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ABSTRACT

In cognitive radio (CR) networks, the coexistence between
neighboring secondary networks is referred to as self coex-
istence. As prescribed in IEEE 802.22, a self-coexistence
protocol enables a CR network in need of more spectrum
resources to acquire spectrum (channels) from neighboring
CR networks via a distributed inter-network spectrum con-
tention process. A network that forfeits part of its spectrum
in a spectrum contention process may later become short
of spectrum, and in turn, it initiates a cascading spectrum
contention process to acquire more spectrum resources. As
a result, a local spectrum contention may trigger a series
of successive contention instances that proliferate over the
whole network, which may waste the network resources. In
this paper, we systematically study the cascading spectrum
contention problem using a percolation-based model in the
context of CR networks. We show that cascading spectrum
contentions under existing spectrum contention resolution
rules is equivalent to a site percolation process that can
readily lead to a network-wide cascade. To address such
a problem, we identify the critical conditions for determin-
ing the occurrence of cascading spectrum contentions, and
propose a biased spectrum contention protocol that inten-
tionally lowers the probability that a starving network can
trigger successive spectrum contentions. We show that the
proposed solution can effectively restrict the spatial cascad-
ing impact of contentions.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols

Keywords

Dynamic spectrum access, self coexistence, percolation, cog-
nitive radio

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CRAB’13, October 4, 2013, Miami, Florida, USA

Copyright 2013 ACM 978-1-4503-2368-0/13/10 ...$15.00.

http://dx.doi.org/10.1145/2508478.2508479.

In cognitive radio (CR) networks, the coexistence between
unlicensed (secondary) users that form CR networks and
licensed (primary) users is referred to as incumbent coex-
istence. Meanwhile, CRs have the capability to alleviate
problems related to self-coexistence, the coexistence between
wireless systems of the same type, such as spectrum shar-
ing among neighboring IEEE 802.22 CR networks [12]. An
802.22 network (cell) is an infrastructure-based CR network
and composed of a Base Station (BS) and several user de-
vices (i.e., Consumer Premise Equipments). Incumbent ser-
vices in IEEE 802.22 refer to TV broadcasting services or
services for Part 74 devices (wireless microphones) operat-
ing in TV bands1, and secondary users refer to IEEE 802.22
entities (BS and user devices).

A self-coexistence protocol facilitates the dynamic spec-
trum sharing among coexisting networks in a distributed
manner when a network is in need of spectrum to satisfy
its service requirement. There is no need to start the spec-
trum sharing process for self-coexistence when the available
spectrum is sufficient to satisfy all coexisting networks.

When the available spectrum is insufficient, every CR net-
work (or network BS) occupies an amount of spectrum that
is no more than it needs (i.e., its service requirement). IEEE
802.22 defines an inter-BS spectrum contention protocol for
network cells to achieve the goal of self-coexistence.

• A BS that is in need of spectrum (contention source
BS) is allowed to win channels via pairwise contentions
with its neighboring BSs (contention destination BSs).

• If the contention source wins the contention, it occu-
pies the contended channels exclusively, while the con-
tention destinations vacate those channels via channel
switching.

To ensure the fairness in the contention process, existing
proposals adopt a simple unbiased contention resolution rule
based on random number selection [10, 8, 9, 5, 6], such that
either a contention source or a contention destination has an
equal probability of winning the pairwise contention.

However, the existing design of a self-coexistence protocol
fails to consider the successive events that may be triggered
by the spectrum redistribution during a local spectrum con-
tention process. For example, the channel redistribution via
contentions may satisfy the contention source, but mean-
while the contention destination that loses spectrum may

1Part 74 devices are small-scale, low-power wireless devices,
such as wireless microphones [12, 13], which are licensed to
operate in the TV broadcast bands.
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become short of spectrum and successively initiate a cas-
cading spectrum contention process to acquire more spec-
trums.2 As a result, unrestricted local spectrum contentions
may trigger a series of successive contention instances that
proliferate over the whole network, which may waste the
network resources.

In this paper, we systematically study the cascading spec-
trum contention problem using the percolation theory in the
context of CR networks. We show that cascading spectrum
contentions under existing spectrum contention resolution
rules is equivalent to a site percolation process that can read-
ily lead to a network-wide cascade. Moreover, we have found
the critical conditions for determining the occurrence of cas-
cading spectrum contentions, and propose a biased spectrum
contention protocol to mitigate this problem.

The rest of this paper is organized as follows: we provide
technical background for IEEE 802.22 and percolation the-
ory in Section 2. We formulate the problem in Section 3, and
show the feasibility of cascading spectrum contentions in CR
networks in Section 4. We propose a biased spectrum con-
tention protocol that mitigates the problem in Section 5. In
Section 6, we compare different contention resolution rules
using simulation results. We conclude the paper in Section 7.

2. TECHNICAL BACKGROUND

2.1 Spectrum Contention for Self-coexistence
IEEE 802.22 is the first and only wireless standard based

on CR technology, which provides the broadband access in
rural areas. Every 802.22 network is under control of a cen-
tral entity, i.e., a Base Station (BS). We will use the 802.22
network as an example of a CR network in the forthcoming
discussions.

