pass, i performs the ‘‘clock drift
check’’ whether jtsj

ref � ciðtj
iÞj < d, where the threshold d

is the bound of the clock drift between ciðtj
iÞ and tsj

ref . In
case where i has not received beacons during last l BPs
because the reference node changes, d = (l + 2)r.1 If i

has just entered the synchronization phase,
d = r + 4DqmaxBP.2 In other cases, d = r. If the check
fails, the beacon may be replayed or delayed or the time-
stamp is forged by an internal attacker.

If all the above tests pass, node i then adjusts its local
clock using the authenticated beacon (j � 1) and (j � 2).
Note that beacon j cannot be used for clock adjustment
until its integrity is verified. In SSTSP each node i has
two clocks: an original clock and an adjusted clock. The
original clock is the hardware clock of the node, e.g. a
64-bit counter with the resolution of 1 ls in the IEEE
802.11 standard. The adjusted clock takes ti, the time of
the original clock as input and adjusts its value ci(ti)
according to the following relation:

ciðtiÞ ¼ kj
i � ti þ bj

i ; j ¼ 1; 2; . . . ð1Þ

Our objective is to synchronize the adjusted clocks of all
the nodes in the network by repeatedly adjusting kj

i and
bj

i (kj
i ¼ 1, bj

i ¼ 0 if j 6 2) at each node when receiving
the beacon in the jth BP from the reference node. Com-
pared with IEEE 802.11 TSF, SSTSP has the following
desirable features:

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2459
• SSTSP achieves better accuracy than IEEE 802.11 TSF
via a more sophisticated adjustment scheme in which
both the offset and the coefficient parameters are
adjusted.

• There is no backwards or other uncontinuous leaps in
local clock. This feature is important in some applica-
tions. IEEE 802.11 TSF only guarantees that no back-
wards leaps exist.

The following equations illustrate the clock adjustment
of SSTSP:

kj�1
i � tj

i þ bj�1
i ¼ kj

i � tj
i þ bj

i ð2Þ
ciððtjþm

i Þ
�Þ ¼ kj

i � ðt
jþm
i Þ

� þ bj
i ¼ ðts

jþm
ref Þ

� ð3Þ
tj�1
i � tj�2

i

tsj�1
ref � tsj�2

ref

¼ ðt
jþm
i Þ

� � tj�1
i

ðtsjþm
ref Þ

� � tsj�1
ref

ð4Þ

ðtsjþm
ref Þ

� ¼ T jþm ð5Þ

Eq. (2) follows the argument that the adjusted clock ci(ti) is
continuous at tj

i . Eq. (3) indicates that the adjusted clock of
node i is expected to converge to the reference clock at the
expected receiving time of the beacon (j + m). Before the
convergence, the synchronization error is expected to de-
crease monotonously. m (m > 1) is the parameter of aggres-
siveness. A larger value of m increases the synchronization
latency since the local clock converges slower to the refer-
ence node, while it avoids the synchronization error to be
increased significantly when the reference node changes.
Eq. (4) establishes the relation of the local clock and the
adjusted clock of the reference node based on the linearity
of the clocks. As discussed in Section 3.1, the original clock
is regarded as a linear function of real time within a short
period of time. The adjusted clock is regarded as linear as
long as no adjustment occurs during that period of time.
Eq. (5) follows that the expected emission time of the
(j + m)th beacon is T j+m. By solving Eqs. (2), (3), (4) and

(5) containing 4 variables kj
i , bj

i , ðts
jþm
ref Þ

� and ðtjþm
i Þ

�, we get:

kj
i ¼

ðT jþm � ðkj�1
i � tj

i þ bj�1
i ÞÞ � ðts

j�1
ref � tsj�2

ref Þ
ðtj�1

i � tj�2
i Þ � ðT jþm � tsj�1

ref Þ þ ðt
j�1
i � tj

i Þ � ðtsj�1
ref � tsj�2

ref Þ

bj
i ¼ kj�1

i � tj
i þ bj�1

i

� ðT jþm � ðkj�1
i � tj

i þ bj�1
i ÞÞ � ðts

j�1
ref � tsj�2

ref Þ � tj
i

ðtj�1
i � tj�2

i Þ � ðT jþm � tsj�1
ref Þ þ ðt

j�1
i � tj

i Þ � ðtsj�1
ref � tsj�2

ref Þ

By repeatedly updating kj
i and bj

i using received beacons
from the reference node, the local adjusted clock of each
node i gradually catches up with the pace of the reference
clock and the network is hence synchronized.
4.4. Effectiveness of SSTSP

In this section, we provide analytical analysis on the
effectiveness of SSTSP by studying the synchronization
error bound of SSTSP. Lemma 1 shows that regardless
of the initial value, the adjusted clock of i, ci, converges
to the adjusted timestamp of the reference node tsref, where
tsref = tref + tp.

Lemma 1. For any node i, its local adjusted clock, ci,

converges to tsref.

