
Computer Networks xxx (xxxx) xxx
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Finding needles in a hay stream: On persistent item lookup in data streams
Lin Chen a,∗, Haipeng Dai b, Lei Meng b, Jihong Yu c

a School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
b State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
c School of Information and Electronics, Beijing Institute of Technology, Beijing, China

A R T I C L E I N F O

Keywords:
Persistent item lookup
Data stream mining

A B S T R A C T

In a data stream composed of an ordered sequence of data items, persistent items refer to those persisting to
occur over a long timespan. Compared with ordinary items, persistent ones, though not necessarily occurring
more frequently, typically convey more valuable information. Persistent item lookup, the functionality to identify
all persistent items, emerges as a pivotal building block in many computing and network systems. In this paper,
we devise a generic persistent item lookup algorithm supporting high-speed, high-accuracy lookup with limited
memory cost. The key technicalities we propose in our design are two-fold. First, our algorithm attempts
to record only persistent items seen so far based on the currently available information about the stream,
thus significantly reducing memory overhead, especially for real-life highly skewed data streams. Second, our
algorithm balances the recording load in both time and space domains: in the time domain, we partition
persistent items into approximately equal-size subsets and record only one subset in each epoch; in the space
domain, we apply the state-of-the-art load balancing technique to evenly distribute recorded items across the
on-die memory. By holistically integrating these components, we iron out a persistent item lookup algorithm
outperforming existing solutions in a wide range of practical settings.
1. Introduction

1.1. Background and motivation

In a data stream composed of an ordered sequence of data items, per-
sistent items refer to those persisting to occur in the stream over a long
timespan. Compared with ordinary items, persistent ones, though not
necessarily occurring more frequently, typically convey more valuable
information on the intrinsic data pattern about the stream. Examples
can be found in a variety of computing and network applications,
including but not limited to:

• Traffic mining [1], where persistent traffic, e.g., vehicles passing
the same locations periodically, can help understand the traffic
pattern in a given region with the vehicles being the monitored
items at each location;

• Click fraud detection [2], where automatic robots are con-
figured to persistently click on advertisements to increase the
advertiser’s revenue in pay-per-click online advertising systems;
therefore, persistent cliques need to be detected;

∗ Corresponding author.
E-mail addresses: chenlin69@mail.sysu.edu.cn (L. Chen), haipengdai@nju.edu.cn (H. Dai), menglei5633@163.com (L. Meng), jihong-yu@hotmail.com

(J. Yu).
1 Throughout the paper, we use the generic term monitoring point, or observation point, to denote any computing device that processes and records information

• Stealthy distributed denial of service (DDoS) attack detec-
tion [3], where attackers may inject malicious packets at a lim-
ited rate but over a long period of time, rather than to overwhelm
the victim, to avoid being detected quickly by the intrusion
detection system (IDS); hence, packets persistently sent from the
same source needs to be monitored.

To enable further fine-grained persistent item mining and analysis,
a bootstrapping functionality is to quickly and accurately identify and
record all the persistent items in the stream. This is by no means a
trivial task. On the one hand, in the emerging large-scale data stream
mining applications such as internet traffic analysis [4], graph stream
mining [5], sensor data mining [6], web crawling [7], and natural
language processing [8], the massive data to be processed are often or-
ganized as high-speed streams, requiring monitoring points1 to record,
process and extract stream information in real time. On the other
hand, the limited memory at the monitoring point, especially the on-
die static random-access memory (SRAM), urges us to implement this
functionality as compact as possible by keeping the memory usage at
Please cite this article as: Lin Chen, Computer Networks, https://doi.org/10.1

Available online 3 September 2020
1389-1286/© 2020 Published by Elsevier B.V.

about items in the data stream. Examples include end hosts, firewalls and proxies,

https://doi.org/10.1016/j.comnet.2020.107518
Received 20 April 2020; Received in revised form 3 July 2020; Accepted 26 Augus
016/j.comnet.2020.107518

network middleboxes such as routers and switches.

t 2020

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:chenlin69@mail.sysu.edu.cn
mailto:haipengdai@nju.edu.cn
mailto:menglei5633@163.com
mailto:jihong-yu@hotmail.com
https://doi.org/10.1016/j.comnet.2020.107518
https://doi.org/10.1016/j.comnet.2020.107518
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107518&domain=pdf

Computer Networks xxx (xxxx) xxxL. Chen et al.

a
i
d

p
i
i
t
W
r

p
r
s
u

r
i
r
o

o
m
t

c

1

r
f
s
C
a
m
h
s
l
p
o
a
a
w
i
t

w

the lowest level, while still guaranteeing the required lookup accuracy.
These two quests – high-speed, high-accuracy operation and limited
memory usage – are often at odds with each other, since optimizing
for one may come at the expense of the other.

1.2. Problem formulation

Motivated by above observation, we embark in this paper on a
generic study of persistent item lookup. By generic we mean that
no specific problem or context is assumed for the analysis; both the
probability distribution of data items and their order of occurrence in
the stream can be arbitrary and not known a priori. The only important
ssumption is that each item is characterized by a globally unique
tem ID, whose hashprint is uniformly distributed on the corresponding
omain.

Formally, consider a time interval during which we need to analyze
ersistent items in a data stream. We divide the whole time interval
nto 𝑇 epochs, index from 0 to 𝑇 − 1. A data item 𝑒 is called persistent
f it occurs in all the 𝑇 epochs, where occurrence refers to an event
hat an item appears at least once within the considered time interval.2

e seek a persistent item lookup algorithm that meets the following
equirements:
Lookup accuracy. Both the false negative rate, the probability of a

ersistent item not being identified and recorded, and the false positive
ate, the probability of a non-persistent item being marked as persistent,
hould be strictly upper-bounded by the target rates specified by the
ser.
Lookup efficiency. Given the ID of any item 𝑒, the algorithm should

espond in time sub-linear or constant to the number of persistent
tems whether 𝑒 is persistent or not, and if yes, return the information
elated to 𝑒; the algorithm should be able to reconstruct the entire list
f persistent items in time linear to the number of persistent items.
Memory efficiency. The algorithm should incur limited memory

verhead at the monitoring point, especially in terms of the on-die
emory; ideally, the memory overhead should asymptotically scale to

he number of persistent items rather than the stream cardinality.
We emphasize that these requirements should be addressed holisti-

ally in the persistent item lookup algorithm.

.3. Main contributions and technicalities

We devise a persistent item lookup algorithm meeting the above
equirements. The key technicalities we propose in our design are two-
old. First, our algorithm attempts to record only persistent items seen
o far based on the currently available information about the stream.
ompared to the common wisdom adopted in the literature where
ll the items need to be recorded, our algorithm significantly reduces
emory overhead, especially noticing that real-life data streams exhibit
igh item skewness such that persistent items are in practice only a
mall portion of the entire stream. Secondly, we balance the recording
oad in both time and space domains: in the time domain, we partition
ersistent items into approximately equal-size subsets and record only
ne subset each epoch; in the space domain, we apply the state-of-the-
rt load balancing technique to evenly distribute the recorded items
cross the on-die memory. By holistically integrating these components,
e iron out a persistent item lookup algorithm that outperforms exist-

ng solutions in a wide range of practical settings, as demonstrated in
he numerical and empirical analysis.

2 Mathematically, a stream can be regarded as a multiset of items, each of
hich may appear multiple times.
2

1.4. Paper organization

The rest of the paper is structured as follows. Section 2 summa-
rizes related work and analyzes their limitation. Section 3 provides an
overview of our algorithm by presenting the key technicalities used in
our design. Section 4 describes our algorithm in detail and Section 5
gives a mathematical analysis on our algorithm by establishing the false
negative and the false positive rates, deriving the time complexity and
discussing parameter tuning and optimization. Section 6 investigates a
number of variants and extensions related to the persistent item lookup
problem. Section 7 presents numerical and empirical study to evaluate
our algorithm. Finally, Section 8 concludes the paper with a discussion
of our methodology and results.

2. Related work and limitation

While significant research efforts have been devoted to data stream
mining, persistent item mining has surprisingly attracted far less atten-
tion, despite its fundamental and practical importance. For example, in
the stealthy DDoS attack mentioned in the Introduction, the attacker
deliberately spread the malicious packets over a long period of time
to avoid being detected by the standard volume-based detectors. In
persistent traffic monitoring, persistent vehicles demonstrate the vol-
ume of minimal stable traffic at a location, as the transient traffic
varies over time. In these applications, algorithms that are capable of
detecting persistent items are called for, which cannot draw upon the
standard algorithms for frequent item detection. To the best of our
knowledge, the algorithm proposed in [9], termed as Persistent items
Identification schemE (PIE), is the state-of-the-art proposition in the
literature that is able to record, identify persistent items and reconstruct
the list of persistent items. The key innovation in PIE consists of a
compact hash-based data structure and a Raptor code-based approach
to efficiently record item IDs. Specifically, PIE uses Raptor codes to
encode the ID of each item and to stores only part of the encoded
ID during each epoch, thus boosting the memory efficiency. Despite
its elegant design, PIE still follows the common wisdom to record all
the data items, from which persistent ones are extracted for further
processing. Motivated by this limitation, we demonstrate in this paper
that it is not necessary to record all the items in the stream. In this
regard, we develop an algorithm that records only persistent items seen
so far based on the currently available information about the stream.
Our algorithm is particularly adapted for streams exhibiting high item
skewness, a phenomena largely observed in real-life datasets today.

