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In this paper, we tackle the problem of opportunistic spectrum access in large-scale cogni-
tive radio networks, where the unlicensed Secondary Users (SUs) access the frequency
channels partially occupied by the licensed Primary Users (PUs). Each channel is character-
ized by an availability probability unknown to the SUs. We apply population game theory
to model the spectrum access problem and develop distributed spectrum access policies
based on imitation, a behavior rule widely applied in human societies consisting of imitat-
ing successful behaviors. We develop two imitation-based spectrum access policies based
on the basic Proportional Imitation (PI) rule and the more advanced Double Imitation (DI)
rule given that a SU can only imitate the other SUs operating on the same channel. A sys-
tematic theoretical analysis is presented for both policies on the induced imitation dynam-
ics and the convergence properties of the proposed policies to the Nash equilibrium. Simple
and natural, the proposed imitation-based spectrum access policies can be implemented
distributedly based on solely local interactions and thus is especially suited in decentral-
ized adaptive learning environments as cognitive radio networks.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction access mechanism is crucial to achieve efficient spectrum
Cognitive radio [1], with its capability to flexibly config-
ure its transmission parameters, has emerged in recent
years as a promising paradigm to enable more efficient
spectrum utilization. Spectrum access models in cognitive
radio networks can be classified into three categories,
namely exclusive use (or operator sharing), commons
and shared use of primary licensed spectrum [2]. In the last
model, unlicensed Secondary Users (SUs) are allowed to
access the spectrum of licensed Primary Users (PUs) in an
opportunistic way. In this case, a well-designed spectrum
usage.
In this paper, we focus on the generic model of cogni-

tive networks consisting of multiple frequency channels,
each characterized by a channel availability probability
determined by the activity of PUs on it. In such a model,
from the SUs perspective, a challenging problem is to coor-
dinate with other SUs in order to opportunistically access
the unused spectrum of PUs to maximize its own payoff
(e.g., throughput); at the system level, a crucial research is-
sue is to design efficient spectrum access protocols achiev-
ing optimal spectrum usage and load balancing on the
available channels.

We tackle the spectrum access problem in large-scale
cognitive radio networks from an evolutionary game theo-
retic angle. We formulate the spectrum access problem,
show the existence of a Nash Equilibrium (NE) and develop
distributed spectrum access policies based on imitation, a
behavior rule widely applied in human societies consisting
of imitating successful behavior. We study the system
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1 Imitate If Better (IIB) is a rule consisting in picking a player and
migrating to its strategy if the latter has yielded a higher payoff than the
achieved one. IIB is called Random Local Search in [18].
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dynamics and the convergence of the proposed policies to
the NE when the SU population is large. Simple and
natural, the proposed spectrum access policies can be
implemented distributedly based on solely local interac-
tions and thus is especially suited in decentralized adap-
tive learning environments as cognitive radio networks.

In our analysis, we develop imitation-based spectrum
access policies where a SU can only imitate the other SUs
operating on the same channel. More specifically, we pro-
pose two spectrum access policies based on the following
two imitation rules: the Proportional Imitation (PI) rule
where a SU can sample one other SU; the more advanced
adjusted proportional imitation rule with double sampling
(Double Imitation, DI) where a SU can sample two other
SUs. Under both imitation rules, each SU strives to improve
its individual payoff by imitating other SUs with higher
payoff. A systematic theoretical analysis is presented for
both policies on the induced imitation dynamics and the
convergence properties of the proposed policies to the NE.

The key contribution of our work in this paper lies in the
systematical application of the natural imitation behavior
to address the spectrum access problem in cognitive radio
networks, the design of distributed imitation-based channel
access policies, and the theoretic analysis on the induced imi-
tation dynamics and the convergence to an efficient and sta-
ble system equilibrium. In this paper, we extend the results
of [3], where it is assumed that SUs are able to immediately
and uniformly imitate any other SU. This assumption makes
the theoretical analysis straightforward from the literature
on imitation. We assume here that SUs can only imitate
SUs on the same channel and obtain a delayed information,
as a result of which significant changes should be done in
terms of policy design and theoretical analysis.

The rest of the paper is structured as follows. Section 2 dis-
cusses related work in the literature. Section 3 presents the
system model and Section 4 presents the formulation of the
spectrum access game. Section 5 describes the proposed imi-
tation-based spectrum access policies and motivates the
choices of proportional and double imitation rules as basis of
our policies. In Section 6, we study the system dynamics and
the convergence of our algorithms. Section 7 discusses the
assumptions of our network model. Section 8 presents simula-
tion based performance evaluation, where our schemes are
compared to another decentralized approach called Trial and
Error. Section 9 concludes the paper.

2. Related Work

The problem of distributed spectrum access in cognitive
radio networks (CRN) has been widely addressed in the lit-
erature. A first set of papers assumes that the number of
SUs is smaller than the number of channels. In this case,
the problem is closely related to the classical Multi-Armed
Bandit (MAB) problem [4]. Some recent work has investi-
gated the issue of adapting traditional MAB approaches
to the CRN context, among which Anandkumar et al. pro-
posed two algorithms with logarithmic regret, where the
number of SUs is known or estimated by each SU [5].
Contrary to this literature, we assume in our paper a large
population of SUs, able to share the available bandwidth
when settling on the same channel.
Another important thrust consists of applying game
theory to model the competition and cooperation among
SUs and the interactions between SUs and PUs (see [6]
for a review). Several papers propose for example algo-
rithms based on no-regret learning (e.g. [7,8]), which are
not guaranteed to converge to the NE. Besides, due to the
perceived fairness and allocation efficiency, auction tech-
niques have also attracted considerable research attention
and resulted in a number of auction-based spectrum allo-
cation mechanisms (cf. [9] and references therein). The
solution proposed in this paper differs from the existing
approaches in that it requires only local interactions
among SUs and is thus naturally adapted in the distributed
environments as CRNs.

Due to the success of applying evolutionary [10] and
population game theories [11] in the study of biological
and economic problems [11], a handful of recent studies
have applied these tools to study resource allocation prob-
lems arisen from wired and wireless networks (see e.g.
[12,13]), among which Shakkottai et al. addressed the
problem of non-cooperative multi-homing of users to
WLANs access points by modeling it as a population game
[14]. Authors however focus on the system dynamics
rather than on the distributed algorithms as we do in this
paper. Niyato et al. studied the dynamics of network selec-
tion in a heterogeneous wireless network using the theory
of evolutionary game [15]. The proposed algorithm leading
to the replicator dynamics is however based on a central-
ized controller able to broadcast to all users the average
payoff. Our algorithms are on the contrary fully distrib-
uted. Coucheney et al. studied the user-network associa-
tion problem in wireless networks with multi-technology
and proposed an algorithm based on Trial and Error mech-
anisms to achieve the fair and efficient solution [13].

Several theoretical works focus on imitation dynamics.
Ackermann et al. investigated the concurrent imitation
dynamics in the context of finite population symmetric
congestion games by focusing on the convergence proper-
ties [16]. Berenbrik et al. applied the Proportional Imitation
Rule to load-balance system resources by focusing on the
convergence speed [17]. Ganesh et al. applied the Imitate
If Better rule1 (see [19] for a review on imitation rules) in or-
der to load-balance the service rate of parallel server sys-
tems [18]. Contrary to our work, it is assumed in [17,18]
that a user is able to observe the load of another resource be-
fore taking its decision to switch to this resource.

As it is supposed to model human behavior, imitation is
mostly studied in economics. In the context of CRN, spe-
cific protocol or hardware constraints may however arise
so that imitation dynamics are modified, as we show it in
this paper. Two very recent works in the context of CRN
are [20,21], which have the same goals as ours. In [20],
authors propose a distributed learning algorithm for spec-
trum access. User decisions are based on their accumulated
experience and they are using a mixed strategy. In [21],
imitation is also used for distributed spectrum access.
However, the proposed scheme relies on the existence of



Fig. 1. Network model: N SUs try to opportunistically access the
spectrum left free by a PU. The spectrum is made of C slotted frequency
channels.
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a common control channel for the sampling procedure.
Double imitation is moreover not considered.