Inter-BS communication. Two co-located BSs in neigh-
boring cells are called neighboring BSs. Inter-BS communi-
cation between neighboring BSs can be well supported in
802.22, via either inter-BS control message exchange over-
the-air, or over the backhaul control (wired) connections [6,
8].

Spectrum contention. When available spectrum is in-
sufficient to satisfy all coexisting BSs, an 802.22 BS in need
of spectrum can initiate an inter-BS spectrum contention
process so that better channels or more channels can be ac-
quired from neighboring BSs to satisfy the QoS of its work-
load [12].

1. The BS that initiates the spectrum contention process
is the contention source (SRC). A spectrum contention
process consists of a number of pairwise contentions,
and every pairwise contention is carried out between
the SRC and a neighboring BS that is referred to as
the contention destinations (DST).

2. The SRC sends a contention request message to con-
tend for a target channel that is currently occupied by
a DST. The DST uses a specific contention resolution
rule to determine the winner of the contention.

3. In the unbiased contention resolution rule [10, 8, 9, 5,
6], every BS (either SRC or DST) is required to select a
Spectrum Contention Number (SCN) that is uniformly

2A cascade is a series of events, in which the occurrence of
an event can trigger the occurrence of successive events.

distributed in the range [0,W − 1], and exchange the
SCN values, where W is a constant representing the
contention window size.

4. The BS that has selected the largest CN among all par-
ticipating BSs is the winner of the contention. Other
BSs (and their 802.22 networks) that fail to win will
vacate the channel.

2.2 Site Percolation
A percolation process resides in a graph including sites

(vertices) or bonds (edges). The most common percolation
model takes the graph structure of a regular lattice (e.g., a
square lattice). In the site percolation process, every site is
either open (i.e., open to flow, diffusion, etc.) randomly and
independently with probability p, or closed (i.e., closed to
flow, diffusion, etc.) with probability 1− p.

Definition 1. A path is open if all its sites are open and
it is close if all its sites are closed. Sites u and v are said to
be open connected if there exists an open path that connects
u and v. We define v to be open connected to itself.

It follows immediately that open connection is an equiva-
lence relation. We write u ↔ v if u and v are open con-
nected, and u = v if u and v are not open connected.

Definition 2. The open cluster C(v) at site v is the set
of all sites that are open connected to v, represented as

C(v) = {u ∈ V |u ↔ v}.

Intuitively, as p increases, the size of an open cluster also
increases. At a critical value of p, the long-range connec-
tivity in the network appears—there is a transition in the
topological structure of the network from a macroscopically
disconnected to a connected one—and thus this critical value
is called the percolation threshold or critical probability [7].
Let pc denote the percolation threshold, we have the follow-
ing fundamental results from percolation theory [7]:

• when p > pc, with probability one, there exists an
infinite cluster; and with a positive probability, the
origin (or any other fixed point) belongs to an infinite
cluster;

• when p < pc, all clusters are finite.

When the graph structure resides in continuous space (e.g., a
random geometric graph), the resulting percolation model is
described as continuum percolation. Continuum percolation
theory has served as a useful tool in many applications in
wireless networks, such as power management [14], latency
evaluation [3, 16, 15], connectivity analysis[2], node failure
detection [17], etc.

3. A PERCOLATION-BASED FRAMEWORK

3.1 System Model
Network graph. The placement of BSs of CR networks

could transform to an undirected network graph G = (V,E),
where V is the set of vertices and E is the set of edges. Each
vertex i ∈ V represents a BS of a network cell, and we call
the BS represented by a vertex i as BS i. If two BSs i and
j are neighboring to each other in the network, there is an
edge {i, j} ∈ E connecting the two vertices i, j ∈ V (i.e., an
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inter-BS communication link connecting the two BSs). In
this case, vertex j is said to be a neighbor of vertex i. Let
N(i) denote the set of all neighbors of vertex i in graph G:
N(i) = {j ∈ V |{i, j} ∈ E}. The cardinality of N(i) is called
the degree of vertex i, written as d(i) = |N(i)|.

Base station placement on a lattice. In an 802.22 sys-
tem, the rural area is divided into regular shaped cells, which
can be hexagonal, square, or some other irregular shapes.
We generalize them to the notion of lattice [1], and three
common types of lattices are triangular, square and honey-
comb lattices.

Service requirement Every BS i requires ri channels
to satisfy the QoS of its admitted workload, and N is the
maximum number of available channels. The value of ri,
called the service requirement of BS i, depends on the intra-
cell traffic demand raised by the secondary users (i.e., CPEs)
connected to the BS i. Let Ai denote the set of channels that
are occupied by BS i.

Every BS i tries to claim as many unoccupied channels
as possible until |Ai| = ri or there is no unoccupied chan-
nels that can be claimed. Thus, |Ai| ≤ ri for any BS i.
To avoid co-channel interference, neighboring BSs i and j
occupy disjoint sets of channels, i.e., Ai ∩Aj = ∅.

Network states. Every BS i occupies an amount of spec-
trum that is no more than its service requirement. We as-
sume there are two states for a given CR network—a state
wherein the BS is in need of spectrum, and a state wherein
the BS does not need additional spectrum. We refer these
two states as “starving” and “satisfied”, respectively.