Another persistent item mining and tracking algorithm is proposed
in [10]. The idea is to configure a filter, through which each item passes
and gets selected by the filter with a certain probability. If an item is
selected, its persistence is tracked. The filter is configured such that
the probability of an item being selected increases if it reappears in
different time periods, while remains the same if it reappears in the
same period. The selected items are recorded, among which persistent
ones are identified. Despite the efforts in recording only potential
persistent items, the algorithm may still record too many non-persistent
ones as once selected, an item remains in the filter even if it does not
reappear in later periods.

There are a handful of propositions addressing the problem of
persistent item counting in various applications, which is to count the
number of persistent items [1,3,11]. Despite its focus on persistent
items, the persistent item counting problem is by nature different from
the persistent item lookup problem. In persistent item counting, the
objective is to produce an estimate of the number of persistent items
without the need to either record their information or reconstruct the
whole list of persistent items. Therefore, highly compact counters, such
as the HyperLogLog (HLL) counters [12], are usually employed to
produce sufficiently accurate estimates with low memory overhead. In
contrast, persistent item lookup not only reveals the number of persis-
tent items, but should also be able to record information concerning

Computer Networks xxx (xxxx) xxxL. Chen et al.

b
p
m
i
o
s
a

3

r
o
b
a
u

3

a
o
m

t
i

I
e
i
𝑒
t
o

3

t
t
a
o
c

e
i
r
o
e
g
p
T
a
l
f

r
r
t
p
n
p

3

w
c

S
c
i
r
a
l

b
m

Table 1
Main notations.
𝑁 Number of distinct items arrived in each epoch
𝑁𝑝 Number of persistent items
𝑇 Number of epochs
𝑡 Current epoch
 (𝑡) Set of non-persistent items misidentified as persistent items at epoch 𝑡
𝑁∗(𝑡) Number of items recorded in epoch 𝑡
𝑒 ID of the item to be processed
 Set of ID universe
𝐵 Bloom filter tracing persistent items
𝑏 Bloom filter tracing items occurred in epoch 𝑡
𝐿 Length of 𝐵 and 𝑏
𝑤 Number of item subsets
𝑔(⋅) Hash function dividing IDs into 𝑤 subsets
𝑚 Number of buckets in the SRAM
𝑐 Number of cells in each bucket
𝑅 Memory space to stock an item
𝑑 Number of candidate buckets for an item
ℎ𝑗 (⋅) 𝑘 hash functions casting an item ID to 𝑘 bits in 𝐵 and 𝑏
ℎ′
𝑙(⋅) 𝑑 hash functions providing 𝑑 candidate buckets

𝑓 (⋅) Item spread distribution
𝛽𝑙 Fraction of bins with ≥ 𝑙 balls in the bin-and-ball problem
𝜙𝑑 Exponent of generalized 𝑑-order Fibonacci sequence
𝑃𝐹𝑁 False negative rate
𝑃𝐹𝑃 False positive rate

Fig. 1. Illustration of techniques used in our algorithm.

each persistent item, support item search, and return the entire list of
the persistent items.

In a broader context, the problems of item frequency estimation and
frequent item counting and heavy hitter detection in data streams are
classical problems in streaming algorithms [13–15]. Their solutions can
be divided into two categories by employing sketches and counters. We
refer readers to [13] for a comprehensive survey. Any persistent item is
an item with frequency at least 1∕𝑇 . In this sense, persistent items can
e regarded as a particular subset of frequent items with an additional
roperty of occurring at least once per epoch. However, algorithms
ining frequent items cannot be directly used for mining persistent

tems because frequent item mining schemes count the frequencies
f items without taking the temporal dimension into account. Con-
equently, the problem of persistent item lookup requires an original
nalysis and design that cannot draw on existing approaches.

. Design rationale and overview

In this section, we illustrate the three key techniques of our algo-
ithm, as shown in Fig. 1. Though they can be applied independently
ne to another, their holistic integration can further enable synergy
ringing significant performance gain. A formal description of our
lgorithm is presented in Section 4. Table 1 lists the major notations
sed throughout the paper.

.1. Technique 1: recording only persistent items

As analyzed in Introduction, a common approach used in the liter-
ture consists of compactly recording the information of all the items
ccurred in the current epoch in the SRAM. From the perspective of
ining persistent items, recording all items is clearly highly inefficient.
3

Therefore, we propose to record only persistent items. To illustrate our
idea, consider a data stream composed of 6 items 𝑒𝑖 (1 ≤ 𝑖 ≤ 6); the
ime horizon is divided to 4 epochs; for each epoch we have 4 arriving
tems enumerated as below:

• Items occurred in epoch 0: 𝑒1, 𝑒2, 𝑒3, 𝑒4,
• Items occurred in epoch 1: 𝑒1, 𝑒2, 𝑒3, 𝑒5,
• Items occurred in epoch 2: 𝑒1, 𝑒2, 𝑒4, 𝑒6,
• Items occurred in epoch 3: 𝑒1, 𝑒2, 𝑒5, 𝑒6.

n the state-of-the-art approach, we need to record 4 items in each
poch in the on-die memory and in total 16 items in the off-die memory,
f we dump the recorded items off-die after each epoch. However, only
1 and 𝑒2 are persistent. In our algorithm, we use a Bloom filter to trace
he persistent items (cf. Section 4 for details) and record only persistent
nes (𝑒1 and 𝑒2) in the last epoch.

.2. Technique 2: distributing recording load

Our second technique to further reduce the on-die memory cost is
o distribute the recording task across multiple epochs. The core idea is
o only record a subset of persistent items in a single epoch. Consider
gain the example above. We balance the recording task by recording
nly 𝑒1 in epoch 2 and 𝑒2 in epoch 3, thus further halving the memory
ost in this regard.

Technically, we partition the entire item set into 𝑤 approximately
qual-size subsets by applying a hash-based partition scheme on the
tem ID, which is particularly memory and time-efficient. We then
ecord only the persistent items belonging to a single subset in each
f the last 𝑤 epochs. The recording task is performed during the last 𝑤
pochs so as to avoid recording too many non-persistent items. For a
iven epoch 𝑡 (𝑇 −𝑤 ≤ 𝑡 < 𝑇), the recorded items may still contain non-
ersistent ones because some items may not reappear in a later epoch.
o mitigate such false positive, we maintain a Bloom filter recording
ll the persistent items from the beginning to the current epoch. In the
ookup phase, an item is identified as persistent if it passes the Bloom
ilter membership test.

Tuning 𝑤 allows to trade off between limiting the number of
ecorded non-persistent items, on the one hand, and expanding the
ecording task across more epochs, on the other. A smaller 𝑤 reduces
he number of recorded non-persistent items with an extreme exam-
le 𝑤 = 1 minimizing the false positive rate, while increases the
umber of items recorded in a single epoch. Section 5.4 studies the
arameterization of 𝑤 by quantifying this trade-off.

.3. Technique 3: giving an item more choices

Our third technique seeks to maximize the recording efficiency
ithin a single epoch by balancing recorded items to achieve more

ompact memory usage.
Consider a standard setting that we need to record 𝑛 items in the

RAM organized as 𝑛 buckets; each bucket is further divided into 𝑐
ells, each able to hold one item. In the baseline approach, each item
s hashed into a random bucket based on its ID and can be successfully
ecorded if the bucket has an empty cell. This approach leads to unbal-
nced item distribution across buckets. Mathematically, the maximum
oaded bucket has 𝛩

(

log 𝑛
log log 𝑛

)

items hashed into it w.h.p. [16].3
To mitigate this unbalance, we apply the load-balancing technique

y hashing an item to 𝑑 buckets and placing it into the one with
inimum load. This mathematically reduces the maximum load to

3 Throughout the paper, we use the following asymptotic notations:
∙ 𝑔1(𝑥) = 𝑂(𝑔2(𝑥)) ⟺ ∃𝑐 > 0, ∃𝑥0, ∀𝑥 > 𝑥0, |𝑔1(𝑥)| ≤ 𝑐|𝑔2(𝑥)|;
∙ 𝑔1(𝑥) = 𝛺(𝑔2(𝑥)) ⟺ ∃𝑐 > 0, ∃𝑥0, ∀𝑥 > 𝑥0, |𝑔2(𝑥)| ≤ 𝑐|𝑔1(𝑥)|;
∙ 𝑔1(𝑥) = 𝛩(𝑔2(𝑥)) ⟺ 𝑔1(𝑥) = 𝑂(𝑔2(𝑥)) and 𝑔1(𝑥) = 𝛺(𝑔2(𝑥));
∙ 𝑔 (𝑥) = 𝑜(𝑔 (𝑥)) ⟺ lim 𝑔1(𝑥) = 0.
1 2 𝑥→∞ 𝑔2(𝑥)

Computer Networks xxx (xxxx) xxxL. Chen et al.

o
o
a

i
f
s

b
a
i

w
w
s
b

4

v
r
u
f
o

v
p
w
c
t

i
f
s
T
c

t
t
w
e
e

I
t
T
s
c

4

c

S

b
b
c

1

i
b
i

p
p

S

t
o
T
a
t

r

S

I
l
i
t
t
t
t
p

𝛩
(

log log 𝑛
log 𝑑

)

[17]. We further apply the always-go-left policy [18] by

breaking the tie by prioritizing the leftmost bucket, which reduces the
maximum load to 𝛩

(

log log 𝑛
𝑑 log𝜙𝑑

)

, with 𝜙𝑑 corresponding to the exponent

f growth for a generalized Fibonacci sequence.4 This reduces the mem-
ry size to 𝛩

(

𝑛 log log 𝑛
𝑑 log𝜙𝑑

)

for achieving negligible overflow probability,
s proved in Section 5.1.