3. System model

In this section, we present the system model of our
work with the notations used.

3.1. System model and PU operation

We consider the network model shown in Fig. 1 made of
a primary network and a secondary network. In the former,
a primary transmitter is using on the downlink a set C of C
frequency channels, each with bandwidth B. The primary
receivers are operated in a synchronous time-slotted fash-
ion. The secondary network is made of a set N of N SUs,
which try to opportunistically access the channels when
they are left free by the PU. We assume that SUs can per-
form a perfect sensing of PU transmissions, i.e., no collision
can occur between the PU and SUs. This assumption is
adopted in the literature focusing on resource allocation
(see e.g. [22,23,5]). The secondary network is also sup-
posed to be sufficiently small so that every SU can receive
and decode packets sent on the same channel.

Let Zi(k) be the random variable equal to 1 when of
channel i is unoccupied by any PU at slot k and 0 otherwise.
We assume that the process {Zi(k)} is stationary and inde-
pendent for each i and k, i.e., the Zi(k) are i.i.d. random vari-
ables for all (i, k). We also assume that at each time slot,
channel i is free with probability li, i.e., E½ZiðkÞ� ¼ li. With-
out loss of generality, we assume l1 P l2 P � � �P lC. The
channel availability probabilities l , {li} are a priori not
known by SUs.
Fig. 2. SU operation: Nb slots of a frequency channel form a block, SUs use a MAC
a throughput and strategy indication.
3.2. SU operation

We describe in this section the SU operation and capa-
bilities. As shown in Fig. 2 for a given frequency channel j,
time-slots of the primary network are organized into
blocks of Nb slots. All SUs are assumed to be synchronized,
stay on the same channel during a block and may change
their channel at block boundary. Let ni be the number of
SUs operating on channel i.

Assuming perfect sensing of the cognitive users, there is
no secondary transmission during slots occupied by the PU
(gray slots on the figure). When the PU is idle, SUs share
the available bandwidth using a decentralized random ac-
cess MAC protocol (hatched slots on the figure). The way
this MAC protocol is implemented is out of the scope of
the paper. Mini-slots can for example be used at the begin-
ning of each slot in order to perform CSMA, as assumed in
[20], or CSMA/CA can be used, as assumed in [24]. For
mathematical convenience, we will assume in Sections 5
and 6 that the MAC protocol is perfect and operates like
TDMA. Our motivation of such an assumption is to concen-
trate the analysis on the interactions between SUs and the
resulting structural properties of the system equilibria. The
results give an upper-bound on the performance of the
developed policies. A similar asymptotic analysis has been
carried on in [25].

In our work, each SU j is modeled as a rational decision
maker, striking to maximize the throughput it can achieve,
denoted as Ti

j when j operates on channel i. Assuming a fair
MAC protocol and invoking symmetry reasons, all SUs on
channel i obtain the same expected throughput, which
can be expressed as a function of ni as piðniÞ ¼ E½Ti

j� for
all j operating on channel i. It should be noted that pi(ni)
depends on the MAC protocol implemented at the cogni-
tive users. An example is pi(ni) = Bli/ni in the case of a per-
fect MAC protocol operating like TDMA, where B is a
constant standing for the channel bandwidth. Generically,
pi(ni) can be rewritten as pi(ni) = BliS(ni) where S(ni) de-
notes the throughput of a channel of unit bandwidth with-
out PU. Without loss of generality, we will now assume
that B = 1. The assumption that SUs on the same channel
obtain the same expected throughput can be found in the
literature using evolutionary game theory to study spec-
trum access, see e.g. [15,26,20].

Channel availabilities, li, are estimated in the long term
by SUs, while the expected throughput pi and the number
of SUs ni are estimated at the end of each block. In all their
transmissions in block b, SUs include in the header of their
packets the throughput pi(ni) obtained in block b � 1 and
protocol for their transmissions and include in the header of their packets
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the corresponding channel (or strategy) i. We further as-
sume that every SU can overhear at random one or two
packets transmitted by SUs on the same channel and de-
code the throughput and strategy indications. The over-
hearing of packets is called a sampling procedure and we
write i [ j when SU i samples SU j. Sampling is supposed
to be symmetric, i.e., the probabilities P(i [ j) and P(j [ i)
are identical. After the sampling, SU transmitters commu-
nicate to their receiver a channel change order to be exe-
cuted at the next block boundary.

4. Spectrum access game formulation

To study the interactions among autonomous SUs and to
derive distributed channel access policies, we formulate in
this section the channel selection problem as a spectrum ac-
cess game where the players are the SUs and we show the
uniqueness of the Nash Equilibrium (NE) when the number
of SUs is large. The game is defined formally as follows:

Definition 1. The spectrum access game G is a 3-tuple
(N ; C; fUjg), whereN is the player set, C is the strategy set of
each player. Each player j chooses its strategy sj 2 C to
maximize its payoff function Uj defined as Uj ¼ psj ðnsj Þ ¼
E½Tsj

j �.
The solution of the spectrum access game G is charac-

terized by a Nash equilibrium [27], a strategy profile from
which no player has incentive to deviate unilaterally.

Lemma 1. For the spectrum access game G, there exists at
least one Nash equilibrium.
Proof. Given the form of the SU payoff function, it follows
from [28] that the spectrum access game is a congestion
game and a potential game with potential function:
Pðn1; . . . ;nCÞ ¼

P
i2C
Pni

k¼1piðniÞ, where ni is the number of
SUs on channel i and

P
ini ¼ N. This function takes only a

finite set of values and thus achieves a maximum value. h

We now consider the population game G, where (1)
the number of SUs is large, (2) SUs are small, (3) SUs
interact anonymously and (4) payoffs are continuous
(see [11] for the discussion on these assumptions). In
this model, we focus on the system state x , fxi; i 2 Cg
where xi denotes the proportion of SUs choosing channel
i. In such context, by regarding xi as a continuous vari-
able, we make the following assumption on the through-
put function S(xiN).

Assumption 1. S(xiN) is strictly monotonously decreasing
and it holds that S(xiN) 6 1/(Nxi).

We can now establish the uniqueness of the NE in the
spectrum access game G for the asymptotic case in the fol-
lowing lemma and theorem.

Lemma 2. For N sufficiently large, there is no empty channel
at NE.
Proof. Assume, by contradiction, that at a NE, there are no
SUs on channel i. Since there are C channels, at a NE, there
exists at least one channel where there are at least N/C SUs.
Assume that this channel is channel j, i.e., nj P N/C. Con-
sider a SU on channel j, its payoff is pj(nj) = ljS(N/C). From
Assumption 1, pj(nj) 6 ljC/N. Now let a SU in channel j
switch to channel i, its payoff becomes pi(1) = liS(1). It
holds straightforwardly that pj(nj) < pi(1) when N >

ljC
liSð1Þ

.
Hence there is no empty channel at NE. h
Theorem 1. For N sufficiently large, G admits a unique NE,
where all SUs get the same payoff. Let y denote the root ofP

i2CS
�1 y

li

� �
¼ N, at the NE, there are S�1 y

li

� �
SUs operating

on channel i.
Proof. This theorem is a classical result of population
games. See Appendix A for more details. h

We can observe two desirable properties of the unique
NE derived in Theorem 1: (1) the NE is optimal from the
system perspective as the total throughput of the network
achieves its optimum at the NE and (2) at NE, all SUs obtain
exactly the same throughput. Note that any state such that
xi > 0 for all i 2 C is also system optimal, the NE is one of
them. Note also that when N grows indefinitely and as
players are symmetric, the NE approaches the Wardrop
equilibrium of the system [29].

