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a b s t r a c t

This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures,
especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing
strategy, where energy tariffs are function of the overall power demand of customers. We consider two
practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own
scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze
numerically these two approaches, showing that they are characterized practically by the same perfor-
mance level in all the considered grid scenarios.

We model the proposed system using a non-cooperative game theoretical approach, and demonstrate
that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a
simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equi-
librium, thus demonstrating the robustness of the power scheduling plan obtained without any central
coordination of the operator or the customers. Numerical results, obtained using real load profiles and
appliance models, show that the system-wide peak absorption achieved in a completely distributed fash-
ion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the
growing energy demand.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The electricity generation, distribution and consumption are in
the throes of change due to significant regulatory, societal and
environmental developments, as well as technological progress.
Recent years have witnessed the redefinition of the power grid in
order to tackle the new challenges that have emerged in electric
systems. One of the most relevant challenges associated with the
current power grid is represented by the peaks in the power
demand due to the high correlation among energy demands of cus-
tomers. Since electricity grids have little capacity to store energy,
power demand and supply must balance at all times; as a conse-
quence, energy plants capacity has to be sized to match the total
demand peaks, driving a major increase of the infrastructure cost,
which remains underutilized during off-peak hours. This waste of
resources has become an even more critical issue in the last few
years due to the increase of the worldwide energy consumption
79

80

81

82

83
[1] and the increasing share of renewable energy sources [2]. High
energy peaks are mostly due to residential users, who cover a rel-
evant portion of the worldwide energy demands [3], but are inelas-
tic with respect to the grid requirements as they usually run their
home appliances only depending on their own requirements. For
this reason, residential users can play a key role in addressing
the peak demand problem. Time-Of-Use (TOU) tariffs represent a
clear attempt to incite users to shift their energy loads out of the
peak hours [4].

The most promising solution to tackle the peak demand chal-
lenge is represented by the Smart Grid, in which an intelligent
infrastructure based on Information and Communication Technol-
ogy (ICT) tools is deployed alongside with the distribution net-
work, which can deal with all the decision variables while
minimizing the effort required to end-users. All data provided by
the grid, such as the consumption of buildings [5,6], electricity
costs and distributed Renewable Energy Sources (RESs) data, can
be used to optimize its efficiency through Demand-Side Manage-
ment (DSM) methods, which represent a proactive approach to
manage the household electric devices by integrating customers’
needs and requirements with the retailers’ goals [7]. The main
objective of these methods is to shape the consumers’ energy
(2014),
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demand in a proper way by deciding when and how to execute
home appliances so as to improve the overall system efficiency
while guaranteeing low costs and high comfort to users.

The most common way to incentivize consumers to modify
their consumption is to define convenient electric energy tariffs.
In fact, by increasing the energy price, we expect that users’
demand naturally tends to decrease (i.e., higher prices cause con-
sumption to decrease, and vice versa). A considerable number of
tariffs are available to define electric energy prices among which
time-of-use, Critical-Peak Pricing (CPP) and Real-Time Pricing
(RTP). In the TOU case, electricity prices depend on the time of
day and are set in advance. Critical-peak pricing is a variant of
TOU, in which in case of emergency situations (e.g., high demand)
the price is raised. Finally, in real-time pricing, electricity prices
can change as often as hourly, reflecting the utility cost of supply-
ing energy to consumers. All these tariffs can be defined to achieve
different purposes, such as reducing the peak load and maximizing
the usage of renewable energy generation. In the first case, the
energy prices are higher during peak hours and lower in off-peak
hours. As a consequence, consumers are incentivized to move their
loads to off-peak periods, therefore reducing the peak load, and the
need for generation, transmission and distribution capacity, as well
as grids investments. In the second case, the electricity prices are
higher in case of lack of renewable generation and lower in case
of excess of Renewable Energy Resource (RES) productions, in
order to elastically adapt the users’ demand to fluctuating genera-
tions of renewable sources.

In this paper we propose a novel, fully distributed DSM system
aimed at reducing the peak demand of a group of residential users
(e.g., a smart city neighborhood). In particular, we consider a real-
time pricing scheme, where energy tariffs are function of the overall
power demand of customers.

We model our system using a game theoretical approach, con-
sidering two practical cases where (1) each appliance decides
autonomously its scheduling in a fully distributed fashion (Single-
Appliance DSM), and (2) each user must schedule all his home
appliances (Multiple-Appliance DSM). The proposed approach
automatically ensures the reduction of the electricity demand at
peak hours due to dynamic pricing.

We compare numerically these two cases, showing that the first
is characterized only by a negligible performance degradation in all
the considered grid scenarios. Nevertheless, while both mecha-
nisms achieve almost the same performance level, the Multiple-
Appliance DSM system requires a more complex architecture with
a central server for each house that collects all appliances informa-
tion and plays on behalf of the householder. Such an approach
would increase the installation and operating costs due to the
higher system complexity. On the contrary, in the Single-Appliance
DSM system, one can use the processing and communication capa-
bilities of devices that can autonomously optimize their usage,
thus greatly simplifying the architecture design and system config-
uration. This solution is made possible by the diffusion of Smart
Appliances that are no longer merely passive devices, but active
participants in the power grid infrastructure [8].

We underline that, while recent literature has focused on the
design of DSM systems for controllable devices [9], namely devices
whose power load profile within their operating time can be mod-
ulated according to the DSM goals, our work designs a distributed
DSM to select the best (cheapest) schedule for shiftable appliances.
Indeed, differently from air conditioning or heating systems, appli-
ances like washing machines and electric dishwashers have a fixed
power profile optimized for specific goals. In such cases, a user can
choose only the starting time for each shiftable appliance, whose
power profile is fixed. Nonetheless, the decision on the appliance’s
starting time affects the price paid in all successive execution time
slots, since the appliance’s operational phases cannot be postponed
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
http://dx.doi.org/10.1016/j.comcom.2014.11.001
or modified. Therefore, our scheme is complementary to
approaches devised for controllable devices like the one presented
in [9], which solve an orthogonal distributed power scheduling
problem.

We demonstrate that our game is a generalized ordinal potential
game [10] under some simple and very general conditions (viz., the
regularity of the pricing function). Such feature guarantees some
nice properties, such as the existence of at least one pure Nash
equilibrium (where no player has an incentive to deviate unilater-
ally from the scheduling pattern he decided upon). Furthermore,
we show that any sequence of asynchronous improvement steps
is finite and always converges to a pure Nash equilibrium.

In summary, our paper makes the following contributions:

� The proposition of a novel, fully distributed DSM method,
able to reduce the peak demand of a group of residential
users, which we model and study using a game theoretical
framework. In our vision, the energy retailer fixes the
energy price dynamically, based on the total power
demand of customers; then, appliances autonomously
decide their schedule, reaching an efficient Nash equilib-
rium point.