To further mitigate recording failure, we record the overflowed
tems in a ternary content addressable memory (TCAM, cf. Section 4.1
or a detailed specification). We demonstrate that a small TCAM is
ufficient to hold all overflowed items.

We note that some of the building blocks in our design are inspired
y or readily follow from the existing literature, to which we do not
cclaim credit. Specifically, the always-go-left policy, or more gener-
cally the 1-out-of-𝑑 policy [18,19] is a well-known load-balancing

policy that has been applied in many diverse engineering problems and
data structures including the well-known Cuckoo hashing [20]. The
idea of using a stash to record overflowed items is proposed in [21]
for Cuckoo hashing. Our technical contribution consists of building a
holistic persistent item lookup framework over these building blocks
that can achieve significant performance gain, as demonstrated by both
theoretical and empirical analysis.

4. Algorithm

Our algorithm consists of two subroutines, Recording and Lookup,
hich we expose and analyze in the sequel. For notation conciseness,
e denote [𝑎] ∶= [0, 𝑎 − 1] ∩ Z≥0, i.e., the set of non-negative integers

maller than 𝑎; we denote 𝟎 (𝟏, respectively) the 𝐿-bit vector with each
it being 0 (1).

.1. Memory and data structure

Our algorithm uses 3 types of memories.
Static Random-Access Memory (SRAM) [22]. The SRAM is

olatile semi-conductor memory that does not need to be periodically
efreshed. Usually implemented on-die with up to 72 Mb, it can transfer
p to 4 words per access with 9–36 bit word size. Given its high access
acility but limited size, the SRAM is used in our algorithm to support
nline recording of persistent items in the current epoch.
Dynamic Random-Access Memory (DRAM) [22]. The DRAM is

olatile memory requiring to be refreshed periodically. Typically im-
lemented off-die with up to 4 Gb, it can read up to 8 words per access
ith 4–16 bit word size. Given its low access facility but larger size

ompared to SRAM, DRAM is used to hold the contents dumped from
he SRAM at the end of each epoch.
Ternary Content Addressable Memory (TCAM) [23]. The TCAM

s small on-die memory supporting very fast access. Typically sized a
ew Mbits, it locates an entry by comparing it against all entries in a
ingle clock cycle. Given its low access delay but very limited size, the
CAM is used in our algorithm to record the few overflowed items that
annot be recorded in either the DRAM or SRAM.

In our work, the on-die SRAM is organized into 𝑚 buckets. Each
bucket is further divided into 𝑐 cells, each able to hold a single item.
This is the standard SRAM cache organization today, thus making our
algorithm hardware-friendly. We denote 𝑅 the memory space to stock
an item, e.g., in network flow measurement, the minimum information
to be recorded for a single flow typically includes its flow ID, the IP
addresses and port number of source and destination nodes. The total
on-die memory cost sums up to 𝑚𝑐𝑅.

The data structures used in our algorithm are summarized below.
Bloom filters. We maintain 2 Bloom filters 𝐵 and 𝑏 of equal length

𝐿. 𝐵 records the presence of all the items appearing in every epoch

4 Algebraically, it holds that 𝜙 > 1.61 and 𝜙𝑑 =
∑𝑑−1 𝜙𝑖 = 𝜙𝑑

𝑑−1 .
4

𝑑 𝑑 𝑖=0 𝑑 𝜙𝑑−1
from epoch 0 to the epoch preceding the current one. 𝑏 records the
presence of the items appearing in the current epoch. 𝐵 is initialized
to 𝟏 at the beginning of the whole measurement process. 𝑏 is reset to 𝟎
at the beginning of each epoch.

Hash functions. We use 𝑘 hash functions associated with the Bloom
filters, denoted by {ℎ𝑗 (⋅)}

𝑗=1
𝑘 , where ℎ𝑗 (⋅) ∶  → [𝐿] with  denoting

he item ID universe. We use another hash function 𝑔(⋅) ∶  → [𝑤]
o partition the items into 𝑤 approximately equal-size subsets. Thirdly,
e uses 𝑑 hash functions {ℎ′𝑙(⋅)}

𝑙=1
𝑑 to choose 𝑑 candidate buckets for

ach item to be recorded. We split the SRAM into 𝑑 groups of buckets,
ach containing 𝑚

𝑑 buckets. Each hash function ℎ′𝑙(⋅) (1 ≤ 𝑙 ≤ 𝑑) returns
a random bucket in group 𝑙, thus giving in total 𝑑 candidate buckets to
record each item.

To illustrate the above data structures, consider an item 𝑒 to be
recorded. {ℎ𝑗 (⋅)}

𝑗=1
𝑘 are used to check in 𝐵 whether 𝑒 is potentially

persistent. In case of yes, 𝑔(𝑒) is used to determine the epoch to record
𝑒, and {ℎ′𝑙(⋅)}

𝑙=1
𝑑 is used to determine the bucket to record 𝑒.

We note that as the hash functions used in our algorithm all use item
D as their seed, we can apply the one hashing technique proposed in [24]
o reduce the computation overhead related to hash computations.
he core idea is to split the output of a hash function into several
egments to emulate multiple hash functions, thus reducing the hash
omputation.

.2. Recording

The Recording subroutine, invoked upon arrival of each item 𝑒, is
omposed of three steps.

tep 1: pre-processing (updating 𝑏)
We first check if 𝑒 appears in each epoch before the current epoch 𝑡

y checking if there exists 𝑗 such that 𝐵(ℎ𝑗 (𝑒)) == 0.5 If yes, we drop 𝑒
ecause it is not a persistent item by definition. Otherwise, we further
heck if 𝑒 has already been processed by checking if 𝑏(ℎ𝑗 (𝑒)) == 1,∀1 ≤
𝑗 ≤ 𝑘 and drop it if already processed.

If 𝑒 is a persistent item and has not been processed, we set 𝑏(ℎ𝑗 (𝑒)) =
, 1 ≤ 𝑗 ≤ 𝑘. We then check if 𝑒 should be recorded in the current epoch

by checking whether 𝑔(𝑒) == 𝑇 − 𝑡. Recall that we record a subset of
tems in each of the last 𝑤 epochs. This test checks whether 𝑒 should
e recorded in the current epoch 𝑡. If yes, we invoke Step 2 to record
t, otherwise we drop it.

The pseudo-code of our algorithm is shown in Algorithm 1. The
rocedure Pre-processing returns 1 if 𝑒 needs to be recorded and the
rocedure Insert is further invoked.

tep 2: recording (inserting 𝑒 in SRAM)
When Step 2 is invoked, we record 𝑒 in the SRAM. To make

he recording space-efficient, we balance the load across buckets by
ffering 𝑒 multiple choices and putting it into the least loaded bucket.
echnically, we choose 𝑑 candidate buckets indexed by ℎ′𝑙(𝑒), 1 ≤ 𝑙 ≤ 𝑑
nd put 𝑒 in the bucket with minimum load. In case of tie, we choose
he left-most least loaded bucket to record 𝑒.

If all the 𝑑 chosen buckets are full, we offer a last chance by
ecording 𝑒 in the TCAM.

tep 3: post-processing (updating 𝐵)
At the end of each epoch, the SRAM containing the recorded item

Ds including the stash is dumped to the off-die DRAM for future
ookup. We update the Bloom filter maintaining the current persistent
tem list 𝐵 ← 𝐵 ∧ 𝑏 where ∧ denotes the bitwise And operation. Recall
hat 𝐵 traces the persistent items up to the previous epoch and 𝑏 traces
he items appeared in the current epoch. It follows straightforwardly
hat 𝐵 ∧ 𝑏 traces the persistent items appeared in all epochs including
he current one. By tracing we mean that we can check if an item is
resent by checking the corresponding bits in the Bloom filter.

5 By slightly abusing notation, we use 𝑒 to denote the ID of item 𝑒.

Computer Networks xxx (xxxx) xxxL. Chen et al.

f

t
g

p

a

B

i

E

S

𝑡
m
t

E

At the end of the whole measurement, i.e., 𝑇 epochs, the Bloom
ilter 𝐵 is dumped to the DRAM for future lookup. The Recording

subroutine is thus completed.