One critical challenge in the analyzed spectrum access
game is the design of distributed spectrum access strate-
gies for rational SUs to converge to the NE. In response to
this challenge, we develop in the sequel sections of this pa-
per an efficient spectrum access policy.
5. Imitation-based spectrum access policies

The spectrum access policy we develop is based on imita-
tion. As a behavior rule widely observed in human societies,
imitation captures the behavior of a bounded rational player
that mimics the actions of other players with higher payoff in
order to improve its own payoff from one block to the next,
while ignoring the effect of its strategy on the future evolu-
tions of the system and forgetting its past experience. The in-
duced imitation dynamics model the spreading of successful
strategies under imitation [30]. In this section, we develop
two spectrum access policies based on the proportional imi-
tation rule and the double imitation rule. For tractability rea-
sons, we assume in the next sections that pi(ni) = li/ni on a
channel i, i.e., a perfect MAC protocol for SUs.

5.1. Motivation

In this first part, we recall some useful definitions given
in [30], we introduce new notations and we provide our
motivations.

Definition 2. A behavioral rule with single sampling (resp.
with double sampling) is a function F : C2 ! DðCÞ (resp.
F : C3 ! DðCÞ), where DðCÞ is the set of probability distri-
butions on C and Fk

i;j;8i; j; k 2 C (resp. Fk
i;j;l;8i; j; k; l 2 C) is the

probability of choosing channel k in the next iteration
(block) after operating on channel i and sampling a SU with
strategy j (resp. sampling two SUs with strategies j and l).



1. Initialization: Set the parameters x, a and r = 1/
(x � a).

Define [A]+
,max{0, A} and QðUÞ , 2� U�a

x�a.
2. At t = 0 and t = 1, randomly choose a channel and

store the payoff Uj(0).
3. while at each iteration t P 2 do
4. Let i and Uj be resp. the channel and the payoff

of j at t � 1.
5. Randomly sample two SUs j1 and j2 (with

channels i1 and i2 and with payoffs Uj1
and Uj2

resp.
at t � 1). Suppose w.l.o.g. that Uj1

6 Uj2

6. if j{i, i1, i2}j = 1, i.e., i = i1 = i2 then
7. Go to channel i.
8. else if j{i, i1, i2}j = 2 then
9. if i = i1, i – i2 and Uj 6 Uj2

then
10. pj2

¼ r
2 QðUjÞðUj2

� UjÞ.
Switch to channel i2 w.p. pj2

and go to
channel i w.p. 1� pj2

.
11. else if i1 = i2, i – i1 and Uj 6 Uj1

¼ Uj2
then

12. pj1
¼ r

2 ðQðUj1
Þ þ QðUjÞÞðUj1

� UjÞ.
Switch to channel i1 w.p. pj1

and go to
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Definition 3. A behavioral rule with single sampling is imi-
tating if Fk

i;j ¼ 0 when k R {i, j}. A behavioral rule with dou-
ble sampling is imitating if Fk

i;j;l ¼ 0 when k R {i, j, l}.
In this paper, we assume that all SUs adopt the same

behavioral rule, i.e., the population is monomorphic in the
sense of Schlag [30] (see e.g. [31–33] for other papers using
this notion).

Schlag has shown in [30] that the Proportional Imitation
Rule (PIR) is an improving rule, i.e., in any state of the sys-
tem the expected average payoff is increasing after an iter-
ation of the rule. He has also shown that it is a dominant
rule, i.e., it always achieves a higher expected payoff
improvement than any other improving rule. PIR is
moreover the unique dominant rule that never imitates a
strategy that achieved a lower payoff and that minimizes
the probability of switching among the set of dominant
rules.

Schlag has also shown in [34] that the Double Imitation
(DI) rule is the rule that causes less SUs to change their
strategy after each iteration among the set of improving
behavioral rules with double sampling. As switching may
represent a significant cost for today’s wireless devices in
terms of delay, packet loss and protocol overhead, this
property makes PIR and DI particularly attractive. These
properties motivate the design of spectrum access policies
based on PIR and DI.

5.2. Spectrum access policy based on proportional imitation

Algorithm 1 presents our proposed spectrum access
policy based on the proportional imitation rule, termed
as PISAP. The core idea is: At each iteration t, each SU
(say j) randomly selects another SU (say j0) on the same
channel; if the payoff at t � 1 of the selected SU (denoted
Uj0 ðt � 1Þ) is higher than its own payoff at t � 1 (denoted
Uj(t � 1)), the SU imitates the strategy of the selected SU
at the next iteration with a probability proportional to
the payoff difference, with coefficient the imitation factor
r.2 The payoff and the strategy at t � 1 of the sampled SU
are read from the packet header.
channel i w.p. 1� pj1
.

13. end if
14. else if j{i, i1, i2}j = 3 then
15. if Uj 6 Uj1

6 Uj2
then

16. pj1 ¼
r
2 ½QðUjÞðUj1

� Uj2
Þ þ QðUj2

ÞðUj1
� UjÞ�þ.

pj2
¼ r

2 ½QðUj1
ÞðUj2

� UjÞ þ QðUj2
ÞðUj1

� UjÞ� � pj1
.

Switch to channel i1 w.p. pj1
, to channel

i2 w.p. pj2
and go to channel i w.p. 1� pj1

� pj2
.

17. else if Uj1
6 Uj 6 Uj2

then
18. pj2 ¼

r
2 ½QðUj1

ÞðUj2
� UjÞ þ QðUj2

ÞðUj1
� UjÞ�þ.

Switch to channel i2 w.p. pj2
and go to

channel i w.p. 1� pj2
.

19. end if
Algorithm 1. PISAP: Executed at each SU j

1: Initialization: Set the imitation factor r
2: At t = 0, randomly choose a channel to stay and

store the payoff Uj(0).
3: while at each iteration t P 1 do
4: Randomly select a SU j0

5: if Ujðt � 1Þ < Uj0 ðt � 1Þ then
6: Migrate to the channel sj0 ðt � 1Þ with

probability p ¼ rðUj0 ðt � 1Þ � Ujðt � 1ÞÞ
7: endif
8: endwhile
2 One way of setting r is to set r = 1/(x � a), where x and a are two
exogenous parameters such that Uj 2 ½a;x�;8j 2 C. In our case, x = 1 and
a = 0 can be chosen.
5.3. Spectrum access policy based on double imitation

In this subsection, we turn to a more advanced imita-
tion rule, the double imitation rule [34] and propose the
DI-based spectrum access policy, termed as DISAP. Under
DISAP, each SU randomly samples two SUs on the same
channel by decoding two packet headers. It then imitates
them with a certain probability determined by the payoff
differences. The spectrum access policy based on the dou-
ble imitation is detailed in Algorithm 2, in which each SU j
(with payoff Uj and strategy i at t � 1) randomly samples
two other SUs j1 and j2 (operating at t � 1 on channel i1
and i2 respectively and, without loss of generality, with
utilities Uj1 6 Uj2 ) and updates the probabilities of switch-
ing to channels i1 and i2, denoted as pj1

and pj2
respectively.

Algorithm 2. DISAP: Executed at each SU j.
20. else
21. Go to channel i.
22. end if
23. end while
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5.4. Discussion

As pointed in [34], double imitation may seem compli-
cated compared to the proportional imitation rule. We can
however extract the following properties [34]: DI is an imi-
tating rule, i.e., a SU never chooses a channel that is not in
his sample; switching probabilities are continuous in the
sampled payoffs and increase with payoff differences; for
a joint sample with three different channels, the most suc-
cessful channel is chosen more likely; a SU never imitates
another SU that obtains a lower payoff.