• When |Ai| < ri, we call BS i a starving BS.

• When |Ai| = ri, we call BS i a satisfied BS.

Causes for spectrum contention. The root cause for
incurring spectrum contention is the existence of a starving
BS. There are three factors that make a satisfied BS i be-
come starving: (1) the reclaim of occupied channels in Ai by
the primary user; (2) the increase of ri due to an increased
intra-cell workload; and (3) losing channels in Ai due to
spectrum contentions.

We call the probability that a satisfied BS i becomes starv-
ing due to all these factors as the starving probability of BS i,
denoted by pi. Meanwhile, we call the probability that a sat-
isfied BS i becomes starving due to non-contention (the first
two) factors as spontaneous starving probability, denoted by
pi,0.

3.2 Problem Formulation
In an inter-BS spectrum contention process, the channel

redistribution may satisfy the contention source BS i; but
meanwhile a contention destination BS j that loses the tar-
get channel may become starving, and successively initiate
a cascading contention process. Therefore, the event that a
BS j becomes starving is caused by a spectrum contention
initiated by a starving BS i. That is, a local spectrum con-
tention initiated by a BS may cause a cascade of spectrum
contentions, which will result in futile contention results and
waste network resources. We refer to such a phenomenon as
a cascading spectrum contention.

We formulate the phenomenon of cascading spectrum con-
tentions as a site percolation process over the network graph
as follows.

Similar to the definitions of open/closed sites (vertices) in
the percolation process, we define open/closed BSs in the
context of CR networks.

Definition 3. A vertex i in the network graph G is open
if BS i is a starving BS, and we call it an open BS. Other-
wise, the vertex i is closed if BS i is a satisfied BS, and we
call it a closed BS.

Definition 4. Two BSs i and j are said to be open con-
nected if there exists a path in the network graph that con-
nects vertices i and j, and every vertex in this path is open.
The open cluster at BS i is the set of all BSs that are open
connected to BS i.

It is believed that BSs i and j in the same open cluster are
related in a certain relationship of spectrum contentions,
e.g., there may exist a path starting at BS i and ending at
BS j, where a pairwise contention occurs between every pair
of BSs along this path, or there exist two contention paths
between k and i, k and j, where k is a third BS in the same
cluster. The open cluster in the network graph describes
the set of BSs that are in the “starving” state that may be
caused by cascading spectrum contentions.

The size of an open cluster. We refer to metrics used in
the percolation theory to quantify the magnitude of cascad-
ing spectrum contentions. We define the mean open cluster
size at BS i as

χi(pi : i ∈ V ) = E(pi:i∈V )(|C(i)|),

where E(pi:i∈V )(X) denotes the expectation of a random
variable X, given that BS i is open independently with prob-
ability pi (i ∈ V ).

Lower bound case with starving probability p. In
Section 4.1, we introduce a lower bound p of pi’s, i.e. p ≤ pi,
∀i ∈ V . Thus χi(pi : i ∈ V ) ≥ χi(p) , Ep(|C(i)|), where
Ep(X) denotes the expectation given that every BS is open
independently with probability p, i.e. χi(p) is a lower bound
of χi(pi : i ∈ V ).

So far we have transformed the study of χi(pi : i ∈ V )
into the study of χi(p) in a lower bound case where every
BS i is open independently with probability p.

Since the placement of BSs of CR networks form a lattice
G = (V,E), whose automorphism group acts transitively
upon V (also known as vertex-transitive) [1], then ∀i, j ∈ V ,
C(i) = C(j) and χi(p) = χj(p) due to the homogeneity of
a lattice. Hence, we simply use C and χ(p) instead of C(i)
and χi(p).

Therefore, the cascading spectrum contention process in
CR networks is mapped to the lower bound site percolation
process over the network graph where every vertex (BS) is
open independently with probability p.

3.3 Global and Severe Cascades
Since χ(p) is defined to characterize the magnitude of cas-

cading spectrum contentions, a global cascade of spectrum
contentions occurs if the mean open cluster size is infinite,
i.e., χ(p) = ∞. According to the percolation theory, an infi-
nite open cluster exists (χ(p) = ∞) with probability one, if
and only if p ≥ pc, where p is the starving probability and
pc is the critical probability.

In the subcritical phase when p < pc, a severe cascade of
spectrum contentions is to said to occur if the mean open
cluster size χ(p) ≥ χ (χ is a predefined threshold, e.g., that
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Figure 1: The mean open cluster size χ(p) vs. the starv-
ing probability. The (modified) critical probabilities are
marked, and p′c(50) < p′c(100) < pc.

χ is set to be 50 means that a cascade involving in over 50
BSs is considered to be a severe cascade), which suggests
that an average open cluster of BSs is large.

In Theorem 3, we will show that there exists a modified
critical probability, p′c(χ), such that if p > p′c, a severe cas-
cade with χ(p) ≥ χ occurs. We roughly illustrate the critical
probability pc and two modified critical probabilities p′c(50)
and p′c(100) in Figure 1.