Algorithm 1 Recording subroutine
1: Initialization: 𝐵 ← 𝟏, 𝑏 ← 𝟎
2: procedure Recording(𝑒) ⊳ invoked on arrival of 𝑒
3: if Pre-processing(𝑒) == 1 then
4: Insert(𝑒)
5: end if
6: Post-processing
7: end procedure

8: function Pre-processing(𝑒)
9: if there exists 𝑗 such that 𝐵(ℎ𝑗 (𝑒)) == 0 then

10: return 0 ⊳ 𝑒 is not a persistent item
11: else if 𝑏(ℎ𝑗 (𝑒)) == 1,∀1 ≤ 𝑗 ≤ 𝑘 then
12: return 0 ⊳ 𝑒 has already been processed
13: else if 𝑔(𝑒) == 𝑇 − 𝑡 then
14: 𝑏(ℎ𝑗 (𝑒)) ← 1, 1 ≤ 𝑗 ≤ 𝑘
15: return 1 ⊳ 𝑒 is a persistent item and has not been processed

and it belongs to the set of items to be recorded in the current epoch
16: else
17: 𝑏(ℎ𝑗 (𝑒)) ← 1, 1 ≤ 𝑗 ≤ 𝑘
18: return 0 ⊳ 𝑒 is a persistent item and has not

been processed, but it does not belong to the set of items to be recorded
in the current epoch

19: end if
20: end function

21: procedure Insert(𝑖)
22: Choose 𝑑 buckets indexed ℎ′𝑙(𝑒), 1 ≤ 𝑙 ≤ 𝑑
23: if there is at least one empty cell then
24: Insert 𝑒 to the leftmost least loaded bucket
25: else if there is empty cell in TCAM then
26: Insert 𝑒 in TCAM
27: else
28: return insertion failure
29: end if
30: end procedure

31: procedure Post-processing ⊳ after each epoch
32: Dump SRAM and TCAM off-die to DRAM
33: Empty SRAM and TCAM
34: Update 𝐵: 𝐵 ← 𝐵 ∧ 𝑏
35: Set 𝑏 ← 0 for the next epoch
36: if 𝑡 == 𝑇 − 1 then ⊳ at the end of measurement
37: Dump 𝐵 off-die to DRAM
38: end if
39: end procedure

4.3. Lookup

The Lookup subroutine supports two operations, persistent item
lookup and persistent item list reconstruction.

Persistent item search takes the item ID as input and returns
he recorded item information if it is a persistent item. To this end,
iven an item ID 𝑒, we first check the Bloom filter 𝐵 whether 𝑒 is a

persistent item. If yes, we find the epoch in which 𝑒 is supposed to be
recorded, i.e., epoch 𝑔(𝑒). We then search in the 𝑑 candidate buckets
corresponding and returns the information of 𝑒. If no information of 𝑒
is found and the 𝑑 buckets are all full, the algorithm then searches the
TCAM. We return lookup failure if 𝑒 cannot be found in either one of
the 𝑑 buckets or the TCAM.

Persistent item list reconstruction checks the items recorded in
the DRAM and returns the list of every item 𝑒 with related information
5

if it passes the Bloom filter test, i.e., 𝐵(ℎ𝑗 (𝑒)) = 1,∀1 ≤ 𝑗 ≤ 𝑘.
The pseudo-code of Lookup is straightforward and thus omitted here.

5. Analysis

As mentioned in Introduction, the lookup accuracy of any persistent
item lookup algorithm is quantified by the false negative rate, the
probability of a persistent item not being recorded, and the false positive
rate, the probability of a non-persistent item being marked as persistent.
In this section, we first derive these metrics for our algorithm, then
derive its complexity and study how to tune various parameters to op-
timize the performance and balance among lookup accuracy, memory
efficiency, and computation overhead.

5.1. False negative rate

We give an overview on how to compute the false negative rate.
Note that a persistent item fails to be recorded if its 𝑑 candidate buckets
and the TCAM are full. We call the event that an item fails to be
recorded in the SRAM (as also the DRAM accordingly) as an overflow.
We calculate the overflow probability by three steps.

Step 1: deriving the number of non-persistent items marked as
persistent

Let  (𝑡) denote the set of non-persistent items misidentified as
ersistent items at epoch 𝑡 whose cardinality is denoted as 𝑁(𝑡). To

compute 𝑁(𝑡) (𝑇 − 𝑤 ≤ 𝑡 < 𝑇), recall Algorithm 1, we notice that if
an item is marked as persistent in epoch 𝑡, it must also be regarded
s persistent for all epochs preceding 𝑡; this leads to  (𝑇 − 1) ⊆ ⋯ ⊆

 (𝑇 −𝑤). It then holds that

𝑁(𝑡) ≤ 𝑁(𝑇 −𝑤), 𝑇 −𝑤 ≤ 𝑡 < 𝑇 . (1)

We next derive 𝑁(𝑇 −𝑤) as an upper-bound of 𝑁(𝑡). Given any item
𝑒, we define 𝑝 as the probability that the 𝑘 bits ℎ𝑗 (𝑒) (1 ≤ 𝑗 ≤ 𝑘) in the
Bloom filter 𝑏 are set to 1 at the end of any epoch. Following standard

loom filter analysis, by setting 𝑘 = 𝐿
𝑁 ln 2, we have:

𝑝 =
(

1 −
(

1 − 1
𝐿

)𝑘𝑁)𝑘
=
(

1 − 𝑒−
𝑘𝑁
𝐿
)𝑘

= 2−𝑘. (2)

We define the spread as the number of epochs in which an item
appears. Persistent items have spread 𝑇 . Let 𝑓 (⋅) denote the item spread
distribution with 𝑓 (𝑠) denoting the probability of an item having spread
𝑠 (1 ≤ 𝑠 ≤ 𝑇). For any non-persistent item 𝑒 with spread 𝑠 to be marked
as persistent in the epoch 𝑇 −𝑤, 𝑒 needs to be marked as present in at
least 𝑇 −𝑤 − 𝑠 epochs if 𝑠 < 𝑇 −𝑤. Generically we have:

𝐏𝐫(𝑒 ∈  (𝑇 −𝑤)) ≤ 𝑝𝑇−𝑤−min(𝑠,𝑇−𝑤)

= 2−𝑘(𝑇−𝑤−min(𝑠,𝑇−𝑤)). (3)

Recall (1), we can derive the expected number of non-persistent
tems marked as persistent in epoch 𝑇 −𝑤 ≤ 𝑡 ≤ 𝑇 − 1 as

[𝑁(𝑡)] ≤ E[𝑁(𝑇 −𝑤)]

=
∑

𝑒
𝐏𝐫(𝑒 ∈  (𝑇 −𝑤)) ≤ 𝑁

[𝑇−𝑤−1
∑

𝑠=1
2−𝑘(𝑇−𝑤−𝑠) ⋅ 𝑓 (𝑠) +

𝑇−1
∑

𝑠=𝑇−𝑤
𝑓 (𝑠)

]

.

(4)

Note that in practice 𝑓 (𝑠) is non-zero only for small 𝑠, by choosing
reasonable 𝑤, we can make E[𝑁(𝑡)] vanish quickly.

tep 2: computing the number of recorded items
Denote 𝑁∗(𝑡) the number of items recorded in epoch 𝑡 (𝑇 − 𝑤 ≤

< 𝑇). These items include persistent items and non-persistent ones
arked as persistent. Recall that our algorithm balances the recording

ask among 𝑤 epochs. We have

[𝑁∗(𝑡)] =
E[𝑁(𝑡)] +𝑁𝑝 . (5)
𝑤

Computer Networks xxx (xxxx) xxxL. Chen et al.

I

E

n
e
s

w

E

s
t
E

∑

r
D
T
n
a
c

5

𝑝
r

𝑃

W

𝑃

W

By the multiplicative Chernoff bound [25], ∀𝛿 > 0 we have,

𝐏𝐫
(

𝑁∗(𝑡) ≤ (1 + 𝛿)E[𝑁∗(𝑡)]
)

≥ 1 −
(

𝑒𝛿

(1 + 𝛿)(1+𝛿)

)E[𝑁∗(𝑡)]
.

Injecting 𝛿 = 𝑒 − 1 into the above inequality, we have that 𝑁∗(𝑡) is
upper-bounded by 𝑒E[𝑁∗(𝑡)] w.h.p. asymptotically:

𝐏𝐫
(

𝑁∗(𝑡) ≤ 𝑒E[𝑁∗(𝑡)]
)

≥ 1 − 𝑒−E[𝑁
∗(𝑡)]. (6)

Step 3: deriving the overflow rate
Consider a standard balls-and-bins setting with 𝑛 balls randomly

thrown into 𝑛 bins. Under the always-go-left load balancing policy
applied in our algorithm, it is shown in [18] that 𝛽𝑙, the fraction of
bins with at least 𝑙 balls, is upper-bounded by 𝑎𝜙

(𝑙−5)𝑑+3
𝑑 w.h.p.,6 where

𝑎 ∈ (0, 1) is a constant.
Applying the above results by setting the number of buckets 𝑚 =

E[𝑁∗(𝑡)], we can upper-bound the number of overflowed items at epoch
𝑡, denoted by 𝛥𝑁(𝑡), w.h.p. as below:

𝛥𝑁(𝑡)
𝑁∗(𝑡)

<
+∞
∑

𝑙=𝑐+1
𝑙 ⋅ (𝛽𝑙 − 𝛽𝑙+1) =

+∞
∑

𝑙=𝑐+1
𝑙𝛽𝑙 −

+∞
∑

𝑙=𝑐+2
(𝑙 − 1)𝛽𝑙

= 𝑐𝛽𝑐+1 +
+∞
∑

𝑙=𝑐+1
𝛽𝑙 .