Note that PISAP is clearly different from the propor-
tional imitation rule presented in [30] in the sense that a
SU is not able to uniformly sample another SU across the
network. The radio constraint indeed forces it to sample
a SU on the same channel. As in this case, current strategies
are identical, imitation is based on the previous iteration.

If every SU is able to uniformly sample another SU in
the network and to imitate the current strategy, the system
dynamics is straightforward to obtain. It is indeed shown
e.g. in [35] that in the asymptotic case (assuming continu-
ous time for simplicity), the proportional imitation rule
generates a population dynamics described by the follow-
ing set of differential equations:

_xiðtÞ ¼ rxiðtÞ½piðtÞ � pðtÞ�; 8i 2 C; ð1Þ

where �p ,
P

i2Cxipi denotes the expected payoff of all SUs
in the network. This equation can be easily solved as:

xiðtÞ ¼ xið0Þ �
liP
l2Cll

� �
e�
P

l2Cll

� �
rt þ liP

l2Cll
; 8i 2 C:

ð2Þ

The imitation dynamics induced by PIR thus converges
exponentially in time to an evolutionary equilibrium,
which is also the NE of G.

With the same assumption, the double imitation rule
generates in the asymptotic case an aggregate monotone
dynamics [34,36], which is defined as follows:

_xi ¼
xi

x� a
1þx� �p

x� a

� 	
ðpi � �pÞ; 8i 2 C; ð3Þ

whose solution is

xiðtÞ ¼ xið0Þ �
liP
l2Cll

� �
e�

�p
x�a 1þx��p

x�að Þt þ liP
l2Cll

; 8i 2 C:

ð4Þ

As a consequence, DI converges exponentially in time to
the NE of the spectrum access game G, however at a higher
rate than PIR because by definition r ¼ 1

x�a and x and a
being upper and lower bounds on payoffs, x��p

x�a P 0. From
(2) and (4), it turns out that the aggregate monotone
dynamics is a time-rescaled version of the replicator
dynamics, as pointed in [10]. We will see in the next sec-
tion that both dynamics continue to play an important role
in our model.

As desirable properties, the proposed imitation-based
spectrum access policies (both PISAP and DISAP) are state-
less, incentive-compatible for selfish autonomous SUs and
requires no central computational unit. The spectrum
assignment is achieved by local interactions among auton-
omous SUs. The autonomous behavior and decentralized
implementation make the proposed policies especially
suitable for large scale cognitive radio networks. The imita-
tion factor r controls the tradeoff between the conver-
gence speed and the channel switching frequency in that
larger r represents more aggressiveness in imitation and
thus leads to fast convergence, at the price of more fre-
quent channel switching for the SUs.
6. Imitation dynamics and convergence

We have seen that proportional imitation and double
imitation rules generate a replicator dynamics and an
aggregate monotone dynamics. In the sequel analysis, we
study the induced imitation dynamics and the convergence
of the proposed spectrum access policies PISAP and DISAP,
which take into account the constraint imposed by SU
radios.
6.1. System dynamics

In this subsection, we first derive in Theorem 2 the
dynamics for a generic imitation rule F with large popula-
tion. We then derive in Lemma 3, Theorems 3 and 4 the
dynamics of the proposed proportional imitation policy PI-
SAP and study its convergence. The counterpart analysis
for the double imitation policy DISAP is explored in Lemma
4, Theorems 5 and 6.

We start by introducing the notation used in our analysis.
At an iteration, we label all SUs performing strategy i (chan-
nel i in our case) as SUs of type i and we refer to the SUs on sj

as neighbors of SU j. We denote nl
iðtÞ the number of SUs on

channel i at iteration t and operating on channel l at t � 1.
It holds that

P
l2Cn

l
iðtÞ ¼ niðtÞ and

P
i2Cn

l
iðtÞ ¼ nlðt � 1Þ. For

a given state sðtÞ , fsjðtÞ; j 2 Ng of the system at iteration t
and for a finite population of size N, we denote pi(t) , ni(t)/
N the proportion of SUs of type i and pl

iðtÞ , nl
iðtÞ=N the pro-

portion of SUs migrating from channel l to i. We use x instead
of p to denote these proportions when N is large. It holds that
p ? x when N ? +1.

Denote by F a generic imitation rule under the channel
constraint. In the case of a simple imitation rule (e.g. PI-
SAP), F is characterized by the probability set fFi

j;kg, where
Fi

j;k denotes the probability that a SU choosing strategy j at
the precedent iteration imitates another SU choosing strat-
egy k at the precedent iteration and then switches to chan-
nel i at next iteration after imitation. Instead, by applying a
double imitation rule (e.g. DISAP), we can characterize F by
the probability set fFi

j;k;lg, where Fi
j;k;l denotes the probabil-

ity that a SU choosing strategy j at the precedent iteration
imitates two neighbors choosing respectively strategy k
and strategy l at the precedent iteration and then switches
to channel i at the next iteration after imitation. In both
cases the only way to switch to a channel i is to imitate a
SU that was on channel i. That means Fi

j;k ¼ 0;8k – i (PI-
SAP) and Fi

j;k;l ¼ 0, "k, l – i (DISAP).
At the initialization phase (iterations 0 and 1), each SU

randomly chooses its strategy with uniform distribution.
In the asymptotic case, we thus have 8i 2 C; xið0Þ > 0 and
xi(1) > 0 a.s. After that, the system state at iteration t + 1,
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denoted as p(t + 1) (x(t + 1) in the asymptotic case), de-
pends on the states at iteration t and t � 1.

We have now the following theorem that relates the fi-
nite and asymptotic cases.

Theorem 2. For any imitation rule F, if the imitation among
SUs of the same type occurs randomly and independently,
then "d > 0, � > 0 and any initial state f~xið0Þg; f~xið1Þg such
that 8i 2 C; ~xið0Þ > 0 and ~xið1Þ > 0, there exists N0 2 N such
that if N > N0;8i 2 C, the event jpi(t) � xi(t)j > d occurs
with probability less than � for all t, where
pið0Þ ¼ xið0Þ ¼ ~xið0Þ; pið1Þ ¼ xið1Þ ¼ ~xið1Þ. In the case of a
simple imitation policy it holds that

xiðt þ 1Þ ¼
X

j;l;k2C

xl
jðtÞxk

j ðtÞ
xjðtÞ

Fi
l;k 8i 2 C:

Differently, a double imitation policy yields:

xiðt þ 1Þ ¼
X

j;l;k;z2C

xl
jðtÞxk

j ðtÞxz
j ðtÞ

½xjðtÞ�2
Fi

l;fk;zg 8i 2 C:
Proof. The proof consists of first showing the theorem
holds for iteration t = 2 and then proving the case t P 3
by induction. The detail is in Appendix B. h

Theorem 2 is a result on the short run adjustments of
large populations under any generic imitation rule F: the
probability that the behavior of a large population differs
from the one of an infinite population is arbitrarily small
when N is sufficiently large. In what follows, we study
the convergence of PISAP and DISAP specifically.

6.2. PISAP dynamics and convergence

In this section, we now focus on PISAP and derive the
induced imitation dynamics in the following analysis.

