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Optimality of Myopic Policy for Multistate Channel Access
Kehao Wang, Lin Chen, Jihong Yu, and Duzhong Zhang

Abstract—We consider the multichannel access problem in
which each of N channels is modeled as a multistate Markov
chain. At each time instant, a transmitter accesses M channels
and obtains some reward depending on the states of those cho-
sen channels. The considered problem can be cast into a restless
multiarmed bandit (RMAB) problem. It is well-known that solv-
ing the RMAB problem is PSPACE-hard. A natural alternative
is to consider the myopic policy that maximizes the immediate
reward but ignores the impact of the current strategy on the future
reward. In this letter, we perform an analytical study on struc-
ture, optimality, and performance of the myopic policy for the
considered RMAB problem. We show that the myopic policy has a
simple robust structure that reduces channel selection to a round-
robin procedure. The optimality of this simple policy is established
for accessing M = N − 1 of N channels and conjectured for the
general case of arbitrary M based on the structure of myopic
policy.

Index Terms—RMAB, myopic policy, PSPACE-Hard,
optimality.

I. INTRODUCTION

W E CONSIDER a multi-channel communication system
where a multi-antenna transmitter (Tx) chooses a set of

channels to transmit data to multiple single-antenna receivers
(Rxs). The fundamental object of our study is how the Tx does
make its decision in selecting channels based on the feedback
signals received over the channels in which it transmitted so as
to maximize its utility (e.g., expected throughput).

In particular, we consider a set of N identical channels, each
of which is characterized as an independent and identically dis-
tributed (i.i.d.) multi-state (i.e., X states, X > 2) discrete-time
Markov chain, where state xh , corresponds to the channel with
higher signal to interference and noise ratio (SINR) than that
of state xl (1 ≤ xl < xh ≤ X ). The objective of the SU is to
seek a set of channels to access depending on the feedback sig-
nals so as to maximize the utility in the time horizon of interest.
Obviously, the considered channel decision problem can be cast
into the restless multi-armed bandit (RMAB) problem or par-
tially observable Makov decision process (POMDP) [1], which
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is of fundamental importance in stochastic decision theory
while proved to be PSPACE-Hard [2].

Thus far, very few results have been reported on the struc-
ture of the optimal policy of RMAB although the significant
research efforts exist in the field. Hence, a natural alternative
is to seek a simple myopic policy maximizing the immediate
reward. For the case of two-state, Zhao et al. [3] established
the structure of the myopic policy, and partly obtained the opti-
mality for the case of i.i.d. channels. After that, Ahmad and
Liu et al. [4] derived the optimality of the myopic sensing pol-
icy for the positively correlated i.i.d. channels for accessing
one channel each time, and further extended the optimality to
access multiple i.i.d. channels [5]. From another point, in [6],
the authors extended i.i.d. channels [4] to non i.i.d. ones, and
focused on a class of so-called regular functions, and derived
closed-form sufficient conditions to guarantee the optimality
of myopic sensing policy. For the complicated case of multi-
state, in [7], the authors established the sufficient conditions for
the optimality of myopic sensing policy in multi-state homoge-
neous channels with a strict constraint, i.e., the forth non-trivial
assumption in [7].

In this letter, we establish the structure of the myopic policy
for the proposed multi-state RMAB problem and obtain part of
optimality without that non-trivial constraint. In particular, the
contributions are two-folds:

• The structure of the myopic policy is shown to be a simple
queue determined by the availability probability vector of
channels provided that certain condition is satisfied for
the transition matrix of multi-state channels.

• We establish a set of conditions under which the myopic
policy is proved to be optimal for the case of accessing
N − 1 of N channels and conjectured to be optimal in the
general case. Furthermore, the optimality is verified by
numerical simulation.

Notation: ei = [0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
X−i

], E = [e1, · · · , eX ]′.

II. PROBLEM FORMULATION

We consider an N orthogonal channels communication sys-
tem where each channel is characterized by a Markov chain
of X states X = {1, . . . , X}, and the channel state transition
probabilities pi, j , i j = 1, . . . , X .