We further bound ∑+∞
𝑙=𝑐+1 𝛽𝑙 as

+∞
∑

𝑙=𝑐+1
𝛽𝑙 =

+∞
∑

𝑙=𝑐+1
𝑎𝜙

(𝑙−5)𝑑+3
𝑑 <

+∞
∑

𝑙=𝑐+1
𝑎𝜙

(𝑙−7)𝑑
𝑑 =

+∞
∑

𝑙=𝑐−6
𝑎𝜙

𝑙𝑑
𝑑

< ∫

+∞

𝑐−7
𝑎𝜙

𝑑⋅𝑥
𝑑 𝑑𝑥 = ∫

+∞

𝑑(𝑐−7)
𝑎𝜙

𝑥
𝑑 𝑑𝑥.

The first inequality follows from 𝑑 ≥ 2; the second inequality follows
from 𝑎𝜙

𝑙𝑑
𝑑 < ∫ 𝑙

𝑙−1 𝑎
𝜙𝑑⋅𝑥𝑑 𝑑𝑥. To compute ∫ +∞

𝑑(𝑐−7) 𝑎
𝜙𝑥𝑑 𝑑𝑥, we substitute 𝑢 = 𝜙𝑥

𝑑
and get

∫

+∞

𝑑(𝑐−7)
𝑎𝜙

𝑥
𝑑 𝑑𝑥 = 1

ln𝜙𝑑 ∫

+∞

𝜙𝑑(𝑐−7)𝑑

𝑎𝑢

𝑢
𝑑𝑢 <

∫ +∞
𝜙𝑑(𝑐−7)𝑑

𝑎𝑢𝑑𝑢

𝜙𝑑(𝑐−7)
𝑑 ln𝜙𝑑

= 𝑎𝜙
𝑑(𝑐−7)
𝑑

𝜙𝑑(𝑐−7)
𝑑 ln 𝑎 ln𝜙𝑑

.

t then holds that if 𝑎𝜙
𝑐𝑑
𝑑 = 𝛩

(

E[𝑁∗(𝑡)]−(1+𝜖)
)

for any 𝜖 > 0, i.e., 𝑐 =
𝛩
(

ln lnE[𝑁∗(𝑡)]+ln(1+𝜖)
𝑑 ln𝜙𝑑

)

, it follows from (6) that the false negative rate,
denoted by 𝑃𝐹𝑁 , is upper-bounded by the overflow rate as below:

𝑃𝐹𝑁 ≤ 𝛥𝑁(𝑡)
𝑁∗(𝑡)

= 𝑂
(

ln lnE[𝑁∗(𝑡)] + ln(1 + 𝜖)
E[𝑁∗(𝑡)]𝜖

)

(7)

with probability at least ≥ 1 − 𝑂
(

𝑒−E[𝑁∗(𝑡)]). Note that a persistent
item fails to be recorded if the 𝑑 candidate buckets and the TCAM are
full. 𝛥𝑁(𝑡)

𝑁∗(𝑡) thus gives the upper-bound of the false negative rate without

TCAM. If we further deploy a TCAM of size 𝛩
(

ln lnE[𝑁∗(𝑡)]+ln(1+𝜖)
E[𝑁∗(𝑡)]𝜖−1

)

, we
can further ensure that no false negative occurs w.h.p., which implies
that our algorithm has virtually only one-sided error, a desirable prop-
erty because false negatives are usually much more critical than false
positives.

Case study
Our previous analysis establishes 𝑃𝐹𝑁 for any item spread distri-

bution 𝑓 . It suffices to apply (4) to derive E[𝑁(𝑡)] then (5) to derive
[𝑁∗(𝑡)] and finally (7) to compute 𝑃𝐹𝑁 .

In real-life data streams, item spread typically exhibits high skew-
ess such that a predominately large portion of items appear in a few
pochs. We next derive the overflow rate by focusing on two typical
pread distributions.

6 In our context w.h.p. means with prob. at least 1 − 𝑛−𝜅 for any 𝜅 > 0.
6

Case 1. 𝑓 (𝑠) is non-zero only for small 𝑠: mathematically 𝑓 (𝑠) > 0
hen 𝑠 ≤ 𝑆 with 𝑆 ≪ 𝑇 . Algebraically we have:

[𝑁∗(𝑡)] = 𝑂

(

2−𝑘(𝑇−𝑤−𝑆)𝑁 +𝑁𝑝

𝑤

)

.

Case 2. 𝑓 (𝑠) is a Zipf function with parameter 𝑎 and 𝑆: mathemat-
ically 𝑓 (𝑠) = 1

𝑠𝑎
∑𝑆

𝑖=1(1∕𝑖)
𝑎 for 𝑠 ≤ 𝑆 and 𝑓 (𝑠) = 0 for 𝑠 > 𝑆. Usually 𝑆 is

ignificantly small compared to 𝑇 . If 𝑆 = 𝑜(𝑇), this subcase degenerates
o Case 1. We consider the subcase where 𝑆 = 𝜇𝑇 with 𝜇 < 1. To bound
[𝑁(𝑡)], noticing (4) and 𝑤 ≪ 𝑇 , we have

𝑇−𝑤−1
∑

𝑠=1
2−𝑘(𝑇−𝑤−𝑠)𝑓 (𝑠) <

𝑆
∑

𝑠=1

2−𝑘(𝑇−𝑤−𝑠)

𝑠𝑎

< 2−𝑘(𝑇−𝑤)
𝑆
∑

𝑠=1

2𝑘𝑠
𝑠𝑎

.

Algebraically, when 𝑠 ≥ 1, we have 2𝑘𝑠
𝑠𝑎 < 2𝑘(𝑠+1)

𝑠 . We get

𝑆

𝑠=1

2𝑘𝑠
𝑠𝑎

<
𝑆+1
∑

𝑠=1

2𝑘𝑠
𝑠

< ∫

𝑆+1

2

2𝑘𝑥
𝑥

𝑑𝑥 < Ei(𝑘(𝑆 + 1) ln 2),

where Ei denotes the exponential integral function. It follows from the
property Ei(𝑥) < 𝑒𝑥 ln(1 − 1

𝑥) that

𝑆
∑

𝑠=1

2𝑘𝑠
𝑠𝑎

< 2𝑘(𝑆+1) ln
(

1 − 1
𝑘(𝑆 + 1) ln 2

)

< 2𝑘(𝑆+1)
𝑘(𝑆 + 1)

.

We thus have
𝑆
∑

𝑠=1
2−𝑘(𝑇−𝑤−𝑠)𝑓 (𝑠) < 2−𝑘(𝑇−𝑤−𝑆−1)

𝑘(𝑆 + 1)
= 𝑂

(

2−𝑘(1−𝜇)𝑇
𝑘𝜇𝑇

)

. (8)

It then follows from (4) that

E[𝑁∗(𝑡)] = 𝑂
(

2−𝑘(1−𝜇)𝑇
𝑤𝑘𝜇𝑇

+
𝑁𝑝

𝑤

)

.

We observe two properties: (1) When 𝑁𝑝 is very small, both the
equired SRAM space 𝑚𝑐𝑅 + 2𝐿 (𝐿 is the length of 𝐵 and 𝑏) and
RAM space 𝑇𝑚𝑐𝑅 + 𝐿 decreases in 𝑇 , making our approach scalable.
his is not surprising as a larger 𝑇 decreases the number of recorded
on-persistent items. (2) A small TCAM is sufficient to hold almost
ll the overflowed items, limiting both memory cost and looking up
omplexity.

.2. False positive rate

It follows from (2) that the false positive rate for any epoch is
= 2−𝑘. For any non-persistent item 𝑒 with spread 𝑠, the false positive

ate, denoted as 𝑃 𝑠
𝐹𝑃 , can be upper-bounded as

𝑠
𝐹𝑃 ≤ 𝑝𝑇−𝑤−min(𝑠,𝑇−𝑤) = 2−𝑘(𝑇−𝑤−min(𝑠,𝑇−𝑤)). (9)

e can derive the false positive rate, denoted by 𝑃𝐹𝑃 , as

𝐹𝑃 =
𝑇−1
∑

𝑠=1
𝑃 𝑠
𝐹𝑃 𝑓 (𝑠). (10)

e also consider the two cases in Section 5.1.