Lemma 3. On the proportional imitation policy PISAP under
channel constraint, it holds that

xj
iðt þ 1Þ ¼

X
l;k2C

xl
jðtÞxk

j ðtÞ
xjðtÞ

Fi
l;k 8i; j 2 C: ð5Þ
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Fig. 3. PISAP dynamics and its approxima
Proof. The proof is straightforward from the analysis in
the proof of Theorem 2. h
Theorem 3. The proportional imitation policy PISAP under
channel constraint generates the following dynamics in the
asymptotic case:

xiðtþ1Þ¼ xiðt�1Þþrpiðt�1Þxiðt�1Þ�r
X
j;l2C

plðt�1Þ
xi

jðtÞxl
jðtÞ

xjðtÞ
;

ð6Þ

where pi(t) denotes the expected payoff of an individual SU on
channel i at iteration t.
Proof. See Appendix C. h

Although we are not able to prove it theoretically, we
observe via extensive numerical experiments that (6) con-
verges to the NE. The formal proof is left for future work. To
get more in-depth insight on the dynamics (6), we notice
that under the following approximation:

X
l2C

plðt � 1Þ
xl

jðtÞ
xjðtÞ

� �pðt � 1Þ; ð7Þ

where �pðt � 1Þ is the average individual payoff for the
whole system at iteration t � 1, noticingP

jx
i
jðtÞ ¼ xiðt � 1Þ, (6) can be written as:

xiðt þ 1Þ ¼ xiðt � 1Þ þ rxiðt � 1Þ½piðt � 1Þ � �pðt � 1Þ�: ð8Þ

Note that the approximation (7) states that in any channel j
at iteration t, the proportions of SUs coming from any
channel l are representative of the whole population.

Under the approximation (7), given the initial state
{xi(0)}, {xi(1)}, we can decompose (8) into the following
two independent discrete-time replicator dynamics:

xiðuÞ ¼ xiðu� 1Þ þ rxiðu� 1Þ½piðu� 1Þ � �pðu� 1Þ�;
xiðvÞ ¼ xiðv � 1Þ þ rxiðv � 1Þ½piðv � 1Þ � �pðv � 1Þ�;



ð9Þ

where u = 2t, v = 2t + 1. The two equations in (9) illustrate
the underlying system dynamics hinged behind PISAP un-
der the approximation (7): it can be decomposed into two
12 14 16 18 20
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independent delayed replicator dynamics that alterna-
tively occur at the odd and even iterations, respectively.
The following theorem establishes the convergence of (9)
to a unique fixed point, which is also the NE of the spec-
trum access game G.

Theorem 4. Starting from any initial point, the system
described by (9) converges to a unique fixed point which is
also the NE of the spectrum access game G.
Proof. The proof, of which the detail is provided in Appen-
dix D, consists of showing that the mapping described by
(9) is a contraction mapping. h

As an illustrative example, Fig. 3 shows that the double
replicator dynamics provides an accurate approximation of
the system dynamics induced by PISAP.

6.3. DISAP dynamics and convergence

We now focus on DISAP and derive the induced imita-
tion dynamics.

Lemma 4. On the double imitation policy DISAP under
channel constraint, it holds that

xj
iðt þ 1Þ ¼

X
l;k;z2C

xl
jðtÞxk

j ðtÞxz
j ðtÞ

½xjðtÞ�2
Fi

l;k;z 8i; j 2 C: ð10Þ
Proof. The proof is straightforward from the analysis in
the proof of Theorem 2. h
Theorem 5. The double imitation policy DISAP under channel
constraint generates the following dynamics in the asymptotic
case:

xiðt þ 1Þ ¼ xiðt � 1Þ þ
X

j

xi
jðtÞQð�pjðt � 1ÞÞðpiðt � 1Þ

� �pjðt � 1ÞÞ; ð11Þ

where �pjðt � 1Þ ¼
P

k

xk
j
ðtÞ

xjðtÞ
pkðt � 1Þ and QðUÞ , 2� U�a

x�a.

Proof. See Appendix E. h
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Fig. 4. DISAP dynamics and its approximation b
Again, we are not able to prove it analytically and leave
the formal proof as future work. However, we observe via
extensive numerical experiments that (11) converges to
the NE and, as shown in Fig. 5, is also characterized by a
smoother and faster convergence with respect to the pro-
portional imitation dynamics (Eq. (6)).

By performing the approximation �pjðt � 1Þ � �pðt � 1Þ
for all j, (11) can be written as:

xiðt þ 1Þ ¼ xiðt � 1Þ þ xiðt � 1ÞQð�pðt � 1ÞÞðpiðt � 1Þ � �pðt � 1ÞÞ:
ð12Þ

Given the initial state {xi(0)}, {xi(1)}, we can now
decompose (12) into the following two independent dis-
crete-time aggregate monotone dynamics:

xiðuÞ ¼ xiðu� 1Þ þ xiðu� 1Þ½2� �pðu� 1Þ�½piðu� 1Þ � �pðu� 1Þ�;
xiðvÞ ¼ xiðv � 1Þ þ xiðv � 1Þ½2� �pðv � 1Þ�½piðv � 1Þ � �pðv � 1Þ�;



ð13Þ

where u = 2t, v = 2t + 1. The underlying system dynamics
can thus be decomposed into two independent delayed
aggregate monotone dynamics that alternatively occur at
the odd and even iterations, respectively. The following
theorem establishes the convergence of (13) to a unique
fixed point which is also the NE of the spectrum access
game G. The proof follows exactly the same analysis as that
of Theorem 4.

Theorem 6. Starting from any initial point, the system
described by (13) converges to a unique fixed point which is
also the NE of the spectrum access game G.

As an illustrative example, Fig. 4 shows that the double
aggregate dynamics provides an accurate approximation of
the system dynamics induced by DISAP.

7. Discussion

This paper is a first step to systematically apply imita-
tion rules to cognitive radio networks. There are several
points to be tackled in order to make the model more
realistic.

� It is assumed in this paper that a SU can capture another
SU packet for sampling with probability 1. Assuming a
capture probability less than 1 would have the same
7 8 9 10 11 12
me

SAP dynamic
prox. with double aggregate monotone

y double aggregate monotone dynamics.
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effect as decreasing the value of r in PISAP, i.e., it would
slow down the convergence speed of the proposed
algorithms.
� It is assumed that all SUs can all hear each other on the

same channel. A more realistic setting would consider a
graph of possible communications between SUs. In this
case, our algorithms are not any more ensured to con-
verge. This point is left for further work. A promising
approach is to use the results of the literature on ‘learn-
ing from neighbors’, which studies the conditions under
which efficient actions are adopted by a population if
agents receive information only from their neighbors
(see e.g. [37]).
� In this paper, SUs are supposed to provide in their

packet header the exact average throughput that can
be obtained on a given channel. We have investigated
in [24] the effect of providing only an estimate of the
average throughput. Assuming the use of CSMA/CA as
SU MAC protocol, we have shown by simulations that
our algorithms continue to converge in this more realis-
tic context.
� For mathematical convenience, we have assumed in

this paper that the SU MAC protocol was perfect and
could act as TDMA. Although unrealistic, this approach
gives an upper bound on the performance of our poli-
cies. Also, the analysis can be extended with other more
realistic MAC protocols by adapting the utility func-
tions. Particularly, we have investigated in [24] the
use of CSMA/CA and shown by simulations the conver-
gence of our policies.
� It is assumed that a generic PU transmits with a certain

probability in TDMA-like mode. If there are multiple PU
transmitters it is possible to distinguish two cases:

1. The transmission of each PU covers the totality of
SU receivers. This scenario boils down to the case
of a unique generic PU transmitter.

2. The transmission of one or more PUs covers a sub-
set of the SU receivers. In this case, different SUs
may have different perceptions of the environment
and a further analysis, based on the fact that the
channel availability probabilities are now depen-
dent on both channel i and SU j, should be carried
on. This point is left for future work.
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8. Performance evaluation

In this section, we conduct simulations to evaluate the
performance of the proposed imitation-based channel ac-
cess policies (PISAP and DISAP) and demonstrate some
intrinsic properties of the policies, which are not explicitly
addressed in the analytical part of the paper.