� Mathematical proofs that our proposed game is a general-
ized ordinal potential game, under general conditions.

� The demonstration of the Finite Improvement Property,
according to which any sequence of asynchronous
improvement steps (and, in particular, best response
dynamics) converges to a pure Nash equilibrium.

� A thorough numerical evaluation that shows the effective-
ness of the proposed approach in several scenarios, with
real electric appliances scheduled by householders.

The paper is organized as follows. Section 2 discusses related
work. Section 3 describes the main characteristics of the distrib-
uted system we propose to manage the energy consumption of res-
idential users. Section 4 presents our proposed game theoretical
formulation for the Single and Multiple-Appliance DSM, as well
as the structural properties of our game. Numerical results are pre-
sented and analyzed in Section 5. Finally, Section 6 concludes the
paper.

2. Related work

Demand-Side Management (DSM) mechanisms have recently
gained attention by the scientific community due to their advanta-
ges in terms of wise use of energy and cost reduction [11]. In DSM
systems proposed in the literature, a mechanism is defined that,
based on energy tariffs and data forecasts for future periods (e.g.,
photovoltaic power generation, devices future usage), is able to
automatically and optimally schedule the home devices activities
for future periods and to define the whole energy plan of users
(i.e., when to buy and sell energy to the grid) [12]. The main goal
of these solutions is to minimize the electricity costs while guaran-
teeing the users’ comfort; this can be achieved through the execu-
tion of methods based on optimization models [13,14] or
heuristics, such as Genetic Algorithms [15] and customized Evolu-
tionary Algorithms [16], which are used to solve more complex for-
mulations of the demand management problem. Since RESs
diffusion is rapidly increasing, several works include renewable
plants into DSM frameworks. In these cases, devices are scheduled
also based on the availability of an intermittent electricity source
(e.g., PV plants) and users’ profits from selling renewable electricity
to the energy market are taken into account [17]. The uncertainty
of RESs generation forecasts is tackled through stochastic
approaches, such as stochastic dynamic programming which is a
very suitable tool to address the decision-making process of energy
e management framework for the smart grid, Comput. Commun. (2014),
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Fig. 1. Example of a load profile lahf of a washing machine.
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management systems in presence of uncertainty, such as the one
related to the electricity produced from weather-dependent gener-
ation sources [18]. The efficiency of demand management solu-
tions can be notably improved by including storage systems that
can increase the DSM flexibility in optimizing the usage of electric
resources. Specifically, batteries can be used to harvest the renew-
able generation in excess for later use or to charge the ESS when
the electricity price is low, with the goal of minimizing the users’
electricity bill [19].

Solutions [13–19] are based on a single-user approach in which
the energy plans of residential customers are individually and
locally optimized. However, in order to achieve relevant results
from a system-wide perspective, the energy management problem
could be applied to groups of users (e.g., a neighborhood or micro-
grids), instead of single users. For this reason, some preliminary
solutions have been proposed in the literature to manage energy
resources of groups of customers. In [20], for example, the energy
bill minimization problem is applied to a group of cooperative res-
idential users equipped with PV panels and storage devices (i.e.,
electric vehicle batteries). A global scale optimization method is
also proposed in [21], in which an algorithm is defined to control
domestic electricity and heat demand, as well as the generation
and storage of heat and electricity of a group of houses. These
multi-user solutions require some sort of centralized coordination
system run by the operator in order to collect all energy requests
and find the optimal solution. To this end, a large flow of data must
be transmitted through the Smart Grid network, thus introducing
scalability constraints and requiring the definition of high-perfor-
mance communication protocols. Furthermore, the coordination
system should also verify that all customers comply with the opti-
mal task schedule, since the operator has no guarantee that any
user can gain by deviating unilaterally from the optimal solution.
Therefore, the collection of users’ metering data and the enforcing
of the optimal appliance schedule can introduce novel threats to
customers’ security and privacy. For these reasons, some distrib-
uted DSM methods have been proposed in which decisions are
taken locally, directly by the end consumer. In this case, Game The-
ory represents the ideal framework to design DSM solutions. Spe-
cifically, in [9] a distributed DSM system among users is
proposed, where the users’ energy consumption scheduling prob-
lem is formulated as a game: the players are the users, and their
strategies are the daily schedules of their household appliances
and loads. The goal of the game is to either reduce the peak
demand or the energy bill of users. A game theoretical approach
is also used in [22], in which a distributed load management is
defined to control the power demand of users through dynamic
pricing strategies. However, in these works, a very simplified
mathematical description is used to model houses, which does
not correspond to real use cases.

In this paper we propose a DSM method, based on a game the-
oretical approach, which overcomes the most important limita-
tions of the works proposed in the literature and described
above. Our DSM is a fully distributed system, in which no central-
ized coordination is required, and only a limited and aggregated
amount of data needs to be transmitted between the operator
and the householders through the Smart Grid. For these reasons,
scalability, communication, privacy and security issues are greatly
mitigated. Moreover, a realistic model of household contexts is
illustrated; specifically, a mathematical description of home
devices is provided. Devices are defined as non-preemptable activ-
ities characterized by specific load consumption profiles, deter-
mined based on real data, and are scheduled according to users’
preferences defined based on real use-case scenarios. Finally, to
the best of our knowledge, the single-appliance demand manage-
ment game proposed in this paper, in which electric devices can
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
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autonomously and locally optimize their usage, has never been
studied in the literature.
3. System model

The power scheduling system here proposed is designed to
manage the electric appliances of a group of residential users con-
sisting of a set H of houses (e.g., a smart city neighborhood). This
system is used to schedule the energy plan of the whole group of
users over a 24-h time horizon based on a fully distributed
approach, with the final goal of improving the efficiency of the
whole power grid by reducing the peak demand of electricity,
while still complying with users’ needs and preferences. More spe-
cifically, in our model we represent the daily time as a set T of time
slots. Each householder1 h 2 H has a set of non-preemptive electric
appliances, A, that must be executed during the day. In particular,
the load profile of each appliance is modeled as an ordered sequence
of phases, F , in which a certain amount of power is consumed. We
assume that the power consumption lahf of a device a 2 A belonging
to user h 2 H in each phase f 2 F is an average of the real consump-
tion of the device within the time slot duration (see Fig. 1, where 15-
min phases are used for a washing machine [23]).

Each device a of user h needs to run for dah consecutive slots
within a total of Rah slots delimited by a minimum starting time
slot, STah, and a maximum ending time slot, ETah (verifying the con-
straint STah 6 ETah � dah þ 1). These two parameters, STah and ETah,
represent the users’ preferences in starting each home device; they
can be directly provided by users or automatically obtained
through learning algorithms such as the one presented in [24].