• Case 1. We can easily upper-bound 𝑃𝐹𝑃 by 2−𝑘(𝑇−𝑤−𝑆).
• Case 2. Under Zipf distribution, it follows from (8) that

𝑃𝐹𝑃 ≤
𝑆
∑

𝑠=1
2−𝑘(𝑇−𝑤−𝑠)𝑓 (𝑠) = 𝑂

(

2−𝑘(1−𝜇)𝑇
𝑤𝑘𝜇𝑇

)

.

Computer Networks xxx (xxxx) xxxL. Chen et al.

c

m
r
c

a
t
a
g
t
o
n
w
u

t

u
c
s
m

6

r

6

f

N
p

t

f
t
e
b
t
f
i
c
a
w
e

b
s

𝑘
i
w
i
p

i
w
t
B

6

s
𝑧
i
a

w
n
m
𝐹
𝐵

5.3. Complexity

We now analyze the complexity of our algorithm.
Recording. Upon arrival of an item 𝑒, our algorithm first check the

Bloom filters 𝐵 and 𝑏 whether 𝑒 is a persistent item and whether it has
already been processed. These operations have complexity 𝑂(𝑘). If 𝑒
has not been processed and needs to be recorded, our algorithm then
invokes the procedure Insert. In the worst case, the algorithm needs to
heck 𝑑 buckets and the TCAM, leading to 𝑂(𝑑) complexity. The overall

complexity sums up to 𝑂(𝑑 + 𝑘) in the worst case if the TCAM size is
𝛩(1).

Lookup. Given the ID of an item 𝑒, our algorithm first checks the
Bloom filter 𝐵 if 𝑒 is persistent, resulting 𝑂(𝑘) complexity. If 𝑒 is a
persistent item, the algorithm searches the 𝑑 buckets (𝑐𝑑 cells) and
if necessary the TCAM for 𝑒, leading to the worst-case complexity
𝑂(𝑘 + 𝑐𝑑).

Reconstruction. To reconstruct the persistent item list, our algo-
rithm parses all the recorded items and checks the Bloom filter for each
of them. Recall (5), we can derive the expected number of recorded
items, denoted by 𝑁𝑅 as:

E[𝑁𝑅] =
𝑇−1
∑

𝑡=𝑇−𝑤
E[𝑁∗(𝑡)].

By the same reasoning as (6), we obtain that 𝑁𝑅 ≤ 𝑒E[𝑁𝑅] w.h.p. Con-
sider the two practical cases in Section 5.1. For Case 1, the complexity is
upper-bounded w.h.p. by 𝑂

(

𝑘
𝑤 (𝑁 ⋅ 2−𝑘(𝑇−𝑤−𝑆) +𝑁𝑝)

)

. For Case 2, the

corresponding bound is 𝑂
(

2−𝑘(1−𝜇)𝑇
𝑤𝜇𝑇 + 𝑘𝑁𝑝

𝑤

)

. In both cases, if persistent
item mining is executed with a long time horizon 𝑇 , the complexity
is largely dominated by the size of persistent items 𝑁𝑝, which is a
significant performance gain over existing approaches requiring parsing
all the items.

5.4. Parameter tuning and optimization

We conclude this section by discussing how the parameters are
tuned to achieve desired performance trade-off.

Bloom filter parameters. Our algorithm uses two Bloom filters
𝐵 and 𝑏 of length 𝐿 with 𝑘 bits for each item. Following standard
Bloom filter analysis, 𝑘 and 𝐿 are set such that 𝑘 = 𝐿

𝑁 ln 2 so as to
inimize false positive rate. In practice, given the target false positive

ate, we can choose the minimum 𝑘 based on (10) and then derive the
orresponding 𝐿.
Parameters in our algorithm. The main parameters used in our

lgorithm are 𝑑 and 𝑤. From our analysis in this section, we can see
hat selection of 𝑑 involves a trade-off between memory efficiency and
lgorithm complexity, both increases in 𝑑. A possible way to set 𝑑,
iven the performance requirement on the item recording and lookup
ime, is to choose the maximum 𝑑 satisfying the time constraint to
ptimize memory efficiency. On the other hand, 𝑤 impacts both false
egative and false positive rates. A natural choice is to minimize the
eighted sum of them, which can be numerically done by using the
pper-bound derived in Section 5.1.
SRAM parameters. The last set of parameters, 𝑚 and 𝑐, are related

o the SRAM. The configuration is detailed in Section 5.1.
We conclude this section by noting that in the case where 𝑇 is

nknown, we can set the parameters based on a lower-bound of 𝑇 . We
an observe from our analysis that the estimation accuracy can still be
atisfied. However, the price to pay is that we cannot achieve optimal
emory efficiency.

. Variants and extensions

In this section, we investigate a number of variants and extensions
elated to the persistent item lookup problem.
7

.1. Generalized persistent item lookup

The persistent item lookup problem can be generalized with the
ollowing definitions of persistent items:

• An item is persistent if occurring in at least 𝑇̂ ≤ 𝑇 epochs;
• An item is persistent if occurring in at least 𝑇̂ consecutive epochs.

ote that if 𝑇̂ = 𝑇 , both generalizations degenerate to the baseline
roblem instance addressed previously.

We now describe a unified framework by extending our algorithm
o solve both generalizations.
Data structure. We replace the Bloom filter 𝐵 by a counting Bloom

ilter whose counter range is [0, 𝑇̂]. The other Bloom filter 𝑏 is main-
ained as in the baseline formulation. At the end of each epoch, for
ach bit 1 in 𝑏, we increment the counter of the corresponding bit in 𝐵
y 1 if the value of the counter is less than 𝑇̂ . In this way 𝐵 can trace
he number of occurrence of each item. For the second formulation,
or each bit 0 in 𝑏, we clear the corresponding counter in 𝐵 to 0, which
ndicates that the items casting to any of these bits are absent in the
urrent epoch. We then build another Bloom filter 𝐵′ of the same length
s 𝐵, in which 𝐵′(𝑖) is set to 1 if 𝐵(𝑖) = 𝑇̂ and 0 otherwise. In this
ay, we can check whether an item 𝑒 appears in at least 𝑇̂ consecutive
pochs by checking if 𝐵(ℎ𝑖(𝑒)) = 𝑇̂ , 1 ≤ 𝑖 ≤ 𝑘.
Recording. The insertion procedure works in the same way as in the

aseline formulation in the last 𝑤 epochs. To check whether an item 𝑒
hould be recorded in epoch 𝑡, we proceed as below:

• For the first formulation, we check whether 𝑒 has appeared in at
least 𝑇̂ −(𝑇 −𝑡) epochs. If not, noticing that there are (𝑇 −𝑡) epochs
left until the end of the measurement, 𝑒 cannot be a persistent
item and thus should not be recorded.

• For the second formulation, we check whether 𝑒 has appeared
in at least the last 𝑇̂ − (𝑇 − 𝑡) epochs by checking whether the
minimum counter value of 𝐵(ℎ𝑖(𝑒)) (1 ≤ 𝑖 ≤ 𝑘) is at least 𝑇̂ −(𝑇 −𝑡).
At the end of each epoch 𝑡 (max{𝑇̂ , 𝑇 −𝑤} ≤ 𝑡 < 𝑇), we dump 𝐵′

off-die. We denote 𝐵′ dumped at epoch 𝑡 as 𝐵′
𝑡 .

Lookup. Given an item 𝑒, for the first formulation, we examine the
counters at positions ℎ𝑗 (𝑒) (1 ≤ 𝑗 ≤ 𝑘) in 𝐵 and mark 𝑒 as persistent

f none of the counters is smaller than 𝑇̂ . For the second formulation,
e examine the 𝑘 bits ℎ𝑗 (𝑒) (1 ≤ 𝑗 ≤ 𝑘) in 𝐵′

𝑡 and mark 𝑒 as persistent
f there exists 𝑡 such that all the 𝑘 bits are 1. Similar operations are
erformed in both formulations to reconstruct the persistent item list.

For presentation conciseness, we mainly focus on the design intu-
tion and idea without detailing the performance analysis. The analysis
e present for the baseline algorithm in Section 5 can be adapted in

he generic case by taking into account the counting error in counting
loom filters.

.2. The case of distributed streams

The second variant is the distributed situation where there are 𝑧
ubstreams 𝑓1, 𝑓2, ⋯, 𝑓𝑧, each monitored at a different node 𝐹𝑖 (1 ≤ 𝑖 ≤
) in a distributed environment. The goal is to identify the persistent
tems, where an item is persistent if it occurs in at least one substream
t each epoch.

To apply our algorithm in this context, we set up a master node 𝐹
hose role is to coordinate the whole monitoring process. The master
ode can be one of the monitoring node 𝐹𝑖 or a dedicated node. Each
onitor node 𝐹𝑖 runs Algorithm 1 locally. At the end of each epoch,
𝑖 uploads its Bloom filter 𝐵 to 𝐹 . We denote the local Bloom filter
at 𝐹𝑖 as 𝐵𝑖. 𝐹 then computes 𝐵 =

⋁𝑧
𝑖=1 𝐵𝑖 as the Bloom filter that

records all the persistent items and broadcasts 𝐵 to each monitor node
𝐹𝑖 such that 𝐹𝑖 further sets 𝐵𝑖 to 𝐵. At the end of the measurement each
monitoring node 𝐹𝑖 uploads its recorded items to 𝐹 . The persistent item
search and reconstruction operations in the single stream scenario can

be easily extended in this new context.