For performance comparison, we also show the results
obtained by simulating Trial and Error [38] (shortened into
T&E in the following). The latter has been chosen as it is, to
the best of our knowledge, one of the best existing mecha-
nisms that (1) applies to our model and (2) is guaranteed to
converge to a NE. In T&E, players locally implement a state
machine, so that at each iteration each player is character-
ized by a state, which is defined by the triplet {cur-
rent_mood, benchmark_mood, benchmark_strategy}. Players
current mood (the four possible moods are: content, watch-
ful, hopeful and discontent) reflects the machine reaction to
its experience of the environment. A NE is reached when
everybody is in state content.

8.1. Simulation settings

We simulate two cognitive radio networks, termed Net-
work 1 and Network 2. We study the performance of our
algorithms on Network 1, and compare their convergence
behaviors and fairness to the ones obtained by T&E on Net-
work 2.

� Network 1: We consider N = 50 SUs, C = 3 channels char-
acterized by the availability probabilities
l = [0.3,0.5,0.8].
� Network 2: We set N = 10, C = 2 and l = [0.2,0.8].

Note that the introduction of Network 2 has been nec-
essary as the dynamics induced by T&E turns out to be very
slow to converge on the bigger Network 1 (after 105 itera-
tions convergence is still not achieved).

We assume that the block duration is long enough, so
that the SUs, regardless of the occupied channel, can eval-
uate their payoff without errors. T&E learning parameters
(i.e., experimentation probability and benchmark mood
acceptance ratio) are set at each iteration according to [39].
12 14 16 18 20
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8.2. System dynamics

In Fig. 5, the trajectories described by (6) and (11) are
compared. The first part of the curves is characterized by
important variations. This can be interpreted by the over-
lap of two replicator/aggregate monotone dynamics at
odd and even instants, as explained in Section 6. We ob-
serve that, in the asymptotic case, DISAP outperforms PI-
SAP as it is characterized by less pronounced wavelets
and a faster convergence. However, both dynamics cor-
rectly converge to an evolutionary equilibrium. It is easy
to check that the converged equilibrium is also the NE of
G and the system optimum, which confirms our theoretic
analysis. The dynamics presented in Fig. 5 are valid in an
asymptotic case, when the number of SUs is large. We
now turn our attention to small size scenarios.

8.3. Convergence with finite number of SUs

We study in this section the convergence of PISAP and
DISAP on Network 1 (N = 50, C = 3). Figs. 6 and 7 show a
realization of our algorithms. We notice that an imita-
tion-stable equilibrium is achieved progressively following
the dynamics characterized by (6) and (11). The equilib-
rium is furthermore very close to the system optimum:
we can in fact check that, according to Theorem 1, the pro-
portion of SUs choosing channels 1, 2 and 3 at the system
optimum is 0.1875, 0.3125 and 0.5 respectively; in the
simulation results we observe that there are 9, 16 and 25
SUs settling on channels 1, 2 and 3 respectively. We also
notice on this example that DISAP convergence is faster
than PISAP convergence.

We now focus on Network 2 (N = 10, C = 2) and compare
T&E convergence behavior (Fig. 8)) to the trends of PISAP
(Fig. 9) and DISAP (Fig. 10). It is easy to notice that T&E
converges in a much slower and more chaotic way with re-
spect to PISAP and DISAP. With T&E, the search of a NE may
turn out to be extremely long (in the realization depicted
in Fig. 8, e.g., convergence is achieved within 3.5 � 103 iter-
ations). On the contrary, PISAP and DISAP converge within
75 and 32 iterations respectively.

8.4. System fairness

We now turn to the analysis of the fairness of the pro-
posed spectrum access policies. To this end, we adopt the
Jain’s fairness index [40], which varies in [0,1] and
reaches its maximum, when the resources are equally
shared amongst users. Figs. 11 and 12, whose curves rep-
resent an average over 103 independent realizations on
Network 2 of our algorithms and of T&E respectively,
show that PISAP and DISAP clearly outperform T&E in
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terms both of fairness and convergence speed. In
fact, while our system turns out to be very fair from
the early iterations, T&E needs 6 � 103 iterations to get
its system to reach a fairness value of 0.85. From
Fig. 11, one can further infer that indeed DISAP converges
more rapidly than PISAP: for example, a fairness index of
0.982 is reached at t = 100 by DISAP and at t = 200 by
PISAP.
8.5. Switching cost

At last, we concentrate on the switching frequency of
the three algorithms because switching may represent a
significant cost for today’s wireless devices in terms of de-
lay, packet loss and protocol overhead. In Fig. 13, we define
the switching cost at iteration t as the number of strategy
switches between 0 and t. After 200 iterations, the
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switching cost of DISAP and PISAP has stabilized because
convergence has been reached. On the contrary, T&E exhib-
its a fast growing cost.

8.6. Imperfect observations of PU activity

We assumed so far that cognitive radio users observe
the channel activity of the primary user without errors.
In this section, we investigate the performance of the pro-
posed algorithms when the PU activity is imperfectly ob-
served by the SUs. We denote by Pe the SU probability of
error in detecting the PU activity and by Qe the miss detec-
tion probability of an idle PU (probability of false alarm).
The expected value of the payoff experienced by SUs on
channel i can be written as follows:

E½piðniÞ� ¼
Xni�1

m¼0

ni � 1
m

� �
ð1� Q eÞmQ ni�1�m

e ð1� QeÞ
li

mþ 1
;

ð14Þ
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which does not depend on Pe because a miss detection
of the PU activity does not affect the throughput of
any SU.

We now want to evaluate the impact of Qe on the ex-
pected throughput estimates. To this end, we calculate
the values taken by (14) for different values of Qe and for
different numbers of SUs. Results are shown in Fig. 14. Sur-
prisingly, we see that the estimates under sensing errors
rapidly converge to the values calculated for the ideal case
with no miss detections (i.e., Qe = 0). This is due to the fact
that a trade-off arises. On the one hand, a SU, which is un-
able to detect a free slot experiences a penalty in its
throughput. On the other hand, there are less SUs in aver-
age accessing free slots, which results in a higher through-
put. As shown in Fig. 14, the two effects counterweight
when the number of SUs gets larger. Hence, one can infer
that in practice the impact of miss detections of the PU
activity/inactivity is limited for a number of SUs on the
same channel greater than 5.
9. Conclusion and further work

In this paper, we address the spectrum access problem
in cognitive radio networks by applying population game
theory and develop two imitation-based spectrum access
policies. In our model, a SU can only imitate the other
SUs operating on the same channel. This constraint makes
the basic proportional imitation and double imitation rules
irrelevant in our context. These two imitation rules are
thus adapted to propose PISAP, a proportional imitation
spectrum access policy, and DISAP, a double imitation
spectrum access policy. A systematic theoretical analysis
is presented on the induced imitation dynamics and the
convergence properties of the proposed policies to the
Nash equilibrium. Simulation results show the efficiency
of our algorithms even for small size scenarios. It is also
shown that PISAP and DISAP outperform Trial and Error
in terms of convergence speed and fairness. As an impor-
tant direction of the future work, we plan to investigate
the imitation-based channel access problem in the more
generic multi-hop scenario where SUs can imitate their
neighbors and derive the relevant channel access policies.
Appendix A. Proof of Theorem 1

We first show that any point x ¼ ðxiÞi2C cannot be a NE if
there exists i1 and i2 such that pi1 ðNxi1 Þ < pi2 ðNxi2 Þ. Other-
wise, consider the strategy profile x0 where �N SUs move
from channel i1 to i2. For N large and with sufficient small
�, it follows from the continuity of pi(xi) that
pi1 ðNðxi1 � �ÞÞ < pi2 ðNðxi2 þ �ÞÞ, which indicates that by
switching from i1 to i2, one can increase its payoff. We then
proceed to show the second part of the theorem. To this end,
let y denote the payoff of any SU at the NE, we have:
liSðxiNÞ ¼ y;8i 2 C. It follows that xiN ¼ S�1 y

li

� �
. Noticing

that
P

ixi ¼ 1, at the NE, we have:

X
i2C

S�1 y
li

� �
¼ N: ðA:1Þ

Since a NE is ensured to exist, (A.1) admits at least a solu-
tion y. Moreover, it follows from the strict monotonicity of
S in Assumption 1 that its inverse function S�1 is also
strictly monotonous. Hence (A.1) admits a unique solution.
We thus complete the proof.