In our model, we consider two different kinds of devices:

� Shiftable appliances (e.g., washing machine, dishwasher): they
are manageable devices that must be scheduled and executed
during the day and are represented by the set As #A. For each
shiftable device a 2 As of the householder h 2 H, the minimum
starting time and the maximum ending time verify the con-
straint STah < ETah � dah þ 1. Hence, their scheduling is an opti-
mization variable in our model.
� Fixed appliances (e.g., light, TV) are non-manageable devices,

for which the starting/ending times are fixed, and are repre-
sented by the set Af #A. For each fixed device a 2 Af of the
householder h 2 H, the minimum starting time and the maxi-
mum ending time verify the constraint STah ¼ ETah � dah þ 1.
1 In this paper, we use the terms householder and user interchangeably.

e management framework for the smart grid, Comput. Commun. (2014),
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Devices scheduling is represented by the binary variable xaht ,
which is defined for each appliance a 2 A of each householder
h 2 H, and for each time slot t 2 T . It is equal to 1 if appliance a
starts in time slot t, 0 otherwise. In order to use home appliances,
householders can buy energy from the electricity retailer. In partic-
ular, the power demand of user h at time t is denoted by yht . The
power demand of each user cannot exceed a supply limit defined
by the retailer and denoted by pSL; this limit represents the maxi-
mum power that can be used at any time.

In our model, we have decided to use a real-time pricing
approach to define the electricity tariff since it represents a very
promising method to improve the efficiency of the whole power
grid. Since the higher the demand of electricity, the larger the
capacity of grid generation and distribution to install, we suppose
that the price of electricity at time t; ctð�Þ, is an increasing function
of the total demand, yt , of the group of users H at time t. Specifi-
cally, if the power demand is lower than a threshold pTT ; ctð�Þ is a
strictly increasing function of yt , otherwise it becomes a constant
function of value ctðpTTÞ.

The power scheduling system proposed in this paper is mathe-
matically formalized to minimize the electricity bill of each resi-
dential user, by optimally scheduling house appliance activities
and managing the power absorption from the grid. However, based
on the definition of the electricity prices, its actual goal is to con-
veniently shape the load demand of consumers with the purpose
of decreasing their peak demand.

Table 1 summarizes the notation used in the paper.
To clarify the objective of the proposed DSM system, let us refer

to Fig. 1, which presents the power demand of a washing machine
as a function of its operative phases. We can observe that the
washing machine has a fixed power demand profile that cannot
be modified by the DSM system, otherwise the appliance cannot
correctly operate. For example, if the DSM system reduces the
power of the first phases, the temperature of the water might
not reach the degree required by the washing program. Our pro-
posed DSM system selects only the starting time of the washing
machine within the interval provided by the householder (e.g.,
from 7 AM to 10 PM) in order to minimize the price paid by the
user to operate the appliance, which depends on the scheduling
decisions of all other appliances in the smart grid.

4. Distributed power scheduling as a non-cooperative game

In this section, we model the distributed power scheduling
problem, which constitutes the core of our proposed DSM system,
using a non-cooperative game theoretical approach (formally
described in Definition 1), which naturally captures the interac-
tions in such a distributed decision making process. Our design
rationale (Section 4.1) is the following: each appliance a 2 A is
an autonomous decision maker (or player) that must select the start-
ing time of its execution (i.e., the xaht value); this permits to mini-
mize the coordination required by a central server that would
operate at each house to aggregate all appliances load and
scheduling constraints. Consequently, each appliance a decides
414

415

416

417

418
419

421421

Table 1
Basic notation used in the paper.

xaht Binary variable that indicates if appliance a of householder h
starts its execution at time t

yht Power demand of user h at time t
yt Total power demand at time t
ctð�Þ Pricing function
pTT Tariff threshold of the pricing function
pSL Power supply limit
lahf Consumption of device a of user h in phase f

dah Operating time slots for device a of user h
STah=ETah Starting/ending time for device a of user h

Please cite this article in press as: A. Barbato et al., A distributed demand-sid
http://dx.doi.org/10.1016/j.comcom.2014.11.001
autonomously when to buy energy from the grid (i.e., yht) in order
to minimize its contribution to the overall bill charged to house
h 2 H, according to his user’s2 needs.

Then, after having solved the single-appliance game and stud-
ied its structural properties (Section 4.2), in Section 4.4 we con-
sider a natural (and more complex) extension where a player
represents an entire household which jointly decides the schedule
of all his appliances.

4.1. Single-appliance game formulation

We first start describing the scenario where each appliance
a 2 A of house h 2 H is modeled as an autonomous player in the
power scheduling game G, which is defined as a triple
fN ; I ;Pg : N ¼ A�H is the player set, I , fIngn2N is the strategy
set with In , fxntgn2N being the strategy of player n;P , fPngn2N is
the cost function of player n with Pn being the total price paid by n
for its electricity consumption (the total price due to appliance
a 2 A of house h 2 H). Each appliance (player) n chooses its strat-
egy In to minimize its cost Pn.

The feasible power scheduling alternatives that form the strat-
egy space In of each player n ¼ ða;hÞ (i.e., each appliance a of
householder h) must satisfy both the consumer needs and energy
supply limits. Specifically, the strategy space In must satisfy the
following set of constraints:

In ¼
�

x!n ¼ xn1 . . . xnt . . . xnjT j
� �

2 f0;1gjT j :

XETn�dnþ1

t¼STn

xnt ¼ 1 ð1Þ

ynt ¼
X

f2F :f6t

lnf xnðt�fþ1Þ 8t 2 T ð2Þ

yht ¼
X
a2A

X
f2F :f6t

lahf xahðt�fþ1Þ 8t 2 T ð3Þ

yht 6 pSL 8t 2 T
�
: ð4Þ

Constraints (1) guarantee that appliance n starts in exactly one
time slot and it is carried out in the interval ðSTn; ETnÞ. Constraints
(2) determine the daily consumption profile of the appliances in
each time slot, which depends on their scheduling. More specifi-
cally, the power required by each appliance in each time slot t; ynt ,
is equal to the load profile lnf of the phase carried out at time t. Note
that a phase f is running in t, only if the appliance started at time
t � f þ 1, thus if xnðt�fþ1Þ ¼ 1. In a similar fashion, Eqs. (3) define
the daily power demand of house h based on the appliances sched-
uling. Finally, constraints (4) limit the overall power consumption of
each house, since in every time slot t 2 T , the electricity bought
from the grid cannot exceed the Supply Limit (SL) defined by the
retailer and denoted by pSL. In such constraints, the power required
by each appliance in each time slot t; ynt , is equal to the load profile
lnf of the phase executed starting from the time slot where xnt ¼ 1.
Note that (2) is used by the appliance a to compute and minimize
its contribution to the overall price charged to house h, whereas
(3) is used by householder h to compute the bill.

Having defined the strategy space of each player, we can now
define the single-appliance power scheduling game.