P =

⎛
⎜⎜⎜⎝

p1,1 p1,2 · · · p1,X

p2,1 p2,2 · · · p2,X
...

...
. . .

...

pX,1 pX,2 · · · pX,X

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P1
P2
...

PX

⎞
⎟⎟⎟⎠ .

Let S(t) � [S1(t), . . . , SN (t)] denote the channel state vector
where Si (t) ∈ {1, . . . , X} is the state of channel i in slot t . A
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Fig. 1. System model with 1 Tx, M Rx, and N orthogonal channels.

Tx choose M channels to transmit data to M single-antenna
Rxs, as shown in Fig. 1.

We assume that the multi-channel system operates in a syn-
chronous slot fashion with the time slot indexed by t (t =
1, 2, . . . , T ), where T is the time horizon of interest. In a slot,
for each of M antennas,i.e., m-th antenna, the Tx first choose
a channel n for this antenna to transmit data packets to the
m-th Rx, and then the Rx would respond Tx with feedback
information over the same channel n (see Fig. 1).

We assume that the Tx can perfectly receive the feedback
information sent by the Rx of the channel where it transmitted.
Hence, at time slot t the Tx can collect the feedback obser-
vation Oi (t) in the i channel, and equipped with M antennas,
the Tx can receive the set A(t) (A(t) ⊆ {1, 2, . . . , N }, |A(t)| =
M) of N channels and furthermore, to obtain the observations
O(t) = {Oi (t) : i ∈ A(t)}. For simplicity, we map the feedback
Oi (t) of channel i in state x to an integer x , which indicates the
channel quality of channel i is in x level.

Considering the limited feedback information received by
Tx (i.e., Tx only receiving feedback from M out of N chan-
nels), the channel state vector is only partially observable to
the Tx for its decision. We define the information state vec-
tor �(t) � {wi (t), i ∈ N} (referred to as belief vector), where
wi (t) = [wi1(t) · · ·wi X (t)] and wi x (t) is the estimated con-
ditional probability that the channel i ∈ N is in x state (i.e.,
Si (t) = x) given all the past observations and decisions by
the Tx.

Given the information state �(t), the decision A(t) and the
observations O(t), the belief vector for the Tx can be updated
recursively using the following rule as shown in (1).

wi (t + 1) =
⎧⎨
⎩Px , i ∈ A(t), Oi (t) = x, x ∈ X

wi (t)P, i �∈ A(t).
(1)

Thus, we are interested in the Tx’s optimization prob-
lem to seek the optimal accessing policy π∗ that maximizes
the expected total discounted reward over a finite horizon.
Mathematically, an accessing policy π is defined as a mapping
from the belief vector �(t) to the action (i.e., the set of channels
to access) A(t) in each slot t :

π : �(t) → A(t), |A(t)| = M, t = 1, 2, · · · , T . (2)

The following gives the formal definition of the optimal
accessing problem:

π∗ = argmax
π

E

[
T∑

t=1

β t−1 Rπ (�(t))

∣∣∣∣∣�(1)

]
(3)

where Rπ (�(t)) is the reward collected in slot t under the
accessing policy π with the initial belief vector �(1)1, and
β (0 ≤ β ≤ 1) is the discount factor characterizing the feature
that the future rewards are less valuable than the immediate
reward. By treating the belief value of each channel as the state
of each arm of a bandit, the optimization problem can be cast
into a restless multi-armed bandit problem.

We assume that the reward obtained from accessing channel i
at slot t depends on the state of the channel chosen at t , formally
defined as follows:

R(Si (t)) = rx if Si (t) = x, (4)

where, rX > · · · > r1 indicates that the reward obtained in the
high SINR channel state is larger than that in the low SINR, and
r = [r1 · · · rX ].