Computer Networks xxx (xxxx) xxxL. Chen et al.

r
p
n
w

Fig. 2. On-die memory cost of our algorithm under different parameter settings.
p
c

r
f

One drawback of the above natural extension is that an item may be
ecorded at several monitoring nodes. To limit duplicated recording, we
ropose to desynchronize the recording procedure at each monitoring
ode. Specifically, for each item 𝑒 to be recorded at 𝐹𝑖, the epoch in
hich 𝑒 is effectively recorded is now set to [𝑔(𝑒) + 𝑖]%𝑤. By this way 𝑒

is recorded in different epochs at different monitoring nodes. Moreover,
𝐹𝑖 maintains a Bloom filter 𝑏′𝑖 tracing all the items recorded locally. All
𝑏′𝑖 are collected by 𝐹 who further computes 𝑏′ =

⋁𝑧
𝑖=1 𝑏

′
𝑖 , which traces

all the recorded items. 𝐹 then broadcasts 𝑏′ to each 𝐹𝑖, who checks 𝑏′

before recording any item to avoid duplicated recording.

6.3. Further improving memory efficiency

In our algorithm, a recorded item is not necessarily a persistent
one as a recorded item may not occur in a later epoch; in this case
the memory space recording its information is wasted. Motivated by
this observation, to further improve the memory efficiency, we split
the information of each item into multiple parts and record them in
multiple epochs. In this way if an item does not occur in a later epoch,
we do not need to record the remaining parts, thus reducing memory
waste.

To further illustrate our idea, we take an example where the in-
formation of each item 𝑒 is divided into two parts, each containing
half of the item ID denoted by 𝑒1 and 𝑒2. We then regard 𝑒1 and 𝑒2
as independent items and record them in the corresponding epochs as
specified in our algorithm only if 𝑒 appears in all the preceding epochs.
To search and retrieve a persistent item 𝑒, the algorithm first verifies
the Bloom filter 𝐵 whether 𝑒 is persistent and proceeds to retrieve the
8

two parts by using 𝑒1 and 𝑒2. f
To enable persistent item list reconstruction, we need to attach with
one of the two parts the entire item ID 𝑒 so as to locate the other part.
Suppose that 𝑔(𝑒1) < 𝑔(𝑒2), i.e., the first part is supposed to be recorded
in an earlier epoch. We can attach the entire ID 𝑒 in either part, but it
is preferable to attach it with the second part. The subtlety is that by
doing so, if 𝑒 does not occur in some epoch between 𝑔(𝑒1) and 𝑔(𝑒2),
it is not a persistent item and hence we do not need to record 𝑒2, thus
avoiding recording the entire ID.

7. Numerical and empirical study

In this section, we evaluate our algorithm on both synthetic and real
data streams for a variety of application scenarios.

7.1. Experiment on synthetic data

We simulate a data stream of 106 items among which 0.1% of them,
i.e., 1000 items, are persistent. The length of item IDs is 32 bits, cor-
responding to e.g. an IP address in networking applications. The time
horizon 𝑇 is set to 100 periods. The items follow a Zipf distribution with
𝛼 = 2 for the non-persistent items with the maximum spread 𝑆 varying
from 0.2𝑇 to 0.6𝑇 to simulate different skewness. We first evaluate the
erformance of our algorithm in various parameter settings and then
ompare our algorithm with the state-of-the-art approach PIE.

To evaluate our algorithm, we trace the minimum memory space
equired to satisfy the lookup accuracy in terms of false positive and
alse negative rates. To this end, we vary the target false positive and

alse negative rates from 0.001 to 0.01 and trace the minimum memory

Computer Networks xxx (xxxx) xxxL. Chen et al.

f

m
r
o

s
d
N
r
t

e

c
p

a
o
l
m
o
(
s
r
b
s

7

3
b

W
P
t

i
t

m
i
t
w
s

i
n
a
l
o
t
t
g
f

Fig. 3. On-die memory cost under various TCAM size.

Fig. 4. Performance comparison between our algorithm and PIE (y-axis in log scale).

space such that the false positive and false negative rates are both met.
To this end, we set 𝑘 = 3, 𝑤 to 𝑇 − 𝑆, and increase the Bloom filter
length 𝐿 until the target false positive rate is met. We then increase 𝑚
until the false positive rate is met. We trace the resulting on-die memory
cost under different values of 𝑑 and 𝑐.

From the simulation results, illustrated in Fig. 2, we can draw the
ollowing observation.

Among the different scenarios we simulate, we observe that the
emory cost decreases significantly when we relax the lookup accuracy

equirement in terms of the false positive and false negative rates. This
bservation is coherent to our analytic results.

We also observe that the performance of our algorithm is not very
ensitive to 𝑑 and 𝑐, which, from the engineering perspective, is a
esirable property that makes the implementation simple and robust.
evertheless, we observe a slight performance gain with large 𝑑, a logic

esult as larger 𝑑 offers more candidates to record items and thus leads
o more balanced and compact outcome.

We also simulate the impact of TCAM size on performance. To this
nd, we vary the TCAM size from 5 to 100 items under the setting
𝑐 = 2, 𝑑 = 2, 𝑆 = 0.6𝑇 . The results in Fig. 3 shows that the memory
ost further decreases when a small global TCAM is used and the
erformance gain stabilizes when the TCAM scales to around 50 items,

i.e., 200 bytes. We observe similar results for other settings of 𝑐, 𝑑 and
𝑆.

We then compare our algorithm with the state-of-the-art approach
PIE [9] under the optimum parameter setting. The core idea of PIE
9

r

Table 2
Summary of traces used in our experiment.

Trace Duration #pkts # flows

CHIC 6 min 25.3M 101 374
ICSI 1 h 1.49M 8797
DC 1 h 10 289 10 289

is the use of a compact data structure called the space–time Bloom
filter (STBF). In our simulations, we increase the size of the STBF in
PIE and trace the minimum memory space such that the false positive
and false negative rates are met. We vary the values of 𝑐, 𝑑, and 𝑆.
Fig. 4 illustrates the comparison results for the setting 𝑐 = 2, 𝑑 = 2
nd 𝑆 = 0.2𝑇 . We observe similar results for other settings, which are
mitted here for conciseness. From the results illustrated in Fig. 4 (in
ogarithmic scale), we observe that our algorithm incurs only 5 − 20%
emory cost compared to PIE, given that PIE is shown in [9] to

utperform other classical approaches based on Invertible Bloom Filter
IBF) [26] and Count-Min (CM) sketch [27]. By further examining the
imulation traces, we observe that despite the efforts in PIE, it still
ecords a large number of non-persistent items; in contrast, the num-
er of non-persistent items recorded in our algorithm is significantly
maller, resulting in significant memory saving.

.2. Experiment on real data traces

We proceed to evaluate our algorithm on real data traces by using
network traces CHIC [28], ICSI [29] and DC [30], summarized as

elow.7

• CHIC is a backbone header trace published by CAIDA and col-
lected in 2015. It traces the arrival times of packets at a 10GigE
link interface with the flow IDs associated with those packets. In
our experiment, we capture HTTP flows for 6 min.

• ICSI is an enterprise network traffic trace collected at a medium-
sized enterprise network. In our experiment, we use TCP traces
from 22 different ports in one hour.

• DC is a data center traffic trace collected at a university data
center for more than an hour. In our experiment, we use TCP
traces generated in one hour.

e note that these traces are also used to evaluate PIE in [9]. The same
IE parameters are taken in our experiment. Table 2 summarizes the
races used in our experiment.

We follow the same procedure as in our simulation by first evaluat-
ng the performance of our algorithm in various parameter settings and
hen comparing our algorithm with the state-of-the-art approach PIE.

Fig. 5 illustrates the experiment results of our algorithm in terms of
emory overhead. For presentation conciseness, we illustrate the result

n the setting 𝑐 = 4 and 𝑤 = 25 for the three traces and similar result
rends are observed in other settings, too. From our experiment results,
e can draw similar observations as the simulations we perform on

ynthetic data.
We then compare our algorithm to PIE over the three traces. Fig. 6

llustrate representative results of our comparison, one for each trace,
oticing that we observe similar results for other settings. The results
re globally coherent to the simulation results, i.e., our algorithm incurs
ess memory cost under the same lookup accuracy. Nevertheless, we
bserve a larger performance gap between our algorithm and PIE over
he real network traces. This larger gap can be explained by the fact
hat the real network traces are more skewed than the data streams
enerated in our simulations and our algorithm is particularly tailored
or high skewness by recording only persistent items, while PIE still

7 For more detailed explanation of the traces, readers are referred to the
espective references.

Computer Networks xxx (xxxx) xxxL. Chen et al.
Fig. 5. Performance of our algorithm on real data traces.
Fig. 6. Performance comparison between our algorithm and PIE on real data traces (y-axis in log scale).
Fig. 7. Performance comparison between our generalized algorithm and PIE on real data traces (y-axis in log scale).
needs to record all the items. To complete our experimentation, we
simulate the generalized variant of our algorithm where an item is
persistent if occurring in at least 0.8𝑇 epochs. Fig. 7 compares the
performance of our algorithm against PIE in such generalized scenario.
The memory cost is almost the same as the baseline case with PIE as the
data structure is the same in the generalized case. For our algorithm,
the memory cost increases due to the use of counting Bloom filter.
However, this overhead is limited as the main data structure remains
the same.