4. MAIN RESULTS
In this section, we present analytical results on the mean

open cluster size, and the criteria for determining the exis-
tence of a global or severe cascade in CR networks.

4.1 Lower Bound of Starving Probability
Four parameters related to the lower bound starv-

ing probability p. We introduce four parameters that de-
fine the behaviors of coexisting networks in a spectrum con-
tention process, which will collectively affect the size of an
open cluster. If we can establish the relationship between p
and these parameters, we will be able to analyze χ(p) and
χi(pi : i ∈ V ) based on these parameters. The four param-
eters are described as follows.

1. d ∈ N, the degree of each vertex. Note that d = 6 in a
triangular lattice, d = 4 in a square lattice and d = 3
in a honeycomb lattice.

2. k ∈ N ∩ [0, d], the number of pairwise contentions ini-
tiated by a contention source in each spectrum con-
tention process. If k = 0, BSs are in fact non-collaborative,
reluctant to be involved in a channel transaction. If
k > 0, they are collaborative. In particular, when
k = d, the contention source initiates pairwise con-
tentions with all of its neighboring BSs.

3. λ ∈ [0, 1], the winning probability of the contention
source in a pairwise contention: In an unbiased con-
tention resolution rule, λ = 1/2; In a biased contention
resolution rule, λ is not necessarily 1/2;

4. p0 = infi∈V pi,0 ∈ [0, 1], the minimum probability that
a BS becomes starving spontaneously rather than due
to spectrum contentions.

Then, we define the following three events:

• Event S(i): a given BS i is starving;

• Event S
(i)
s : a given BS i is starving spontaneously;

• Event S
(i)
c : a given BS i is starving due to spectrum

contention initiated by its neighbors.

Events S
(i)
s and S

(i)
c are assumed to be independent.

We denote the event that BS j wins a pairwise contention
over BS i by Wj,i. For BS j that is a neighbor of BS i,
P (Wj,i) is the probability that BS j is starving, which is at
least p0 = infi∈V pi,0, times the probability that BS j selects
BS i when BS j attempts to select k out of d neighbors
of its to initiate a pairwise spectrum contention since it is
starving at the moment, times the probability that BS j
wins the pairwise spectrum contention with BS i. Therefore,
P (Wj,i) ≥ p0λk/d. Then, we derive the probability of event

S
(i)
c as follows.

P (S(i)
c ) = P (

⋃

j∈N(i)

Wj,i) = 1− P (
⋂

j∈N(i)

W c
j,i)

= 1−
∏

j∈N(i)

P (W c
j,i) = 1−

∏

j∈N(i)

(1− P (Wj,i))

≥ 1−
∏

j∈N(i)

(1−
p0λk

d
)

= 1− (1−
p0λk

d
)d.

Since P (S
(i)
c ) ≥ 1 − (1 − p0λk

d
)d, we have the lower bound

for pi such as:

pi = pi(pi,0, d, k, λ) = P (S(i)) = P (S(i)
s ∪ S(i)

c )

= 1− (1− P (S(i)
s ))(1− P (S(i)

c ))

≥ 1− (1− p0)(1−
p0λk

d
)d.

Let

p = l(p0, d, k, λ) , 1− (1− p0)(1−
p0λk

d
)d ≤ pi.

Properties of the lower bound function. We intu-
itively expect the following properties of the lower bound
function p = l(p0, d, k, λ).

• The increase of p0, k and λ intuitively galvanizes the
spectrum contention and makes a BS more likely to be
starving. Therefore, p is a strictly increasing function
with regard to p0, k and λ.

• When p0 = 1, every BS becomes starving with proba-
bility one, i.e. pi = p = 1, ∀i ∈ V .

• Whenever d = 0, k = 0 or λ = 0, it reduces to the
case when every BS is non-collaborative and there is
no spectrum contention initiated at all. In this case, we
have p = p0, i.e., the probability that BS i is starving
is exactly the spontaneous starving probability.

In Theorem 1, we show that the function l satisfies the above
properties.

Theorem 1. For 0 ≤ p0 ≤ 1,d ∈ N and k ∈ N ∩ [0, d],

1. 0 ≤ p0 ≤ l(p0, d, k, λ) ≤ 1.

2. l(p0, d, k, λ) is a strictly increasing function with regard
to p0, k and λ.
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3. l(p0, d, k, λ) is a strictly decreasing function with regard
to d. Fix k/d = r, l(p0, d, k, λ) = l(p0, d, rd, λ) is a
strictly increasing function with regard to d.

4. l(1, d, k, λ) = 1.

5. limd→0+0 l(p0, d, k, λ) = p0, l(p0, d, 0, λ) = p0, and
l(p0, d, k, 0) = p0.

The proof of Theorem 1 only involves in easy calculus.

4.2 Mean Open Cluster Size
The probability of the occurrence of a global or severe

cascade of spectrum contentions is equivalent to the proba-
bility that an infinite/large open cluster exists in the network
graph.

Based on the results in [1], Theorem 2 shows how fast χ(p)
increases in the subcritical phase (p < pc)

Theorem 2. G is a lattice, then for p ∈ [0, pc)

χ(p) ≥ χ(p), (1)

where

χ(p) =
ppc

|pc − p|
;

and for p ∈ [pc, 1],

χ(p) = ∞.