In order to get more insight on the structure of the optimiza-
tion problem formulated in (3) and the complexity to solve
it, we derive the dynamic programming formulation of (3) as
follows:

VT (�(T )) = max
A(T )

E

⎡
⎣ ∑

i∈A(t)

[wi r′]

⎤
⎦ , (5)

Vt (�(t)) = max
A(t)

E

⎡
⎣ ∑

i∈A(t)

[wi r′] + β�(�(t))

⎤
⎦ , (6)

where

�(�(t)) �
A(t)=∪X

x=1 Ax∑
Ax ⊆A(t)

∏
i∈A1

wi1 · · ·
∏

j∈AX

w j X · Vt+1(�(t + 1)).

In the above equations, Vt (�(t)) is the value function corre-
sponding to the maximal expected reward from time slot t to T
(1 ≤ t ≤ T ) with �(t + 1) following the evolution described
in (1) given that the channels in the subset Ax (x ∈ X) are
observed in state x . In particular, the term �(�(t)) corresponds
to the expected accumulated discounted reward starting from
slot t + 1 to T , calculated over all possible realizations of the
selected channels (i.e., channels in A(t)).

Theoretically, the optimal policy can be obtained by solving
the above dynamic programming. It is infeasible, however, due
to the impact of the current action on the future reward, and
in fact obtaining the optimal solution directly from the above
recursive equations is computationally prohibitive. Hence, a
natural alternative is to seek a simple myopic policy, formally
defined as follows:

Â(t) = argmax
A(t)

E

⎡
⎣ ∑

i∈A(t)

wi r′
⎤
⎦ . (7)

In the following sections we focus on structure and opti-
mality of the myopic accessing policy in the multi-channel
communication context.

1The initial belief wi (1) can be set to w0 such that w0(E − P) = 0 if no
information about the initial system state is available.



302 IEEE COMMUNICATIONS LETTERS, VOL. 20, NO. 2, FEBRUARY 2016

III. STRUCTURE OF MYOPIC POLICY

In this section, we show that the myopic policy has a sim-
ple and robust structure. Based on this structure, we prove
that the myopic policy is optimal for M = N − 1 and give the
conjecture for general M in the following section.

First, we let

�(X) � {(w1, . . . , wX ) :
X∑

i=1

wi = 1, w1, . . . , wX ≥ 0},

and then borrow some definitions about “ordering” for the
following analysis.

Definition 1 (MLR ordering [8]): Let w1, w2 ∈ �(X) be any
two belief vectors. Then w1 is greater than w2 with respect to
the MLR ordering—denoted as w1≥r w2, if

w1i w2 j ≤ w2i w1 j , i < j, i, j ∈ {1, 2, . . . , X}.
Definition 2 (TP2 [8]): Matrix P is TP2 if all the sec-

ond minors are nonnegative. Given w1, w2 ∈ �(X), then
w1P≥r w2P if w1≥r w2 and P is TP2.

Assumption 1: There exists some L (2 ≤ L ≤ X ) such that
P1P≥r PL−1 and PX P≤r PL .

Remark. This assumption guarantees that the probability
vector is completely ordered in the probability space in the
sense of MLR, which serves as the basis of tractable analysis
of optimal policy.

Theorem 1 (Structure of Myopic Policy): Under Assumption
1, if P is TP2 and PX ≥r wσ1(1) ≥r · · · ≥r wσN (1) ≥r P1, the
following stochastic order is kept at each slot.

1) The initial channel ordering Q(1) is determined by the
initial belief vector:

wσ1(1) ≥r · · · ≥r wσN (1) ⇒ Q(1) = (σ1, σ2, . . . , σN )

2) The channels over which feedback x (x ∈ {L , . . . , X})
are observed will stay at the head of the queue, and the
channels over which feedback x (x ∈ {1, . . . , L − 1})are
observed will be moved to the end of the queue while
keeping their order unchanged;

Proof: Assume Q(t) = (σ1, . . . , σN , ) at slot t . We thus
have PX ≥r wσ1(t) ≥r · · · ≥r wσN (t) ≥r P1.