Appendix B. Proof of Theorem 2

We prove the statement for t = 2. The case for t P 3 is
analogous to [30], which can be shown by induction and
is therefore omitted.

Define the random variable wj
iðcÞ such that

wj
iðcÞ ¼

1 if SU c is on channel j at iteration t ¼ 1
and migrates to channel i at t ¼ 2;

0 otherwise:

8><
>:

ðB:1Þ

We now distinguish two cases: proportional and double
imitation.

B.1. Proportional imitation

By definition, if j – sc(1), it holds that wj
iðcÞ ¼ 0. Other-

wise, c imitates with probability
nk

sc ð1Þ
nsc ð1Þ

a SU that was using

channel k at t = 0 and that is currently (t = 1) on the same
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channel as c (sc(1)), and then migrates to channel i with

probability Fi
scð0Þ;k. Note that we allow for self-imitation in

our algorithm. At initial states, all strategies are supposed
to be chosen by at least one SU (N is large), so that
nscð1Þ – 0. We thus have:

P wj
iðcÞ ¼ 1

h i
¼

0 if j – scð1Þ;X
k2C

nk
sc ð1Þ

nsc ð1Þ
Fi

scð0Þ;k otherwise:

8><
>: ðB:2Þ

We can now derive the population proportions at itera-
tion t = 2 as:

pj
ið2Þ ¼

1
N

X
c2N

wj
iðcÞ 8i; j 2 C: ðB:3Þ

The expectations of these proportions can now be written
as (using the Kronecker delta di, j):

E½pj
ið2Þ� ¼

1
N

X
c2N

P½wj
iðcÞ ¼ 1� ðB:4Þ

¼ 1
N

X
c2N ;k2C

nk
scð1Þð1ÞF

i
scð0Þ;kdj;scð1Þ

nscð1Þð1Þ
ðB:5Þ

¼ 1
N

X
h;l;k2C

nl
hð1Þnk

hð1ÞF
i
l;kdj;h

nhð1Þ
ðB:6Þ

¼ 1
N

X
l;k2C

nl
jð1Þnk

j ð1ÞF
i
l;k

njð1Þ
ðB:7Þ

¼
X
l;k2C

~xl
jð1Þ~xk

j ð1Þ
~xjð1Þ

Fi
l;k: ðB:8Þ

It follows that

E½pið2Þ� ¼
X
j2C

E½pj
ið2Þ� ¼

X
j;l;k2C

~xl
jð1Þ~xk

j ð1Þ
~xjð1Þ

Fi
l;k: ðB:9Þ

As wj
iðcÞ and wj

iðdÞ are independent random variables for
c – d and since the variance of wj

iðcÞ is less than 1, the var-
iance of pj

ið2Þ and pi(2) for any i; j 2 C are less than 1/N and
C/N, respectively. It then follows the Bienaymé–Chebychev
inequality that

8i 2 C; P½fjpið2Þ � E½pið2Þ�j > dg� < C

ðNdÞ2
: ðB:10Þ

Choosing N0 such that C
ðN0dÞ2

< � concludes the proof for
t = 2. The proof can then be induced to any t as in [30].

B.2. Double imitation

If j – sc(1), it holds that wj
iðcÞ ¼ 0. Otherwise, c imitates

with probability
nk

sc ð1Þ
Nsc ð1Þ

nz
sc ð1Þ

nsc ð1Þ
two SUs that were using respec-

tively channel k and channel z at t = 0 and that are cur-
rently (t = 1) on the same channel as c (sc(1)), and then

migrates to channel i with probability Fi
scð0Þ;k;z.

The proof follows in the steps of the proportional imita-
tion and only the main passages will be sketched out. We al-
low a SU to sample twice the same SU on the channel, so that:

P wj
iðcÞ ¼ 1

h i
¼

0 if j – scð1Þ;X
k;z2C

nk
sc ð1Þ

nsc ð1Þ

nz
sc ð1Þ

nsc ð1Þ
Fi

scð0Þ;k;z otherwise:

8><
>:

ðB:11Þ
We then derive the proportions expectations:

E pj
ið2Þ

h i
¼ 1

N

X
c2N

P½wj
iðcÞ ¼ 1� ðB:12Þ

¼ 1
N

X
c2N ;k;z2C

nk
sc ð1Þð1Þ

nsc ð1Þð1Þ
nz

scð1Þð1Þ
nscð1Þð1Þ

Fi
scð0Þ;k;zdj;scð1Þ ðB:13Þ

¼
X

l;k;z2C

~xl
jð1Þ~xk

j ð1Þ~xz
j ð1Þ

½~xjð1Þ�2
Fi

l;k;z: ðB:14Þ

It follows that:

E pið2Þ½ � ¼
X
j2C

E pj
ið2Þ

h i
ðB:15Þ

¼
X

j;l;k;z2C

~xl
jð1Þ~xk

j ð1Þ~xz
j ð1Þ

½~xjð1Þ�2
Fi

l;k;z: ðB:16Þ

The rest of the proof for the double imitation follows the
same way as that of proportional imitation.

Appendix C. Proof of Theorem 3

Recall the analysis in [30]. In this reference, Eq. (10)
states that Fj

i;j ¼ Fi
j;i þ r½pj � pi�. We can now characterize

fFi
l;kg for PISAP as:

Fi
l;k ¼

0 if l;k – i;

Fl
i;lþr½piðt�1Þ�plðt�1Þ� if k¼ i and l – i;

1� Fi
k;i�r½pkðt�1Þ�piðt�1Þ� if l¼ i and k – i;

1 if l¼ k¼ i:

8>>>><
>>>>:

The above four equations state that: (1) if none of the in-
volved channels is i then the probability to switch to chan-
nel i is null (F is imitating); (2) the switching probability is
proportional to the payoff difference; (3) if a SU does not
imitate, it stays on the same channel; (4) if a SU imitates
another SU with the same strategy, its strategy is not mod-
ified. Eq. (5) can now be written as follows:

xj
iðtþ1Þ ¼

X
l–i

xl
jðtÞxi

jðtÞ
xjðtÞ

ðFl
i;lþr½piðt�1Þ�plðt�1Þ�Þ

þ
X
k–i

xi
jðtÞxk

j ðtÞ
xjðtÞ

ð1� Fi
i;k�r½pkðt�1Þ�piðt�1Þ�Þþ

xi2
j

xj

¼
X
l–i

xl
jðtÞxi

jðtÞ
xjðtÞ

ð1þr½piðt�1Þ�plðt�1Þ�Þþ
xi2

j

xj

¼
X
l–i

xl
jðtÞxi

jðtÞ
xjðtÞ

r½piðt�1Þ�plðt�1Þ�þ
X
l2C

xl
jðtÞxi

jðtÞ
xjðtÞ

¼ xi
jðtÞþ

X
l2C

xl
jðtÞxi

jðtÞ
xjðtÞ

r½piðt�1Þ�plðt�1Þ�:

This concludes the proof.

Appendix D. Proof of Theorem 4

We prove the convergence of (9) by showing that the
mapping described by (9) is a contraction. A contraction
mapping is defined [41] as follows: let (X, d) be a metric
space, f: X ? X is a contraction if there exists a constant



3 In this reference, Eq. (3) of Theorem 1 is wrong. The correct formula is
however given in the proof of the theorem in Appendix.
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k 2 [0,1) such that "x, y 2 X, d(f(x), f(y)) 6 kd(x, y), where
d (x, y) = kx � yk = maxi jxi � yij. Such an f is called a con-
traction and admits a unique fixed point, to which the
mapping described by f converges.