Definition 1 (Power scheduling game). Mathematically, the power
scheduling game is formalized as follows:

G : min
In

PnðIn; I�nÞ ¼
X
t2T

ynt � ctðytÞ; 8n 2 N : ð5Þ
2 In this paper users are house owners, therefore we use interchangeably the terms
house and user.
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The solution of the power scheduling game is characterized by a
Nash Equilibrium (NE), a strategy profile I� ¼ ðI�n; I��nÞ from which
no player has an incentive to deviate unilaterally, i.e.,

PnðI�n; I��nÞP PnðIn; I��nÞ; 8n 2 N ;8In 2 I :

To study the efficiency of the NE(s) of G, we define the social cost
of all players as the total price, P, paid by all customers to the elec-
tricity retailer, as a function of I ¼ fIngn2N , where the strategy of
player n is In ¼ fxntgn2N :

PðIÞ ¼
X
h2H

X
t2T

yht � ctðytÞ; ð6Þ

where yht is a function of xnt;n ¼ ða;hÞ 2 A �H and ct is a function
of yt that represents the total power demand of all players at time t.

By analyzing the utility functions of G, we can see that the pric-
ing function ctðytÞ plays an important role on the resulting system
equilibrium point(s). Specifically, our objective is to devise smart
pricing policies to drive the system equilibrium to the optimum
in terms of social cost. In this regard, we focus on a class of pricing
functions, termed as regular pricing functions, defined as follows.

Definition 2 (Regular pricing function). The pricing function
fctðytÞg06t6T is a regular pricing function if the following properties
hold:

� ctðytÞ is continuous, non-decreasing for 0 6 t 6 T and its deriv-
ative ct 0ðytÞ is continuous in yt;
� Given any two time intervals ½t0

u; t
1
u�; ½t0

v ; t
1
v � and power demand

in these intervals fyugt0
u<u<t1

u
; fyvgt0

v<v<t1
v
, if

Pt1
u

u¼t0
u
c0uðyuÞ >Pt1

v
v¼t0

v
c0vðyv Þ, then it holds that

Pt1
u

u¼t0
u
½yucuðyuÞ�

0
>
Pt1

v
v¼t0

v

½yvcv ðyvÞ�
0.
508

510510

511
512
Remark. Regular pricing functions characterize a family of utility
functions widely applied in practical applications. A typical exam-
ple of regular pricing function is the power function ct ¼ ayb

t where
a > 0 and b P 1. The design motivation hinging behind such pric-
ing functions is to encourage users to balance their electricity
demand and consequently decrease the peak demand.

In the following analysis, we show that under the condition that
the pricing policy can be expressed by a regular function, the
power scheduling game G admits a number of desirable properties,
particularly from the perspective of social cost.

4.2. Solving the power scheduling game

In this subsection, we solve the power scheduling game G and
study the structural properties of the game. We are specifically
interested in large systems where the impact of an individual user
on the system dynamics is limited. Theorem 1 shows that G is a
generalized ordinal potential game, whose definition is reported
hereafter for completeness.

Definition 3 (Generalized ordinal potential game). Given a finite
strategic game C , fN ; fSngn2N ; fungn2N g;C is a generalized ordi-
nal potential game if there exists a function (called potential
function) U : S! R such that for every player n 2 N and every
s�n 2 S�n and sn; s0n 2 Sn, it holds that

unðsn; s�nÞ > unðs0n; s�nÞ ) Uðsn; s�nÞ > Uðs0n; s�nÞ:
514514

515
Theorem 1. Under the condition that fctðytÞg06t6T is a regular pricing
function, the power scheduling game G is a generalized ordinal poten-
tial game with the corresponding potential function being PðIÞ.
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
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Proof. To prove the theorem, it suffices to show that for any two
strategies In and I0n and for any player n 2 N , it holds that

PnðIn; I�nÞ > PnðI 0n; I�nÞ ) PðIn; I�nÞ > PðI 0n; I�nÞ:

In this regard, assume that PnðIn; I�nÞ > PnðI 0n; I�nÞ. Assume
that n (i.e., appliance a 2 A of house h 2 H) starts its activity in
time interval t0

u < u < t1
u (t0

v < v < t1
v , respectively) in strategy In

(I0n). Let yt denote the total power demand at time t under strategy
profile ðIn; I�nÞ. Between the strategy profiles ðIn; I�nÞ and
ðI 0n; I�nÞ, the difference is that n migrates its power demand of pn

from time interval ½t0
u; t

1
u� to ½t0

v ; t
1
v �. Since we are focused on large

systems where the impact of an individual user on the system
dynamics is limited, i.e., pn � yt , it holds that

PnðIn;I�nÞ�PnðI 0n;I�nÞ¼
Xt1

u

u¼t0
u

pncuðyuÞþ
Xt1

v

v¼t0
v

pncvðyvÞ

�
Xt1

u

u¼t0
u

pncuðyu�pnÞþ
Xt1

v

v¼t0
v

pncvðyv þpnÞ

2
4

3
5

’ pn

Xt1
u

u¼t0
u

c0uðyu�pnÞ�
Xt1

v

v¼t0
v

c0vðyvÞ

2
4

3
5>0; ð7Þ

following the assumption that PnðIn; I�nÞ > PnðI 0n; I�nÞ.
Recalling the definition of regular pricing functions, it then

holds that

Xt1
u

u¼t0
u

½ðyu � pnÞcuðyu � pnÞ�
0
>
Xt1

v

v¼t0
v

½yvcvðyvÞ�
0
: ð8Þ

On the other hand, we study the social cost under the strategy
profiles ðIn; I�nÞ and ðI 0n; I�nÞ. Specifically, we can derive the dif-
ference between PðIn; I�nÞ and PðI 0n; I�nÞ as follows:

PðIn;I�nÞ�PðI 0n;I�nÞ¼
Xt1

u

u¼t0
u

½yucuðyuÞ�þ
Xt1

v

v¼t0
v

½yv cv ðyv Þ�

�
Xt1

u

u¼t0
u

½ðyu�pnÞcuðyu�pnÞ�

8<
:

þ
Xt1

v

v¼t0
v

½ðyv þpnÞcv ðyv þpnÞ�

9=
;¼

Xt1
u

u¼t0
u

½yucuðyuÞ�

�
Xt1

u

u¼t0
u

½ðyu�pnÞcuðyu�pnÞ�

�
Xt1

v

v¼t0
v

½ðyv þpnÞcv ðyv þpnÞ��
Xt1

v

v¼t0
v

½yv cv ðyv Þ�

8<
:

9=
;:
ð9Þ

With some algebraic operations, we have

Xt1
u

u¼t0
u

½yucuðyuÞ� �
Xt1

u

u¼t0
u

½ðyu � pnÞcuðyu � pnÞ�

¼
Xt1

u

u¼t0
u

fyu½cuðyuÞ � cuðyu � pnÞ� þ pncuðyu � pnÞg

’
Xt1

u

u¼t0
u

fyupnc0uðyu � pnÞ þ pncuðyu � pnÞg

>
Xt1

u

u¼t0
u

½ðyu � pnÞcuðyu � pnÞ�
0
: ð10Þ

Similarly, we have
e management framework for the smart grid, Comput. Commun. (2014),
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Xt1
v

v¼t0
v

½ðyv þ pnÞcvðyv þ pnÞ� �
Xt1

v

v¼t0
v

½yvcvðyvÞ� <
Xt1

v

v¼t0
v

½yvcvðyvÞ�
0
: ð11Þ

Hence, it follows from (10) and (11) that

PðIn;I�nÞ�PðI 0n;I�nÞ¼
Xt1

u

u¼t0
u

½yucuðyuÞ��
Xt1

u

u¼t0
u

½ðyu�pnÞcuðyu�pnÞ�

�
Xt1

v

v¼t0
v

½ðyv þpnÞcv ðyv þpnÞ��
Xt1

v

v¼t0
v

½yv cvðyv Þ�

8<
:

9=
;

>
Xt1

u

u¼t0
u

½ðyu�pnÞcuðyu�pnÞ�
0 �
Xt1

v

v¼t0
v

½yv cv ðyv Þ�
0
>0:

ð12Þ

The proof is thus completed. h
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Corollary 1 (Efficiency of the equilibrium). Under the conditions of
Theorem 1, the equilibrium of G minimizes the total price paid to the
operator, i.e., the total social cost.
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Fig. 2. Round k of the best response dynamics with the multiple-appliance power
Corollary 2 (Convergence to the Equilibrium). Under the condi-
tions of Theorem 1, G admits the Finite Improvement Property (FIP).
Any sequence of asynchronous improvement steps is finite and con-
verges to a pure equilibrium. Particularly, the sequence of best
response updates converges to a pure equilibrium.

Potential games have nice properties, such as existence of at
least one pure Nash equilibrium, namely the strategy that mini-
mizes PðIÞ. Furthermore, in such games, best response dynamics
always converges to a Nash equilibrium.

Hereafter, we describe a simple implementation of best
response dynamics, which allows each player n, namely each appli-
ance a of each householder h, to improve its cost function in the
proposed power scheduling game. Such algorithm is the best
response strategy for a player n minimizing objective function
(5),

P
t2T ynt � ctðytÞ, assuming other appliances are not changing

their strategies.
In the best response dynamics of the SA-DSM game, every

appliance, in an iterative fashion, defines its optimal power sched-
uling strategy based on electricity tariffs, calculated according to
other players’ strategies. Specifically, as shown in Fig. 2, in a gen-
eric round k of the iterative procedure, the appliance n receives
by the device n� 1 the vector yt , which is the overall power
demand of all devices in the current state of the best response
dynamics. At this point, the appliance n calculates the parameters
yH

t , which represent the total demand of other devices:

yH

t ¼ yt � yk�1
nt ð13Þ

where yk�1
nt is the demand of appliance n at iteration k� 1. In order

to optimally decide its optimal schedule, n solves the following
Mixed Integer Non-linear Programming (MINLP) model, with the
goal of minimizing its electricity bill:

min
X
t2T

yk
nt � ctðyH

t þ yk
ntÞ ð14Þ

s:t:
XETn�dnþ1

t¼STn

xnt ¼ 1 8a 2 A ð15Þ

yk
nt ¼

X
f2F :f6t

lnf xnðt�fþ1Þ 8t 2 T ð16Þ

yk
ht ¼

X
a2A

X
f2F :f6t

lahf xahðt�fþ1Þ 8t 2 T ð17Þ

yk
ht 6 pSL 8t 2 T ð18Þ
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
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where the objective function (14) minimizes the daily bill of the
appliance n and constraints (15)–(18) correspond to constraints
(1)–(4) of the single-appliance power scheduling game. After solv-
ing this model, appliance n updates the overall power demand of
consumers:

yt ¼ yH

t þ yk
nt ð19Þ

where yk
nt is outputted by the MINLP solver, and forwards it to the

next appliance nþ 1.
At every iteration, the energy prices are updated according to

the last strategy profile and, as a consequence, other appliances
can decide to modify their consumption scheduling by changing
their strategy according to the new tariffs. The iterative process
is repeated until convergence is reached (in the Numerical Results
section, we will show that our proposed algorithm converges, in
few iterations, to a Nash equilibrium) and, at the end of it, the
appliances power scheduling and energy prices are fixed as well
as the energy bill charged to each householder h, which is simply
the sum of all his appliances costs

P
t2T yht � ctðytÞ.

4.3. Security and privacy

In the best response dynamics here proposed, the transmission
of the power profile to other users may raise security and privacy
concerns. In fact, several studies on Non-Intrusive Load Monitoring
(see, e.g., [25,26]) prove that the power consumption patterns of
individual appliances can be easily inferred from aggregated mea-
surements. For this reason, even if the only information exchanged
among appliances in the best response dynamics is the aggregated
power consumption of householders, some privacy-friendly solu-
tions are required to preserve the privacy of customers. The design
of these mechanisms is out of the scope of this paper and we would
rather resort on schemes already proposed in the literature, which
formally ensure important security and privacy properties. Specif-
ically, data perturbation is an approach which is widely employed
in combination to data aggregation in order to strengthen the
privacy and security level of demand management mechanisms.
The authors of [27], for example, propose a secure game-theoreti-
cal framework for distributed appliance scheduling, in which
players perturb their data by exposing a noisy version of their indi-
vidual power consumption data, obtained by adding a random
amount (either positive or negative) to the actual consumption.
Data perturbation can also be achieved by relying on batteries
installed at the customers’ premises, which can be configured to
disguise the actual appliance electricity consumption [28].
scheduling game.
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Fig. 3. Round k of the best response dynamics with the multiple-appliance power
scheduling game.
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Finally, to completely remove the communication of any sensi-
tive information, learning algorithms could be used to enable con-
sumers to autonomously converge to the equilibria of the DSM
load scheduling game. All these privacy preserving solutions,
which have been recently presented in the literature, can be seam-
lessly introduced in our framework to strengthen the privacy and
security of our DSM mechanism.

4.4. Multiple-appliance game formulation

The natural extension of the single-application power schedul-
ing game considers as a player the householder h who chooses the
schedule of all his appliances according to his preferences. The
strategy space for player h is therefore composed of all variables
xaht corresponding to the activities of all his appliances.

Definition 4 (Multiple-appliance power scheduling game). Mathe-
matically, the multiple-appliances power scheduling game is
formalized as follows:

G : min
Ih

PhðIh; I�hÞ ¼
X
t2T

yht � ctðytÞ; 8n 2 N ð20Þ

Ih ¼ Xh ¼

x1h1 x1ht � � � x1hjT j

x2h1 x2ht � � � x2hjT j

..

. ..
. . .