If channel σ1 is observed to be state x (L ≤ x ≤ X ), then
wσ1(t + 1) = Px ≥r PL ≥r wσ2(t)P ≥r · · · ≥r wσN (t)P
according to the assumption, and thus Q(t + 1) =
(σ1, . . . , σN ) according to MLR of w.

If channel σ1 is observed in state x (1 ≤ x ≤ L − 1), then
wσ1(t + 1) = Px ≤r PL−1 ≤r wσN (t)P ≤r · · · ≤r wσ2(t)P,
and further Q(t + 1) = (σ2, . . . , σN , σ1). �

IV. OPTIMALITY OF MYOPIC POLICY

Let Vt (�;A(t)) the expected total discounted reward
obtained by action A(t) in slot t followed by the myopic pol-
icy in future slots. We first establish some important auxiliary
lemmas and then show the optimality of myopic policy.

Lemma 1: Vt (�;A(t)) is symmetrical about wi , w j ∈ A(t).

Proof: The proof is straightforward by noticing that both
the immediate reward and the channel belief vector �(t + 1)

are unrelated with the order of wi , w j since the myopic policy
is adopted from slot t + 1. �

Lemma 2: It holds that Vt (�;A(t)) is an affine function, i.e.,

Vt (· · · , wi , · · · ;A(t)) =
X∑

j=1

wi j Vt (· · · , e j , · · · ;A(t)),∀i∈N.

Proof: We prove the lemma by induction. It can be eas-
ily checked that the lemma holds for slot T . Assume that it
holds for slot T, . . . , t + 1, we now prove it holds for slot t . We
proceed by distinguishing the following two cases:

Case 1: k /∈ A(t). In this case we have

Vt (�;A(t)) =
∑

j∈A(t)

[w j r′]

+
A(t)=∪X

x=1 Ax∑
Ax ⊆A(t)

∏
i∈A1

wi1 · · ·
∏

j∈AX

w j X · Vt+1(· · · , wkP, · · · ).

By induction hypothesis, Vt+1(. . . , wkP, . . .) is an affine
function of wkP, and meanwhile, wkP is an affine transform
of wk , thus Vt+1(· · · , wkP, · · · ) is an affine function of wk . It
follows that Vt (�(t);A(t)) is also an affine function of wk .
Case 2: k ∈ A(t). Let m /∈ A(t) and A′(t) = A(t) \ {k}, we
have

Vt (�;A(t)) =
∑

l∈A(t)

[wlr′]

+
A(t)=∪X

x=1 Ax∑
Ax ⊆A(t)

∏
i∈A1

wi1 · · ·
∏

j∈AX

w j X · Vt+1(· · · , wmP, · · · )

=
∑

l∈A(t)

[wlr′] +
A(t)\k=∪X

x=1 Ax∑
Ax ⊆A(t)\k

∏
i∈A1

wi1 · · ·
∏

j∈AX

w j X

×
[

X∑
x=1

wk(x)Vt+1(· · · , ex , . . . , wmP, · · · )
]

where, the third equality follows the induction hypothesis.
Obviously,

∑
l∈A(t)[wlr′] is an affine function of wk , the

second term is also an affine function of wk . Therefore,
Vt (w(t);A(t)) is an affine function of wk . �

Lemma 2 can be applied one step further to prove the
following corollary.

Corollary 1: For any l, m ∈ N it holds that

Vt(. . . ,wl , . . . ,wm, . . . ;A(t)) − Vt (. . . , wm, . . . , wl , . . . ;A(t))

=
X∑

i=1

X∑
j=i+1

(wl j wmi − wli wmj )

×[
Vt (. . . , e j , . . . , ei , . . . ;A(t))−Vt(. . . ,ei , . . . ,e j , . . . ;A(t))

]
.

Lemma 3: Let A(t) = N \ { j} and A′(t) = N \ {i} where
wi (t) ≥ w j (t), it holds that Vt (�;A(t)) ≥ Vt (�;A′(t)) if P is
TP2 and P1 ≤r wi (1) ≤r PX .