Noticing that

dðf ðxÞ; f ðyÞÞ ¼ kf ðxÞ � f ðyÞk 6 @f
@x

����
����dðx; yÞ; ðD:1Þ

it suffices to show that the Jacobian @f
@x

��� ��� 6 k. In our case, it
suffices to show that kJk1 6 k, where J ¼ ðJijÞi;j2C is the Jaco-
bian of the mapping described by one of the equation in
(9), defined by Jij ¼ @xiðuÞ

@xjðu�1Þ.

Recall that pi ¼ li
Nxi

and �p ¼
P

l
ll
N , (9) can be rewritten

as:

xiðuÞ ¼ xiðu� 1Þ þ r li

N
� xiðu� 1Þ

X
l

ll

N

" #
: ðD:2Þ

It follows that

Jij ¼
1�

X
l

ll
N if j ¼ i;

0 otherwise:

8><
>: ðD:3Þ

Hence

kJk1 ¼max
i2N

X
j2N
jJijj ¼ 1�

X
l

ll

N
< 1; ðD:4Þ

which shows that the mapping described by (9) is a con-
traction. It is further easy to check that the fixed point of
(9) is x� ¼ liP

l2N
ll

, which is also the unique NE of G.

Appendix E. Proof of Theorem 5

We start from the following equation (we skip the ref-
erence to time on the right hand side after the first line
for the sake of clarity):

xj
iðt þ 1Þ ¼

X
l;k;z2C

xl
jðtÞxk

j ðtÞxz
j ðtÞ

½xjðtÞ�2
Fi

l;k;z ðE:1Þ

¼
xi

j

x2
j

X
k–i

xk2
j ½F

i
i;k;k þ Fi

k;i;k þ Fi
k;k;i�

þ
xi2

j

x2
j

X
k–i

xk
j ½F

i
k;i;i þ Fi

i;k;i þ Fi
i;i;k�

þ
xi

j

x2
j

X
k–i

X
lRfk;ig

xl
jx

k
j ½F

i
i;k;l þ Fi

k;i;l þ Fi
k;l;i� þ

xi3
j

x2
j

: ðE:2Þ

The second equality can be understood as follows. Fi
l;k;z – 0

only if at least one of the indices l, k, or z is equal to i. The
first sum of the right hand side (RHS) is obtained when two
indices are equal and different from i, the third one is equal
to i. The second sum is obtained when one index is differ-
ent from i and the two others are equal to i. The third sum
is obtained when one index is equal to i and the two others
are different and different from i. The last term corre-
sponds to the case where all indices are equal to i (in this
case, obviously, Fi

i;i;i ¼ 1). Now we have:
Fi
i;k;k þ Fi

k;i;k þ Fi
k;k;i ¼ 2Fi

k;i;k þ 1� Fk
i;k;k; ðE:3Þ

Fi
k;i;i þ Fi

i;k;i þ Fi
i;i;k ¼ Fi

k;i;i þ 2ð1� Fk
i;i;kÞ; ðE:4Þ

Fi
i;k;l þ Fi

k;i;l þ Fi
k;l;i ¼ 1� Fk;l

i;k;l þ Fi
l;i;k þ Fi

k;i;l; ðE:5Þ

where Fk;l
i;k;l ¼ Fk

i;k;l þ Fl
i;k;l. Above, we used the fact that

8ði; j; k; lÞ; Fl
i;j;k ¼ Fl

i;k;j (i.e., there is no order in the sampling
of two individuals) and Fi

i;k;l þ Fk
i;k;l þ Fl

i;k;l ¼ 1 (i.e., with
probability one, the SU goes to channel i, j or k at the next
iteration).

Moreover, we note that:

xi
j

x2
j

X
k–i

xk2
j þ 2xi

j

X
k–i

xk
j þ

X
k–i

X
lRfk;ig

xl
jx

k
j þ xi2

j

" #

¼
xi

j

x2
j

X
k

xk2
j þ 2xi

j

X
k–i

xk
j þ

X
k–l

xl
jx

k
j � xi

j

X
l–i

xl
j � xi

j

X
k–i

xk
j

" #

¼
xi

j

x2
j

X
k;l

xl
jx

k
j ¼ xi

j:

ðE:6Þ

We used here the fact that
P

kxk
j ¼ xj.

Eq. (E.2) can now be written (we skip the reference to
time on the RHS, all xi

j are functions of t):

xj
iðt þ 1Þ ¼ xi

j þ
xi

j

x2
j

X
k–i

xk2
j 2Fi

k;i;k � Fk
i;k;k

h i

þ
xi2

j

x2
j

X
k–i

xk
j Fi

k;i;i � 2Fk
i;i;k

h i

þ
xi

j

x2
j

X
k–i

X
lRfk;ig

xl
jx

k
j Fi

l;i;k þ Fi
k;i;l � Fk;l

i;k;l

h i
: ðE:7Þ

We now use the following property of the double imitation
[34]3 for i R {j, k}:

Fj;k
i;j;k � Fi

j;i;k � Fi
k;i;j ¼

1
2

Qðpkðt � 1ÞÞðpjðt � 1Þ � piðt � 1ÞÞ

þ 1
2

QðpjÞðpkðt � 1Þ � piðt � 1ÞÞ: ðE:8Þ

Payoffs p are functions of t � 1 because imitation is based
on the payoff obtained at the previous iteration). In partic-
ular, for j = k, we obtain:

Fk
i;k;k � 2Fi

k;i;k ¼ Qðpkðt � 1ÞÞðpkðt � 1Þ � piðt � 1ÞÞ: ðE:9Þ

From these equations, we can simplify (E.7) into (skipping
again reference to time on the RHS):

xj
iðt þ 1Þ ¼ xi

j þ
xi

j

x2
j

X
k

xk2
j QðpkÞðpi � pkÞ

þ
xi2

j

x2
j

X
k

xk
j QðpiÞðpi � pkÞ

þ
xi

j

x2
j

X
k

X
lRfk;ig

xl
jx

k
j QðplÞðpi � pkÞ: ðE:10Þ
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The term in the last double summation has been obtained by
using (E.8), separating the expression in two double sums
and interchanging indices j and k in the first double sum.
Note also that all terms of the involved sums are null for k = i.

We now obtain:

xj
iðtþ1Þ ¼ xi

jþ
xi

j

x2
j

X
k

xk
j ðpi�pkÞ xk

j QðpkÞþ xi
jQðpiÞþ

X
lRfk;ig

xl
jQðplÞ

" #
;

¼ xi
jþ xi

j

X
k

xk
j

xj
ðpi�pkÞ

X
l

xl
j

xj
QðplÞ ¼ xi

jþ xi
jQð�pjÞðpi� �pjÞ;

ðE:11Þ

where �pjðt � 1Þ ¼
P

k

xk
j
ðtÞ

xjðtÞ
pkðt � 1Þ can be interpreted as

the average payoff at the previous iteration of SUs settling
now on channel j. We now have:
xiðt þ 1Þ ¼
X

j

xj
iðt þ 1Þ ¼

X
j

xi
jðtÞ þ xi

jðtÞQð�pjðt � 1ÞÞðpiðt � 1Þ � �pjðt � 1ÞÞ
h i

¼ xiðt � 1Þ þ
X

j

xi
jðtÞQð�pjðt � 1ÞÞðpiðt � 1Þ � �pjðt � 1ÞÞ: ðE:12Þ
We used the fact that
P

jx
i
jðt þ 1Þ ¼ xiðtÞ. This concludes

the proof.
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