. ..
.

xjAjh1 xjAjht � � � xjAjhjT j

0
BBBB@

1
CCCCA 2 f0;1g

jAj�jT j :

8>>>><
>>>>:

XETah�dahþ1

t¼STah

xaht ¼ 1 8a 2 A ð21Þ

yht ¼
X
a2A

X
f2F :f6t

lahf xahðt�fþ1Þ 8t 2 T ð22Þ

yht 6 pSL 8t 2 T

9>>>>=
>>>>;
: ð23Þ

Similarly to 1, 3 and 4, constraints (21)–(23) are used, respec-
tively, to guarantee that each appliance a starts in exactly one time
slot within the interval ðSTah; ETahÞ, to define the daily power
demand of house h and to upper-bound the demand of each house
according to the supply limit pSL.

As in the single-appliance case, a best response dynamics can be
designed to identify and study the efficiency of the Nash equilib-
rium of the multi-appliance game. Such algorithm, whose imple-
mentation is very similar to that of the single-appliance game as
illustrated in Fig. 3, is the best response strategy for a householder
h minimizing the objective function (20),

P
t2T yht � ctðytÞ, assuming

other householders are not changing their strategies.
We underline that scheduling optimally multiple appliances

increases the complexity of the Smart Grid architecture, since each
house requires a central server that collects the energy consump-
tion information from all house appliances and the householder’s
preferences (i.e., starting/ending times). Conversely, in the single-
appliance formulation each appliance operates independently,
and the householder can configure asynchronously the different
appliances preferences. Furthermore, as we will show in Section
5, the higher complexity of the multiple-appliance scheduling
game does not result in lower costs for the householder or a lower
power peak for the retailer’s grid.

4.5. Computational complexity and signaling overhead

Having defined the formulation of the SA-DSM and MA-DSM
problems, we quantify in the following the computational com-
plexity of the best response algorithm and the signaling overhead
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
http://dx.doi.org/10.1016/j.comcom.2014.11.001
of the protocol used to exchange the information for the computa-
tion of the Nash Equilibria.

In order to measure the computational complexity of the two
DSM systems, let us refer to a homogeneous scenario, where all
householders’ appliances have the same number of feasible start-
ing slots. Formally, let us denote by a ¼j A j the number of shift-
able appliances of each householder h 2 H, by g the number of
householders (g ¼j H j), and by s ¼j T j the number of starting
time slots.

Then, the best response algorithm of the SA-DSM mechanism
explores at most g � a � s solutions at each iteration, since for each
appliance among the g � a of the system, we have to compute the
minimum price among s starting slots. In contrast, the size of the
MA-DSM solution space is g � sa, since each householder needs to
consider all possible permutations of feasible appliance schedules.

We further observe that the distributed version of the best
response, where each player (i.e., an appliance for the SA-DSM or
an householder for the MA-DSM) independently performs the opti-
mization, does not change the linear or exponential growth of the
solution spaces with respect to the number of appliances. Indeed,
each player of the SA-DSM and MA-DSM scenarios would explore
s and sa solutions, respectively.

To provide further insight into the complexity of the two pro-
posed DSM schemes, we evaluate their signaling overheads analyz-
ing the corresponding communication complexities. Note that the
signaling overhead depends on the implementation of the best
response dynamic. Under the assumption that each player (either
appliance or householder) broadcasts only its power profile (i.e.,
the power consumption for each time slot) to the other players
of the smart grid using a central controller or a flooding protocol,
both DSM schemes generate at most a bitrate equal to
q ¼ dlog2pSLe � s per player, since any householder cannot consume
more than pSL kW for each time slot.

At each iteration of the best response dynamics, the overall
amount of information generated by the MA-DSM and SA-DSM
approaches is equal to g � q and g � a � q, respectively. It can be
observed that the MA-DSM scheme permits to support a house-
holders more than the SA-DSM approach. Indeed, assuming a time
slotted communication system for the players of the smart grid,
with a communication slot lasting e s and bandwidth B bps, the
number of householders gMA and gSA that can be supported by
the MA-DSM and SA-DSM are, respectively:

gMA ¼
B � e
s � q

� �

gSA ¼
B � e

a � s � q

� �
: ð24Þ
e management framework for the smart grid, Comput. Commun. (2014),
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Computational complexity and communication overhead of the best response
algorithm.

DSM scheme Computational complexity Communication

Centralized Distributed Overhead

SA-DSM g � a � s s (8n 2 N ) g � a � q
MA-DSM g � sa sa (8h 2 H) g � q
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In contrast, if all players directly exchange the aggregated
power profile among themselves (i.e., the sum of the power
demands that have been collected so far) as indicated in Sections
4.2 and 4.4 (cf. Figs. 2 and 3), the signaling overhead slightly
changes. In particular, the MA-DSM and SA-DSM approaches gen-
erate an amount of information for each iteration equal to
g � log2 g � qð Þ and g � a � log2 g � a � qð Þ, respectively. Indeed, the
aggregated value of the power demand in each time slot can be
as large as the threshold pSL multiplied by the number of players.
Moreover, at each iteration of the best response dynamics, each
player forwards the aggregated power profile to the successive
player. Nonetheless, the computational complexity of the MA-
DSM approach still grows more quickly/steeply than the communi-
cation overhead of the SA-DSM scheme, as we describe in the
following.

Table 2 summarizes the results on the computational and com-
munication complexity for the SA-DSM and MA-DSM approaches,
using both the centralized and distributed version of the best
response algorithm.

5. Numerical results

This section presents the numerical results we obtained evalu-
ating the Single-Appliance DSM (SA-DSM), and the Multiple-Appli-
ance DSM (MA-DSM) mechanisms in realistic Smart Grid scenarios
using real traces. First, we describe the considered scenarios and
parameters used in our numerical evaluation. Then, we compare
and discuss the performance achieved by the two proposed
mechanisms.

5.1. Simulated scenarios

We considered a set T of 24 time slots of 1 h each. Residential
houses, which are connected to the grid with a peak power limit
of 3 kW (pSL ¼ 3kW), are equipped with 11 realistically-modeled
appliances, namely: washing machine, dishwasher, boiler, vacuum
cleaner, refrigerator, purifier, lights, microwave oven, oven, TV and
iron. Of these devices, only the first four are modeled as shiftable
appliances, while the other ones are considered fixed devices.
The basic domestic configuration and load profiles of each appli-
ance, which are shown in Fig. 4, have been defined based on the
data collected from 100 houses served by an Italian energy supply
operator.