Proof. Let Dn
i be the difference between ciðtn

i Þ and tsn
ref when

receiving the nth beacon: Dn
i ¼ ciðtn

i Þ � tsn
ref . Let

(n + q) * BP + dn+q be the time when the reference node
emits the (n + q)th beacon (q P 1), where dn+q is the time
elapsed between the scheduled emission time of the beacon
and its actual emission time. The timestamp in the beacon
is adjusted at node i by adding tp to tsnþq

ref :
tsnþq

ref ¼ ðnþ qÞ � BPþ dnþq þ tp.
By (3) we have:

kn
i � ðtnþm

i Þ� þ bn
i ¼ ðtsnþm

ref Þ
� ¼ ðnþ mÞ � BPþ tp ð6Þ

Apply (1) at tn
i and tnþ1

i we get:

ciðtn
i Þ ¼ kn

i � tn
i þ bn

i ¼ tsn
ref þ Dn

i

¼ n � BPþ dn þ tp þ Dn
i ð7Þ

ciðtnþ1
i Þ ¼ kn

i � tnþ1
i þ bn

i ¼ tsnþ1
ref þ Dnþ1

i

¼ ðnþ 1Þ � BPþ dnþ1 þ tp þ Dnþ1
i ð8Þ

By the linearity of the clock we have:

ðtnþm
i Þ� � tn

i

ðtsnþm
ref Þ

� � tsn
ref

¼ ðt
nþm
i Þ� � tnþ1

i

ðtsnþm
ref Þ

� � tsnþ1
ref

ð9Þ

Combining (6)–(9), we get:

Dnþ1
i

Dn
i

¼ ðm� 1Þ � BP� dnþ1

m � BP� dn
<

d
m � BP�d m ¼ 1
ðm�1Þ � BP
m � BP�d m > 1

(

where d = max(dj), (j > 1). Recursively we get:

Dnþq
i

Dn
i

<
ð d

m � BP�d Þ
q m ¼ 1

ððm�1Þ � BP
m � BP�d Þ

q m > 1

(

Given any synchronization error threshold D and Dn
i ,

after

½log d
ðm � BP�dÞ

D
Dn

i
� BPs ðif m ¼ 1Þ or

½logðm�1Þ � BP
ðm � BP�dÞ

D
Dn

i
� BPs ðif m > 1Þ

the difference between the local adjusted clock of node i

and the clock of the reference node will drop below the
threshold. The adjusted clock thus converges to tsref. h

Apply Lemma 1 and |tsref � tref| < �, it is easy to prove
that the maximum synchronization error is bounded by
2�, typically 10 ls.

Lemma 2 studies the difference between ci and tsref when
the reference node changes.

Lemma 2. For any node i, let D�i and Dþi be the

difference between ci and tsref (ref is the old reference

node) before and after the reference node changes, then

Dþi < ðlþ 2Þ � D�i .

2460 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
Proof. It takes (l + 3) BPs before node i can re-adjust its
local clock to the new reference clock: during the first
(l + 1) BPs, the new reference node is elected via conten-
tion; during the following two BPs, each node validates
the timestamp sent by the new reference node in previous
BP and gets enough validated timestamps to adjust its local
clock. Let tn

ref ¼ n � BPþ dn (dn is defined the same as in
Lemma 1) be the time when the last beacon is emitted by
the old reference node. The beacon is received by i at local
unadjusted time tn

i . The difference between ciðtn
i Þ and tsn

ref is
D�i . Let tnþlþ3

ref ¼ ðnþ lþ 3Þ � BPþ dnþlþ3 be the local time
of the old reference node when the new reference node
emits its beacon in the (l + 3)th BP with which node i

begins to adjust its local clock to the new reference clock.
The difference between ciðtnþlþ3

i Þ and tsnþlþ3
ref is Dþi . Between

tsn
ref and tsnþlþ3

ref , the synchronization error cannot be con-
trolled since no adjustment is done during this period.
After tsnþlþ3

ref all the nodes synchronize to the new reference
node, and the synchronization error decreases. We prove in
the following that Dþi < ðlþ 2Þ � D�i .

By (3) we get:

kn
i � ðtnþm

i Þ� þ bn
i ¼ ðtsnþm

ref Þ
� ¼ ðnþ mÞ � BPþ tp ð10Þ

Apply (1) at tn
i and tnþlþ3

i we get:

ciðtn
i Þ¼ kn

i � tn
i þbn

i ¼ tsn
ref þD�i ¼ n � BPþdnþ tpþD�i ð11Þ

ciðtnþlþ3
i Þ¼ kn

i � tnþlþ3
i þbn

i ¼ tsnþlþ3
ref þDþi

¼ðnþ lþ3Þ � BPþdnþlþ3þ tpþDþi ð12Þ

By the linearity of the clock we have:

ðtnþm
i Þ� � tn

i

ðtsnþm
ref Þ

� � tsn
ref

¼ ðt
nþm
i Þ� � tnþlþ3

i

ðtsnþm
ref Þ

� � tsnþlþ3
ref

ð13Þ

Combining (10)–(13), we get

Dþi
D�i
¼ ðm�l�3ÞBP�dnþlþ3

mBP�dn

Note that dn, dn+l+3� BP, we get

Dþi
D�i
¼ m�l�3

m þ oð1Þ

We can see from the proof that the optimal value of m in
terms of the performance when the reference node changes
is l + 3 in that the adjusted clock of each node is expected
to converge to the same time when a new round of synchro-
nization begins. Even in the worst case where m = 1, Dþi
can be bounded by ðlþ 2Þ � D�i . h

It is further easy to prove that the synchronization error
after the change of the reference node is bounded by
jm�l�3

m j � synþ 2�, where syn_err is the synchronization
error before the reference node changes. Combining
Lemma 1 and Lemma 2, we have the following theorem
on the synchronization error of SSTSP:

Theorem 1. The synchronization error of SSTSP r can be

bounded by j m�l�3
m j � 2�þ 2�.