Equation (1) tells the relationship between χ(p) and p in
the subcritical phase. Since χi(pi : i ∈ V ) ≥ χ(p) ≥ χ(p),
it is feasible to study χi(pi : i ∈ V ) via χ(p) and identify
conditions for the occurrence of global or severe cascades.

4.3 Conditions for the Occurrence of Global
or Severe Cascades

Now we consider the lower bound case. If χ(p) = ∞, a
global cascade of spectrum contentions occurs; and if χ(p) ≥
χ (χ is a predefined threshold), a severe cascade occurs. We
are interested in the following two problems:

1. Under what conditions a global cascade of spectrum
contention occurs;

2. Under what conditions a severe cascade occurs.

Theorem 3 gives a criterion for determining the occurrence
of global or severe cascades.

Theorem 3. Suppose G is a lattice.

1. If l(p0, d, k, λ) ≥ pc, the spectrum contention protocol
induces a global cascade of spectrum contentions with
probability one,

2. If

l(p0, d, k, λ) ≥ (
1

pc
+

1

χ
)−1

, p′c(χ),

where p′c is the modified critical probability, then the
mean open cluster size χ(p) ≥ χ.

Proof. If l(p0, d, k, λ) ≥ pc, we have

p ≥ l(p0, d, k, λ) ≥ pc.

By Theorem 2, χ(p) = ∞, i.e., it induces a global cascade
of spectrum contentions with probability 1.

If p < pc and

p ≥ l(p0, d, k, λ) ≥ p′c = (
1

pc
+

1

χ
)−1,

we have

χ(p) ≥ χ(p) =
ppc

pc − p
≥ χ,

i.e. it induces the mean open cluster size χ(p) to be χ(p) ≥
χ.

If p ≥ pc, we directly have

χ(p) = ∞ > χ

by Theorem 2. This completes the proof.

We notice that if χ = ∞, then p′c = pc, and hence the first
clause of Theorem 3 is just a special case of the second one.
The occurrence of a global cascade (an infinite open cluster)
is simply the case of χ = ∞.

Corollaries 1 and 2 show that given a specific graph struc-
ture (i.e. a fixed d), there also exists a threshold such that:
if p0 (or k) exceeds the threshold, a global or severe cascade
occurs.

Corollary 1. Fix d ∈ N and k ∈ N ∩ [0, d],

1. There exists a threshold p0;c ∈ [0, 1] such that if p0 >
p0;c, then a spectrum contention protocol induces the
mean open cluster size χ(p) to be χ(p) ≥ χ. In par-
ticular, if p0 > p′c, χ(p) ≥ χ, where p′c is the modified
critical probability with respect to χ.

2. There exists a threshold p̃0;c ∈ [0, 1] such that if p0 >
˜p0;c, then a spectrum contention protocol induces a glo-

cal cascade of spectrum contentions with probability 1.
In particular, if p0 > pc, a global cascade occurs.

Proof. Take p0;c = l−1(p′c) ∈ [0, 1], where l−1(p) is the
inverse function of l(p0) = l(p0, d, k, λ). Since l(0) = 0,
l(1) = 1 and l(p0) is strictly increasing with regard to p0,
therefore such p0;c = l−1(p′c) exists.

If p0 > p0;c, we have

l(p0) > l(p0;c) = p′c.

And by Theorem 3, χ(p) ≥ χ. If p0 > p′c, by Theorem 1, we
have

l(p0) ≥ p0 > p′c,

and hence, by Theorem 3 again, χ(p) ≥ χ.
Now we take χ = ∞, then p′c = pc, and this proves the

second clause.

Corollary 2. Fix p0 ∈ [0, 1] and d ∈ N,

1. If

d ≥
ln(1− p′c)− ln(1− p0)

ln(1− λp0)
,

then there exists a threshold kc ∈ [0, d] such that if
k > kc, then a spectrum contention protocol induces
the mean open cluster size χ(p) to be χ(p) ≥ χ.

2. If

d ≥
ln(1− pc)− ln(1− p0)

ln(1− λp0)
,

then there exists a threshold k̃c ∈ [0, d] such that if

k > k̃c, then a spectrum contention protocol induces a
global cascade of spectrum contentions with probability
one.
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Proof. Let l(k) denote l(p0, d, k, λ) for short. We have
l(0) = p0 and l(d) = 1− (1− p0)(1− λp0)

d ≥ p′c.
If p0 > p′c, by Corollary 1, χ(p) ≥ χ.
Now we assume that

p0 = l(0) ≤ p′c ≤ l(d).

By the strict monotonicity of l(k), l−1(p′c) exists and let kc
be kc = l−1(p′c) ∈ [0, d], where l−1(p) is the inverse function
of l(k) = l(p0, d, k, λ). If k > kc, we have

l(k) > l(kc) = p′c.

By Theorem 3, χ(p) ≥ χ.
Now we take χ = ∞, then p′c = pc, this proves the second

clause.

4.4 Applicable Criteria for Detecting Global
or Severe Cascades

Although Theorem 3 provides criteria to determine whether
a global or severe cascade occurs, yet it is less applicable due
to its complicated expressions.