Starting from the basic house configuration, we defined multi-
ple scenarios by varying the number of users participating in the
game and the parameters of both the energy price function and
the scheduling constraints. Specifically, for the number of houses
we considered 3 different cases where the game is played, respec-
tively, by 5;20 and 50 householders, to assess the performance of
the proposed system when the competition level increases. Con-
cerning the electricity tariffs, we consider the following pricing
function to compute the price paid for the electricity in each time
slot t 2 T :

ctðytÞ ¼
cMIN þ s � yt 8t 2 T : yt < pTT

cMIN þ s � pTT 8t 2 T : yt P pTT :

�
ð25Þ

In such equations, yt is the total power demand, pTT is a tariff
power threshold, cMIN is the minimum electricity price and s is
the slope of the cost function. Specifically, we fixed the minimum
electricity price cMIN ¼ 50� 10�6 $, and varied the slope of the cost
function by defining it as an integer-multiple of the minimum

slope s ¼ k � sMIN , with sMIN ¼ 0;11�10�6

jHj $/kWh, j H j being the number

of householders and k the proportionality factor. As for the value of
the tariff threshold, pTT , after which the energy price is no longer
dependent on users’ demand, we considered 5 different cases:
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
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25%;30%;35%;40% and 100% of the maximum peak power limit
of the whole group of users (i.e., j H j �pSL). By varying the cost
function parameters, we assess the impact of the energy tariff on
the system performance.

In our tests, we also defined different scenarios by considering
various levels of appliances flexibility. As reported in Section 3,
for each appliance a bound has been introduced for both the start-
ing and ending time (i.e., STah and ETah), representing the period in
which the appliance activity has to be executed (note that the
activity duration dah is fixed and lower than the window
ETah � STah). Therefore, the larger the execution window is, the
higher the system flexibility is in scheduling devices. In order to
evaluate the effect of the scheduling flexibility on the system per-
formance, we defined three scenarios:

� No flexibility (‘‘fix’’ label in the following curves). The appli-
ances scheduling is fixed and cannot be optimized,
therefore:
ETah � ðSTah þ dahÞ ¼ �1 8a 2 A;h 2 H: ð26Þ

If STah and ETah are defined according to Eq. (26), the system is
forced to start the appliance a of user h at time STah based on
constraints (1)/(21).
� Tight flexibility (‘‘short’’ label in the following curves). For

each shiftable appliance, three different schedules are
given, while fixed devices have a fixed start time. In this
case, the parameters STah and ETah are defined according
to the following equations:
ETah � ðSTah þ dahÞ ¼
1 8a 2 As;h 2 H
�1 8a 2 Af ;h 2 H

�
ð27Þ

� Loose flexibility (‘‘long’’ label in the following curves). For
each shiftable appliance, eight different schedules are
given, while fixed devices have a fixed start time as
obtained through the following equations:
ETah � ðSTah þ dahÞ ¼
6 8a 2 As;h 2 H
�1 8a 2 Af ;h 2 H

�
ð28Þ

For each case-study considered in our tests, the starting-time
slot of each appliance a of each user h; STah, was randomly chosen
within the set T ah ¼ 1;2; . . . ; jT j � dah þ 1f g (each activity a must
be carried out within the time horizon T and, therefore, it cannot
start later than the time slot t ¼ jT j � dah þ 1) and Eqs. (26)–(28)
were used to define the ending-time slots, ETah, for each of the
three flexibility levels previously defined.

Finally, we considered two different scenarios to test our sys-
tem depending on whether consumers are heterogeneous or homo-
geneous. In the former case, the parameters STah and ETah are
independently selected for each consumer in order to define a
population of heterogeneous users in terms of appliances usage.
Conversely, in case of homogeneous consumers, the parameters
STah and ETah have identical values for all users (i.e., STa1 ¼
STa2 ¼ . . . ¼ STajHj and ETa1 ¼ ETa2 ¼ . . . ¼ ETajHj 8a 2 A). By analyz-
ing these two scenarios, it is possible to assess the impact of the
e management framework for the smart grid, Comput. Commun. (2014),
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Fig. 4. Load profiles of the appliances considered in our tests.
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natural diversity of consumers, in terms of appliances usage, on the
system performance.

In order to gauge the performance of the proposed mechanisms,
we measured the following performance metrics:

� Social Cost: PðIÞ, defined as in Eq. (6). Note that this value
represents the electricity bill of the group of houses.

� Fairness: we considered the Jain’s Fairness Index (JFI) defined
as in [29].

� Peak demand: defined as the peak of the power demand of
the whole group of users: maxt

P
h2Hyht .
Please cite this article in press as: A. Barbato et al., A distributed demand-sid
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5.2. SA-DSM versus MA-DSM

Fig. 5 illustrates the social cost and the peak demand obtained
using the two proposed mechanisms as a function of the number
of houses. In such scenario, householders have homogeneous pref-
erences (i.e., STah and ETah vary only among appliances, but all
houses’ preferences are identical).

It can be observed that both mechanisms exhibit very similar
trends in terms of social cost and peak demand. Indeed, in all the
considered scenarios, the gap between the overall householder’s
electricity bill obtained using the SA-DSM and the MA-DSM is
e management framework for the smart grid, Comput. Commun. (2014),
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Fig. 5. SA-DSM versus MA-DSM system results considering homogeneous houses and a linear increasing cost function with minimum slope.

10 A. BarbatoQ1 et al. / Computer Communications xxx (2014) xxx–xxx

COMCOM 5022 No. of Pages 12, Model 5G

19 November 2014

Q1
always lower than 3%.
The only remarkable difference that we observed between these

two solutions is related to the solving time of the corresponding
best response dynamics. Specifically, the SA-DSM mechanism con-
verges more quickly to the Nash Equilibrium than MA-DSM due to
the smaller solution space explored by the best response algo-
rithm. Specifically, in the scenario with 50 houses and long flexibil-
ity preferences, the SA-DSM mechanism takes only 8 s, in average,
to find the equilibrium, whereas the MA-DSM approach needs
around 15 min.3 For this reason, the SA-DSM system can be consid-
ered an excellent solution for scheduling the appliances execution,
since it achieves practically the same results of the MA-DSM system
in terms of electricity bills and peak demand, but in a remarkably
lower time and with a fully distributed approach. As a consequence,
devices that individually take scheduling decisions represent an
effective and efficient solution for realistic Smart Grids deployments:
only minimal computation and communication capacity is required
among all system’s components, without any centralized house
controller.

It can be further observed from Fig. 5(a) and (b) that, indepen-
dently of the DSM mechanism, users always benefit from higher
scheduling flexibility. Indeed, larger execution intervals for shift-
able appliances (i.e., the curves identified by ‘‘Long’’ in the figures)
always allow users to pay cheaper bills than those obtained with
short and fixed flexibility levels (i.e., curves identified by ‘‘Short’’
and ‘‘Fix’’, respectively), since the DSM system can explore a larger
solution space. However, the cheaper bills obtained using the long
flexibility preferences come at the cost of longer solving time (i.e.,
the amount of time required to find the Nash Equilibrium through
the best response algorithm). Indeed, we observed that the solving
time of the long flexibility scenario doubles with respect to the
short flexibility case. Numerical results presented in Fig. 5(a) and
(b) also show that the number of players marginally affects the
gain that is achieved with the proposed DSM systems. In particular,
901

902

9033 On an Intel Core i5 3.33 GHz, with a 4 GB RAM.
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the electricity bill saving obtained with respect to the no-flexibility
scenario is around 11% and 22% for, respectively, the short-flexibil-
ity and the long-flexibility scenarios, irrespective of the number of
players and the DSM mechanism. Indeed, while a larger set of play-
ers increases the competition, the proposed DSM mechanisms
achieve the same gains by efficiently exploiting the flexibility of
shiftable appliances.