From the above theorem, we can see that by carefully
configuring the parameters, the synchronization of SSTSP
can be controlled under 10 ls.
4.5. Traffic and storage overhead

In terms of traffic overhead, the number of synchroniza-
tion beacons emitted in SSTSP is the same as in TSF, while
the size of each beacon increases from 56 bytes (24 bytes of
preamble and 32 bytes of data) in TSF to 92 bytes (assume
128-bit hash values are used) in SSTSP due to the hash val-
ues and the interval index included to secure the beacons.

Besides, each node is required to store its own hash
chain. It can either create the hash chain all at once and
store all the elements or only store the last element and
compute the new element on demand. Jakobsson [7] pro-
poses a hybrid storage efficient mechanism to reduce stor-
age with a small recomputation penalty: a one-way hash
chain with n elements only requires log2(n) storage and
log2(n) computation to access an element. Each node is also
required to buffer temporarily the synchronization beacons
received during last 2 BPs. In most cases 300–500 bytes of
memory can meet the requirement. We argue that the stor-
age requirement as well as the increase in the beacon size is
reasonable considering the gain in performance and secu-
rity that SSTSP achieves.

4.6. Security analysis

Synchronization beacon forgery and alteration: Attackers
may attack the synchronization protocols by forging or
modifying synchronization beacons. SSTSP uses the lTE-
SLA scheme to ensure the integrity and authenticity of
the synchronization beacons. This prevents the external
attackers from modifying or forging the synchronization
beacons or impersonating the reference node. A more seri-
ous case is when an internal attacker becomes the reference
node. In this case, the guard time check serves as a defense
line to decrease the effectiveness of the attacks such that the
attacker can only forge timestamps whose difference with
the receiver’s local time is within the guard time, otherwise
the beacons containing incorrect timestamps are rejected.
We argue that the impact of this attack is limited in that
all nodes are synchronized to a virtual clock that may be
slightly different to the real clock of the reference node.
However, the internal attacker cannot desynchronize the
network.

Synchronization beacon replay and relay: Attackers may
replay the out-of-date synchronization beacons to deliber-
ately magnify the offset of the time declared in the replayed
message and actual time. As a more delicate version of
replay attacks, an attacker may firstly jam the channel
between the reference node and the victim node A, then
delay the synchronization beacons from the reference node
and relay it to A later to make A incorrectly estimate the
time of the reference node (This attack is referred to as
pulse-delay attack in Ganeriwal et al. [10]). The ‘‘clock drift
check’’ can thwart these attacks. The argument is that in
most cases (l < 4), if the beacon is replayed or relayed, since
the attacker cannot receive and emit at the same time, we
have jtsj

ref � ciðtj
iÞj > T beacon > d, where Tbecon is the trans-

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2461
mission time of a beacon including the header and pream-
ble (note that transmitting only the short preamble requires
96 ls in IEEE 802.11b, even in IEEE 802.11g ERP-
OFDM, we have Tbeacon = 50.7 ls > d). Even in extreme
cases where l P 4, we can add a number of bits as padding
in the beacons (the padding is also included as the HMAC
input) to counter the replay or relay attacks such that after
padding, we have Tbeacon > d.

Deny of service: Besides the efforts to violate the proper
behavior of the synchronization procedure, attackers can
disturb the transmission of synchronization beacons at
the beginning of each BP or simply generate a massive
amount of messages to jam the wireless channel, impeding
the traffic including the transmission of time synchroniza-
tion beacons. Jamming attacks are beyond the scope of
our discussion. Actually under jamming attacks all com-
munications in the network are disabled.
Fig. 2. Maximum clock difference: IEEE 802.11 TSF, 100 nodes.
4.7. Performance analysis

In this section, we analyze the influence of the following
factors on the synchronization protocols.

• Medium access delay: the waiting time at MAC layer
before accessing the channel. This delay is non-deter-
ministic in nature ranging from a few microseconds to
a few minutes. In SSTSP, timestamping the beacons
below MAC layer removes this delay, the most signifi-
cant factor in the synchronization process.

• Beacon transmission delay: time taken in transmitting
the beacon bit-by-bit at the radio of the sender node.
This delay is hundreds of microseconds and determin-
istic in nature depending on the beacon size and the
radio speed. So and Vaidya [6] show that the beacon
transmission delay only adds a few nanoseconds to
the synchronization error. Its influence can be
annulled by taking into account the delay when
adjusting the local clock.

• Beacon propagation delay: time over the wireless link
between the sender and receiver node. This delay is typ-
ically less than 1 ls.
Fig. 3. Maximum clock difference: IEEE 802.11 TSF, 300 nodes.
4.8. Simulation study

We further evaluate the performance of SSTSP by sim-
ulation. We set the relative clock frequency with respect to
real time uniformly distributed in the range of
[1 � 0.01%,1 + 0.01%], which is the worst clock accuracy
allowed by the 802.11 standards. We run the simulation
for 1000 s for OFDM system with bit-rate of 54 Mbps:
w = 30, BP = 0.1 s, l = 1, the number of nodes
N = 100 � 500 and the beacon length is 4 slot time. We
also set the packet error rate to be 0.01%. We let 5% of
the stations leave at BP k * 200 s (k > 1). They return after
50 s. In order to simulate the impact of changing the refer-
ence node, we let the reference node leave at 300 s, 500 s
and 800 s.

IEEE 802.11 TSF: Figs. 2 and 3 show the maximum
clock drift of IEEE 802.11 TSF in the network of 100
and 300 nodes. We can see the scalability problem due to
the fastest node asynchronization and the beacon collision
problem discussed in Section 2.