To be more applicable for concrete calculation (for the
IEEE 802.22 case), Theorem 4 gives a criterion that is easy
to check. Finally, this leads us to a very simple criterion
when applied to three typical types of network topology, the
triangular, square and honeycomb lattices.

Lemma 1. Given p′c ∈ [0, 1] and d ∈ N, there exists a
unique solution p0 = Λ(p′c, d) ∈ [0, 1] of the equation with
respect to p0

l(p0, d, d, λ) = p′c. (2)

In addition, Λ ≤ p′c.

Proof. By Theorem 1, l(p0) = l(p0, d, k, λ) is a strictly
increasing continuous function with regard to p0 ∈ [0, 1],
and l(0) = 0, l(1) = 1. This implies a unique solution of the
eqation above.

By Theorem 1, p′c = l(Λ, d, d, λ) ≥ Λ.

Theorem 4 gives a linear criterion (see Equation (3)), which
is easier to check and applicable in practical network topolo-
gies.

Theorem 4. G is a lattice with vertex degree d. A spec-
trum contention protocol induces the mean open cluster size
χ(p) to be χ(p) ≥ χ if

p0 +Bk ≥ p′c, (3)

where p′c is the modified critical probability and B = (p′c −
Λ)/d is a constant. In particular, if we take χ = ∞, it
actually occurs a global cascade of spectrum contentions.

Proof. If p0 ≥ p′c, we directly have p ≥ p0 ≥ p′c

χ(p) ≥ χ(p) =
ppc

pc − p
≥ χ

by Theorem 2. Now we only consider the case where p0 < p′c.
If we have

k ≥ κ(p0) =
d

λp0
(1− d

√

1− p′c
1− p0

),

then using the fact 0 ≤ p0 < p′c, we will have

l(p0, d, k, λ) ≥ p′c,

and by Theorem 3, a spectrum contention protocol induces
the mean open cluster size χ(p) to be χ(p) ≥ χ. Hence it
suffices to show that k ≥ κ(p0).

If p0 < Λ, we have

p0 +Bk < Λ+Bk

≤ Λ+Bd

= Λ+ p′c − Λ

= p′c.

Since p0 +Bk ≥ p′c, we have p0 ≥ Λ.
By the definition of Λ, κ(Λ) = d. In addition, κ(p′c) = 0.

It is easy to check that κ′(p0) < 0 and κ′′(p0) > 0 on [Λ, p′c],
therefore ∀p0 ∈ [Λ, p′c],

κ(p0) ≤
d

Λ− p′c
(p0 − p′c).

Since p0 +Bk ≥ p′c, we have

k ≥
p′c − p0

B

=
d(p0 − p′c)

Λ− p′c
≥ κ(p0).

This completes the proof.

Equation (3) can be rewritten as

k + C0(χ, pc, d,Λ)p0 ≥ C1(χ, pc, d,Λ), (4)

where C0 = d(χ+pc)(χpc−Λ(χ+pc))
−1 andC1 = dχpc(χpc−

Λ(χ+ pc))
−1.

By Theorem 4, we give very clear criteria to detect the oc-
currence of a global or severe cascade in three typical lattice
structures.

Theorem 5. Suppose IEEE 802.22 contention resolution
protocol is used, and λ = 1/2,

1. In the triangular lattice case, d = 6, pc = 1/2 and
Λ = Λt = 0.164151. If k + C0(χ, 1/2, 6, 0.164151)p0 ≥
C1(χ, 1/2, 6, 0.164151), the mean open cluster size will
be at least χ. In particular, if

k + 17.8652p0 ≥ 8.9326,

a global cascade occurs.

2. In the square lattice case, d = 4, pc = 0.5927 and Λ =
Λs = 0.213907. If k + C0(χ, 0.5927, 4, 0.213907)p0 ≥
C1(χ, 0.5927, 4, 0.213907), the mean open cluster size
will be at least χ. In particular, if

k + 10.5599p0 ≥ 6.2588,

a global cascade occurs.

3. In the honeycomb lattice case, d = 3, pc = 0.6970 and
Λ = Λh = 0.251597. If k+C0(χ, 0.6970, 3, 0.251597)p0 ≥
C1(χ, 0.6970, 3, 0.251597), the mean open cluster size
will be at least χ. In particular, if

k + 6.7355p0 ≥ 4.6946,

a global cascade occurs.

8



Proof. Since Equation (4) is a rewritten version of Equa-
tion (3), by Theorem 4, this completes the proof. Now we
take the triangular lattice case as an example of numer-
ical calculation. The first step is to calculate Λ. Since
d = 6, λ = 1/2, p′c = pc = 1/2 in Equation (2), we have
1 − (1 − p0)(1 − p0/2)

6 = p0 and obtain p0 = 0.164151.
Therefore Λ = p0 = 0.164151. When χ = 100, we have
C0 = 17.9985 and C1 = 8.9545. If k + 17.9985p0 ≥ 8.9545,
a cascade of spectrum contentions with χ ≥ 100 occurs.
When χ = ∞, we have C0 = 17.8652 and C1 = 8.9326. If
k + 17.8652p0 ≥ 8.9326, a global cascade occurs.