One of the main advantages for the operator to adopt the
proposed SA-DSM system, as illustrated in Fig. 6, is that it automat-
ically ensures the reduction of the electricity demand during peak
hours (i.e., high-price hours) without any centralized coordination
among users. Specifically, the peak demand decreases by as much
as 22% using the SA-DSM system with respect to the value
obtained considering fixed scheduling choices (i.e., the no-flexibility
scenario), and the gain is slightly influenced by the appliances flex-
ibility. The reduction of the peak power demand results from shift-
ing loads from peak hours to other time-slots. To this end, only few
users’ scheduling changes are required (i.e., only appliances used at
peak hours have to be shifted) and even a short flexibility can
achieve remarkable results.

5.3. Analysis of householder preferences

Fig. 7(a)–(c) illustrate, respectively, the social cost, the peak
demand and the aggregated power profile of the proposed SA-
DSM mechanism as a function of the appliances flexibility. Specif-
ically, these figures compare the results obtained with 20 homoge-
neous and heterogeneous houses.

As illustrated in Fig. 7(a), the electricity bill is cheaper when
considering heterogeneous players. Indeed, the power demand of
heterogeneous houses can be more smoothly distributed over the
day than in the homogeneous scenario, due to the different house-
holders preferences about the time windows in which devices can
operate. As a consequence, since the energy price in every time slot
is defined as a function of the power demand of houses appliances
in that particular slot, players can benefit from loads spreading
over time. Fig. 7(b) shows that also the peak demand can be
e management framework for the smart grid, Comput. Commun. (2014),
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considerably reduced when considering heterogeneous houses.
Specifically, in this case, the proposed SA-DSM mechanism reduces
the peak of the power demand down to 55% in the long flexibility
case with respect to the corresponding homogeneous scenario
because of a smoother load distribution. This effect appears clearly
in Fig. 7(c), where the overall electricity demand over the 24 h of
20 heterogeneous houses with loose scheduling preferences (long
flexibility) is compared to that of 20 identical residential houses.

5.4. Analysis of energy tariffs

To evaluate how energy tariffs affect the performance of the
proposed DSM systems, we fix the slope of the electricity pricing

function s ¼ 0;11�10�6

j20j $/kWh and we consider four different tariff

thresholds (i.e., the threshold on the aggregated demand above
which the electricity price becomes constant): pTT 2 f15;18;
21;24g kW. Fig. 8(a) and (b) shows the social cost and peak
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demand of a group of 20 identical houses as a function of the
devices flexibility considering the four aforementioned energy tar-
iffs. As expected, in all cases, the flexibility on the scheduling pref-
erences reduces both the electricity bill and the peak demand.
However, by playing with the energy tariff, the operator can fur-
ther increase users’ gain on the electricity price and, at the same
time, decrease the peak power absorbed from the grid, thus result-
ing in lower investments and operating costs. For example, as illus-
trated in Fig. 8(a), the social cost decreases down to 11% from the
no-flexibility to the long flexibility scheduling scenarios when the
operator fixes the tariff threshold pTT ¼ 15 kW. However, this gain
increases up to 22% with pTT ¼ 24 kW. Indeed, when pTT ¼ 15 kW,
cost savings can be obtained only by shifting loads from peak hours
to time slots in which the total power demand is lower than
15 kW. In contrast, a wider set of scheduling alternatives is
available to reduce the social cost when pTT ¼ 24 kW, since power
loads can be shifted from peak hours to all time slots where the
aggregated power demand is lower than 24 kW. As a consequence,
as the tariff threshold increases, the number of devices shifted out-
side the peak hours grows, reducing the peak demand as illustrated
in Fig. 8(b).

In our tests, we also vary the slope s of the energy tariff, defined
as an integer-multiple of the minimum slope s ¼ k � sMIN , to assess
its impact on the system performance. Specifically, we fix the tariff
threshold pTT ¼ 24 kW and vary the proportionality factor k of the
slope s in the range ½1;5�. Fig. 9 illustrates the social cost of a group
of 20 identical houses obtained by using the SA-DSM mechanism,
as a function of the slope of the tariff. In particular, for each devices
flexibility level, we report the percentage reduction of the social
cost with respect to the benchmark scenario in which the appli-
ances schedule is fixed (i.e., there is no flexibility in deciding when
to use each device), in order to show the net effect of the DSM sys-
tem. As expected, with more ‘‘aggressive’’ pricing functions (i.e.,
steeper slopes), the proposed framework is able to obtain greater
savings on the consumers’ bill. In fact, in these cases, the energy
prices increase faster with the power demand and, therefore, the
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gap between the bill obtained with the optimal devices schedule
and the bills of other solutions becomes more evident. However,
our tests have also shown that varying the slope of the energy tariff
has a limited impact on the peak demand in all the considered sce-
narios. As a consequence, this parameter has to be chosen only
based on economic considerations: by modifying the slope of the
energy tariff, the operator can conveniently adjust the users’ gain
on the electricity bill in order to incetivize them to shift their loads.

Finally, we underline that in all the considered scenarios, we
observed that all players pay actually an equal share of the electric-
ity bill, since the Jain’s Fairness Index is always very close to 1.
Indeed, even in the scenarios with heterogeneous residential users,
the JFI is always higher than 0:9991.

6. Conclusions

In this paper, we proposed a novel, fully distributed Demand-
Side Management (DSM) system aimed at reducing the peak
demand of a group of residential users.

We modeled our system using a game theoretical approach,
where players are the customer’s appliances, which decide auton-
omously when to execute. We demonstrated that the proposed
game is a generalized ordinal potential one, and we proposed a
best response dynamics mechanism which is guaranteed to con-
verge in few steps to efficient Nash equilibrium solutions. Further-
more, we showed that our approach performs extremely close to a
more complex setting where each customer must optimize the
schedule of all his appliances, since it provides practically the same
results in terms of minimizing their daily electricity bill. For this
reason, due to its intrinsic simplicity, robustness and distributed
architecture, we recommend the adoption of our proposed
approach.

Numerical results, obtained using realistic load profiles and
appliance models, demonstrate that the proposed DSM system rep-
resents a promising and very effective solution to reduce the peak
absorption of the entire system and the electricity bill of individual
customers in a fully distributed way.
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