SSTSP: Figs. 4 and 5 show the maximum clock drift of
SSTSP in the network of 500 nodes with m = 4 and m = 1.
We can see that SSTSP significantly outperforms IEEE
802.11 TSF by achieving a very precise synchronization
with the maximum clock difference below 15 ls after the
protocol stabilizes, which is among the best results of cur-
rently proposed solutions (see [11,12] for their detailed
results). Comparing the two figures, we can see that a lar-
ger m achieves better performance when the reference node
changes. Table 2 studies the maximum clock difference of
different m. We suggest to choose m = 2 or 3 to reach a bet-
ter tradeoff between synchronization accuracy and syn-
chronization latency.

Performance under attacks: We also simulate IEEE
802.11 TSF and SSTSP in a hostile environment where
an attacker attacks the synchronization protocols during

Fig. 4. Maximum clock difference: SSTSP, 500 nodes, m = 4.

Fig. 5. Maximum clock difference: SSTSP, 500 nodes, m = 1.

Table 2
Maximum clock difference vs m

m Maximum clock difference (ls)

1 12
2 7
3 6
4 6
5 6

Fig. 6. Maximum clock difference: IEEE 802.11 TSF, 100 nodes, an
attacker.

Fig. 7. Maximum clock difference: SSTSP, 500 nodes, an attacker.

2462 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
400–600 s. The attacker attacks by deliberately sending the
synchronization beacons at each BP without delay with an
erroneous time value slower than its local clock. We care-
fully configure the erroneous time values such that they
can pass the guard time check in SSTSP. Figs. 6 and 7 show
the synchronization error of IEEE 802.11 TSF and SSTSP
under the above attack. The synchronization error of IEEE
802.11 TSF uprises to 20,000 ls during the attack. The
attacker always wins the contentions thus disabling the fast
nodes from emitting beacons. Other protocols improving
IEEE 802.11 TSF are also vulnerable to the attack because
they depend on the fast nodes to spread the timing infor-
mation. However, in SSTSP the attacker cannot desyn-
chronize the network even though it manages to become
the reference.
5. Multi-hop secure time synchronization procedure

In the rest of the paper we consider a more challenging
task, secure and scalable time synchronization in multi-hop
ad hoc networks. Compared with many existing synchroni-
zation protocols that form a synchronization tree in the
network, our secure multi-hop time synchronization proce-
dure (MSTSP) is fully distributed and server-less. The syn-
chronization is done only locally, without a global
synchronization leader. This feature makes MSTSP robust
to topology change and link failure, which happen fre-
quently in multi-hop mobile ad hoc networks.
5.1. Overview

In MSTSP, we extend SSTSP, our secure synchroniza-
tion mechanism for single-hop networks presented in Sec-
tion 4, to multi-hop networks by fulfilling the following
two tasks:

First, we divide the multi-hop network into single-hop
clusters by running SSTSP. The clusters are thus automati-
cally formed and are overlapped by nature. A random delay
is added before each synchronization beacon emission to

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2463
avoid the collision with the beacon emission of neighbor clus-
ters. The intra-cluster synchronization is achieved by SSTSP
and each node in the overlapping area randomly chooses the
cluster reference node as its reference node and synchronizes
to it before it moves out of the transmission range.

We then synchronize all cluster reference nodes to achieve
network-wide synchronization. We base our design on the
topology redundancy, an intrinsic nature of ad hoc networks
that can provide certain level of tolerance to potential
attacks. More specifically, we make use of nodes in the over-
lapping area that belong to more than one clusters (we refer
to them as bridge nodes) to relay timestamps among the
cluster reference nodes. After collecting the timestamps of
the neighbor cluster reference nodes, each cluster reference
node synchronizes itself to the fastest neighbor cluster refer-
ence node. We take the advantage of the redundancy of ad
hoc networks to secure the inter-cluster or network-wide
synchronization. In MSTSP, the time partitioning problem
is avoided by the periodical exchange of time information
among neighbor clusters. As a result, the network synchro-
nizes to the fastest cluster reference node.

We give a simple motivating example to illustrate the
time synchronization between 2 neighbor cluster reference
nodes in MSTSP. Consider Fig. 8 where node r1 and r2

are two neighbor cluster reference nodes with 3 bridge
nodes A, B and C in the overlapping area. Assume r1 needs
to synchronize to r2 because its clock is slower than that of
r2. Suppose A receives the synchronization beacons from
r1, r2 at original time t1, t2 containing timestamps T1, T2.
r1 can estimate the time difference between its adjusted
clock and that of r2 using the original time of A as refer-
ence: Dt12 = (T2 � t2) � (T1 � t1).

Two points worth further explanation: (1) the adjusted
clock of A cannot be used as reference because it may be
adjusted between t1 and t2. (2) actually Dt12 is measured
in local original clock of A, the real time difference mea-
sured in the adjusted clock of r1 is Dt012 ¼ kj

1
q1

qA
Dt12. We have

jDt012 � Dt12j ¼ jðkj
1
q1

qA
� 1ÞDt12j. Given that kj

1 � 1, q1

qA
� 1

and D t12 is in order of 101–102 ls, we can ignore the differ-
ence between Dt012 and Dt12 and use D t12 as the estimation
of time difference since Dt012 cannot be calculated without
the knowledge of qA and q1.

To ensure the integrity of the time values t1, t2, T1, T2, A

puts them in the t_ex (time exchange) message:
hSB1; t1; SB2; t2; h

n�j
A ðt_exÞ; hn�jþ1

A ðsAÞi, where SB1, SB2 are
received synchronization beacons from r1, r2 containing
Fig. 8. Inter-cluster synchronization.
T1, T2, hn�j
A ðt_exÞ is the HMAC outputs applied to the mes-

sage with the Hash chain element of A corresponding to
current time interval as key, hn�jþ1

A ðsAÞ is the disclosed
key for last time interval.