5. A BIASED SPECTRUM CONTENTION

PROTOCOL

5.1 Contention Resolution Rule
We propose a biased contention resolution rule that mit-

igates this problem by reducing the winning probability of
a contention source in a pairwise contention. We define a
contention path between BSs i and j as a path between ver-
tices i and j in the network graph, such that the channel
redistribution via a pairwise contention process occurs for
every pair of neighboring BSs that belong to the path. The
procedure for the biased contention resolution is described
below.

1. In the contention request, every contention source BS i
includes the target channel number h, its SCN si cho-
sen from [0,W − 1], and the current length of the con-
tention path li measured by BS i. If the BS i does not
belong to any contention path, it sets li = 0, which im-
plies that it is the starting vertex of a new contention
path.

2. Every contention destination BS j checks the values
of li and SCN si in the contention request from the
contention source BS i. Let S(j) denote the set of
contention sources that send contention requests to BS
j during a self-coexistence window.

3. If |S(j)| > 1, BS j is being reached by more than
one contention paths. The contention destination BS j
measures its lj as maxi∈S(j){li}+ 1, and generates its
own SCN sj from a modified contention window [0, lj ·
W −1]. The measured value of lj will be used by BS j
in future contention requests if it becomes a contention
source.

4. If the contention destination BS j has the greatest
SCN value, it wins the contention. Otherwise, the con-
tention source who has the greatest SCN value wins,
and the contention destination BS j releases the target
channel.

If p0 ≥ pc, a global cascade of spectrum contentions is in-
evitable. The fact that p0 ≥ pc strongly suggests the insuf-
ficiency of overall spectrum resources. Next, we discuss the
case when pi,0 < pc for all i ∈ V .

5.2 Finite Cluster Size
Decreasing the winning probability of a contention source

can prevent the occurrence of infinite contention paths, which
is shown in the following theorem.

Theorem 6. There is no infinite contention path if the
biased contention resolution rule is used for contention res-
olution in the case of pi,0 < pc,∀i ∈ V .

Proof. We prove this theorem by contradiction. Sup-
pose there is an infinite contention path P generated in the
network. P is denoted as the sequence

i0, {i0, i1}, i1, {i1, i2}, i2, {i2, i3}, i3, . . . .

And we have {lin}n≥0 is a strictly increasing sequence, or
more precisely, lin+1

≥ lin + 1 for all n ≥ 0, and therefore
limn→∞ lin = ∞. We write λu,v for the winning probability
of BS u as a contention source and BS v is the contention
destination. We have

λu,v + λv,u = 1,

λij ,ij+1
=

1

2lij+1

=
1

2maxv∈S(ij+1){lv}
≤

1

2(lij + 1)
,

and

λij+1,ij = 1− λij ,ij+1
≥ 1−

1

2(lij + 1)
. (5)

And it is easy to see that for all j′ ∈ S(j), λj,j′ is the same
by the description of the biased contention resolution rule,
therefore λj,j′ is simply denoted as λj , where BS j is the
contention destination and j′ ∈ S(j). By Equation (5),

λij+1
≥ 1−

1

2(lij + 1)
,

therefore limj→∞ λij = 1. We write pu for the starving
probability of BS u, pu ≥ pu,0. We have limλu→1 pu = pu,0,
i.e. as the winning probability of BS u as a contention desti-
nation approaches 1, it becomes more and more resistant to
contention sources, its starving probability just goes to pu,0,
the spontaneous starving probability. Hence limj→∞ pij =
pu,0 < pc. We take ε0 to be (pc − pu,0)/2. There exists
N ∈ N such that j > N implies pij < pu,0 + ε0 < pc.

By removing vertices i0, ..., iN and edges that connect
these vertices from the path P , and the remaining part of
P is still an infinite contention path P2 with the starting
vertex iN+1.

The infinite contention path P2 implies that an infinite
cluster can be formed by the site percolation process in the
underlying network graph G. Under the percolation model,
P2 is an infinite cluster in G and every site in P2 is open
with a probability that is less than pc. This result contra-
dicts the fundamental fact in the percolation theory: there
is no infinite cluster when the probability of an open site is
less than the percolation threshold. Thus, we conclude that
there is no infinite contention path if the biased contention
resolution rule is used.

6. NUMERICAL RESULTS
In this section, we compare two contention resolution rules,

namely the unbiased rule and the proposed biased rule, in
terms of feasibility of invoking the cascade phenomenon in
spectrum contentions under various conditions in CR net-
works.

6.1 Simulation Setup
Topology. We simulate three typical lattices: coexisting

BSs are placed on a honeycomb lattice (d = 3), a square
lattice (d = 4) and a triangular lattice (d = 6), respectively.
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Self-coexistence window and inter-BS spectrum con-
tention. In a network cell, the BS provides broadband ac-
cess to secondary users according to a time schedule con-
sisting of superframes. 802.22 provides the inter-BS syn-
chronization mechanism for neighboring BSs to align their
superframes. In 802.22, a superframe has 16 frames, and a
self-coexistence window (SCW) is periodically scheduled in
every frame for spectrum contention.