Proof: The lemma can be easily checked that it holds for
slot T . Assume that it holds for slot T, . . . , t + 1, we now prove
it holds for slot t .

Vt (�;A(t)) − Vt (�;A′(t))
= Vt (· · · , wi , w j ;A(t)) − Vt (. . . , w j , wi ;A′(t))
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=
X∑

k=1

X∑
l=k+1

(
wilw jk − wikw jl

)
× [

Vt (· · · , el , ek;A(t)) − Vt
(· · · , ek, el;A′(t)

)]
=

X∑
k=1

X∑
l=k+1

(
wilw jk − wikw jl

) ⎡
⎣[rl − rk]

+
A(t)\i=∪X

x=1 Ax (t)∑
Ax (t)⊆A(t)\i

∏
n∈A1(t)

wn1 · · ·
∏

j∈AX (t)

w j X

× [
Vt+1 (· · · , Pl , Pk) − Vt+1 (· · · , Pk, Pl)

] ⎤
⎦

≥
X∑

k=1

X∑
l=k+1

(wilw jk − wikw jl)(rl − rk)

= (
wi − w j

)
r′ ≥ 0

where, the first inequality follows induction hypothesis and P is
TP2. �

Theorem 2. The myopic policy is optimal if M = N − 1, P
is TP2, and w1(1) ≤r · · · ≤r wN (1).

Proof: We prove the theorem by induction. In slot T , the
optimality of the myopic policy is obvious. Assume that the
myopic policy is also optimal for slot T − 1, . . . , t + 1. We
prove it holds for slot t .

To that end, we sort �(t) in the decreasing order such
that w1 ≥r · · · ≥r wN . To prove the optimality of myopic pol-
icy, we need to show that Vt (�;A(t)) ≥ Vt (�;A′(t)) where
A(t) = {1, . . . , N − 1} = N \ {N } and A′(t) is any N − 1 ele-
ments of N. Without loss of generality, we assume A′(t) =
N \ {l}. Noticing that wl ≥r wN , it follows from Lemma 3 that
Vt (�;A(t)) ≥ Vt (�;A′(t)). �

For the case of two-state, the myopic policy is conjectured
to be optimal for arbitrary M and N [3] [10], and then the
conjecture is proved in [9], [11]. For the case of multi-state,
considering the same structure of myopic policy with [3], [9],
we have the following similar conjecture:

Conjecture 1. The myopic policy is optimal for arbitrary M
(1 ≤ M ≤ N − 1) if P is TP2 and w1(1) ≤r · · · ≤r wN (1).

V. NUMERICAL SIMULATION

In this section, we study the average reward performance
of Myopic policy, Random policy, and Optimal policy by two
simplest scenarios (N = 3, M = 1, β = 1 and N = 3, M = 2,
β = 1). In the two scenarios, if

P =
⎛
⎝ 0.40 0.20 0.40

0.20 0.24 0.56
0.15 0.25 0.60

⎞
⎠ , r′ =

⎛
⎝ 0.0

0.8
1.0

⎞
⎠ ,

then Assumptions 1-3 of [7] hold except Assumption 4.
Fig. 2 shows that the average reward obtained by the myopic

policy perfectly matches that of the optimal policy, which con-
firms our analytical results. We can also observe that the myopic
policy outperforms the random policy to various extents. Given

Fig. 2. Comparison (N = 3): upper plot: M = 1; lower plot: M = 2.

the exponential complexity of obtaining the optimal policy and
the large number of trials in the random policy, the benefit of
the myopic policy is well demonstrated.

VI. CONCLUSION

In this letter, we have investigated the multi-channel access
problem, which is formulated as a POMDP or RMAB. For
the stochastically identical and independent channels, we have
proved the optimality of the myopic policy for the case of
M = N − 1, conjectured the optimality for the case of arbitrary
M < N based on its conservation queue structure of belief val-
ues, and then verified the optimality by numerical simulation.
One of our future directions is to prove the conjecture about the
optimality for generic M .
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