It is possible that A is compromised and thus may forge
t1 and t2. To counter this attack, r1 estimates Dt12 via dif-
ferent bridge nodes A, B, C. r1 then eliminates the biased
values and sets Dt12 to the mean of the rest unbiased values.
As a result, if only one of the three nodes is compromised,
its impact on the synchronization can be removed. To
avoid the collision of t_ex message transmission, each
bridge node should desynchronize its t_ex emission (e.g.,
at time T0 + n * BP + BP/2 + d, where d is randomly cho-
sen in [0,dmax]). To make MSTSP adaptive to ad hoc net-
works of different density, each bridge node emits t_ex
messages with a pre-configured probability Ps.
5.2. MSTSP

Based on the above analysis, we add the following mech-
anisms to extend SSTSP to multi-hop networks and build
our multi-hop secure time synchronization procedure
(MSTSP).

• The reference nodes wait a random delay in the range
[0,w] · aSlotTime before emitting the synchronization
beacon at each BP to avoid the collision with the refer-
ence nodes in neighbor clusters. If a synchronization
beacon is heard during the waiting time, the node stop
the pending beacon transmission and synchronizes itself
to the sender of the beacon.

• We define a parameter Ps for the bridge nodes as the
probability of transmitting the t_ex message in each
BP. Ps depends on the density of the network and a lar-
ger value of Ps increases the robustness of MSTSP to
internal attacks at the price of higher traffic overhead.
Each bridge node b picks a random number rand from
[0,1] in each BP and compares rand with Ps. If rand < Ps,
it transmits t_ex containing all the synchronization bea-
cons received from the cluster reference nodes during the
last BP as well as the timestamps of the local original
time when it receives them.

t_ex : hSB1; t1; SB2; t2; . . . ; SBn; tn; h
n�j
b ðt_exÞ; hn�jþ1

b ðsbÞi

where SBi is the synchronization beacon emitted by the
cluster reference node i, ti is the local original time when
receiving SBi containing timestamp Ti, hn�j

b ðt_exÞ is the
HMAC applied to the whole message with the Hash chain
element of b corresponding to current time interval as
key, hn�jþ1

b ðsbÞ is the disclosed key used in last interval.
The transmission is scheduled at T0 + n * BP + BP/
2 + d to asynchronize the transmission of other bridge
nodes, where d is randomly chosen in [0,dmax].
If a bridge node detects that the difference between any
two reference nodes i and j is beyond certain threshold
by checking |(Ti � ti) � (Tj � tj)| > 2bDqmaxBP (b is the

2464 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
tolerant coefficient slightly greater than 1), it notifies
other nodes by flooding an signed alert with received bea-
cons as proof. If multiple bridge nodes detect the abnor-
mal difference, the synchronization process is re-initiated.

• Each cluster reference node A collects the synchroniza-
tion beacons of the neighbor cluster reference nodes
via bridge nodes and synchronizes itself to the fastest
neighbor reference node by performing the following
operations:

1. For the bridge nodes that send t_ex message in both
current BP and last BP, A uses the disclosed keys in
t_ex messages received in current BP to verify the
authenticity and integrity of the t_ex messages received
in last BP. Moreover, since the received t_ex messages
contain the beacons of neighbor cluster reference nodes,
A can use the disclosed keys in the beacons contained in
t_ex messages received in current BP to verify the bea-
cons contained in t_ex messages received in last BP.
Note that A cannot directly get the disclosed keys of
its neighbor cluster reference nodes since A cannot hear
them. However, A can obtain them via bridge nodes in
that the synchronization beacons are included in the
t_ex messages. By doing so, A thus collect a number
of verified t_ex message containing verified beacons sent
by neighbor cluster reference nodes.

2. A then uses the timestamps in these verified messages to
synchronize its local adjusted clock to the adjusted clock
of the fastest cluster reference node as illustrated in the
example. To this end, A collects all the timestamps in
the verified t_ex messages containing verified synchroni-
zation beacons among which Tr, tr

b, TA, tA
b are, respec-

tively, the timestamp in the beacon of the cluster
reference r, the original time when the bridge node b

receives the beacon from r, the timestamp in the beacon
of A, the original time when b receives the beacon from
A. A then computes Dtr

b ¼ ðT r � tr
bÞ � ðT A � tA

b Þ which
indicates the approximate time difference between A

and r in last BP estimated via b. By collecting the time dif-
ference Dtb

r from different bridge nodes b and eliminating
the outliers, A thus obtains the estimated time difference
with r, Dtr by averaging them. A then picks
Dt* = max(Dtr), the largest value from the time differ-
ences with all neighbor cluster reference node r and adds
Dt* to its original clock tA and adjusted clock cA if Dt* > 0.
In the following lemma, we show that in the stabilized
case, SSTSP is applicable in MSTSP to achieve intra-clus-
ter synchronization.