Service requirement. There are a total number of N =
30 channels in our simulations. Every BS requires 10, 20
or 30 channels to satisfy the QoS of its admitted workload.
Neighboring BSs occupy disjoint sets of channels, and a BS
claims a number of channels which is no more than its service
requirement.

Primary user (PU) traffic generation. We assume
that there is one primary transmitter per cell, and every
primary transmitter randomly selects X ∈ [0, Na] channels
to emit its signals, where Na is the number of PU’s active
channels. In most existing work, it is assumed that a pri-
mary transmitter follows a “busy/idle” traffic pattern on a
licensed channel [4, 11]. Hence, a “busy/idle” pattern is sim-
ulated for each primary transmitter: the busy period has a
fixed length of b timeslots, and the idle period follows an
exponential distribution with a mean of l frames. There-
after, we will simply refer to the notation λe = 1

l
as the

primary transmission rate. Every BS is able to detect the
signals from the primary transmitter in the same cell. A
channel is considered “unavailable” when primary user sig-
nals are present in it. All secondary users (BSs) should va-
cate unavailable channels during the period of primary user
transmission.

6.2 Verification of Applicable Criteria in 802.22
Networks

In Theorem 5, we propose applicable criteria for global
and severe cascades in 802.22 networks, all of which have
the form k + C0p0 ≥ C1. Since PU traffic is generated in
a “busy/idle” pattern, we have p0 = b/(b + l). We choose
appropriate k, b and λe such that k+C0p0 = C1 (if k+C0p0
is much greater than C1, the global or severe cascade will be
more likely to occur). We verify the applicable criteria for
global cascades in a honeycomb lattice, a square lattice and
a triangular lattice, respectively.

We conduct 100 repeated experiments for each type of
lattice. In the honeycomb lattice case, 94% of the repeated
experiments show a global cascade with χ̄ = 9285.69, where
χ̄ is the average value of χ in repeated experiments. In the
square lattice case, 97% of the repeated experiments show
a global cascade with χ̄ = 9842.05. In the triangular lattice
case, 99% of the repeated experiments show a global cascade
with X̄ = 9921.02.

6.3 Phenomenon of Cascading Spectrum Con-
tentions

We measure the mean cluster size, χ, by varying the fol-
lowing parameters: the degree d of the lattice where BSs are
placed, the number k of pairwise contentions initiated by a
contention source, and the PU traffic pattern (the number
Na of PU’s active channels and the primary transmission
rate λe).

Impact of lattice degree. In this set of simulations, we
fix r = k/d = 1. In the honeycomb lattice case (d = 3), the
mean open cluster size is the smallest while the triangular
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Figure 2: Mean open clus-
ter size vs. lattice degree.
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Figure 3: Mean open clus-
ter size vs. number of pair-
wise contentions.
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Figure 4: Mean open clus-
ter size vs. number of PU’s
active channels.
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Figure 5: Mean open clus-
ter size vs. primary trans-
mission rate.

lattice (d = 6) shows the largest mean open cluster size (Fig-
ure 2). These results coincide with the previous conclusion,
with r = k/d fixed, there is a positive correlation between χ
and d.

Impact of number of pairwise contentions. As is
shown in Figure 3, the more pairwise contentions initiated
by a contention source, the larger the mean open cluster
size.

Impact of number of PU’s active channels. When
Na = 10, every BS is able to occupy ten channels to sat-
isfy its channel requirement, and it will become starving
once some of its occupied channels are reclaimed by primary
transmitters. When the primary transmitter is active on ev-
ery channel (Na = 30), a BS is prone to the lack of spectrum
and entering the contention initiation phase, and thus the
cascade phenomenon appears as expected under the unbi-
ased rule and almost every BS belongs to the unique open
cluster (Figure 4).

Impact of the primary transmission rate. When the
primary transmitter is active with a high primary transmis-
sion rate (λ = 1/2), a BS is prone to the lack of spectrum
and entering the contention initiation phase, and thus the
cascade phenomenon appears as expected under the unbi-
ased rule. When the primary transmission rate is low, the
effect of cascading spectrum contentions is not obvious un-
der both contention resolution rules, since the primary user
releases channels in most time such that most of BSs can be
satisfied.

7. CONCLUSION
In this paper, we systematically studied the CR networks’

resilience to the cascading spectrum contentions. We model
the cascading spectrum contention problem as a site perco-
lation process in the underlying network graph. Under the
percolation-based framework, we use the mean open clus-
ter size χ(p) to measure the magnitude of the cascade of
spectrum contentions and mathematically relate the starv-
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ing probability p to χ(p). We identify the four parameters
d, k, λ and p0, and establish the relationship between p and
these parameters, through which we obtain the criteria to
detect global or severe cascades. In addition, we further im-
prove the obtained criteria to be computationally applicable,
and apply them to the 802.22 networks for detecting global
or severe cascades. Finally, we propose a biased spectrum
contention protocol that allows coexisting CR networks to
prevent the cascading spectrum contentions. To the best of
our knowledge, this is the first work to study the cascad-
ing spectrum contention problem in self-coexistence of CR
networks.
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