8. Conclusion

We have investigated the problem of persistent item lookup, a piv-
otal functionality in many computing and networking paradigms. Our
main contribution is the design and analysis of an algorithm and the
related data structure that are compact and amendable for hardware
implementation, while guaranteeing user-tunable lookup accuracy and
supporting interactive query processing. Despite our focus on persistent
item lookup, we believe that some of our techniques may well extend
beyond this problem to other data stream mining problems where
10

memory efficiency is a central concern.
CRediT authorship contribution statement

Lin Chen: Algorithm design and analysis. Haipeng Dai: Algo-
rithm analysis and proof. Lei Meng: Algorithm evaluation. Jihong Yu:
Algorithm analysis and evaluation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] H. Huang, Y.E. Sun, S. Chen, H. Xu, Y. Zhou, Persistent traffic measurement
through vehicle-to-infrastructure communications, in: Proc. IEEE ICDCS, 2017.

[2] N. Immorlica, K. Jain, M. Mahdian, K. Talwar, Click fraud resistant methods for
learning click-through rates, in: Proc. ACM WINE, 2005.

[3] Q. Xiao, Y. Qiao, M. Zhen, S. Chen, Estimating the persistent spreads in
high-speed networks, in: Proc. IEEE ICNP, 2014.

[4] T. Li, S. Chen, Y. Ling, Per-flow traffic measurement through randomized counter
sharing, IEEE/ACM Trans. Netw. 20 (5) (2012) 1622–1634.

[5] P. Zhao, C.C. Aggarwal, M. Wang, gSketch: On query estimation in graph streams,
in: Proc. VLDB, 2011.

[6] S. Nath, P.B. Gibbons, S. Seshan, Z.R. Anderson, Synopsis diffusion for robust

aggregation in sensor networks, in: Proc. ACM SenSys, 2004.

http://refhub.elsevier.com/S1389-1286(20)31180-4/sb4
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb4
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb4

Computer Networks xxx (xxxx) xxxL. Chen et al.
[7] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, D. Srivastava,
Holistic UDAFs at streaming speeds, in: Proc. ACM SIGMOD, 2004.

[8] A. Goyal, H. Daumé III, G. Cormode, Sketch algorithms for estimating point
queries in NLP, in: Proc. Joint Conf. Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, 2012.

[9] H. Dai, M. Shahzad, A.X. Liu, Y. Zhong, Finding persistent items in data streams,
Proc. VLDB 10 (4) (2016) 289–300.

[10] B. Lahiri, S. Tirthapura, J. Chandrashekar, Space-efficient tracking of persistent
items in a massive data stream, Stat. Anal. Data Min. 7 (1) (2014) 70–92.

[11] Y. Zhou, Y. Zhou, M. Chen, S. Chen, Persistent spread measurement for big
network data based on register intersection, Proc. ACM Meas. Anal. Comput.
Syst. 1 (1) (2017) 1–29.

[12] P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm, in: Proc. Conf. Anal. Algo., 2007.

[13] G. Cormode, M. Hadjieleftheriou, Finding the frequent items in streams of data,
Commun. ACM 52 (10) (2009) 97–105.

[14] G. Cormode, S. Muthukrishnan, An improved data stream summary: The
count-min sketch and its applications, J. Algorithms 55 (1) (2005) 58–75.

[15] G.S. Manku, R. Motwani, Approximate frequency counts over data streams, Proc.
VLDB 5 (12) (2012) 1699.

[16] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press,
1995.

[17] M. Mitzenmacher, A.W. Richa, R. Sitaraman, The power of two random choices:
A survey of techniques and results, in: Handbook of Randomized Computing,
Kluwer, 2000, pp. 255–312.

[18] B. Vöcking, How asymmetry helps load balancing, J. ACM 50 (4) (2003)
568–589.

[19] M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE
Trans. Parallel Distrib. Syst. 12 (10) (2001) 1094–1104.

[20] R. Pagh, F.F. Rodler, Cuckoo hashing, J. Algorithms 51 (2) (2004) 122–144.
[21] A. Kirsch, M. Mitzenmacher, U. Wieder, More robust hashing: Cuckoo hashing

with a stash, SIAM J. Comput. 39 (4) (2009) 1543–1561.
[22] A.S. Tanenbaum, Structured Computer Organization, Prentice-Hall, 2005.
[23] K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory circuits and

architectures: a tutorial and survey, IEEE J. Solid-State Circuits 41 (3) (2006)
712–727.

[24] T. Yang, Y. Zhou, H. Jin, S. Chen, X. Li, Pyramid sketch: A sketch framework
for frequency estimation of data streams, Proc. VLDB (2017).

[25] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis, Cambridge University Press, 2005.

[26] D. Eppstein, M.T. Goodrich, F. Uyeda, G. Varghese, What’s the difference?:
Efficient set reconciliation without prior context, in: Proc. ACM SIGCOMM, 2011.

[27] G. Cormode, S. Muthukrishnan, An improved data stream summary: The
count-min sketch and its applications, J. Algorithms 55 (1) (2005) 58–75.

[28] The CAIDA UCSD anonymized internet traces, www.caida.org/data/overview.
[29] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, B. Tierney, A first look at

modern enterprise traffic, in: Proc. ACM IMC, 2005.
[30] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers

in the wild, in: Proc. ACM IMC, 2010.
11
Lin Chen received the B.E. degree in radio engineering
from Southeast University, China, in 2002, the Engineer
Diploma and Ph.D. degrees from Telecom ParisTech, Paris,
in 2005 and 2008, respectively, and the M.S. degree in
networking from the University of Paris 6. From 2009 to
2019, he was an associated professor with the department
of Computer Science, University of Paris-Sud. He is currently
a professor with the School of Data Computer Science,
Sun Yat-sen University. His main research interests include
distributed algorithm design and analysis in networked
systems, security and privacy in cyber-physical systems.

Haipeng Dai received the B.S. degree in the Department
of Electronic Engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2010, and the Ph.D. degree
in the Department of Computer Science and Technology
in Nanjing University, Nanjing, China, in 2014. He is an
associate professor in the Department of Computer Science
and Technology in Nanjing University.

He is an IEEE and ACM member.
He received Best Paper Award from IEEE ICNP’15, Best

Paper Award Runner-up from IEEE SECON’18, and Best
Paper Award Candidate from IEEE INFOCOM’17.

Lei Meng received the BS degree in software engineering
from Jilin University in 2018. He is currently working to-
ward the MS degree in the computer science and technology
at Nanjing University, focusing on knowledge graph and
data mining.

Jihong Yu received the B.E degree in communication
engineering and M.E degree in communication and infor-
mation systems from Chongqing University of Posts and
Telecommunications, Chongqing, China, in 2010 and 2013,
respectively, and the Ph.D. degree in computer science at
the University of Paris-Sud, Orsay, France, in 2016. He was
a postdoc fellow in the School of Computing Science, Simon
Fraser University, Canada. He is currently a professor in the
School of Information and Electronics at Beijing Institute of
Technology. His research interests include RFID, backscatter
networks, and Internet of things.

http://refhub.elsevier.com/S1389-1286(20)31180-4/sb9
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb9
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb9
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb10
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb10
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb10
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb11
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb11
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb11
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb11
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb11
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb13
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb13
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb13
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb14
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb14
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb14
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb15
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb15
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb15
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb16
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb16
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb16
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb17
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb17
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb17
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb17
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb17
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb18
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb18
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb18
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb19
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb19
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb19
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb20
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb21
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb21
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb21
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb22
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb23
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb23
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb23
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb23
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb23
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb24
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb24
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb24
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb25
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb25
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb25
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb27
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb27
http://refhub.elsevier.com/S1389-1286(20)31180-4/sb27
http://www.caida.org/data/overview

	Finding needles in a hay stream: On persistent item lookup in data streams
	Introduction
	Background and motivation
	Problem formulation
	Main contributions and technicalities
	Paper organization

	Related work and limitation
	Design rationale and overview
	Technique 1: recording only persistent items
	Technique 2: distributing recording load
	Technique 3: giving an item more choices

	Algorithm
	Memory and data structure
	Recording
	Lookup

	Analysis
	False negative rate
	False positive rate
	Complexity
	Parameter tuning and optimization

	Variants and extensions
	Generalized persistent item lookup
	The case of distributed streams
	Further improving memory efficiency

	Numerical and empirical study
	Experiment on synthetic data
	Experiment on real data traces

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