Lemma 3. SSTSP is applicable in MSTSP to achieve intra-

cluster synchronization in the stabilized case.
Proof. In the stabilized case, each cluster reference node A

synchronizes via a synchronization route composed of a
suite of cluster reference nodes to the fastest cluster refer-
ence node rn: A, r1, r2, . . . , rn�1, rn. On this route, ri�1 adjusts
its clock once each BP according to the timestamps in the
beacons emitted by ri. Since the local adjusted clock of rn
can be regarded as linear in that no adjustment is per-
formed at the fastest cluster reference node in MSTSP,
the adjusted clock of rn�1 can be regarded as linear because
rn�1 adjusts its clock cn�1 by adding approximately the
same time difference (q0n � q0n�1) * BP in each BP. Recur-
sively we can prove that the local adjusted time of A, cA,
can be regarded as linear. This makes (4) hold and justifies
that SSTSP can be applied in the multi-hop case for intra-
cluster time synchronization. In reality, the mobility of the
nodes and the dynamic nature of clusters increase the syn-
chronization error of intra-cluster in a multi-hop
network. h

Based on Lemma 3, we have the following result on the
effectiveness of MSTSP

Theorem 2. In stabilized cases, the synchronization error of

MSTSP can be bounded by 2NBPDq0max + 2�, where N is the

upper bound of the synchronization route (in number of hops)

mentioned in Lemma 3, Dq0max = max(q0i � q0j) � 10�6.
Proof. We consider node i who synchronizes via a synchro-
nization route R to the fastest cluster reference node rn:
r1, r2, . . . , rn�1, rn, 1 6 n 6 N + 1. In an m-hop ad hoc net-
work, we have N � O(m). We now study the synchroniza-
tion error between two reference nodes in neighbor
clusters rj, rj+1. According to MSTSP, in the kth BP, rj

receives the synchronization beacon of rj+1 via bridge
nodes containing the disclosed hash element with which it
checks the integrity and authenticity of the beacon sent
by rj+1 in the (k � 1)th BP and adjusts its clock accord-
ingly, thus the difference of the adjusted clock of rj and
rj+1 can be bounded by 2BPDq0max: |cj(t) � cj+1(t)| <
2BPDq0max. Recursively we get |c1(t) � cn(t)| < 2nBPDq0max.
Since rn is the fastest reference nodes, we have
0 < c1(t) � cn(t) < 2nBPDq0max. Apply Lemma 1, we have
|ci(t) � c1(t)| < �. Therefore, we have 2nBPDq0max �
� < ci(t) � cn(t) < 2nBPDq0max + �, which holds for each
node in the network. For any two nodes A and B, apply
the above inequality, we get jcA(t) � cB(t)j < 2NBPDq0max +
2�. h

5.3. Security analysis

In Section 4.6, we have performed the security analysis
of SSTSP, showing that SSTSP is powerful enough to pre-
vent single-hop networks or clusters from being desynchro-
nized by both malicious external and internal attackers. In
this section we focus on the attack resistance of inter-clus-
ter synchronization in MSTSP to internal attacks. As
attack examples, an internal attacker may forge t_ex mes-
sages with incorrect receiving time values of the synchroni-
zation beacons from correspondent cluster reference nodes
to desynchronize them. Two attackers may collaborate to
wormwhole a cluster reference synchronization beacon to
another cluster reference node far away. As another exam-
ple, when becoming cluster reference node, an internal
attacker may refuse to synchronize to its neighbor cluster

Fig. 9. Maximum clock difference, IEEE 802.11 TSF.

Fig. 10. Maximum clock difference, MSTSP.

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2465
reference node even the latter is fastest. MSTSP provides
two defense lines to ensure the inter-cluster synchroniza-
tion against these malicious attacks:

• MSTSP takes the advantage of the topology redundancy
of ad hoc networks to provide multiple synchronization
paths via different bridge nodes to thwart the attacks to
inter-cluster synchronization.

• The compromised or desynchronized cluster reference
nodes can be detected by the bridge nodes by emitting
alert messages when they detect that the clock difference
is beyond the threshold. The synchronization procedure
is then re-initiated.

In our approach, a collision of Hash chain elements may
cause a security flaw that two or more nodes share their
keys to secure their synchronization beacons. If one of
them are malicious, it can impersonate others without
being detected. Hereby we perform an analysis on the col-
lision probability Pc: let A be the number of Hash chain
elements in the element space, for m-bit Hash chains,
A = 2m; let N be the number of nodes in the network; let
n be the length of the hash chains; let M be the total num-
ber of Hash chain elements, M = N * n. We thus have

P c ¼ 1� Prob ðno collisionÞ ¼ 1� CM
A � M !

AM

¼ 1� A!

ðA�MÞ!AM

¼ 1� A� 1

A
A� 2

A
� � �A� ðM� 1Þ

A

¼ 1� 1� 1

A

� �
1� 2

A

� �
� � � 1�M� 1

A

� �

< 1� 1�M� 1

A

� �ðM�1Þ

� 1� 1� ðM� 1Þ2

A

 !

� M2

A
ðM� AÞ

Using 128-bit Hash chains in an ad hoc network of 1000
nodes using Hash chain containing 106 elements, we have
Pc < 10�28, which can be regarded as negligible.

5.4. Performance evaluation

We evaluate MSTSP by ns-2 [21] simulator. The clock
parameters and the SSTSP parameters are the same as those
in Section 4.8. The number of mobile nodes is 200 unless spe-
cifically stated. Each of them is randomly located in a
1000 m · 1000 m field with a transmission range of 250 m.
All nodes move according to the random way-point model
with maximum speed 5 m/s with the pause time 50 s. Ps is
set to 0.6 unless specifically stated. We measure 3 metrics
to evaluate the performance of MSTSP: maximum synchro-
nization error, traffic overhead and synchronization latency.

Maximum synchronization error: IEEE 802.11 TSF is not
scalable for multi-hop ad hoc networks. In the network of
200 nodes, the maximum synchronization error is already
nearly 600 ls (Fig. 9). In contrast, MSTSP shows much
better performance. As shown in Fig. 10 and Table 3, the
maximum synchronization error of MSTSP is about
61 ls in the same scenario. We further vary the network
size and simulate MSTSP in these configurations. The
result is shown in Table 3. The average synchronization
error of MSTSP is 30–50 ls. ASP is reported to achieve
100–200 ls in terms of synchronization error. The average
synchronization error of the mechanism proposed in Ren-
tel and Kunz [1] ranges from 50 to 200 ls depending on the
network size and other parameters. To our knowledge, the
accuracy of MSTSP is among the best of currently pro-
posed solutions.

Traffic overhead: Traffic overhead is a crucial issue for
time synchronization protocols in resource constrained
environments. Some traditional synchronization mecha-
nisms require each node to diffuse its local time values each
synchronization period, resulting o(n2) traffic overhead.
IEEE 802.11 TSF is very efficient in traffic cost, but its syn-
chronization error in multi-hop ad hoc networks may
uprise unboundedly. Fig. 11 shows the traffic overhead
(number of synchronization beacons plus t_ex messages
transmitted each BP) of MSTSP as Ps ranges from 0 to

Table 3
Synchronization error: MSTSP

Number of
nodes

Maximum synchronization
error (ls)

Average synchronization
error (ls)

100 55 31
200 61 36
500 83 49

Fig. 12. Maximum synchronization error, MSTSP, 200 nodes, 10%
attackers.

2466 L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467
1. When Ps = 0, no synchronization beacon is relayed in
t_ex messages, the traffic overhead equals to that of IEEE
802.11 TSF. When Ps = 1, all the bridge nodes relay the
synchronization beacons in their t_ex messages. MSTSP
is significantly more efficient than traditional approaches.
Compared with IEEE 802.11 TSF (Ps = 0), MSTSP gener-
ates 2–5 times more overhead when Ps ranges from 0.3 to
0.7. We argue that the overhead of MSTSP is acceptable
considering the improvement of performance in terms of
synchronization precision and synchronization latency.

Synchronization latency: In order to simulate the syn-
chronization latency of MSTSP, we attribute an initial
clock offset between [�200 and 200 ls] to each node and
measure the time between the beginning of the simulation
and the time when the maximum synchronization error
decreases under 100 ls. The result shows that with 100,
200 and 500 nodes in the network, the synchronization
latency is under 10 ls. Besides, once the network is syn-
chronized, MSTSP shows good stability without abrupt
peaks in the maximum synchronization error as in IEEE
802.11 TSF.

Performance under attacks: Finally we study the perfor-
mance of MSTSP in a hostile environment where 10% of
nodes are compromised and forge the receiving time values
in the t_ex messages they emit when becoming bridge
nodes. Fig. 12 shows the maximum synchronization error
of the rest 90% nodes with Ps = 0.6. We can see that with
a proper Ps value, MSTSP can maintain the network syn-
chronized even in hostile environments under malicious
attacks. However, as discussed earlier in the paper, such
attacks may cause detrimental effect on the performance
Fig. 11. Traffic overhead, MSTSP, 200 nodes.
of IEEE 802.11 TSF and other insecure synchronization
protocols.

6. Discussion

It is interesting that our approach uses lTESLA to
secure the synchronization process while lTESLA itself
requires a loose synchronization. It is not contradictory
in that the bootstrapping phase allow the new arriver to
acquire initial synchronization and enables the application
of one-way hash chains to secure the time synchronization
procedure in the synchronization phase. Once the hash
chain scheme is established and the synchronization is
secured, we can continue to use the hash chain scheme
based on the synchronized time to further maintain the
time synchronization.

In this paper, we focus on detecting malicious attacks
and preventing the network from being desynchronized
by malicious nodes using erroneous time values. However,
we do not provide recovery mechanisms when an attack is
detected. We do not address how to eliminate the attackers
either. We leave them for our future work.

In our approach, the key chain may be used up quickly.
In this case, nodes need to re-issue new hash chains for
lTESLA. To achieve this, nodes can broadcast the authen-
ticated last element of the new hash chain to be used when
the current chain is to be used up within a few time inter-
vals. Better mechanisms include using 2-dimensional hash
chain or interleaved hash chain to achieve seamless hash
chain renewal. Jakobsson [7] addresses the hash chain
renewal issue by proposing the infinite hash chain scheme.

7. Conclusion

In this paper, we address the security and the scalability
problems of time synchronization protocols in ad hoc net-
works. For single-hop ad hoc networks, we propose
SSTSP, a scalable and secure time synchronization proce-
dure that significantly improves the performance of IEEE
802.11 TSF. We base SSTSP on one-way Hash chain, a

L. Chen, J. Leneutre / Computer Communications 30 (2007) 2453–2467 2467
lightweight mechanism to ensure the authenticity and the
integrity of the synchronization beacons. The ‘‘clock drift
check’’ is proposed to counter replay/delay attacks. We
then extend our efforts to the multi-hop case. We propose
MSTSP, a secure and scalable time synchronization mech-
anism based on SSTSP for multi-hop ad hoc networks. In
MSTSP, the multi-hop network is automatically divided
into single-hop clusters. The secure intra-cluster synchroni-
zation is achieved by SSTSP and the secure inter-cluster
synchronization is achieved by exchanging synchronization
beacons among cluster reference nodes via bridge nodes.
The proposed synchronization mechanisms are fully dis-
tributed without a global synchronization leader. We fur-
ther perform analytical studies and simulations on the
proposed approaches. The results show that SSTSP can
synchronize single-hop networks with the maximum syn-
chronization error under 20 ls and MSTSP 55–85 ls for
multi-hop networks, which are, to the best of our knowl-
edge, among the best results of currently proposed solu-
tions for single-hop and multi-hop ad hoc networks.
Meanwhile, our approaches can maintain the network syn-
chronized even in hostile environments.
References

[1] C.H. Rentel, T. Kunz, Network Synchronization in Wireless Ad Hoc
Networks, Technical Report SCE-04-08, Carleton University, Sys-
tems and Computer Engineering, July 2004.

[2] NTP Project, <http://www.eecis.udel.edu/ mills/ntp.html>.
[4] ANSI/IEEE Std 802.11, 1999 Edition.
[5] T. Lai, D. Zhou, Efficient and Scalable IEEE 802.11 Ad-Hoc-Mode

Timing Synchronization Function, in: Proceedings of the IEEE 17th
International Conference on Advanced Information Networking and
Applications (AINA ’03), Xi’an, China, March 2003.

[6] J. So, N.H. Vaidya, A Distributed SelfStabilizing Time Synchroni-
zation Protocol for Multi-hop Wireless Networks, Technical Report,
UIUC, January 2004.

[7] M. Jakobsson, Fractal hash sequence representation and traversal,
IEEE International Symposium on Information Theory (2002).

[8] H. Song, S. Zhu, G. Cao, Attack-Resilient Time Synchronization for
Wireless Sensor Networks, in: 2nd IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS05), Washington, DC,
November 2005.

[9] G. Khanna, A. Masood, C.N. Rotaru, Synchronization Attacks
Against 802.11, Networks and Distributed Systems Symposium
(NDSS) Workshop, San Diego, 2005.

[10] S. Ganeriwal, S. Capkun, C. Han, M. Srivastava, Secure Time
Synchronization Service for Sensor Networks, WiSE 2005.
[11] J. Sheu, C. Chao, C. Sun, A Clock Synchronization Algorithm for
Multi-Hop Wireless Ad Hoc Networks, ICDCS 2004.

[12] D. Zhou, T. Lai, A Compatible and Scalable Clock Synchronization
Protocol in IEEE 802.11 Ad Hoc Networks, ICPP 2005.

[13] J. Elson, L. Girod, D. Estrin, Fine-Grained Network Time Synchro-
nization using Reference Broadcasts, in: Proceedings of the Fifth
Symposium on Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, December 2002.

[14] S. Ganeriwal, R. Kumar, M. Srivastava, Timing Sync. Protocol for
Sensor Networks, ACM SenSys, Los Angeles, USA, 2003.

[15] Y. Hu, A. Perrig, D.B. Johnson, Ariadne: A Secure On-Demand
Routing Protocol for Wireless Ad Hoc Networks, Technical Report
TR01-383, Department of Computer Science, Rice University,
December 2001.

[16] F. Stajano, R. Anderson, The Resurrecting Duckling: Security Issues
for Ad-hoc Wireless Networks, in: B. Christianson, B. Crispo, and M.
Roe (Eds.), Security Protocols, 7th International Workshop, Springer
Verlag, Berlin, Heidelberg, 1999.

[17] K. Römer, P. Blum, L. Meier, Time Synchronization and Calibration
in Wireless Sensor Networks, Handbook of Sensor Networks:
Algorithms and Architectures, John Wiley and Sons, 2005.

[18] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS:
Security Protocols for Sensor Networks, Mobile Computing and
Networking, Rome, Italy, 2001.

[19] K. Sun, P. Ning, C. Wang, Secure and Resilient Clock Synchroni-
zation in Wireless Sensor Networks (Invited Paper), in: IEEE Journal
on Selected Areas in Communications, vol. 24, No. 2, February 2006,
pp. 395–408.

[21] The network simulator - ns2. <http://www.isi.edu/nsnam/ns/>.

Lin Chen is currently Ph.D. candidate in the
department of Computer Science of ENST, Paris.
He received his B.E. degree in Radio Engineering
from Southeast University, China in 2002 and the
Engineer Diploma from ENST, Paris in 2005. He
also holds a M.S. degree of Networking from
Paris University. His main research interests
include security issues of wireless ad hoc net-
works and cooperation enforcement.
Jean Leneutre is an associate professor at the

department of Computer Science and networks at
ENST (French National School of Telecommu-
nications), CNRS LTCI-UMR 5141 laboratory.
He received his Ph.D. in Computer Science from
ENST in 1998. His main research interests
include security models and mechanisms for
mobile ad hoc networks.

http://www.eecis.udel.edu/mills/ntp.html
http://www.isi.edu/nsnam/ns/

	Toward secure and scalable time synchronization in ad hoc networks
	Introduction
	Related work
	IEEE 802.11 TSF in ad hoc mode
	Scalable time synchronization for ad hoc networks
	Secure and fault tolerant time synchronization

	System model
	Clock model
	Time synchronization model
	Attacker model

	Single-hop secure time synchronization procedure
	Design philosophy
	Assumptions and requirements
	Synchronization procedure
	Node initiation
	Bootstrapping phase
	Synchronization phase

	Effectiveness of SSTSP
	Traffic and storage overhead
	Security analysis
	Performance analysis
	Simulation study

	Multi-hop secure time synchronization procedure
	Overview
	MSTSP
	Security analysis
	Performance evaluation

	Discussion
	Conclusion
	References

